
Z8000 C cross compiler and assembler
for the Olivetti M20 running PCOS

Christian Groessler, chris@groessler.org

mailto:chris@groessler.org

$Id: z8kgcc.texi,v 1.33 2009/10/01 20:40:15 chris Exp $

Copyright c© 2009 Christian Groessler
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

i

Table of Contents

1 Introduction . 1

2 Getting and installing the toolchain 2
2.1 Getting the toolchain . 2
2.2 Installing the toolchain . 2
2.3 Upgrading . 2

3 The C compiler . 3
3.1 Overview . 3

3.1.1 Included Tools . 3
3.2 Basic usage . 5
3.3 Compiler Switches . 5
3.4 CPG warnings . 6
3.5 Predefined macros . 7
3.6 Inline assembly . 7

4 The C runtime library . 10
4.1 Floating Point . 10
4.2 PCOS system functions . 10
4.3 PCOS status codes . 12
4.4 PCOS open modes . 14
4.5 PCOS DID defines . 14
4.6 Special characters . 15
4.7 Creating files with open() . 15

5 The assembler . 17
5.1 Radix representation . 17
5.2 Segment notation . 18
5.3 Comments . 18
5.4 Mixing C and assembly . 18

5.4.1 Z8001 . 18
5.4.1.1 Z8001 default calling convention . 18
5.4.1.2 Z8001 “Standard” calling convention 19

5.4.2 Z8002 . 19

6 ldpcos - the PCOS linker . 20
6.1 Command line switches . 20
6.2 Config file . 22
6.3 .sav files . 22
6.4 Big Programs . 22
6.5 Default PCOS program prologue . 23

ii

7 Examples . 25
7.1 Assembler version of “Hello World” . 25

7.1.1 Setting the program id string . 26
7.2 Assembler version of “Hello World” (-raw version) 27
7.3 Direct screen access (assembler) . 28
7.4 Direct screen access (C) . 29
7.5 Direct screen access (C with assembler subroutine) 30
7.6 Direct screen access (C with inline assembly) 32
7.7 Read a byte from a port . 34
7.8 Write a byte to a port . 35
7.9 Accessing the disk directory . 36

8 The debugger . 39

9 Building from source . 40
9.1 Compiler and Assembler . 40

9.1.1 Building for PCOS . 40
9.1.1.1 Building GNU toolchain . 40
9.1.1.2 Building the PCOS linker . 41
9.1.1.3 PCOS specific parts of the runtime library 42

9.1.2 Building for COFF . 42
9.2 Debugger . 43

9.2.1 m20stub.sav . 44

Appendix A Suggested Readings 45
A.1 PCOS User Guide . 45
A.2 ASSEMBLER Language User Guide . 45
A.3 Olivetti M20 Hardware Manual . 45
A.4 Z8000 Technical Manual . 45
A.5 Z8000 Programmer’s Guide . 45

Appendix B Acknowledgements 46

Appendix C Revision of this document 47

Appendix D GNU Free Documentation License
. 48

Index . 55

Chapter 1: Introduction 1

1 Introduction

This manual contains documentation for a Z8000 C and assembler development toolchain
targetting the Olivetti M20 personal computer running the PCOS operating system.

The M20 was a Z8001 based personal computer sold by Olivetti during the early eighties.
It had 128kB to 512kB of RAM, monochrome or color (4 or 8 colors) displays, one or two
5.25” floppy drives, and optionally a hard drive. See Davide Bucci’s excellent web page at
http://www.z80ne.com/m20/index.php for more information about the M20.

The toolchain is based on a Z8000 port of the GNU C compiler (the one which comes with
the eCos tools1), the GNU binutils2, and newlib3.

This document describes the January 19, 2009 release of the tools.

Please note this disclaimer:
This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

This document is distributed under the terms of the GNU Free Documentation License. A
copy of the license is included in the section entitled “GNU Free Documentation License”.

1 ftp://sources.redhat.com/pub/ecos/releases/ecos-1.2.1/ecosSWtools-990319-src.tar.bz2
2 http://www.gnu.org/software/binutils
3 http://sourceware.org/newlib

http://www.z80ne.com/m20/index.php
ftp://sources.redhat.com/pub/ecos/releases/ecos-1.2.1/ecosSWtools-990319-src.tar.bz2
http://www.gnu.org/software/binutils
http://sourceware.org/newlib

Chapter 2: Getting and installing the toolchain 2

2 Getting and installing the toolchain

2.1 Getting the toolchain

The main distribution site is
ftp://ftp.groessler.org/pub/chris/olivetti/m20/misc/z8kgcc.

Source code and precompiled versions for selected architectures are provided.

2.2 Installing the toolchain

Tarballs with precompiled versions for Linux/x861, MacOS-X 10.5 (ppc and x86)2,
FreeBSD/x863 or NetBSD/ppc4 are available.

Extract the tarball into the root directory of your system. It will create a directory
hierarchy under /opt/z8kgcc-jan-19-2009. Add /opt/z8kgcc-jan-19-2009/bin to
your PATH environment variable, e.g. with these commands at the shell:

$ PATH=/opt/z8kgcc-jan-19-2009/bin:$PATH
$ export PATH

That’s all. Now you can invoke e.g. the C compiler with z8k-pcos-gcc.

If you need to build from source (probably because you use a different operating system
than the ones where precompiled versions are available, or you want to make changes to
the source code), you’ll need to build the toolchain from source. Please refer to Chapter 9
[Building from source], page 40 of this manual.

2.3 Upgrading

Older versions had installed, and newer versions will install, into a different directory than
/opt/z8kgcc-jan-19-2009. Typically it will be a directory like /opt/z8kgcc-<date-of-
release>. Therefore it’s possible to have different versions installed on the system at the
same time. This is true for the precompiled versions. If you build from source you can place
the installations at any location you like.
Select the version you want to use by putting its bin directory in the PATH environment
variable as described above.
Alternatively you can execute the version you want by invoking it with its absolute path,
like

$ /opt/z8kgcc-jan-19-2009/bin/z8k-pcos-gcc <parameters>

This way you can quickly switch between versions.

1 z8kgcc-jan-19-2009-linux-fc9.tar.bz2
2 z8kgcc-jan-19-2009-darwin-9-ub.tar.bz2
3 z8kgcc-jan-19-2009-freebsd-7-0-x86.tar.bz2
4 z8kgcc-jan-19-2009-netbsd-4-0-ppc.tar.bz2

ftp://ftp.groessler.org/pub/chris/olivetti/m20/misc/z8kgcc

Chapter 3: The C compiler 3

3 The C compiler

This chapter describes the C compiler.

3.1 Overview

The precompiled releases come with 2 compilers, z8k-pcos-gcc and z8k-coff-gcc. The
former creates executable files ready to run under PCOS, while the latter creates COFF1

files which can be run under a simulator (z8k-coff-run).
This simulator is a generic Z8000 CPU simulator, it doesn’t know about M20 specifics.

Object files and library files (*.o and *.a) and the executables created by z8k-coff-gcc
are in COFF format. When building a PCOS program, the PCOS linker (Chapter 6 [ldpcos
- the PCOS linker], page 20) constructs a PCOS execuable out of the COFF input files.

3.1.1 Included Tools

Here’s an overview over the tools included in the release:

gcov Coverage testing tool (untested).

ldpcos PCOS linker, see Chapter 6 [ldpcos - the PCOS linker], page 20.

m20stub.sav
GDB debugging stub to be run on the M20

protoize
unprotoize

Automatically add or remove function prototypes.

z8k-coff-addr2line
z8k-pcos-addr2line

Convert addresses into file names and line numbers.

z8k-coff-ar
z8k-pcos-ar

Tool to create and manipulate libraries (a.k.a. archive files).

z8k-coff-as
z8k-pcos-as

The assembler.

z8k-coff-c++
z8k-pcos-c++
z8k-coff-c++filt
z8k-pcos-c++filt
z8k-coff-g++
z8k-pcos-g++

C++ compiler and symbol demangler (c++filt). They are built as part of the
build process, but aren’t tested and probably don’t work.

1 http://en.wikipedia.org/wiki/COFF

http://en.wikipedia.org/wiki/COFF

Chapter 3: The C compiler 4

z8k-coff-gcc
z8k-pcos-gcc

The C compilers for COFF and PCOS.

z8k-coff-gdb
z8k-pcos-gdb

Debugger, see (Chapter 8 [The debugger], page 39).

z8k-coff-gprof
z8k-pcos-gprof

Display call graph profile data (untested).

z8k-coff-ld
z8k-pcos-ld

COFF linker.

z8k-coff-nm
z8k-pcos-nm

Lists symbols from object files.

z8k-coff-objcopy
z8k-pcos-objcopy

Copy object files.

z8k-coff-objdump
z8k-pcos-objdump

Display information from object files.

z8k-coff-ranlib
z8k-pcos-ranlib

Generate archive (*.a files) index.

z8k-coff-readelf
z8k-pcos-readelf

Displays information about ELF files.

z8k-coff-run
z8k-pcos-run

Simulator.

z8k-coff-size
z8k-pcos-size

List sections sizes of object files.

z8k-coff-strings
z8k-pcos-strings

Print the strings of printable characters in files.

z8k-coff-strip
z8k-pcos-strip

Discard symbols from object files.

