L

A

QAN

—=M0=

ISAM
- (Index Sequential Access Method)

User Guide

olivetti L1

PREFACE

This book describes the features
of ISAM (Index Sequential Access
Method) and how to use them using
BASIC programming language on the
M20.

Chapter 1 explains in general the
concepts of keyed file management
and is aimed at the reader who has
had little experience of 1SAM
techniques. 1t provides an intro-
duction to the remainder of the
manual which explains the file
structures used by ISAM; how to
implement 1SAM and how to use the
individual functions within a
BASIC program.

Appendix A describes the tutorial
program and contains examples
which enable the user to become
familiar with the techniques used
by 1SAM.

The reader 1is assumed to have a

working knowledge of BASIC and to
be familiar with the M20.

(©) 1982, by Olivetti

REFERENCES:

BASIC Language Reference Guide
Code 3982430 P

Professional Computer Operating
System (PCOS) User Guide
Code 3987590 U

FIRST EDITION: July 1982

RELEASE: 1.1

MULTIPLAN is a registered trade-
mark of the MICROSOFT INC.

PUBLICATION ISSUED BY:
Ing. C. Olivetti & S.p.A.

Servizio Centrale Documentazione
77, Via Jervis-10015 IVREA (Italy)

The following are trademarks of Ing. C. Olivetti S.p.A.: OLICOM, OLITERM,
OLIWORD, OLINUM, OLISTAT, OLIMASTER, OLITUTOR, OLITEST, OLIENTRY,

OLISORT, GTL. £y

This manual also refers to Release 1.2.

OPERATIONS NETALLATION INTRODUGTION TO
LIBRARY ST AL THE SYSTEM
N\ \
PRINTER PR 2400 =
{“j';’é;‘gh‘.‘,;g OPERATING GUIDE z
s =
\ | |8 2
N -
[7] — o
OLIWORD b4 = PRINTER PR 1450 3
a USER GUIDE (*) © iy OPERATING GUIDE a
. Q
S N\ |8 N\
3 S|~
x OLIENTRY » * PRINTER PR 1471
8 o USER GUIDE (*) © = OPERATING GUIDE
(=]
g \ |8 \,
(v d b §
* 3 = PRINTER PR 1481
R
3 < SN GUIDE 8| g OPERATING GUIDE ()
APPLICATION o \ ||8 N\
e .
SOFTWARE § OLISTAT (Statisti g PRINTER PR 430
LISTA tatistical Analysis
LIBRARY g 1l AT (e ysis) 8 ||~ || operating auioE ()
AN o)
Yk \ | |§
OLITUTOR «© «Q
OLING -3
USER GUIDE a .
© s USER GUIDE (%) © @
o o
¢
\ | |2 AR
PCOS (Professional Computer -4 g
Operating System) 3 SIS_:.':SF(X)SLTHDE ™
@ USER GUIDE a
< [=]
2 N\ IS AN
g 2
-] BASIC LANGUAGE » OLINUM (Numerical Analysis)
“ - REFERENCE GUIDE « w USER GUIDE
=4 [~}
3 AR R N
~ N
«© -]
2 = BASIC & PCOS 3
o POCKET REFERENCE -
(=]
[=]
2 N\ |8 N\
S @
. } -1 ASSEMBLER LANGUAGE 3
© « REFERENCE GUIDE
o
3 \
PROGRAMMING | |2 ASSEMBLER LANGUAGE =
(-]
LIBRARY @ USER GUIDE \ \
> dl=
\ (=]
]
& ASSEMBLER LANGUAGE
1 4 POCKET REFERENGE (")
o
\ ~ z
w
&
OLITEST L
USER GUIDE ©
a.
\ e
e
5
IO WITH EXTERNAL @
FORTRAN
PERIPHERALS b4 .
;s Hle USER GUIDE \ o REFERENGE GUIDE (%) \
o
H g \ AN
3 I
% - (= VIDEOTEX PASCAL
c « z USER GUIDE (") - REFERENCE GUIDE (%)
<.
£ (=] o
£ 3 \ 2 N\
2 o S
® - OLICOM 3
8] o USER GUIDE o o
3 °
o
o
- -]
£ 2 OLITERM 3
A « « USER GUIDE
X \ P
o, ADVANCED 2 \ \
= FACILITIES] N\
< LIBRARY b4
>
= tgo AN
-
(]
l | N1 |

1y

T

e

paéé 3-2 “line' 9
MERGE'"ISAM.BAS"

page 3-2.' line 10
SAVE T:MYPROG

-page 3-6 1line 3

File DCB number.
page 3-8 1line 11 and 12

page 3-8 1line 26

This code unique.

The$fql16&1ng

= I?*.; AT

-ISAM % (8)‘-"return code

“SAVE ''1:MYPROG"

Unused

delete RK/SK
 RG/SG

page,3~21v line 28

... first greater and 190d.

page 3-22. 1line 9

e key in the index, the
Read ...

page 3-27 1line 20
Statement 120 and 160

S A e e

key in the indéx,'or

are no keys in the index,

page. A—1 lihé 19
RP RN - Read Prev1ous

page A-2 line 26
the data file ...

page A-3 ' line 4
data file TFILE1,

to the 1ntended data \record
* deleted.

1f the récord number is spec1f1ed
as - zero, - then. the first: matchlng
key will be deleted. o /

RP,SP - Read Previous

the index file ...

index file IFILE1,...

- File DCB

- Unused -

CONTENTS

1.

