
Page 32 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

1 - Introduction
Last month, we saw an introduction to the Olivetti M20,
a rather peculiar machine from 1982 [1]. We spent some
time discussing the characteristics and the quirks of the
Professional Computer Operating System or PCOS. This
article describes how to use a comparatively modern C
compiler (specifically, a version of GCC) to develop software
for it.

One of the advantages of exploiting modern computers
and tools to program vintage computers is that we now
have beautiful text editors, excellent compilers and efficient
languages. A purist may argue that the true "1980's
experience" may be lost, but this is compensated by
countless advantages, especially for relatively large
projects. In the last few months, I have used this approach
for developing text-adventures. I have been able to exploit
the portability of the C language, targeting systems as
different as the Sinclair ZX Spectrum and the Olivetti M20
with almost the same source code.

I will describe in this article how to cross-compile for the
M20 in C on a Unix-like operating system such as Linux
or macOS. I do not have any Windows machine around,
but I think that for that operating system, programs such
MinGW or Cygwin may be useful. A convenient strategy
is to have on the developing machine both a compiler and
an emulator running for each platform. The required tools
(z8k-pcos GCC, m20disk, MAME) must be downloaded
and in some cases built from sources, so I hope you will
not be put off by things such as GNU make.

This article is organized as follows. I will start by briefly
describing the compiler and the MAME emulator for the
M20. Then, I will show how to use them to compile and
run some introductory examples. I will finally discuss how
to transfer the executables on the real hardware and run
them there. I will finally discuss a nontrivial example (a
small graphic demo) before drawing some conclusions.

2 - The C cross-compiler and the emulator
Many personal computers of the 1980's could be
programmed in one of the many BASIC dialects available.
The Olivetti M20 was no exception and came with a
reasonably complete Microsoft interpreter, called BASIC-
8000. Even if BASIC was a simple language and was easy
to learn, it was painfully slow in some situations. Moreover,
it was not very convenient for low-level operations, not
efficient for large projects and severely limited in many
areas. I started programming with BASIC on my VIC-20

when I was a child and I used it for many years on the PC
too, but I am not very fond of it. An assembler suite for
the Z8001 was available for the M20, but handling large
projects in assembly is often tedious, cumbersome and
the code is not portable, even if one can possibly write
extremely compact and efficient programs.

From the modern perspective, the C programming language
offers a good trade-off between execution speed, ease
of coding and overall efficiency on limited machines, being
a remarkably efficient compiled language. I will not
describe here the strengths and pitfalls of the C language
(many resources and tutorials are available on the Internet
for that), but modern compilers targeting 8- and 16-bit
processors exist. These are for example the cc65 for the
6502, the z88dk for the Z80, etc... For the Olivetti M20,
much work has been done in this direction by Christian
Groessler over several years. He created a version of GCC
2.9 dedicated to the Zilog Z8001 processor and PCOS,
from a compiler originally put together in 1998 by the
eCos group (then part of RedHat). His work included GNU
binutils as well as newlib.

GCC 2.9 does not support all the bells and whistles of
recent standards for C and C++, but it is still a very decent
compiler, much more powerful than the original Microsoft
BASIC available on the machine. Christian distributes the
compiler along with its sources for many Unix systems
on his FTP site [2], and wrote an introductory article,
which is available at [3].

One possible strategy to install the compiler is to use one
of the available binary distributions (Chris kindly prepared
packages for many Un*x flavours), or directly compile it
from sources. Once everything is done, you should install
the executables in /usr/local/bin or make sure that they
can be reached via current shell path. If the install has
succeeded, typing the following command should yield
the compiler version, as follows:

$ z8k­pcos­gcc ­­version
2.9­ecosSWtools­990319­m20z8k­3

The compiler suite is composed of a collection of tools
that appear familiar if you are used to GCC. There are
versions that are dedicated to COFF executables, but we
will not use them on the M20. The tools dedicated to PCOS
start with the z8k-pcos prefix.

Probably, the most convenient way to cross-develop for

Cross-programming in C on the Olivetti M20
by Davide Bucci

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 33 of 65

SOFTWARE

a vintage computer is to have an efficient compiler paired
with an emulator, both available on the modern machine.
The second tool we are going to use is therefore MAME,
as from version v0.212, it started to partially support the
M20. The implementation is still slightly buggy, but remains
quite useful to rapidly test simple programs.
Benjamin Eberhardt has written a very interesting article
about how to use MAME to emulate an M20 [4].