Chapter 3: The C compiler 5

3.2 Basic usage

If you followed the instructions in Section 2.2 [Installing the toolchain], page 2, you can
invoke the C compiler by issuing z8k-pcos-gcc at the command prompt.

Let’s do a simple example, like this little C program, hello.c:

#include <stdio.h>

int main(void)
{

printf("Hello from the M20!\n");
return 0;

}

Compile it with z8k-pcos-gcc -o hello.cmd hello.c:

$ z8k-pcos-gcc -o hello.cmd hello.c
$ ls -l hello.cmd
-rw-r--r-- 1 chris chris 16209 Mar 5 23:01 hello.cmd
$

hello.cmd is the executable generated by the compiler. You’ll need to transfer it to the
M20 in order to run it. See http://www.z80ne.com/m20/index.php?argument=sections/
transfer/transfer.inc for ways to transfer the program to the M20.

3.3 Compiler Switches

The compiler is an rather old version of gcc (2.9). It was never an official release from the
FSF2, but came with the eCos tools from Cygnus Solutions3.
You can refer to gcc documentation about the available command line switches. For ex-
ample, refer to /opt/z8kgcc-jan-19-2009/man/man1/z8k-pcos-gcc.14 for an exhaustive
list of command line switches.
Here’s an overview of some useful switches when compiling for the Z8000:

-O
-O1
-O2 Optimize for speed. -O1 optimizes more and -O2 optimizes even more.

-Os Optimize for size.

-o output file

Name of output file.

2 http://www.fsf.org
3 http://en.wikipedia.org/wiki/Cygnus_Solutions
4 z8k-pcos-gcc.1 is in ROFF format, use e.g. “groff -Tascii -man z8k-pcos-gcc.1” to view it in a

human readable form.

http://www.z80ne.com/m20/index.php?argument=sections/transfer/transfer.inc
http://www.z80ne.com/m20/index.php?argument=sections/transfer/transfer.inc
http://www.fsf.org
http://en.wikipedia.org/wiki/Cygnus_Solutions

Chapter 3: The C compiler 6

-c Compile only, don’t link.

-S Create assembler output file instead of object file or executable.

-mstd Use “standard call” calling convention for functions. This generates larger code
and is slower than the default. It’s used primarily for debugging with the
simulator.
“Standard call” means passing all parameters to functions over the stack instead
of using registers as much as possible.

-mz8001 Generate code for segmented mode (only available on the Z8001, pointers are 32
bits, 23 bits of them are actually used). This is the default for z8k-pcos-gcc.

-mz8002 Generate code for non-segmented mode (available both on the Z8001 and the
Z8002, pointers are 16 bits). This is the default for z8k-coff-gcc. The PCOS
runtime library does not support non-segmented mode.

-mint16 Integers (int type) are 16 bits. This is the default.

-mint32 Integers (int type) are 32 bits. Don’t use it. It’s not supported by the runtime
library.

-Wl,linker options

Pass linker options , separated by commas, to the linker.
E.g. -Wl,-stack,0x1000,-multi

-Wno-cpg Disable CPG warnings. See Section 3.4 [CPG warnings], page 6.

3.4 CPG warnings

“CPG” are my initials.
I’ve fixed some problems in the compiler where I’m not 100% sure that they are correct.
(I’m not really a gcc hacker.) Therefore, in order to keep users from trying to fix bugs in
their programs which in fact might be introduced by my gcc changes, the compiler issues
warnings when these changes are used.

These warnings look something like

<source_file>:<linenum>:warning: cpg machine description change #num is
being used, program may not work (disable warning with ’-Wno-cpg’)

num is in the range 1..4, and indicates which change was utilized. If you encounter such a
warning and your program doesn’t work, please contact me5, provide your program and I’ll
check whether your program’s defect comes from my compiler changes.

In order to get rid of the warning, use the -Wno-cpg command line switch.

5 email address: chris@groessler.org

Chapter 3: The C compiler 7

3.5 Predefined macros

The compiler predefines a “__Z8000__” macro. Depending on the compilation target (seg-
mented or non-segmented) it also defines a “__Z8001__” or “__Z8002__” macro. With
these macros the program’s source code can adapt to different machines, e.g.

void function(void)
{
#ifdef __Z8000__

... /* do some Z8000 specific stuff */
#else

... /* do other stuff when not compiling for Z8000 */
#endif
}

If you compile with the -mstd switch, the macro __STD_CALL__ is predefined.

Hint: In order to see all predefined macros of the compiler, issue the command
“z8k-pcos-gcc -E -dM - < /dev/null”. You can add additional command line
arguments like -mstd, -mz8002, or -mint32 in order to see the effect of these
switches to the macros.

Currently there is no predefined macro to distinguish between compilation for plain Z8000
(for COFF with z8k-coff-gcc) and the M20 (for PCOS with z8k-pcos-gcc).

3.6 Inline assembly

A basic introduction to gcc inline assembly can be found at e.g. http://www.ibiblio.org/
gferg/ldp/GCC-Inline-Assembly-HOWTO.html. The explanation there is x86 specific, but
the basic syntax is the same as for the Z8000. One can specify the assembler code, a list of
output operands, a list of input operands, and a clobber list. The clobber list is the list of
registers whose values are modified by the assembler code.

Basic syntax:

__asm__ ("assembler code"
: output operands /* optional */
: input operands /* optional */
: list of clobbered registers /* optional */
);

The following operand modifiers are available with the Z8000 port:

X stack pointer name

Registers:

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

Chapter 3: The C compiler 8

Q byte sized register name

U high byte of word register

V low byte of word register

H word register name

I next word register name

S
B long register name

T next long register name

D quad register name

P register name in size of pointer

Integers:

O log two of value

P inverted log two

H bottom 16 bits

I top 16 bits

N negative

B high 32 bits of 32bit number

Memory:

I adjusted upwards by two

T adjusted upwards by four

Address:

H low 16 bits

I high 16 bits

A as long constant

S same as A but with #

Misc:

C conditional name

D reverse conditional name

F clear v flag if necessary

Chapter 3: The C compiler 9

Here’s a simple example of a function which reads a byte from an I/O port by means of the
inb opcode:

unsigned char in(unsigned int portaddr)
{

unsigned char retval;

__asm__ volatile (
"inb %Q0,@%H1 \n\t" : "=r" (retval) : "r" (portaddr));

return retval;
}

In this example the Q and H modifiers are used to specify the sizes of the register operands.

The volatile keyword is in fact not needed here, but is included anyway to show it’s
use. It prevents the compiler to remove the __asm__ statement when optimizing because it
doesn’t change anything the compiler knows about. In this example we have an output value
(retval) which is used afterwards, therefore the assembler code cannot be skipped. But in
other cases, where there is no output from the assembler (think a delay loop), volatile is
required.

In Chapter 7 [Examples], page 25 there are some programs which demonstrate the usage of
the inline assembler.

Hint: If you want to know how the registers are assigned for an inline assembly
block, compile the C program with the -S parameter and look at the generated
assembly code to check the register assignments.

Chapter 4: The C runtime library 10

4 The C runtime library

This chapter describes the PCOS runtime library of z8k-pcos-gcc. The z8k-coff-gcc
runtime library is an unmodified version of newlib1. The PCOS runtime library implements
most functions of newlib with the notably exception of opendir, readdir, and closedir.
The disk directory can nevertheless be accessed by using native PCOS functions2.
In order to use the functions and defines described in this chapter, the header file
sys/pcos.h has to be included in the C file. This header file is located at <instdir>/
z8k-pcos/include/sys/pcos.h. Refer to Section 9.1.1.1 [Building GNU toolchain],
page 40 for an explanation of <instdir>.

4.1 Floating Point

The C compiler itself does support floating point variables (float and double), but the
printf and scanf function families of the runtime library don’t support them. You can
still print the integer part of a floating point variable by casting it to an int:

float f = 123.123;
printf("value of f: %d\n", (int)f);

This results in the following output:

value of f: 123

4.2 PCOS system functions

The runtime library provides access to most of the PCOS system functions. See chapter 8
(“THE M20 SYSTEM CALLS”) of the PCOS assembler language user guide (Section A.2
[ASSEMBLER Language User Guide], page 45) for a description of the PCOS system
functions and PCOS programming environment.
sys/pcos.h has to be included in order to get access to the definitions of the system
functions.