CONCEPTS OF KEYED FILE
MANAGEMENT

METHODS OF FILE HANDLING

KEYED FILE STRUCTURES

SECONDARY INDEXING
CONCATENATED KEYS
KEYED RECORD RETRIEVAL

RECORD AND KEY DELETION

APPLICATIONS FOR KEYED
FILE STRUCTURES

INQUIRIES
EDITS
UPDATES

ADDITIONS AND DELETIONS

. ISAM FILE STRUCTURES

ISAM FILES

THE DATA FILE

THE INDEX FILE

B TREES
ISAM TREE STRUCTURES

DATA CONTROL BLOCKS

FILE BUFFERING AND NUMBER

OF OPEN FILES

DELETED RECORDS

. USING ISAM 1IN A BASIC

PROGRAM

1-1

1-2

1-3

1-3

1-5

1-5

1-5

1-6

1-6

2-1

2-1

2-1

2-2

2-5

2-6

ISAM PROGRAM FILES

USING ISAM ON THE M20

USING 1SAM WITH BASIC

COMMUNICATING WITH TISAM

RETURN CODES

1SAM UTILITY FUNCTIONS

METHOD STATUS (MS)

METHOD INITIALISE (MI)

OPENING AND CLOSING ISAM

FILES

F1LE OPEN (00)

CREATE FILE (0C)
OPEN/CREATE FILE (OF)
CLOSE FILE (CL)

RETRIEVING DATA FROM AN
I1SAM FILE

READ KEY (RK, SK)
READ GENERIC (RG, SG)
READ NEXT (RN, SN)
READ PREVIOUS (RP, SP)

WRITING DATA TO AN ISAM
FILE

WRITE ADD (WA, SA)

DELETE FUNCTIONS

KEY DELETE (KD, SD)

3-1
3-1
3-3
3-7
3-9

3-9

3-12
3-13
3-15
3-16

3-17

3-17
3-19
3-22
3-24

3-25

3-25
3-29

3-29

DELETE RECORD (DR)

APPENDICES

A.

B.

Cc.

1SAM TUTORIAL PROGRAM

I1SAM FILE DUMP UTILITY

ISAM VARIABLES

VARIABLES PASSED TO 1SAM

VARIABLES RETURNED FROM
ISAM

. FUNCTION CODES

. RETURN CODES

3-31

A-1

B-1

Cc-1

C-1

E-1

T ™ ARNA

11 7~1017T 8~

/,ﬁ3
N

1. CONCEPTS OF KEYED FILE MANAGEMENT

ABOUT THIS CHAPTER

This chapter provides a general introduction to keyed file management. 1t
describes the types of file used, the methods by which information may be
retrieved from the files, and gives a few examples of situations where
keyed file management is particularly useful.

CONTENTS

METHODS OF FILE HANDLING 1-1

KEYED FILE STRUCTURES 1-1

SECONDARY INDEXING 1-2
CONCATENATED KEYS 1-3
KEYED RECORD RETRIEVAL 1-3

RECORD AND KEY DELETION 1-5

APPLICATIONS FOR KEYED 1-5
FILE STRUCTURES

INQUIRIES 1-5
EDITS 1-6
UPDATES 1-6

ADDITIONS AND DELETIONS 1-6

e

-
-

:;3
4

CONCEPTS OF KEYED FILE MANAGEMENT

METHODS OF FILE HANDLING

A keyed file management system 1is a technique for organising and
processing files. It is used to access data records in logical sequential
order or randomly on the basis of a key or identifying data element of
the individual data records. Indexed Sequential Access Method (ISAM) is
one such implementation.

Before going into more detail about keyed file management it is worth-
while looking briefly at two simpler and better known access methods:

- Sequential access method (SAM) is simply the writing and reading of
records one after the other, that is, in physical sequential order. Any
time a new record is created it must be added to the end of the file. A
record may be inserted into the file only by copying the entire file
and writing the new record at the desired location in the new file. If
a specific record in the file is desired the file must be searched in
sequential order until that record is found. Record updates may or may
not be allowed depending on the implementation.

- Random access method is more flexible. It is also called ''direct access
method" (DAM). DAM allows records to be written into or retrieved from
any location within the file by knowing the actual physical location on
the disk, or the record number (absolute position within the file), or
the relative position of the desired record within the file. In this
manner a specific record can be retrieved randomly by record number,
physical disk location,or relative position from some unique data
element in the record. In relative record addressing, the record number
itself can serve as the key.

Each of these file organisations is ideal for particular uses. But for
applications where there is a need to access records sequentially or
randomly by their associated keys, a keyed file structure provides a much
more useful approach.

KEYED FILE STRUCTURES

There are two major types of data structure that can be associated with a
keyed file structure: the index file and the data file.

INDEX FILE DATA FILE

key rec. num

Figure 1-1 1Index and Data Files

The index file contains index records that provide pointers to associated
data records based on a unique and identifying data element in each
record called the key. There may also be secondary or alternate indices
which provide access to the data records via a secondary or alternate
key. This provides multiple paths through the data.

It is also possible to have the same key repeated several times within an
index file, e.g. if a person's name is to be used as the key, there might
be several people with the same name. This does mean, however, that if
unique access to data records is to be maintained, the data record number
must be specified with the key value.

The data file contains the data records. The data file may be in key
order or physical order depending on the implementation technique.

SECONDARY INDEXING

Secondary indexing allows data records to be accessed by different keys.
For example, the records in a customer master file may need to be ret-
rieved by customer number or by customer name. The primary index would be
built using the customer number as the key and a secondary index would be
built based on a customer name, thus providing two independent keyed
paths through the data file.

122

LEi R el

PRIMARY
INDEX FILE
>
—
—>
DATA
FILE
>
—
SECONDARY
INDEX FILE(S)

Figure 1-2 Secondary Indexing

CONCATENATED KEYS

It may be necessary to access data records using a combination of data
elements as the key. Two or more data elements are combined (or
concatenated) to form the actual key for the record.

For example, a company with several branch offices may want to keep the
customer records for one branch separated from those of other branches so
that reports may be easily produced by branch. It is also desirable to be
able to retrieve information concerning any customer from any branch for
inquiry and updating. If the key were composed of branch number and
customer number, all customers for a given branch would be logically
grouped and could be accessed independently of the other branches. Yet
all customers would be available as a group for global inquiries and
reports.

KEYED RECORD RETRIEVAL

There are five possible methods that can be used to retrieve records in a
keyed file structure:

- Random retrieval by key is the technique whereby a key value is passed
to the keyed access method which then returns a pointer to the assoc-
iated data record.

Upon receiving the key the access method searches the index file for
the corresponding record pointer. The access method returns information
indicating the result of the search. If the search was successful then
a pointer to the record is also returned.

Random retrieval by key is useful for inquiries and updates where a
specific record is desired and the key of that record is known.