MAME can be downloaded at [5] and among other persons,
many of the efforts done to emulate the M20 have been
done (once again) by Christian Groessler. After the
download, you will need a copy of the boot ROM code that
can be found at [6], as well as an image of a boot disk
containing PCOS, such as the one that is present in the
archives associated to this article [7]. Once MAME is
installed on your system and you have put the M20 ROM
in the current directory, it can be launched with a command
that has the following structure:

$ mame m20 ­bios 0 ­rompath . ­flop1 <image1>
­flop2 <image2> ­window

Now that the main tools we need are ready, in the next
paragraph we are going to discuss, compile and run some
simple C programs on the emulator.

3 - Three 'Hello World' programs
Of course, the first program that one may use to test the
compiler toolchain is the very well-known Hello World
program:

#include<stdio.h>

int main(int argc, char **argv)
{
 printf("Hello World!\n");

 return 0;
}

If we call this file hello.c, the command to compile it is:

$ z8k­pcos­gcc hello.c ­o hello.cmd

A rather unpleasant surprise is that the executable is
16211 byte long. If it is tiny for today's standards, it is
relatively large for a 1982 computer and this size is not
acceptable for such a simple program. We must mitigate
this problem.

The culprit is the standard library and in particular the
implementation of the printf function. This function offers
very flexible formatting capabilities, at the price of
substantial code to be included in the executable. It is
worth noting that, even if the C compiler supports floating
point types such as double and float, the present
implementation of scanf and printf does not handle it.
For many practical purposes however, if one does not
need the formatting capabilities, printf can be skipped
completely. A more manageable 9963 byte long executable
can be obtained with the following code:

#include<stdio.h>

int main(int argc, char **argv)
{
 fputs("Hello World!\n", stdout);
 return 0;
}

To further shrink the size of the result, an interesting
technique (that makes the code non portable) is to exploit
a direct PCOS system call:

#include<sys/pcos.h>

int main(int argc, char **argv)
{
 _pcos_dstring("Hello World!\r");
 return 0;
}

Once compiled, this code yields a much more
manageable 2919 byte executable. This size is still
much greater than the one that can be obtained
with a pure assembly program, but can be acceptable.
A list of the PCOS functions callable from C can be
found in the pcos.h header, which closely follows
the description done by Olivetti in the manual
dedicated the assembly language suite [8]. The -Os
and -O2 options of gcc can be used and tell the Figure 1: Hello world output in MAME

Page 34 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

compiler to optimize the code respectively for code or
for speed. In both cases, the simple "Hello World!" program
yields a 2897-byte executable. Note in the last example
the use of the \r code, the newline used by PCOS in place
of \n.

In my experience, it is a good practice in C to adopt a
modular strategy and keep separated from the program
core the routines related to input and output. When porting
a relatively large program to a new computer, the latter
often require an adaptation. Non portable code (such as
PCOS system call) shall be confined in this part of the code.

If you would like to mix Z8001 and C code, or if you want
to use the z8001-pcos-as assembler alone, this is perfectly
possible. The compiler manual [9] includes some detailed
instructions about how to do that and contains many
example programs. If you are used to the Z80 assembly,
you may find it interesting to learn the Z8001, as it was
meant to be the 16-bit successor to the Z80, exploiting
a segmented memory paradigm and preserving a certain
degree of compatibility.

4 - Executing programs in MAME
In order to execute the Hello World program described
above, we need to transfer it first into a usable disk image.
MAME can read different types of disk images, the most
useful file format to be used with the M20 has the extension
IMG (in some older versions of MAME, only those in the
MFI format could be written). There is a certain number
of details to be considered when creating usable disk
images, due to the head 0/track 0 format that is different
from the rest of the disk in the PCOS disk organization.
As said previously, a good bootable image that can be
used with the emulator is the pcos20.img file, contained
in the archive available from [7].