List of supported PCOS functions:

int _pcos_dgetlen(int did, unsigned long *length);
int _pcos_dgetposition(int did, unsigned long *length);
int _pcos_dseek(int did, unsigned long offset);
int _pcos_resetbyte(int did);
int _pcos_eof(int did, unsigned int *status);
int _pcos_putbyte(int did, unsigned char byte);
int _pcos_getbyte(int did, unsigned char *byte);
int _pcos_writebytes(int did, const void *buffer,

unsigned int nbytes, unsigned int *retbytes);

1 Version 1.12, http://sourceware.org/newlib
2 An example is provided in Section 7.9 [Accessing the disk directory], page 36

http://sourceware.org/newlib

Chapter 4: The C runtime library 11

int _pcos_readbytes(int did, const void *buffer,
unsigned int nbytes, unsigned int *retbytes);

int _pcos_readline(int did, const void *buffer,
unsigned int nbytes, unsigned int *retbytes);

int _pcos_new(unsigned short length, void **memory);
int _pcos_newsamesegment(unsigned short length, void **memory);
int _pcos_dispose(int length, void **memory);
int _pcos_drename(const char *from, int fromlen, const char *to,

int tolen);
int _pcos_dremove(const char *name, int namelen);
int _pcos_openfile(int did, const char *name, int namelen, int mode,

int extent_len);
int _pcos_close(int did);
int _pcos_ddirectory(const char *name, int namelen);
int _pcos_maxsize(unsigned short *maxsize);
int _pcos_search(int drive, int search_mode, int *length,

char **file_pointer, char *name_pointer);
void _pcos_selectcur(int mode);
void _pcos_cls(void);
int _pcos_crlf(void);
void _pcos_grfinit(int *color, void **pointer);
int _pcos_cleartext(unsigned int column, unsigned int row,

unsigned int xlen, unsigned int ylen);
int _pcos_scrolltext(unsigned int plane_mask, unsigned int function,

unsigned int src_x, unsigned int src_y,
unsigned int dst_x, unsigned int dst_y,
unsigned int xlen, unsigned int ylen);

int _pcos_bset(void *dest, unsigned char val, unsigned int len);
int _pcos_bwset(void *dest, unsigned short val, unsigned int len);
int _pcos_bclear(void *dest, unsigned int len);
int _pcos_bmove(void *dest, const void *src, unsigned int len);
int _pcos_dstring(char *string);
int _pcos_dhex(unsigned int word);
int _pcos_dhexbyte(unsigned char byte);
int _pcos_dhexlong(unsigned long byte);
int _pcos_dlong(unsigned long byte);
int _pcos_dnumw(unsigned int word, unsigned int field_width);
int _pcos_gettime(char *buf, unsigned int buflen);
int _pcos_getdate(char *buf, unsigned int buflen);
int _pcos_settime(char *buf, unsigned int buflen);
int _pcos_setdate(char *buf, unsigned int buflen);
int _pcos_lookbyte(int did, unsigned char *byte,

unsigned char *buffer_status);
int _pcos_chgwindow(unsigned int fgcolor, unsigned int bgcolor);
int _pcos_readcur0(cursor_shape *shape, unsigned int *blinkrate,

unsigned int *column, unsigned int *row);
int _pcos_readcur1(cursor_shape *shape, unsigned int *blinkrate,

Chapter 4: The C runtime library 12

unsigned int *x_pos, unsigned int *y_pos);
int _pcos_chgcur0(unsigned int column, unsigned int row);
int _pcos_chgcur1(unsigned int x_pos, unsigned int y_pos);
void _pcos_chgcur2(unsigned int blinkrate);
void _pcos_chgcur3(unsigned int blinkrate);
void _pcos_chgcur4(cursor_shape new_shape);
void _pcos_chgcur5(cursor_shape new_shape);
int _pcos_setcontrolbyte(int did, unsigned int word_number,

unsigned int word);
int _pcos_getstatusbyte(int did, unsigned int word_number,

unsigned int *word);
int _pcos_checkvolume(void);

4.3 PCOS status codes

The status codes are taken from appendix ’E’ (“SYSTEM ERRORS”) of the PCOS assem-
bler language user guide (see Section A.2 [ASSEMBLER Language User Guide], page 45).
The descriptions of the codes are a verbatim copy from this document.
These status codes are returned by the PCOS system functions (see Section 4.2 [PCOS
system functions], page 10).

sys/pcos.h has to be included in order to get access to the definitions of the status codes.

Name Value Description

PCOS_ERR_OK 0 success

PCOS_ERR_XXX 3 invalid termination of input byte stream

PCOS_ERR_MEM 7 out of memory

PCOS_ERR_INVADR 9 invalid listener or talker address

PCOS_ERR_NOIEEE 10 no IEEE board

PCOS_ERR_TO 11 time out error

PCOS_ERR_DATATYPE 13 bad data type

PCOS_ERR_NOWIN 35 window does not exist

PCOS_ERR_WINCREAT 36 window create error

PCOS_ERR_NOENT 53 file not found

Chapter 4: The C runtime library 13

PCOS_ERR_MODE 54 bad file open mode

PCOS_ERR_ALOPN 55 file already open

PCOS_ERR_EIO 57 disk i/o

PCOS_ERR_EEXIST 58 file aready exists

PCOS_ERR_NOTINIT 60 disk not initialized

PCOS_ERR_NOSPC 61 disk filled

PCOS_ERR_EOF 62 end of file

PCOS_ERR_REC 63 bad record number

PCOS_ERR_NAME 64 bad file name

PCOS_ERR_VNOENT 71 volume name not found

PCOS_ERR_INVVOL 73 invalid volume number

PCOS_ERR_VOLNOTEN 75 volume not enabled

PCOS_ERR_PASSWD 76 password not valid

PCOS_ERR_DCHG 77 illegal disk change

PCOS_ERR_WRPROT 78 write protected file

PCOS_ERR_CPPROT 79 copy protected file

PCOS_ERR_PARM 90 error in parameter

PCOS_ERR_TOOMPARM 91 too many parameters

PCOS_ERR_NOTFND 92 command not found

PCOS_ERR_NOTOPM 96 file not open

PCOS_ERR_BADLOAD 99 bad load file

PCOS_ERR_TIMDAT 101 time or date

PCOS_ERR_EXFN 106 function key already exists

Chapter 4: The C runtime library 14

PCOS_ERR_CALLUSR 108 call-user

PCOS_ERR_TO2 110 time-out

PCOS_ERR_INVDEV 111 invalid device

4.4 PCOS open modes

The open modes are taken from page 8.15 of the PCOS assembler language user guide
(see Section A.2 [ASSEMBLER Language User Guide], page 45). They are passed to the
_pcos_openfile function as mode parameter.

sys/pcos.h has to be included in order to get access to the definitions of the open modes.

Name Value

PCOS_OPEN_READ 0

PCOS_OPEN_WRITE 1

PCOS_OPEN_RDWRITE 2

PCOS_OPEN_APPEND 3

4.5 PCOS DID defines

DID stands for “Device ID”. It’s passed to many PCOS system functions to specify the
device or file to operate on. See the did parameter in the function prototypes.
The DID codes are taken from appendix ’D’ (“DEVICE ID (DID) ASSIGNMENTS”) of
the PCOS assembler language user guide (see Section A.2 [ASSEMBLER Language User
Guide], page 45).

sys/pcos.h has to be included in order to get access to the definitions of the DID defines.

Name Value

DID_CONSOLE 17

DID_PRINTER 18

DID_COM 19

DID_COM1 25

DID_COM2 26

Chapter 4: The C runtime library 15

4.6 Special characters

sys/pcos.h has to be included in order to get access to the definitions of the special
characters.

Name Value Key

PCOS_CH_CURS_DOWN 154 Shift + keypad 2

PCOS_CH_CURS_UP 158 Shift + keypad 8

PCOS_CH_CURS_LEFT 155 Shift + keypad 4

PCOS_CH_CURS_RIGHT 157 Shift + keypad 6

PCOS_CH_DEL 8 Control + H

PCOS_CH_TAB 9 Control + I

PCOS_CH_DELCHR 4 Control + D

PCOS_CH_ESC 221

PCOS_CH_STOP 3 Control + C

PCOS_CH_EOL 13

PCOS_CH_ENTER 13

4.7 Creating files with open()

When a file is created in PCOS (with the _pcos_openfile system function), a parameter
(extend_len) is given which specifies how many sectors to preallocate for the file. The
open() call doesn’t have such a parameter, therefore the PCOS runtime library uses the
value of a global variable for the numbers of sectors to preallocate. This variable is initialized
to 4, but can be set by the user program prior to the open() call or by overriding it with
its own define.