- Generic retrieval by key is similar to random retrieval by key except
when the specific record requested is not found, in which case the <::>
pointer to the record of the next higher key is returned. Generic
retrieval by partial key value can be used to group data records into
logical sections.

Generic retrieval provides a powerful tool for selecting and organising
data records.

- Sequential retrieval by key provides the ability to read the data
records in logical key sequence regardless of their physical sequence
in the data file. This process can begin with the first logical record
in the file, or it may begin from any point within the data file.

Logical sequential retrieval can be used to retrieve data records in a
particular sequence, that is, in key order. Or, 1in conjunction with
generic retrieval, it can be used to accomplish retrieval of logical
groupings of data records from the file structure. ‘ €:;>

- Sequential retrieval in physical order enables data records to be
retrieved in physical order from the data file without reference to an
index. This 1is convenient for. data processing tasks where record
retrieval sequence is unimportant, such as data analysis, as it reduces
access time by eliminating the index search.

- Random retrieval by record number enables data records to be retrieved
randomly by their record numbers. This allows the data file to be
treated as a DAM file as well as a keyed structure.

CONCEPTS OF KEYED FILE MANAGEMENT

RECORD AND KEY DELETION

A keyed file management system can provide the ability to remove data
records and/or their associated keys from the file structure. This
reduces the programming effort required to support deleted records, saves
disk space and decreases the need for file reorganisation.

When a data record is no longer needed in the file structure, it can be
removed by a record delete function. This removes the key associated with
the data record from the index and may also flag the data record as
deleted.

1f access to a data record by its key is no longer required, but the
record will be required for subsequent non-keyed access, a key delete
function can be used. This removes the key from the index but leaves the
data record unchanged. The responsibility for the removal of the data
record is then left to the programmer. This is useful for applications
where the data record will be required for later reporting, such as in
archive generation. This function is also useful for removing the keys of
deleted records from secondary indices.

APPLICATIONS FOR KEYED FILE STRUCTURES

Keyed file structures provide much more flexibility than other file
organisations and lend themselves more readily to interactive and real
time applications. The following examples 1illustrate some actual
applications.

INQUIRIES

A primary application for keyed files 1is inquires. An inquiry may be
serviced by retrieving information from a specific record by using the
record key.

For example, in an inventory control system, management may want to know
how much stock is on hand before committing themselves to an order. Using
a keyed file structure with the item number as the key, a program can be
written to request the item number from the operator, retrieve the
corresponding record from the file structure, and display the stock
status information on the screen.

4.5

I1lustrating secondary indexing, a secondary key of item description
could be assigned to the inventory file. Thus if the item number is not
known, the description could be used to retrieve the desired item, or
even a group of items with similar descriptions.

EDITS

A second useful application is data validation. A data element in one
file may be the key to a keyed file structure. If this is the case,
whenever that data element is entered by the operator it may be verified
by performing a random retrieval by key against the file structure for
which the data element serves as the key. 1f the key is not located, the
operator can be immediately informed that the data is invalid and should
be re-entered.

For example, in a payroll application the weekly time records will con-
tain the employee number. The employee number can be entered and used as
the key for a random retrieval against the employee master file. If a "no
match" condition results, the operator can be informed that the employee
number is invalid so that the correct value can be entered.

UPDATES

Possibly the most useful application for keyed file structures is
real-time updating. A data record can be updated as soon as any
transaction changes 1it, making current information available on a
real-time basis. This would normally be used in conjunction with
inquiries.

For example, in a banking environment, deposit and withdrawal trans-
actions can be directly applied to the associated accounts by performing
a random retrieval by key (account number), adding or subtracting the
transaction to/from the account, and rewriting the record. Any inquiry or
subsequent transaction would reflect the current balance, even if the
previous transaction had been made only moments earlier.

ADDITIONS AND DELETIONS
Data records can be added to or deleted from keyed file étructures in

real-time. 1In this manner new data is immediately available for access
and old data is removed making that space available for new data.

AM - USER GUIDE =

I
o

CONCEPTS OF KEYED FILE MANAGEMENT

For example, in the inventory control system, a new item added to invent-
ory immediately becomes available for ordering, and a discontinued item
can be removed preventing orders being made against it.

2. ISAM FILE STRUCTURES

ABOUT THIS CHAPTER

This chapter describes the file structures used by I1SAM and how they are

handled.

CONTENTS
ISAM FILES

THE DATA FiLE

THE INDEX FILE

B TREES

ISAM TREE STRUCTURES

DATA CONTROL BLOCKS

FILE BUFFERING AND NUM-

BER OF OPEN FILES

DELETED RECORDS

2-1

2-1

2-2

2-4

2-5

2-6

2-6

ISAM FILES

ISAM uses two data structures: index files and data files. Multiple index
files will also be present if secondary indexing is being used. Chapter 1
describes these concepts.

1SAM data files are stored in BASIC format and are compatible with all
BASIC features and file facilities. Utilities such as SORT and MERGE can
therefore be used without modification. But note that any such action
will destroy the relationship between the data file and the index

file(s).

THE DATA FILE

The data file is a BASIC random file and can therefore be directly man-
ipulated using BASIC statements for random files. For instance, you would
transfer a record from the data file into its buffer using a BASIC GET
statement; you would use a PUT statement to write a record from the file
buffer to the data file; you would define the layout of the file buffer
using F1ELD statements. In fact 1SAM performs none of these functions for
you. It is left to the programmer.

THE INDEX FILE

The index file is made up of records each containing a number of keys,
and appended to each key is the corresponding record number.

Duplicate keys require special treatment in that the key searching
mechanism is slightly different. This gives rise to two types of index
file: one in which duplicate keys are permissible, and one which only
allows unique keys.

In either case the keys are not stored in any physical sequence, but a
series of forward and backward pointers maintain the keys logically in
alphanumeric order. This logical ordering is established using a '"tree"
structure. The type of tree structure used by ISAM is known as a B+ tree.

B TREES

Before discussing the B+ tree used by ISAM it is worthwhile considering a
simpler, more general B tree in order to get a better understanding of
how B trees work.