We are going to need the m20floppy utility described in
[10]. Download and compile it with make, in order to
obtain an executable called 'm20'. Once created and
installed in your computer, to obtain a disk image called
hello.img, type:

$ m20 hello.img new

By the way, m20floppy supports several commands:
launch it with no arguments to obtain a brief description
of each of them. At this point, the disk image is not yet
usable, as the utility does not create the contents of head
0/track 0. They must be transferred manually from a disk
image that contains them. The disk image example.img
present in the same archive as the PCOS disk can be used
for that:

$ dd conv=notrunc if=example.img of=hello.img
bs=4096 count=1

Benjamin Eberhardt suggests in [4] a simple way to check
if a disk image contains the data corresponding to head
0/track 0 or not. You have to inspect the first bytes of the
file to see if they are different from zero. If the dd command
was successful, here is what you should obtain from an
image that can be successfully used in the emulator:

$ hexdump hello.img |head ­n 1
0000000 01 04 00 23 02 10 01 00 00 0a 00 c4
00 86 1e 00

and here is the result with an image that can not be used,
as track 0 data is missing:

$ hexdump bad.img |head ­n 1
0000000 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

When you have a complete image of an empty disk, you
may want to copy the result to another file, to avoid having
to repeat the process each time. We can then add the
executable program to the disk image:

$ m20 hello.img put hello.cmd

You may check the contents of a disk image using the ls
command of m20floppy:

$ m20 hello.img ls
hello.cmd

Once the disk image contains the executable, we are
going to launch the emulator in a window, with a system
disk pcos20.img in the disk drive 0: and the image hello.img
in drive 1:. If both files are available in the current directory
that also contains the ROM file m20.zip, the command to
launch MAME is:

Figure 2: RS232 cable pinout

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 35 of 65

SOFTWARE

$ mame m20 ­bios 0 ­rompath . ­flop1 pcos20.img
­flop2 hello.img ­window

If you have put the files elsewhere, change their paths
accordingly. In the emulator, after the machine has finished
booting, we can type 'hello' (or simply 'he') and the Hello
World program should be executed, as shown in figure
1. One may notice that we did not have to select the drive,
as one of PCOS's quirks is that if a file is not found in the
current drive, the other one is scanned, too. The last
accessed drive becomes the current one. If you have
problems with the keyboard layout, you can mitigate them
by running 'sl' that allows you to change the current
language. The command 'ps' saves the current PCOS
configuration and the save will be permanent, as recent
versions of MAME can write to file images in the img
format. If you want to have descriptions of the error
messages more explicit than a numerical code, you can
use the 'ep' command, at the expense of 1240 bytes of
free RAM. If you are getting mad at the backspace key
apparently misbehaving like a Carriage Return, in [1] I
suggested a simple fix for that.

The current state of the MAME emulation of the M20 is
that many things can be done, but the emulation may be
unstable (a warning message is in fact issued by MAME).
The emulator is invaluable nonetheless for preliminary
testing, as transferring files to a real machine is not
entirely trivial and requires some time and effort, as we
are going to see in the next paragraph.

5 - Transferring files to a real M20
There are different strategies available to transfer files
towards a real M20. If you have an MS-DOS computer
with a 360 KB floppy disk drive, you can use Dwight Elvey's
wrm20 and rdm20 routines, as described in [11]. There
are limitations, mainly because of the peculiar formatting
of the track 0/head 0, that is not handled by many disk
controllers in the PC world. Usually, a way to circumvent
them is to format a disk on the M20 and write it on the
PC using Dwight's tools, which simply skip the tracks that
can not be written.

In my case, I do not own a suitable PC and I preferred to
make an RS232 null-modem cable to attempt data transfer
with protocols such as XMODEM. Figure 2 shows the
connections of the cable. I represented the numbering
of pins in a male DB9 connector as they appear this way
on the solder side of the female connector to be used for
the cable. On the "modern" side, I used an USB-RS232
interface that I bought many years ago, working reliably
with macOS. I wrote a small collection of utilities in BASIC
described in [12] that can be used for this task. Starting
from scratch may involve copying a XMODEM receive
program on the M20 and then use it to transfer the more
involved tools. Instead of directly typing the program,
once the M20 is connected, one may redirect the input
and output of the PCOS towards RS232 with following
commands:

pl ci
rs
sc com:,9600,none,0,8,half,off,256
ci 0,o,0
+Scom:, +Dcom:

The first commands load the 'ci' utility as well as the
RS232 driver into memory and configure the M20 for a
9600 baud 8N1 connection, with no echo nor XON/XOFF
control. Then, a serial connection is open. Finally, the last
command redirects input and output towards RS232. On
your modern computer, if you configured the terminal
program correctly (I use Minicom), you should see the
PCOS prompt appearing in your terminal, replicating what
the M20 writes on the screen. This is a quite convenient
way to use the M20, as you can control the computer
remotely. You can for example launch basic by typing 'ba'
and copy/paste the whole xreceive.bas program. To do
this, you should first configure your terminal program to
apply a delay for each key. BASIC is not fast enough to
process data continuously fed by a modern computer
and the result would become mangled after a few lines.
On Minicom for example, type CTRL+A, then T and set
the 'TX delay' to 10 ms. You may save the transferred file
(as 'xmodem.bas'), then restart the machine and reissue
the first four commands seen above (as the I/O redirect
must not be active to transfer files with XMODEM) and
finally load and run 'xmodem.bas' within BASIC to transfer
files.

Figure 3 shows a file transfer between my MacBook pro
using Minicom and the Olivetti M20, thanks to a USB to
RS232 interface and the cable I built. Figure 4 shows the
Hello World program running on my machine.

6 - A non-trivial example: memory access for graphics
Of course, programming in C offers a great deal of Figure 3: File transfer in action

Page 36 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

possibilities and the code in listing 1 shows two functions
and a macro that can be used to draw on the screen by
directly accessing the memory (on a B/W machine):

- The 'scrclear' function clears the screen (there is no
difference between graphics and text modes on the M20,
the screen always displays graphics).
- The 'PSET_M' macro draws a pixel on a grid of 512x256.
- The 'line' function draws a segment with the Bresenham
algorithm [13].

The result can be seen in figure 5. Of course, such an
implementation may be improved, but gives an idea of
the expressiveness of the C language. If you really feel
the need to get your hands dirty, the gcc manual [9]
describes in detail the integration of C code with Z8001
assembly, taking for example different versions of the
'scrclr' function. As said earlier, if you already are familiar
with the Z80 assembly language, you may find yourself
at home with the Z8001, after all. Among the tools that
come with the GCC compiler, the z8k-pcos-as assembler
is quite powerful and convenient.

Conclusion
In this article, we briefly described how to cross-program
the Olivetti M20 focusing on the C language. After a short
introduction, we discussed the tools that we choose for
the task, namely a special version of GCC tailored for the
Z8001 processor and the PCOS operating system, as well
as the MAME emulator.

We then introduced the classic Hello World program and
we saw how to reduce the size of the executable produced
by the compiler. We discussed how to execute it in the
emulator and how to transfer files on a real machine. We
finished our discussion by presenting an example of direct
memory access. The compiler manual [9] written by Chris
is definitely worth reading if you want to go beyond what
I describe in this article.

By the way, I almost forgot! This article (as the one you
read last month) has been entirely written using Oliword
on my Olivetti M20. Text files have then been transferred
using RS232 on a modern MacBook Pro, where the final
editing has been done.

All the source code discussed in the article is contained
in an archive available at [7]. It contains disk images of
the discussed examples, as well as the Olivetti M20 version
(they are available for many 8 and 16 bit computers) of
two text adventure games I developed: The Queen's
Footsteps and Two Days to the Race. Enjoy!

Acknowledgments
I would like to thank Christian Groessler for the amazing
tools, the constant commitment to the M20, as well as
for the countless fruitful discussions we had in the last
fifteen years. Concerning the MAME emulator, I could
never be able to emulate an M20 without the help of
Benjamin Eberhardt, to whom I would like to express my
gratitude. Benjamin also kindly prepared the PCOS disk
images in the IMG file format and provided useful remarks
on early versions of this article.

This paper would have been probably awkward to read
without the kind and attentive proofread by Chris Carter.
The remaining errors are mine.