The sys/pcos.h file provides a definition of this variable:

extern unsigned short _pcos_extent_length;

To override it globally within your program, the suggested method is to provide an initialized
variable _pcos_extent_length in your program, e.g. like

unsigned short _pcos_extent_length = value;

Chapter 4: The C runtime library 16

int main(void)
{

...

}

You can also set it before each call to open (or fopen):

_pcos_extent_length = other_value;
fd = open(...);

Keep in mind that _pcos_extent_length is a global variable, therefore after an assignment
to it all subsequent calls to open will use the last value assigned to it.

Chapter 5: The assembler 17

5 The assembler

The assembler is the one from GNU binutils (see http://www.gnu.org/software/
binutils). Please refer to its documentation for detailed information. This section will
only outline the most important differences compared to the Zilog or Olivetti assemblers.
Some examples of assembly language programs can be found at ftp://ftp.groessler.org/
pub/chris/olivetti/m20/misc/asm-snippets/binutils and in the runtime library
source code (Section 9.1.1.3 [PCOS specific parts of the runtime library], page 42).

Note: The assemblers (both the PCOS and COFF versions) generate object files in
COFF format. At link time the PCOS linker creates PCOS compatible executable
files from the COFF input object file(s).

5.1 Radix representation

Binary values are prefixed by “0b”, octal values are prefixed by “0”, and hexadecimal values
are prefixed by “0x”. For example this source file, x.s:

.z8001

.text
ld r0,#12
ld r0,#0b0110
ld r0,#0x12
ld r0,#012
.end

Assembling it with

$ z8k-pcos-as -o x.o x.s

results in this object file:

x.o: file format coff-z8k

Disassembly of section .text:

00000000 <.text>:
0: 2100 000c ld r0,#0xc
4: 2100 0006 ld r0,#0x6
8: 2100 0012 ld r0,#0x12
c: 2100 000a ld r0,#0xa

(Use “z8k-pcos-objdump -d x.o” to view the disassembly.)

http://www.gnu.org/software/binutils
http://www.gnu.org/software/binutils
ftp://ftp.groessler.org/pub/chris/olivetti/m20/misc/asm-snippets/binutils
ftp://ftp.groessler.org/pub/chris/olivetti/m20/misc/asm-snippets/binutils

Chapter 5: The assembler 18

5.2 Segment notation

The assembler doesn’t know about the <<segment>> notation to indicate a segmented
address. Segmented addresses are expressed as 32bit values (where the highest bit and the
second byte of the address are ignored by the processor).

So in order to load the address of segment 2, offset 0x10 into the register RR2, use the
following statement

ldl rr2,#0x02000010

instead of

ldl rr2,#<<2>>%10

(which is the equivalent syntax of the Olivetti assembler).

5.3 Comments

Comments are prefixed by an exclamation mark (“!”), instead of an asterisk (“*”). Com-
ments after an assembly statement in the same line in contrast to the Olivetti assembler
also need a preceeding “!” character.

5.4 Mixing C and assembly

This chapter describes how parameters are passed from C to assembly subroutines and how
the results are returned.

Hint: If you are not sure about how the parameters of a given function are passed,
compile the C program with the -S parameter and look at the generated assembly
code to determine the exact locations of the parameters.

Another way to mix C and assembly is the inline assembler of the C compiler, see Section 3.6
[Inline assembly], page 7.

5.4.1 Z8001

5.4.1.1 Z8001 default calling convention

Registers R2 to R7 are used for parameter passing. The first argument to a function is passed
in R7, the second in R6, and so on until R2. If more parameters are present than available
registers, the remaining parameters are passed on the stack. char parameters consume a
whole register (the lower part), therefore a function which has 2 char parameters uses R7
and R6 as input registers. long parameters consume 2 registers, RR6, RR4, or RR2. If the
first parameter is a char, short, or int, and the second a long, R7 will be used for the
first parameter and RR4 for the second. R6 will be unallocated in this case.

The return value of a function is passed in the R2 (char or int or short) or RR2 (long or
pointers) register.

Chapter 5: The assembler 19

Registers R8 to R13 must be preserved by the called function.

5.4.1.2 Z8001 “Standard” calling convention

The stack is used to pass parameters. The parameters are pushed on the stack starting from
the rightmost parameter until the leftmost parameter. char parameters will be pushed as
a word (16bit).

The return value of a function is passed in the R7 (char or int or short) or RR6 (long or
pointers) register.

Registers R8 to R13 must be preserved by the called function.

5.4.2 Z8002

This chapter will be provided in a future revision of this document.

Chapter 6: ldpcos - the PCOS linker 20

6 ldpcos - the PCOS linker

ldpcos is the only program of the toolchain which knows about the PCOS executable
file format. All other programs (assembler, linker, archiver) operate on COFF format files.
ldpcos uses the COFF linker (z8k-pcos-ld) and other tools (z8k-pcos-objdump and z8k-
pcos-size) to build a COFF executable where the .text, .data, and .bss sections are
adjacent1. From this COFF executable it then creates the PCOS executable by copying the
sections and adding relocation information2.

6.1 Command line switches

Start ldpcos without any parameters to get a list of available command line switches:

$ ldpcos
$Id: ldpcos.c,v 1.44 2006-11-30 23:09:20 chris Exp $
(c) Copyright 2001-2006 Christian Groessler, GPL license
Compiled at Jan 20 2009
ldpcos: usage: ldpcos <options> <object files>

options are:
-v be verbose

(use up to three times for more verbosity)
-f fill bss with zeroes
-stack value reserve additional stack space
-farentry entry point is more than 256 bytes away
-o outfile set output file name
-c configfile specify config file name
-map mapfile set map file name
-l linker specify linker to use

(z8k-pcos-ld)
-a assembler specify assembler to use

(z8k-pcos-as)
-b objcopy specify objcopy program to use

(z8k-pcos-objcopy)
-s size specify size program to use

(z8k-pcos-size)
-data value specify start of data section

for section size test (0xa000)
-bss value specify start of bss section

for section size test (0x4000000)
-save-temps do not delete intermediate files
-sav make a .sav file
-multi create multiple memory load chunks

(.text, .data, .bss)

1 This is done for non -multi links only. It’s not needed for -multi links.
2 ldpcos requires the linker (z8k-pcos-ld) from this distribution. A z8k-pcos-ld from the generic
binutils release doesn’t work, since it doesn’t support the --pcos-relocs command line parameter
to write out the relocation information.

Chapter 6: ldpcos - the PCOS linker 21

-raw don’t create default PCOS program prologue
$

Description of the individual command line switches:

-v Displays information about the linking process. You can give it more than once
in order to get increasingly more information.

-f The .bss section is normally not part of the executable file. With this switch
ldpcos will include it in the executable file. This switch is mainly useful for
debugging purposes.

-stack The stack size reserved for the program is 0x1DE (PCOS default), unless you
specify a different size with this parameter. The C compiler’s specs file will
reserve 0x800 bytes for the stack using this switch. See Section 9.1.1.2 [Building
the PCOS linker], page 41.

-farentry
ldpcos by default creates a PCOS conforming program prologue3. This pro-
logue requires the program’s entry point to be within the first 256 bytes of
the program. If this isn’t the case for the program at hand you can overcome
this restriction with this command line switch. See Section 6.5 [Default PCOS
program prologue], page 23.

-o Specifies the name of the output file. Typically something like prog.cmd or
prog.sav.

-c Specify config file for linking. See Section 6.2 [Config file], page 22.

-map Create a map file.

-l
-a
-b
-s With these switches you can override the backend tools ldpcos is going to

use. They default to z8k-pcos-ld, z8k-pcos-as, z8k-pcos-objcopy, and
z8k-pcos-size. These switches are primarily useful for debugging.

-data Only used for non “-multi” operation: When creating the initial executable
which is used to size the different sections, use this value for the start of the
.data section. The default value is 0xA000.

-bss Only used for non “-multi” operation: When creating the initial executable
which is used to size the different sections, use this value for the start of the
.bss section. The default value is 0x4000000.

-save-temps
This switch tells ldpcos not to delete intermediate files which are created during
the section size tests. Useful for debugging ldpcos.

3 See pg. 2-28ff of the assembler language user guide (Section A.2 [ASSEMBLER Language User Guide],
page 45).

Chapter 6: ldpcos - the PCOS linker 22

-sav Create a .sav file instead of a .cmd file. See Section 6.3 [.sav files], page 22.