In one form of B tree each key occupies one node and has a forward and a
backward pointer which point to keys in the next lower node. This is also
known as a binary tree, e.g. if the first key to be entered into the
index file is "7", then "9'" and "4.5" are added, the structure shown in

Fiqure 2-1 would result.

! R

Figure 2-1 B Tree Structures 1

When a record is added to the tree it is first compared to the key value
at the top of the tree - this is known as the "root". If its value is
greater than that of the root node it is then compared to the key value
pointed to by the forward pointer. Conversely, if it is less than the key
value of the root node it is compared to the key value pointed to by the
backward pointer. Successive comparisons then take place until the
correct position is found for the key at the lowest level of the tree.
e.g. If 2, A3, A5, 4.5A and 9.9 are then added to the structure shown in
Figure 2-1, then the structure shown in Figure 2-2 will result.

45 | _ o |
S L Y
2 45A | A3 lI
g Y
99 AS

Figure 2-2 B Tree Structures I1

As long as the tree remains balanced, i.e. there are a similar number of
keys to the left of a node as to the right, search time is kept to a
minimum. For instance, in the example shown in Figure 2-2 key A5 can be
retrieved by examining nodes 7, 9, and A3 -~ i.e. three comparisons. But
supposing the keys had been entered in sequential order, then you would
get the structure shown in Figure 2-3.

45
.
a5A J
7
| @
9 }
9.9 |
A3
1
A5
Figure 2-3 B Tree Structures 111 ' e;;>

In this case retrieving A5 would require seven comparisons. This sort of
situation requires a ''splitting'" algorithm to balance the tree.

1SAM TREE STRUCTURES

The B+ -trees used by ISAM are not so simple as the B tree described
above. In fact 1SAM trees use two types of record: index node records and
leaf node records. Basically the leaf node records reside at the lowest
level of the tree and contain all the keys and their corresponding record
numbers. The index node records reside in all but the lowest level of the
tree and provide the access path to the leaf node records. {p~

= USER GUIDE

~ ISAM FILE STRUCTURES

index node records

. . . \ . leaf node records

I N

pointers to data fite

Figure 2-4 1SAM Data Structures

In addition, each leaf node record has a forward and a backward pointer
which chain it to the next and previous leaf node records. This enables
all leaf node records, and hence all leaf nodes, to be accessed quickly
in ASCI1 sequence.

As the record size is fixed but the key length is variable, the number of
keys per index file record is also variable.

DATA CONTROL BLOCKS

Whern an index file is opened it must have a data control block (DCB)
assigned to it. This block will contain information pertaining to the
current use of the file. 1t contains a pointer to the header control
block (HCB), which is a record held within the index file itself and
contains the header information.

This information is used for purposes such as assisting in the retrieval
of the data record of the next sequential key; accessing the deleted
record stack for the next available deleted record; and accessing the
next available node for sequential writing.

The DCB also contains a flag that indicates whether the file is a dupli-
cate or unique type.

FILE BUFFERING AND NUMBER OF OPEN FILES

- Among the 1SAM functions available is one which compels the user to
define the maximum number of index files that can be open at one time.
This number must be in the range 1 to 15. The associated file numbers
then must not be used by the BASIC program, e.g. if ISAM is initialised
for a maximum of four files, then the file numbers available to the BASIC
program will be 5 to 15. If file numbers 1, 2, 3 or 4 are used by the
BASIC program, unpredictable results will occur. One way of avoiding this
conflict is to number your data files in descending order starting from
the highest available file number.

Index file records are accessed via file buffers allocated from the
system heap. A minimum of two buffers per file are automatically
allocated so that the ISAM splittihg algorithms can be used on the index
file to keep the B+ tree balanced. But the user is at liberty to specify
additional buffers up to a limit imposed by the available memory, i.e. as
the number of files increases, so does the usage of memory for control of
these files. 1i.e. DCBs etc. are required and less memory becomes
available for buffering. You are therefore advised to keep the number of
open files to a minimum, thereby allowing as much memory as possible for
the buffers.

While two additional buffers per index file are advisable 1SAM will still
function normally on less, but not so efficiently. ISAM is able to do so
because it contains algorithms that allocate the available buffers to the
most recently used files, thereby making the best possible use of the
buffer space. i.e. when an index file requires an additional buffer and
all buffers are currently in use, it is allocated the buffer which was

the least recently used.

O

DELETED RECORDS

Record deletion is implemented by deleting the key from the index file
and saving the associated record number so that the record can be re-used
by a subsequent write function. Deleted records are saved on a
last-in-first-out stack'. i.e. the last record to be deleted will be the

first to be re-used.

ISAM - USER GUIDE

3. USING ISAM IN A BASIC PROGRAM

ABOUT THIS CHAPTER

This chapter describes how you communicate with the 1SAM subroutine and
how to use the individual functions within a BASIC program.

CONTENTS

1SAM PROGRAM FILES 3-1 READ KEY (RK, SK) 3-17
USING I1SAM ON THE M20 3-1 READ GENERIC (RG, SG) 3-19
USING ISAM WITH BASIC 3-1 READ NEXT (RN, SN) 3-22
COMMUNICATING WITH ISAM 3-3 READ PREVIOUS (RP, SP) 3-24
RETURN CODES 3-7 WRITING DATA TO AN ISAM FILE 3-25
ISAM UTILITY FUNCTIONS 3-9 WRITE ADD (WA, SA) 3-25
METHOD STATUS (MS) 3-9 DELETE FUNCTIONS 3-29 | é;;>
METHOD INITIALISE (MI) 3-11 KEY DELETE (KD, SD) 3-29
OPENING AND CLOSING‘ISAM 3-12 DELETE RECORD (DR) 3-31
FILES

FILE OPEN (00) 3-12

CREATE FILE (0C) 313

OPEN/CREATE FILE (OF) 3-15

CLOSE FILE (CL) 3-16

RETRIEVING DATA FROM AN ISAM 3-17
FILE

‘1SAM PROGRAM FILES

1SAM 1is provided on a separate disk. On this disk are four files
concerning 1SAM: '

- isamx.bas
~ isamd.bas
- isam.bas
- isam.sav

isamx.bas is a tutorial program that teaches you the concepts of 1SAM. It
is described in Appendix A. '

isamd.bas is a file dump utility that enables you to examine information
about a particular file. 1SAMD is described in Appendix B.

isam.bas 1is the file that contains the BASIC interface to the 1SAM
subroutine.

isam.sav contains the ISAM subroutine.