Figure 4: Hello world on a real M20

BIBLIOGRAPHY

[1] D. Bucci "The Olivetti M20 and the history of a
website" RetroMagazine World #2, August 2020.
[2] C. Groessler, personal FTP site: ftp.groessler.org
[3] C. Groessler, D. Bucci "Cross-programming for
the Olivetti M20 using GCC," available at http://
www.z80ne.com/m20/index.php?
argument=sections/download/z8kgcc/z8kgcc.inc
[4] B. Eberhardt, "Emulating the M20 with MAME,"
available at: www.z80ne.com/m20/index.php?
argument=sections/tech/mame_m20.inc
[5] MAME official website: https://
www.mamedev.org
[6] Olivetti M20 ROMs available at https://
wowroms.com/en/roms/mame/olivetti-l1-
m20/89051.html
[7] http://www.retromagazine.net/download/
m20inC_sources_and_disk_images.zip
[8] Olivetti "M20 Assembler language user guide,"
release 2.0, March 1983
[9] C. Groessler, "GCC Z8001 user manual," 2009,
available at: http://www.z80ne.com/m20/sections/
download/z8kgcc/z8kgcc.pdf
[10] C. Groessler, "Manipulate disk images,"
available at: http://www.z80ne.com/m20/index.php?
argument=sections/transfer/imagehandle/
imagehandle.inc
[11] D. Elvey "How to read and write disk images for

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 37 of 65

SOFTWARE

Figure 5: The result produced by listing 1

 short inc=MAX(ix, iy), plotx=x1,
ploty=y1, i, plot;
 short x=0, y=0;

 PSET_M(plotx,ploty); /* Plot the
first pixel */
 for(i=0; i<=inc; ++i) {
 x += ix;
 y += iy;
 plot=FALSE;
 if (x>inc) {
 plot=TRUE;
 x­=inc;
 plotx+=SIGN(dx);
 }
 if (y>inc) {
 plot=TRUE;
 y­=inc;
 ploty+=SIGN(dy);
 }
 if (plot)
 PSET_M(plotx,ploty);
 }
}

int main(int argc, char **argv)
{
 int i;
 fillscr(0);
 for (i=0; i<512; i+=10) {
 line(0,0,i,128);
 line(0,255,i,128);
 line(511,255,i,128);
 line(511,0,i,128);
 }
 return 0;
}

Listing 1: C code for direct access to video
RAM

/* Segment #3: begin of video RAM for a
B/W machine*/
unsigned short *screen = (unsigned
short *)0x3000000;

#define SCREEN_WIDTH 512
#define SCREEN_HEIGHT 256
#define SCREEN_SIZE (SCREEN_WIDTH /
16 * SCREEN_HEIGHT) /* words */
#define ABS(a) ((a)>0 ? (a):(­a))
#define MAX(a,b) (((a)>(b))? (a):(b))
#define SIGN(a) ((a)>0 ? 1 : ((a)==0 ?
0 : (­1)))
#define TRUE ­1
#define FALSE 0

/* Fills the screen memory with a
defined word. */
void fillscr(unsigned short p)
{
 unsigned short *s;
 for (s=screen; s <
screen+SCREEN_SIZE; ++s)
 *s = p;
}

/* Just turn on a pixel by accessing
directly to the video RAM. */
#define PSET_M(x,y) *(screen +
(((y)<<5) | ((x)>>4)))|=1<<(15­((x) &
0x000F))

/* Plot a line using the Bresenham
algorithm.
 from Nelson Johnson, "Advanced
Graphics in C"
 ed. Osborne, McGraw­Hill 1987. */
void line(unsigned short x1, unsigned
short y1,
 unsigned short x2, unsigned short
y2)
{
 short dx=x2­x1, dy=y2­y1;
 short ix=ABS(dx), iy=ABS(dy);

the M20 system," available at: http://
www.z80ne.com/m20/index.php?
argument=sections/transfer/imagereadwrite/
imagereadwrite.inc
[12] D. Bucci "Transferring files using a RS232
connection" http://www.z80ne.com/m20/index.php?
argument=sections/transfer/serial/serial.inc
[13] N. Johnson, "Advanced Graphics in C," ed.
Osborne, McGraw-Hill 1987.
http://www.z80ne.com/m20/index.php?
argument=sections/download/z8kgcc/z8kgcc.inc

	10 REM **********************************
	10 REM **********************************
	-- Listato: mg-2d functions
	-- Listato: mg-2d functions
	-- Listato: mg-2d functions
	References
	BIBLIOGRAPHY
	BIBLIOGRAPHY
	Using the examples
	BIBLIOGRAPHY