-multi Create multiple memory load chunks (.text, .data, .bss). Use this for pro-
grams which are bigger than 64K. See Section 6.4 [Big Programs], page 22.

-raw Don’t create default PCOS program prologue. See Section 6.5 [Default PCOS
program prologue], page 23.

6.2 Config file

The backend tools to be used and the program’s description can be specified in a config
file. The backend tools can also be specified with the -a, -b, -l, and -s command line
switches. If one of these switches appears on the command line together with a config file
which also overrides the same backend tool, the order in the command line is important.
The last occurrence is the one which will finally be used.

Comment lines start with a "#"
programid = "Hello World Rev. 1.0"
objcopy = /bla/z8k-pcos-objcopy
linker = z8k-pcos-ld.new
getsize = /bla/z8k-pcos-getsize
assembler = my-special-asm

Empty lines are ignored. All lines are optional, so a typical config file might look like

config file for hello world program
programid = "Hello World Rev. 1.0"

The program description (the string specified by programid) is displayed when the program
is loaded resident by use of the PLOAD PCOS command4. The program description is ignored
when using the -raw switch. If there is no config file specified or no programid line in the
config file, the description of the program defaults to “Executable generated by ldpcos
$Revision: x.y $”, where x and y denote the major and minor version of ldpcos.

6.3 .sav files

.sav executable files are kept in memory after the first run. ldpcos creates such a file if
you give the -sav command line parameter. .sav files, after having been loaded, cannot be
unloaded again. The system has to be rebooted in order to get rid of them. Therefore they
are normally only used for device drivers or other low level system code. Regular (.cmd)
programs can also be made memory resident by the use of the PCOS PLOAD command. But,
different compared to .sav files, they can be unloaded again with the PUNLOAD command.

6.4 Big Programs

By default ldpcos places all sections of a program (.text, .data, .bss) into one load
segment. Since the Z8000 has 64K segments, this limits the total program size to 64K5.

4 See section 6 of the PCOS User Guide (Section A.1 [PCOS User Guide], page 45).
5 A bit less than 64K since PCOS requires some management data inside the segment.

Chapter 6: ldpcos - the PCOS linker 23

The -multi switch (for “multi”ple segments) puts each section into its own load segment.
PCOS takes care of the loading and if the program size is less than 64K, the sections still
may end up in the same Z8000 segment. But it allows programs to be as big as 192K, if
each of the sections are 64K.
When using the -multi switch, the -data and -bss switches are ignored (with a warning).
Reason is, that with multiple load segments ldpcos doesn’t know the relative location of the
.text, .data, and .bss sections (since they are allocated at program load time). Therefore
PC relative addressing of items in the .data and .bss sections is not possible. The -data
and -bss switches are used to fine tune the test link step of ldpcos in which it finds out
the sizes of each section when doing a non-”multi” link.

6.5 Default PCOS program prologue

ldpcos creates a program header as described at pages 2-31ff in the assembler language
user guide (see Section A.2 [ASSEMBLER Language User Guide], page 45). The program
header’s source code looks like this:

.z8001

.text

.globl __entry

.word 0
__entry: jr t,_start
__program_id: .asciz "program identification string\r"

.end

This code snippet is compiled in the background and then linked as the first object file. The
file starts with a 16 bit zero value indicating the type of the program. The next location
(__entry) gets called by PCOS after loading the program. It jumps to a label called
_start. This label is the start of the user program, see Section 7.1 [Assembler version of
“Hello World”], page 25 for an example.

Note the jr opcode in the first instruction at _entry. It requires the _start label to be not
farer away than 256 bytes. If for some reason the entry point of the program is farer away,
the -farentry command line switch to ldpcos lets it generate a slighty different prologue,
as shown here:

.z8001

.text

.globl __entry

.word 0
__entry: jr t,__start
__program_id: .asciz "program identification string\r"

.even
__start: jp t,_start

.end

Chapter 6: ldpcos - the PCOS linker 24

This one jumps over the program id string and then jumps with jp to the real entry point.

The program id string at __program_id comes from the programid line of the config file. If
no config file or a config file with no programid line is specified, it’s set to a default string
(see Section 6.2 [Config file], page 22).

You can tell ldpcos to not generate a default program prologue by passing it the -raw
command line switch. Then your program has to provide the program header itself. See
Section 7.2 [Assembler version of “Hello World” (-raw version)], page 27 for an example.

Chapter 7: Examples 25

7 Examples

This chapter contains some examples.

7.1 Assembler version of “Hello World”

This is a simple assembler “Hello World” program:

!
! simple hello world test by CPG
!

.z8001

.data

msg: .asciz "simple \"Hello World\" by CPG\r"

.text

.even

.globl _start

! entered from PCOS (in fact, from the default program prologue)
_start: pop r0,@sp ! get # of command line args

! throw cmd line args from stack (see p.2-37 asm manual)
clr r2
ld r3,r0
sll r3,#2
addl sp,rr2

ldar rr12,msg ! address of message string
sc #0x59 ! PCOS: DString

ret

.end

Please note that we have a .data and a .text section in this program. Also, the string to
display (msg) ends with a \r character (end-of-line for PCOS). And you can include a ’"’
character in a string by “backslashing” it.

Let’s compile it:

$ z8k-pcos-as hello.s -o hello.o
$ ldpcos -o hello.cmd hello.o
hello.o:fake:(.text+0xe): relocation truncated to fit: r_rel16 against ‘msg’
$

Chapter 7: Examples 26

Oops, we’ve got an error. The problem is the ldar opcode which loads the address of msg
into rr12. If we would write lda instead of ldar, it would work (try it!).
The reason is that ldpcos does a test link in order to find out the sizes of the different
program sections (.text, .data, .bss). For this test it assumes the .data section to start
at 0xA000 (.text starts at 0). Since the ldar opcode can only access data in the range of
-0x8000..0x7FFF, the address of msg somewhere at 0xA000 is out of range.
But we know that in this program the size of the .text section is definitely nowhere near
0xA000. So we can tune ldpcos’s size check by telling it that .data should start at e.g.
0x3000:

$ z8k-pcos-as hello.s -o hello.o
$ ldpcos -data 0x3000 -o hello.cmd hello.o
$

No error, we have now a hello.cmd executable for the M20.

7.1.1 Setting the program id string

When we load the previous program with the PCOS PLOAD1 command, we get

1> pl hello.cmd
Disk file name = hello.cmd
Program name = Executable generated by ldpcos $Revision: 1.33 $
Operation Mode = Segmented / System
Main entry = <0A>%D474; Init entry = --None--
Memory allocated:

Block No. %0A; Starting address = <0A>%D472; Size = %0068
1>

In order to have a more descriptive “Program name”, use the following config file
(hello.cfg):

ProgramID = "Simple \"Hello World\""

Compile with

$ z8k-pcos-as hello.s -o hello.o
$ ldpcos -data 0x3000 -c hello.cfg -o hello.cmd hello.o
$

Loading it with PLOAD shows our new “program name”:

1 See section 6 of the PCOS User Guide (Section A.1 [PCOS User Guide], page 45).

Chapter 7: Examples 27

1> pl hello.cmd
Disk file name = hello.cmd
Program name = Simple "Hello World"
Operation Mode = Segmented / System
Main entry = <0A>%D490; Init entry = --None--
Memory allocated:

Block No. %0A; Starting address = <0A>%D48E; Size = %004C
1>

7.2 Assembler version of “Hello World” (-raw version)

This is a modified version of the previous example, which doesn’t use ldpcos’ default
program prologue, but provides its own:

!
! simple hello world test by CPG (raw version)
!

.z8001

.data

msg: .asciz "simple \"Hello World\" by CPG\r"

.text

.even

! *** prologue start
.word 0

! entered from PCOS
jr t,mystart
.asciz "Simple \"Hello World\"\r" ! prog id string
.even

! *** prologue end

mystart: pop r0,@sp ! get # of command line args

! throw cmd line args from stack (see p.2-37 asm manual)
clr r2
ld r3,r0
sll r3,#2
addl sp,rr2

ldar rr12,msg ! address of message string
sc #0x59 ! PCOS: DString

ret

.end

Chapter 7: Examples 28

Compile with

$ z8k-pcos-as helloraw.s -o helloraw.o
$ ldpcos -raw -data 0x3000 -o hellor.cmd helloraw.o
$

7.3 Direct screen access (assembler)

The screen memory in the M20 is located at segment #3. This example “flickers” the screen
by repeatedly writing all 0s and 1s to the screen memory bits. It assumes a monochrome
display.

!
! "flicker" the screen ten times
!