USING 1SAM ON THE M20

Switch on the M20, insert the system disk and press JGH.

After a few seconds the system header information will appear on the top
of the screen followed by the ">" prompt.

Then use the SBASIC command to set the number of files which can be open
concurrently.

You must now enter BASIC using the BA command.

You can now start to enter your BASIC program.

USING-1ISAM WITH BASIC

ISAM is a subroutine to your BASIC programs. It is invoked using the
statement GOSUB 6¢¢@g@.

A BASIC program communicates with ISAM via variable values that indicate
the file structure to be accessed, the function to be performed, and the
key of the record to be manipulated.

When writing a program that uses 1SAM, the following constraints must be
applied:

- 1SAM source code must be included in the program, e.g. having typed in
your BASIC program you should then add the following two immediate
statements:

MERGE "1SAM.BAS" This statement appends the 1SAM subroutine.
SAVE 1:MYPROG This statement saves your BASIC program with the
1SAM subroutine appended to it on the disk mounted (;;’

in drive 1 in the file named MYPROG.

- no sequence number in the calling program must be between 6¢@gg and
68119 otherwise errors occur.

- two 18 element arrays are required, named

ISAMS and ISAM%
These arrays must only be used for communicating with 15AM.

Any program that uses an I1SAM file structure must perform the functions
outlined below:

; .
STEP, OPERATION @

1 Open the index and data files

2 Assign the variable values to be passed to ISAM

3 Call the ISAM subroutine

4 Check the return code for successful completion

5 Read, write or delete data records as required

6 | Close all files

COMMUNICATING WITH 15AM

All communication with 1SAM takes place through the 1SAM$ and 1S5AM%

arrays.

The following tables describe these variables:

Table 3-1

NUMERIC

VARTABLE EXPLANATION

1SAM%(1) File DCB number.
This is the number of the DCB used to monitor all
file operations. 1t 1is used by all functions to
indicate which of the currently open index files to
use. Its value must be in the range 1 to 15.

1SAM%(2) Unused.

 1SAM%(3) Unused.

1SAM%(4) Unused.

I1SAM%(5) Data record number.
This variable is used when building a secondary index
to records that already exist. That 1is, it applies
only to a Secondary Index Write Add (SA) function.
This data record number must also be specified for
all keyed access functions to a duplicate key. ’

1SAM%(6) Additional disk buffers.
This variable 1is used by the Method Initialise (MI)
function to specify the total number of buffers to be
allocated in addition to the two per file which are
automatically allocated.

1SAM%(7) Maximum number of open files.
This variable is used by the Method Initialise (MI) !
function to specify the maximum number of index files |
that may be open at one time. '
Its value must be in the range 1 to 15.. §

. wjj-a

Numeric Variables Passed to ISAM (cont.)

NUMERIC

VARIABLE EXPLANATION
1SAM%(8) Unused.

1S5AM%(9) Unused. -
Table 3-1 Numeric Variables Passed to ISAM
STRING

VARIABLE EXPLANATION
ISAM$(1) Function code.

This

must be specified for all functions as

specifies the function to be performed.

Valid values are:

RK
RG
RN
RP
WA
DR
KD
SK
56
SN
SP
SA
SD
00
oc
OF
CL
M1
MS

Read Key

Read Generic

Read Next

Read Previous

Write Add

Delete Record

Key Delete :
Secondary Index Read Key
Secondary Index Read Generic
Secondary Index Read Next
Secondary Index Read Previous
Secondary Index Write Add
Secondary Index Key Delete
File Open

Create File

Open/Create File

Close File

Method Initialise

Method Status .

it

Table 3-2 String Variables Passed to 1SAM (cont.)

<7,

STRING
VARIABLE EXPLANATION
ISAMS(2) Key value.
This is required by the following functions:
RK/SK
RG/SG
WA/SA
DR
KD/SD
The key can be any length up to 118 ASCI1 characters.
1SAM$(3) Unused.
- 1SAMS (4) Index name.
This specifies the name of the index file. It is used
by the Open File, Create File and Open/Create File
functions.
: The file name must conform .to the standard PCOS file
§ naming conventions
- 1SAMS(5) Unused.
ISAMS (6) Duplicate/Unique flag.
This is used when creating new index files via the
Create File or Open/Create File functions to specify
whether or not duplicate keys are to be allowed in
the file. :
The flag value can be either '"D" for duplicate or "U"
for unique. A null value is treated as a unique type.
1SAMS (7) Unused.
1SAMS (8) Unused.
1SAMS(9) Unused.
j
Table 3-2 String Variables Passed to 1SAM

The following tables describe the use of the 1SAM% and 1SAM$ arrays in
returning variables from ISAM to the calling program:

NUMERIC
VARIABLE

EXPLANATION

1SAM%(1)

File DCB number.

1SAM%(2)
1SAM%(3)
1SAM%(4)
1SAM%(5)

Unused.
Unused.
Unused.
Unused.

1SAM%(6)

Total records active.

This value is returned by the Method Status function
(MS) and reflects the total number of keys (and
therefore records) that are active in the system.

1SAM%(7)

Unused deleted records.

This value is returned by the Method Status (MS)
function and reflects the number of deleted data
records that have not yet been reclaimed by subse-
quent write functions.

1SAM%(8)

Return code.
This can have the following values:

@@ -~ normal return

31 - invalid function order
41 - syntax error

51 - record not found

61 - duplicate key

71 - open/close error

81 - disk error

A detailed description of each error code is givén
later in Table 3-5.

15AM%(9)

Data record number.

This is returned after a successful operation and can
subsequently be used in BASIC file 1/0 statements to
retrieve or write data records, as appropriate.

Table 3-3 Numeric Variables Returned from ISAM

STRING

VARIABLE EXPLANATION
1SAMS (1) Unused.
ISAMS(2) Key value.

the Read Key function:

This value is returned by read functions other than

RG/SG
RN/SN
RP/SP
ISAMS (3) Unused.
1SAMS(4) Unused.
ISAMS(5) Unused.
1SAMS (6) Duplicate/Unique type.

This variable is returned by the Method Status (MS)
function to indicate the type of the file.

{

ISAMS (7) f Unused.

1SAMS(8) § Unused.
1SAMS(9) | Unused.

i

Table 3-4 String Variables Returned from 1SAM

RETURN CODES

The following table describes the possible return codes:

POSSIBLE
CODE NO. EXPLANATION FUNCTIONS
!
L g Normal return A1l

This indicates that the requested function
was performed succesfully and that the re-
turned record number is valid.

Table 3-5 Return Codes (cont.)

CODE NO.

EXPLANATION

POSSIBLE
FUNCTIONS

31

Invalid function order.

This indicates that the sequence of func-
tion calls was incorrect. This occurs if,
for instance, the first call was not a
Method Initialise (MI) function.

All

a1

Syntax error.

This indicates that some value passed to
ISAM was invalid.

All

51

Record not found.

This indicates that the desired record was
not located for one of the following
reasons:

- the requested key does not exist

- the requested key is higher than the
highest key in the file

- an attempt to read past the logical end
or begining has been made.

In all three cases the returned record
number is invalid

RK/SK
RG/SG

RK/SK

RG/SG

RN/SN
RP/SP

61

~ Duplicate key.

This indicates that the record to be added
has the same key as a record already on
the file. This code will only be returned
if the file type is unique.

WA/SA

71

Open/close error.

This indicates that the specified function
failed for one of the following reasons:

- the requested DCB number is already in use

f

00 OC OF

Table 3-5 Return Codes (cont.)

POSSIBLE
CODE NO. EXPLANATION FUNCTIONS
- the requested file name does not exist 00 OC OF
- the requested DCB has not been previously ALL
opened except
00 0C OF
81 Disk error.
Indicates that a fatal disk error has oc-
curred from which ISAM cannot recover.
Probable causes are:
- the directory is full 0C OF
- no more disk space is available. WA/SA DR
Table 3-5 Return Codes

ISAM UTILITY FUNCTIONS

METHOD STATUS (MS)

the number of unreclaimed deleted records.

The following'variables must be passed to ISAM:

- 1SAM%(1) - file DCB number

- 1SAMS(1)

function code (MS)

The following variables will be returned:

- 1SAM%(6)

- 1SAM%(7)

- 1SAM%(8)

number of active data records

number of unreclaimed deleted records

return code

The Method Status function returns information about a file to the user
program. This information comprises the number of active data

records and

- 1SAM$(6) -~ duplicate/unique flag

To retrieve the above information using the I1SAM Status function your
program should follow the sequence indicated below:

STEP OPERATION

1 Open the data file using a BASIC OPEN statement

2 Partition the buffer into fields using a BASIC FIELD statement

3 Open the index file using the File Open function

4 Specify the DCB number

5 Set the function code to "MS"

6 Call the 1SAM subroutine

7 Check the return code

8 Close the data file using a BASIC CLOSE statement

9 Close the index file using the Close File function
Example

BASIC PROGRAM OPERATION

100 OPEN"R",15,"DFILE",128 Statements 1@@ and 11§ open
114 FIELD 15,128 AS A$ the data file named DFILE and
120 1SAM%(1)=1 partition the buffer. State-
130 1SAMS (1)="00" ments 128 to 16f open the
149 1SAMS (4)="1INDEX" index file named 1INDEX and
15¢ GOSUB 60000 assign DCB 1 to it.
168 1F 1SAM%(8)<>@ THEN GOTO 90§
200 1SAM%(1)=1 Statements 2@ to 23@ perform
219 ISAMS (1)=""MS" the Method Status function on
229 GOSUB 6@@@gd the index file.

239

1F 1SAM%(8)<>@ THEN GOTO 10¢g

BASIC PROGRAM OPERATION

5¢¢ CLOSE 15 Statement 5@@ closes the data
51¢ 1SAM%(1)=1 file. Statements 518 to 544
528 ISAMS (1)="CL" close the index file.

53¢ GOSUB 6¢@gg

544 IF ISAM%(8)<>@ THEN GOTO 1149

METHOD INITIALISE (MI)

The Method Initialise function must be the first call that your program
makes to ISAM. Your program must specify the number of additional buffers
- beyond the minimum of two per file which are atuomatically assigned -
to be allocated to the program. Note that by specifying too many buffers
you will exceed the available user memory.

Your program must also specify the maximum number of index files that can
be kept open at one time. This value must be in the range 1 to 15 but
should be dept to a minimum to allow as much memory space as possible for
the buffers. Note, however, that the associated file numbers must not be
used by the BASIC program, otherwise unpredictable results may occur.

The following variables must be passed to 1SAM:

- 1SAM%(6) -~ number of additonal buffers
- 1SAM%(7) - number of open index files
- ISAMS(1) -~ function code (MI)

Thelfollowing variable is returned:
- ISAM%(8) -~ return code
Possible return codes are: 31.

To initialise 1SAM your program must, therefore, follow the sequence
indicated below: '

3-11.

STEP OPERATION

1 Specify the number of additonal buffers

2 Specify the maximum number of open files

3 Set the function code to '"MI"

4 Call the ISAM subroutine

5 Check the return code
Example

BASIC PROGRAM OPERATION
200 I1SAM%(6)=2 Statements 2@ to 24¢ set the
219 1SAM%(7)=2 maximum number of index files
229 ISAMS (1)="MI" jopen to be two, and assign
23¢ GOSUB 6pggd two additional buffers.
1F ISAM%(8)<>@ THEN GOTO 9¢¢ File numbers 1 and 2 must not

249

be used subsequently by the
BASIC program.

OPENING AND CLOSING ISAM FILES

FILE OPEN (00)

The File Open function opens a previously created index file. You need to
specify the index file name and a DCB number. All future operations on
the file will then only require the DCB number. If the file does not
exist, or if the specified DCB is already in use, then return code 71 is

issued.