.z8001

.text

.even

.globl _start

! entered from PCOS (in fact, from the default program prologue)
_start: pop r0,@sp ! get # of command line args

! throw cmd line args from stack (see p.2-37 asm manual)
clr r2
ld r3,r0
sll r3,#2
addl sp,rr2

! now the program’s guts:
ldl rr6,#0x03000000 ! setup pointer to screen memory

! screen memory is in segment #3
ldk r4,#10 ! ten times

loop: clr r0 ! fill with 0 (black)
calr fillscr
calr delay ! short delay
dec r0,#1 ! fill with 255 (white)
calr fillscr
calr delay ! short delay
djnz r4,loop

ret

! subroutine: fill screen memory with value of rl0

Chapter 7: Examples 29

fillscr:ld r5,#0x2000-1 ! screen memory (monochrome)
! is 16k in size, count in words

ld @rr6,r0 ! fill first word
ldl rr8,rr6
inc r7,#2 ! rr8 points to 2nd word of

! screen memory
ldir @rr6,@rr8,r5 ! fill the complete memory
ret

! subroutine: small busy loop delay routine
delay: ldl rr8,#0x20000
deloop: djnz r7,deloop

djnz r8,deloop
ret

.end

Compile with

$ z8k-pcos-as flicker.s -o flicker.o
$ ldpcos -o flicker.cmd flicker.o
$

7.4 Direct screen access (C)

This program does the same as the previous example, but now it’s written in C
(flicker.c):

/*
* "flicker" the screen ten times
*/

/* pointer to screen memory, segment #3 */
unsigned short *screen = (unsigned short *)0x3000000;

/* fill screen memory with "value" */
static int fillscr(unsigned short value)
{

int i;

for (i = 0; i < 0x2000; i++)
*(screen + i) = value;

}

/* small busy loop delay routine */
static void delay(void)

Chapter 7: Examples 30

{
unsigned long i = 0x20000;

while (i--)
;

}

int main(void)
{

int i;

for (i = 0; i < 10; i++) {
fillscr(0);
delay();
fillscr(0xffff);
delay();

}
return 0;

}

Compile with

$ z8k-pcos-gcc -o cflicker.cmd cflicker.c
$

Try to add -O2 to the compiler switches in order to enable optimizations and compare it
with the version without -O2. The difference in speed is noticeable! Also compare it with
the assembler version.

7.5 Direct screen access (C with assembler subroutine)

If you followed the last two examples, you’ve noticed that in order to get good performance,
some parts of the program might need to be written in assembler. In this example we
accelerate the C program of the previous example by providing an assembler implementation
of the most time consuming function (fillscr()).

Here is the modified C source file (aflicker.c):

/*
* "flicker" the screen ten times (using an external
* assembly language subroutine to fill screen memory)
*/

/* fill screen memory with "value" */
extern void fillscr(unsigned short value);

Chapter 7: Examples 31

/* small busy loop delay routine */
static void delay(void)
{

unsigned long i = 0x20000;

while (i--)
;

}

int main(void)
{

int i;

for (i = 0; i < 10; i++) {
fillscr(0);
delay();
fillscr(0xffff);
delay();

}
return 0;

}

The definition of the fillscr() function has been removed and was replaced by an external
declaration of it with the same parameters and return value.

This assembler source file provides the implementation of the new fillscr() function
(aflicker.S):

!
! fillscr() function to fill the screen memory with
! a given value
!
! extern void fillscr(unsigned short value);
!

.z8001

.text

.even

.globl _fillscr

_fillscr:

#ifdef __STD_CALL__
ld r7,rr14(#4) /* get "value" parameter */

#else
/* ld r7,r7 if not _STD_CALL__, first

parameter is passed in r7 */

Chapter 7: Examples 32

#endif

/* registers r0..r7 don’t need to be preserved
* across function calls
*/

ldl rr4,#0x03000000 ! setup pointer to screen memory

! fill screen memory with value of rl0
ld r1,#0x2000-1 ! screen memory (monochrome)

! is 16k in size, count in words

ld @rr4,r7 ! fill first word
ldl rr2,rr4
inc r5,#2 ! rr4 points to 2nd word of

! screen memory
ldir @rr4,@rr2,r1 ! fill the complete memory
ret

Compile with

$ z8k-pcos-gcc -O2 -o aflicker.cmd aflicker.c aflicker.S
$

or with -mstd to use “standard call” calling convention

$ z8k-pcos-gcc -mstd -O2 -o aflickerstd.cmd aflicker.c aflicker.S
$

There are some points to note here:
• When compiling, the assembler source file is passed directly to the z8k-pcos-gcc

compiler driver, together with the C source file. gcc by default will invoke the assembler
to translate files ending with .s or .S.

• The difference between files ending with lowercase “s” or uppercase “S” is that for
uppercase “S” the C preprocessor gets invoked to process the file before it is passed
on to the real assembler. Therefore it is possible to use C comments and preprocessor
macros in assembly language source files (like demonstrated in the example above).
Lowercase “s” files will be handed over to the assembler without preprocessing.

• The assembler code adapts to the calling convertion of the C code by means of the
“#ifdef __STD_CALL__” clauses. See also Section 3.5 [Predefined macros], page 7.

• C symbols have an underscore prepended, so the C function fillscr() refers to the
assembler symbol _fillscr.

7.6 Direct screen access (C with inline assembly)

Instead of using a separate assembler source file one can use the inline assembler of the C
compiler.

Chapter 7: Examples 33

Here’s a “flicker” version which uses inline assembly (ciflicker.c):

/*
* "flicker" the screen ten times (using inline
* assembly for fillscr())
*/

/* pointer to screen memory, segment #3 */
unsigned short *screen = (unsigned short *)0x3000000;

/* fill screen memory with "value" */
static int fillscr(unsigned short value)
{

/* Scratch variables needed to assign the registers used
by the inline assembly part. */

unsigned short scratch0, scratch1;
unsigned long scratch2, scratch3;

__asm__ volatile ("ldl %S3,%5 \n\t"
"ld %H1,#0x2000-1 \n\t"
"ld @%S3,%H4 \n\t"
"ldl %S2,%S3 \n\t"
"inc %I3,#2 \n\t"
"ldir @%S3,@%S2,%H1 \n\t"
: "=r" (scratch0), "=r" (scratch1),
"=r" (scratch2), "=r" (scratch3)

: "0" (value), "m" (screen)
: "memory");

}

/* small busy loop delay routine */
static void delay(void)
{

unsigned long i = 0x20000;

while (i--)
;

}

int main(void)
{

int i;

for (i = 0; i < 10; i++) {
fillscr(0);

Chapter 7: Examples 34

delay();
fillscr(0xffff);
delay();

}
return 0;

}

Please note the scratchX variables. They are used to allocate the registers used internally
by the assembler routine. We could have written them explicitly, like ’ldl rr2,%5’ instead
of ’ldl %S3,%5’ to load screen into rr2, but the compiler wouldn’t know that we use rr2
inside the assembly block. This would be a problem if the compiler holds some value in
rr2 which gets destroyed by the inline assembler code. With the usage of the scratchX
variables the compiler takes care about the assignment of the registers and no register will
change its value without the compiler’s notice. When compiling with optimization enabled
the scratchX variables also won’t use any memory or stack space since they are not used
afterwards.

7.7 Read a byte from a port

This C program (pinb.c) with inline assembly displays the contents of an I/O port:

/*
* read a byte from a port and display it
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <limits.h>

int main(int argc, char **argv)
{

unsigned long portaddr;
char *endptr;
unsigned char value;

if (argc != 2) {
fprintf(stderr, "usage: pinb <port address>\n");
return 1;

}

/* get port address */
portaddr = strtoul(*(argv + 1), &endptr, 0);
if (portaddr > 0xffff || *endptr) {

fprintf(stderr, "invalid port address!\n");

Chapter 7: Examples 35

return 1;
}

printf("reading from port 0x%04lx (%lu)", portaddr, portaddr);
if (! (portaddr & 1))

printf("\t\tWARNING: even address!");
printf("\n");

__asm__ volatile (
"inb %Q0,@%H1 \n\t" : "=r" (value)

: "r" ((unsigned int)portaddr));

printf("Port value: 0x%02x (%u)\n", value, value);

return 0;
}

7.8 Write a byte to a port

This C program (poutb.c) with inline assembly writes a value to an I/O port:

/*
* write a byte to a port
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <limits.h>

int main(int argc, char **argv)
{

unsigned long portaddr;
char *endptr;
unsigned long value;

if (argc != 3) {
fprintf(stderr, "usage: poutb <port address> <value>\n");
return 1;

}

/* get port address */
portaddr = strtoul(*(argv + 1), &endptr, 0);

Chapter 7: Examples 36

if (portaddr > 0xffff || *endptr) {
fprintf(stderr, "invalid port address!\n");
return 1;

}

/* get value */
value = strtoul(*(argv + 2), &endptr, 0);
if (value > 0xff || *endptr) {

fprintf(stderr, "invalid value!\n");
return 1;

}

printf("writing 0x%02lx (%lu) to port 0x%04lx (%lu)",
value, value, portaddr, portaddr);

if (! (portaddr & 1))
printf("\t\tWARNING: even port address!");

printf("\n");

__asm__ volatile (
"push @sp,r7 \n\t"
"ld r7,%H1 \n\t"
"outb @%H0,rl7 \n\t"
"pop r7,@sp \n\t": : "r" ((unsigned int)portaddr),

"r" ((unsigned int)value));

return 0;
}

You might be curious why this ’push @sp,r7’ and ’pop r7,@sp’ sequence is used, instead
of a single line ’outb @%H0,%H1’.
The reason is that the compiler might allocate a register above r7 for value. This would
generate an invalid byte register access (like e.g. ’rl11’). It’s a deficiency of the inline
assembler that it doesn’t handle byte register restrictions correctly.

7.9 Accessing the disk directory

The runtime library doesn’t implement opendir and related functions. Nevertheless it’s
possible to read a disk’s directory by means of direct PCOS calls. The following program
prints a list of files on a disk.

/*
* dir.cmd -- display directory contents using
* PCOS system calls
*/

#include <stdio.h>
#include <string.h>

Chapter 7: Examples 37

#include <sys/pcos.h>

char name_buf[32]; /* file name buffer */

int main(int argc, char **argv)
{

int retval;
int length; /* length of found filename */
int rlength; /* length of filename/search mask */
char *search_name;
char *file_pointer;
int drive;
int search_mode = 1; /* search from beginning */

if (argc > 2) {
printf("usage: dir <filemask>\n");
return 1;

}

/* if no argument given, search the default drive;
* with argument, parse the drive number and use
* the remainder of the string for the file mask
*/
if (argc == 2) {

if (*(*(argv + 1) + 1) == ’:’) {
drive = **(argv + 1) - ’0’;
if (strlen(*(argv + 1)) > 2) {

rlength = strlen(*(argv + 1)) - 2;
search_name = *(argv + 1) + 2;

}
else { /* something like "0:" */

rlength = 0;
search_name = NULL;

}
}
else { /* no drive specified */

drive = -1; /* search default drive */
rlength = strlen(*(argv + 1));
search_name = *(argv + 1);

}
}
else {

drive = -1; /* search default drive */
rlength = 0;
search_name = NULL;

}

Chapter 7: Examples 38

/* search for files */
while (1) {

length = rlength;
file_pointer = name_buf;
retval = _pcos_search(drive, search_mode, &length,

&file_pointer, search_name);
if (retval != PCOS_ERR_OK) break;
search_mode = 0; /* from now on search from the

last file found */
name_buf[length] = 0; /* zero terminate name */
printf("found %s\n", name_buf);

}

if (retval != PCOS_ERR_NOENT) {
printf("_pcos_search returned error %d\n", retval);
return 1;

}

return 0;
}

Compile with e.g.

$ z8k-pcos-gcc -o dir.cmd dir.c
$

The program accepts a command line argument which specifies the file mask to search.
Some examples:

1> dir
1> dir *.cmd
1> dir 0:ba*.cmd

The parsing of the command line is very simplistic. If the second character is a ’:’ the
program assumes a mask which includes a disk drive and acts accordingly.

PCOS provides a system call to parse a file or volume name (DisectName, #96), but
currently the runtime library doesn’t implement an interface to this request.
_pcos_disectname will be available in a future release of the toolchain.

Chapter 8: The debugger 39

8 The debugger

This chapter will be provided in a future revision of this document.

Chapter 9: Building from source 40

9 Building from source

9.1 Compiler and Assembler

The source release can be built for 2 different targets, PCOS and COFF. If you want to
create programs for the M20 you only need the PCOS version. The COFF version is a more
generic one and creates executables for the simulator (z8k-coff-run), but cannot create
M20 PCOS files.

9.1.1 Building for PCOS

Building the PCOS version is a two step process:

• build the GNU toolchain consisting of binutils and gcc

• build the PCOS linker

9.1.1.1 Building GNU toolchain

The source code comes in the archive z8kgcc-jan-19-2009.tar.bz2. Extract the source
code into a directory (from now on referred to as <srcdir>). Then create somewhere
else a “build” directory (<builddir>). <instdir> indicates the directory where you want
the compiler to be installed, and <archive location> refers to the directory where the
downloaded z8kgcc-jan-19-2009.tar.bz2 file is located.

$ mkdir <srcdir>
$ cd <srcdir>
$ bzip2 -dc <archive location>/z8kgcc-jan-19-2009.tar.bz2 | tar -xf -
$ mkdir <builddir>
$ cd <builddir>

Then “configure” and build the toolchain:

$ <srcdir>/src/configure --prefix=<instdir> --target=z8k-pcos \
--enable-target-optspace
$ make

--enable-target-optspace tells the configure machinery to compile the runtime library
with -Os (optimize for size). This results in smaller programs which is normally good for
a memory restrained system like the M20. But it’s not needed for correct operation of the
runtime library. So you can omit it if you wish.

After the compilation has finished, install the newly created programs:

$ make install

The first step is done now.

Chapter 9: Building from source 41

9.1.1.2 Building the PCOS linker

The source code comes in the archive ldpcos-jan-19-2009.tar.bz2. Extract the tar file
and type "make" in the ldpcos/ldpcos directory. The defaults of the makefile are for a
32bit little endian machine which supports unaligned memory accesses. If your machine is
different, adjust the "make" command line accordingly:

big endian:
$ make COPTS="-O2 -D_CPG_BIG_ENDIAN_"

64 bit system:
$ make COPTS="-O2 -D__64BIT__"

no unaligned:
$ make COPTS="-O2 -D_CPG_NO_UNALIGN_"

Combine as needed, e.g. for a 64bit big endian machine which supports unaligned accesses:

$ make COPTS="-O2 -D__64BIT__ -D_CPG_BIG_ENDIAN_"

After successful compilation install the ldpcos executable as default linker for the C com-
piler:

$ cp ldpcos \
<instdir>/lib/gcc-lib/z8k-pcos/2.9-ecosSWtools-990319-m20z8k-3/ld

The destination path, especially the “2.9-ecosSWtools-990319-m20z8k-3” part might be
different in newer versions of the tools. If you intend to use the assembler it is recommended
to put ldpcos additionally into the bin directory:

$ cp ldpcos <instdir>/bin

The last step is to adjust the default stack size of C programs. Edit the <inst-
dir>/lib/gcc-lib/z8k-pcos/2.9-ecosSWtools-990319-m20z8k-3/specs file and add
"-stack 0x800" to the link parameters.

Here’s an example diff:

--- specs 2009-01-22 22:28:09.000000000 +0100
+++ specs.new 2009-01-22 22:28:00.000000000 +0100
@@ -17,7 +17,7 @@

*link:
-%{!mz8002:-m z8001}

Chapter 9: Building from source 42

+%{!mz8002:-m z8001} -stack 0x800

*lib:
-lc

To illustrate the change, here are the contents of the link section of the specs file before
the change:

*link:
%{!mz8002:-m z8001}

and these are the contents after the change:

*link:
%{!mz8002:-m z8001} -stack 0x800

This gives a default stack size of 2048 bytes. You can override the stack size at compilation
time of your program with the -Wl,-stack,xxx command line parameter.

Caution: Don’t skip this change (setting the stack size to at least 0x800 bytes),
since the default stack size of PCOS programs (if not explicitly set by the PCOS
linker) is less than 500 bytes, which is not sufficient for C programs. The runtime
library needs more stack space, and if the stack overflows it will result in strange
errors which are difficult to debug.

9.1.1.3 PCOS specific parts of the runtime library

Most of the PCOS specific parts of the runtime library are in <srcdir>/src/newlib/
libc/sys/z8kpcos and <srcdir>/src/newlib/libc/machine/z8k. The remaining parts
are conditional defines in newlib’s C code.

9.1.2 Building for COFF

The source code comes in the archive z8kgcc-jan-19-2009.tar.bz2. Extract the source
code into a directory (<srcdir>). Then create somewhere else a “build” directory (<build-
dir>). <instdir> indicates the directory where you want the compiler to be installed,
and <archive location> refers to the directory where the downloaded z8kgcc-jan-19-
2009.tar.bz2 file is located.