The following variables must be passed to 1SAM:

- 1SAM%(1) - file DCB number

i3

- ISAM$(1) - function code (00)

- 1SAM$(4) - index file name

The following variables will be returned:

- 1SAM%(1) - file DCB number

- ISAM%(8) - return code

Possible return codes are: @@, 31, 41 and 71.

To open an index file using the File Open function your program must
therefore follow the sequence indicated below:

STEP § OPERATION

1 é Specifyﬂ£he DCB num;;;

2 | Set the function code to "00"

3 E’Specify the file name

4 g%Cali tﬁe ISAM’;ubfoutine -

£ :;Check the return code
Example
BASIC PROGRAM OPERATION

100 1SAM%(1)=2 Statements 10§ to 14@ open

11¢ ISAMS (1)="00" the index file named IFILE -

12¢ JISAMS$ (4)="TFILE" assuming it has already been
- 13¢ GOSUB 6¢@@g created - and assign DCB 2 to

149 1IF 1SAM%(8)<>@ THEN GOTO 60§ it.

CREATE FILE (0C)

The Create File function creates and opens an index file. You need to
specify the filename and the DCB number.

If a file of the specified name already exists the file will not be
created and return code 71 will be issued.

The file you are creating can be designated to contain only unique keys,
or alternatively you can make it possible to have duplicate keys. This
do by setting the ISAM$(6) variable either to '"D'" for duplicate or
for unique before invoking the ISAM subroutine. The default value is

you
) IGUII
llUl' R

The

1SAM%(1)

following variables must be passed to 15AM:

file DCB number

- ISAM$(1) ~ function code (0C)

- 1SAM$(4) - 1index file name

- 1ISAMS$(6) - duplicate/unique type (D or U)
The following variable will be returned:

- 1SAM%(8) - return code

Possible return codes are: @@, 31, 41, 71 and 81.

To create an index file using the Create File function your program must

therefore follow the sequence indicated below:

STEP OPERATION

1 Specify the DCB number

2 Set the function code to '"0OC"
3 Specify the file name

4 Call the 1SAM subroutine

5 Check the return code

 ISAM - USER GUIDE

Example

BASIC PROGRAM

OPERATION

190
1149
120
13¢
14¢
150

1SAM%(1)=4

1SAMS (1)="0C"

1SAMS (4)="1F1LE1"

1SAMS (6)="D"

GOSUB 6@80@g

1IF 1SAM%(8)<>@ THEN GOTO 6@¢

Statements 10@ to 158 create
and open an index file named
IFILET, specify duplicate
keys, and assign DCB 4 to the
file.

OPEN/CREATE FILE (OF)

The Open/Create File function opens an index file if it already exists,
or creates and opens it if it does not already exist.

If you are creating a file it can be designated to contain only unique
keys, or alternatively you can make it possible for the file to contain
duplicate keys. This you do by setting the 1SAM$(6) variable to 'D" for
duplicate or '"U" for unique keys. The default value is "U".

The following variables must be passed to I5AM:

- ISAM%(1) - file DCB number

- ISAM$(1) =~ function code (OF)

- 1SAM$(4) - index file name

- ISAMS$(6) -~ duplicate/unique type (D or U)

The following variable will be returned:

- 1SAM%(8) ~ return code

Possible return codes are: @@, 31, 41, 71 and 81.

To open or create a file using the Open/Create File function your program
must therefore follow the sequence indicated below:

STEP OPERATION

1 Specify the DCB number

2 Set the function code to ''OF"

3 Specify the file name

4 Call the 1SAM subroutine

5 Check the return code
Example

BASIC PPROGRAM OPERATION

199 ISAM%(1)=3 Statements 190 to 15@ create
114 ISAMS (1)="0F" and open an index file named
129 ISAMS (4)=""TFILE" IFILE which can contain
130 ISAMS (6)="U" unique keys only.

149 GOSUB 6@pgp@ Statement 1@ assigns DCB 3
15¢ IF ISAM%(8)<>@ THEN GOTO 6f¢d to it.

CLOSE FILE (CL)

The Close File function closes an open index file that uses the DCB of
the specified number.

If the DCB number specifed does not correspond to an open file, return
code 71 is issued. .

The following variables must be passed to ISAM:

- ISAM%(1) - file DCB number

- ISAM$(1) - function code (CL)

The following variable is returned:

~ ISAM%(8) -~ return code

Possible return codes are: g@, 31, 41 and 71.

To close an index file using the Close File function your program must
therefore follow the sequence indicated below:

STEP ~ OPERATION

1 Specify the DCB number

2 Set the function to *'CL"

3 Call the 1SAM subroutine

4 Check the return code
Example

BASIC PROGRAM ' OPERATION

209 TSAM% (1)=1 iStatements 2@ to 23¢ close
21¢ 1SAMS (1)="CL" 'lthe index file whose DCB
220 GOSUB 6¢8¢9 { i number is 1.

239 IF 1SAM%(8)<>@ THEN GOTO 6¢¢

RETRIEVING DATA FROM AN ISAM FILE

READ KEY (RK, SK)

The Read Key function searches for an exactly matching key in the index
and returns the associated record number or a return code of 51 if the
key does not exist. RK and SK are functionally identical.

When performing a Read Key function on a duplicate key the record number
should also be passed so that the key value and record number can be used
together to locate the matching key. 1f the record number is zero then
the Read Key function will return the record number associated with the
key value appearing first 1in the 1list of duplicates. Subsequent
duplicates can then be retrieved using the Read Next function.

The following variables must be passed to IS5AM:

file DCB number

1SAM%(1)

- 1SAM%(5) - data record number (duplicate keys only)
- ISAM$(1) - function code (RK or SK)
- ISAMS$(2) - key value |

The following variables will be returned:

- 1SAM%(8) - return code

- 1SAM%(9) - data record number Q
Possible return codes are: a2d, 31; 41, 51 and 71.