$ mkdir <srcdir>
$ cd <srcdir>
$ bzip2 -dc <archive location>/z8kgcc-jan-19-2009.tar.bz2 | tar -xf -
$ mkdir <builddir>
$ cd <builddir>

Then “configure” and build the toolchain:

Chapter 9: Building from source 43

$ <srcdir>/src/configure --prefix=<instdir> --target=z8k-coff
$ make

Due to a problem in the compiler, the compilation will abort with an error when compiling
md5.c of libiberty. Compile this file with “-O” instead of “-O2”:

$ cd z8k-coff/std/libiberty

Redo the last failing command (compiling md5.c), but replace “-O2” with “-O” in the
compilation parameters.

$ <builddir>/gcc/xgcc ... -O ...
$ cd ../../..
$ make

After the compilation has finished, install the newly created programs:

$ make install

9.2 Debugger

The source code comes in the archive z8kgdb-jan-19-2009.tar.bz2. Extract the source
code into a directory (<srcdir>). Then create somewhere else a “build” directory (<build-
dir>). <instdir> indicates the directory where you want the debugger to be installed
(typically the same location where the C compiler was installed), and <archive location>
refers to the directory where the downloaded z8kgdb-jan-19-2009.tar.bz2 file is located.

$ mkdir <srcdir>
$ cd <srcdir>
$ bzip2 -dc <archive location>/z8kgdb-jan-19-2009.tar.bz2 | tar -xf -
$ mkdir <builddir>
$ cd <builddir>

Then “configure” and build the debugger:

$ <srcdir>/src/configure --prefix=<instdir> --target=z8k-pcos
$ make

Replace --target=z8k-pcos with --target=z8k-coff to build the COFF version instead
of the PCOS version. Use a different build directory for each version or clean the build
directory before you build the other version. After the compilation has finished, install the
newly created programs:

Chapter 9: Building from source 44

$ make install

9.2.1 m20stub.sav

This chapter will be provided in a future revision of this document.

Appendix A: Suggested Readings 45

Appendix A Suggested Readings

A.1 PCOS User Guide

The PCOS user guide can be found at ftp://ftp.groessler.org/pub/chris/olivetti/
m20/doc/english/PCOS/M20_PCOS.pdf.
This is release 2.0 from March 1983.

A.2 ASSEMBLER Language User Guide

The original Olivetti assembler language manual can be found at ftp://ftp.groessler.org/
pub/chris/olivetti/m20/doc/english/PCOS_asm_refman/PCOS_asm_refman.pdf.
This is version 2.0 from March 1983, code 3987670 L(0).

A.3 Olivetti M20 Hardware Manual

A copy of Olivetti’s M20 hardware manual can be found at ftp://ftp.groessler.org/
pub/chris/olivetti/m20/doc/english/hardware_manual/Olivetti_M20_Hardware_
Manual.pdf.
This is the first edition from July 1983, code 4100630 W(0).

A.4 Z8000 Technical Manual

A copy of Zilog’s Z8000 technical manual can be found at ftp://ftp.groessler.org/pub/
chris/olivetti/m20/doc/english/Z8000_tech_man/Z8000TechMan.pdf.

A.5 Z8000 Programmer’s Guide

A copy of Zilog’s Z8000 programmer’s guide can be found at ftp://ftp.groessler.org/
pub/chris/olivetti/m20/doc/english/Z8000_prog_guide/Z8000_prog_guide.pdf.
This is an “Application Note” from Juli 1981.

ftp://ftp.groessler.org/pub/chris/olivetti/m20/doc/english/PCOS/M20_PCOS.pdf
ftp://ftp.groessler.org/pub/chris/olivetti/m20/doc/english/PCOS/M20_PCOS.pdf
ftp://ftp.groessler.org/pub/chris/olivetti/m20/doc/english/PCOS_asm_refman/PCOS_asm_refman.pdf
ftp://ftp.groessler.org/pub/chris/olivetti/m20/doc/english/PCOS_asm_refman/PCOS_asm_refman.pdf
ftp://ftp.groessler.org/pub/chris/olivetti/m20/doc/english/hardware_manual/Olivetti_M20_Hardware_Manual.pdf
ftp://ftp.groessler.org/pub/chris/olivetti/m20/doc/english/hardware_manual/Olivetti_M20_Hardware_Manual.pdf
ftp://ftp.groessler.org/pub/chris/olivetti/m20/doc/english/hardware_manual/Olivetti_M20_Hardware_Manual.pdf
ftp://ftp.groessler.org/pub/chris/olivetti/m20/doc/english/Z8000_tech_man/Z8000TechMan.pdf
ftp://ftp.groessler.org/pub/chris/olivetti/m20/doc/english/Z8000_tech_man/Z8000TechMan.pdf
ftp://ftp.groessler.org/pub/chris/olivetti/m20/doc/english/Z8000_prog_guide/Z8000_prog_guide.pdf
ftp://ftp.groessler.org/pub/chris/olivetti/m20/doc/english/Z8000_prog_guide/Z8000_prog_guide.pdf

Appendix B: Acknowledgements 46

Appendix B Acknowledgements

I’d like to thank Davide Bucci for his proofreading and suggestions for improvements.

Thanks to Steve Chamberlain, who wrote the original support for Z8000 in binutils, gcc,
gdb, and newlib.

Appendix C: Revision of this document 47

Appendix C Revision of this document

The document’s revision is shown on the back side of the cover page. Look for the Id
line.

Appendix D: GNU Free Documentation License 48

Appendix D GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix D: GNU Free Documentation License 49

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix D: GNU Free Documentation License 50

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix D: GNU Free Documentation License 51

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix D: GNU Free Documentation License 52

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix D: GNU Free Documentation License 53

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix D: GNU Free Documentation License 54

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 55

Index

_pcos_extent_length . 15

A
Assembler comments . 18
Assembler radix representation 17
Assembler segment notation 18
assembler, ldpcos config file entry 22

B
Build instructions . 40
building assembler . 40
building assembler, COFF . 42
building assembler, PCOS . 40
building compiler . 40
building compiler, COFF . 42
building compiler, PCOS . 40
building debugger . 43
Building from source . 40
building m20stub.sav . 44
building PCOS linker . 41

C
C calling conventions . 18
C compiler overview . 3
C compiler, command line switches 5
command line switches, C compiler 5
command line switches, ldpcos 20
comments . 18
compiler switches . 5
config file, ldpcos . 22
CPG warnings . 6
creating files with open() . 15

D
default calling convention, Z8001 18
DID defines . 14

F
Floating Point . 10

G
getsize, ldpcos config file entry 22

I
Included Tools . 3
inline assembly . 7
Introduction . 1

L
ldpcos config file . 22
ldpcos, command line switches 20
linker, ldpcos config file entry 22

M
macros . 7
mixing C and assembly . 18

O
objcopy, ldpcos config file entry 22
open(), creating files . 15

P
PCOS DID defines . 14
PCOS open modes . 14
PCOS runtime library . 10
PCOS status codes . 12
PCOS system functions . 10
Predefined macros . 7
programid, ldpcos config file entry 22

R
Radix representation . 17
runtime library, PCOS specific parts 42

S
Segment notation . 18
Source . 40
Special characters . 15
standard calling convention, Z8001 19
Suggested Readings . 45

U
usage example, C compiler . 5

	Introduction
	Getting and installing the toolchain
	Getting the toolchain
	Installing the toolchain
	Upgrading

	The C compiler
	Overview
	Included Tools

	Basic usage
	Compiler Switches
	CPG warnings
	Predefined macros
	Inline assembly

	The C runtime library
	Floating Point
	PCOS system functions
	PCOS status codes
	PCOS open modes
	PCOS DID defines
	Special characters
	Creating files with open()

	The assembler
	Radix representation
	Segment notation
	Comments
	Mixing C and assembly
	Z8001
	Z8001 default calling convention
	Z8001 ``Standard'' calling convention

	Z8002

	ldpcos - the PCOS linker
	Command line switches
	Config file
	.sav files
	Big Programs
	Default PCOS program prologue

	Examples
	Assembler version of ``Hello World''
	Setting the program id string

	Assembler version of ``Hello World'' (-raw version)
	Direct screen access (assembler)
	Direct screen access (C)
	Direct screen access (C with assembler subroutine)
	Direct screen access (C with inline assembly)
	Read a byte from a port
	Write a byte to a port
	Accessing the disk directory

	The debugger
	Building from source
	Compiler and Assembler
	Building for PCOS
	Building GNU toolchain
	Building the PCOS linker
	PCOS specific parts of the runtime library

	Building for COFF

	Debugger
	m20stub.sav

	Suggested Readings
	PCOS User Guide
	ASSEMBLER Language User Guide
	Olivetti M20 Hardware Manual
	Z8000 Technical Manual
	Z8000 Programmer's Guide

	Acknowledgements
	Revision of this document
	GNU Free Documentation License
	Index