To retrieve a record from the data file using the Read Key function your
program should therefore follow the sequence indicated below:

STEP OPERATION

1 Open the data file using a BASIC OPEN statement

2 Partition the data file buffer into fields using a BASIC FIELD

statement

-3 Open the existing index structure using the Open File function

4 Specify the DCB number : (;;)
5 Set the function code to "RK'" or "SK"

6 Specify the key value

7 Specify the data record number (duplicate key type files only)

8 Call the 1SAM subroutine

9 Check the return code

19 Read the returned record using a BASIC GET statement

1 Close the data file using a BASIC CLOSE statement

12 Close the index file using the Close File function

Example

BASIC PROGRAM OPERATION
109 OPEN"R",15,""1:DATAFILE", 128 Statements 1§ and 114 open
the random data file on the
119 FI1ELD 15,128 AS AS . . .
disk mounted in drive 1 and
120 1SAM%(1)=1 L
partition the buffer.
139 LSAM3(1)="00" Statements 120 to 16@ open
148 1SAMS (4)=""INDEXFILE" . . P
the index file called
15¢ c0SuB 0pdp INDEXFILE and assign DCB 1 to
160 1IF 1SAM%(8)<>@ THEN GOTO 64@ it g
200 1SAM%(1)=1 Statements 2@ to 250 read
21¢ ISAMS (1)="RK" the data record whose key is
229 ISAMS (2)=""SMITH" SMITH.
225 1SAM%(5)=DATAREC% Statment 225 assumes a du-
239 GOSUB 60080 plicate key file. It reads
249 IF 1SAM%(8)<>@ THEN GOTO 5@¢ the data record number from a
250 GET 15,ISAM%(9) variable disk.
9¢d CLOSE 15 Statement 99 closes the data
910 ISAM%(1)=1 file.
92¢ ISAMS (1)=""CL" Statements 918 to 94@ close
93¢ GOSUB 60000 the index file.
944 IF 1SAM%(8)<>@ THEN GOTO 990

READ GENERIC (RG, SG)

The Read Generic function accesses the data record whose key is the same
or next greater than the requested key. This is useful when accessing the
first record in a related group of records or for establishing a starting
point for logical sequential retrieval. RG and SG are functionally
identical.

If a group of records is to be processed it is your responsibility to
check for the end of the group by checking for a change in the value of
the group indicator. ' :

1f duplicate keys exist in the index, you should also specify the record
number. The key value and record number are then used to locate the
specific key. If you specify a record number of zero then the Read Gener-

ic function will always return the record number corresponding to the
first occurrance of the key in the index, after which you can use the
Read Next function to retrieve subsequent duplicates.

1SAM returns the record number in ISAM%(9) and the data in the record can
therefore be retrieved using a BASIC GET statement. The key of the record
found 1s returned in ISAMS(2).

The following variables must be passed to 15AM:

- ISAM%(1) - file DCB number

- ISAM%(5) - data record number (duplicate keys only)
- ISAM$(1) - function code (RG or SG)

- 1SAMS$(2) - ggneric key value

The foliowing variables will be returned:

- 1SAM%(8) - return code
- 1SAM%(9) -~ data record number
- ISAM$(2) - value of the key found

Possible return codes are: @@, 31, 41 and 51.

To retrieve a record from the data file using the Read Generic function
your program must therefore follow the sequence indicated below:

STEP . OPERATION

1 Open the data file using a BASIC OPEN statement

2 Partition the data file buffer into fields using a BASIC FIELD
statement

3 Open the index file using the Open File function

4 Specify the DCB number

5 Set the function code to "RG'" or '"SG"

6 Specify the data record number (duplicate key type file only)

USING ISAM IN A BASIC PROGRAM

STEP OPERATION
7 Call the ISAM subroutine
8 Check the return code
9 Read the record using a BASIC GET statement
10 Close the data file using a BASIC CLOSE statement
11 Close the index file using the Close File function
Example
BAS1C PROGRAM OPERATION
100 OPEN'R",14,"DFILE",128 . Statements 199 and 119 open
110 !FIELD 14,128 AS § ;;the data file named DFILE and
120 I1SAM%(1)=4 .. partition the buffer.
13¢ ISAMS (1)="00" .| Statements 12¢ to 16@ open an
149 1SAMS (4)="TFILE1" index file called IFILE1 with
150 GOSUB 6@@0@g DCB number 4.
168 IF 1SAM%(8)<>@ THEN GOTO 7@¢
200 15AM%(1)=4 Statements 2@ to 258 perform
210 ISAMS (1)="'56G" a Read Generic function on
228 1SAMS (2)="100¢" the data file via the second-
225 1SAM%(5)=DATAREC% ary index file named IFILE.
239 GOSUB 6@¢gg Statement 225 is necessary
24¢ IF 1SAM%(8)<>@ THEN GOTO 5@¢ only if IFILE is a duplicate
259 GET 14,1SAM%(9) key type.
Statement 25 retrieves a
record whose key is equal to
or first greater and 1004.
The . retrieved key value is
located in 1SAMS(2).
9g@ CLOSE 14 Statement 998 closes the data
919 1SAM%(1)=4 file.
92¢ ISAMS (1)=""CL" Statements 91§ to 948 close
93¢ GOSUB 6@p@g the index file.
940 IF 1SAM%(8)<>@ THEN GOTO 994

READ NEXT (RN, SN)

The Read Next function reads the next sequential key in the file and
returns the key value and the corresponding data record number. RN and SN

are functionally identical.

The Read Next function allows records to be read in sequential key order.
The starting position can be established by a Read Key or Read Generic

function or, if the first ISAM function performed on a file is a Read
Next, the position defaults to the first record in the file. If the
previous read operation used the last key in the index, the Read Next
function will issue a '"not found" error - return code 51.

If duplicate keys exist in the index then the Read Next function will
return the record numbers associated with the key value in record number
sequence.

ISAM returns the record number in 1ISAM%(9) and the data in that record
can therefore be retrieved using a BASIC GET statement. The key of the
record is returned in 1SAMS$(2).

The following variables must be passed to ISAM:

- 1SAM%(1) - file DCB number

- ISAM$(1) - function code (RN or SN)

The following variables will be returned:

- 1SAM%(8) -~ return code
- ISAM%(9) - data record number
- ISAM$(2) - key value

Possible return codes are: @@, 31, 41, 51 and 71.

To retrieve a record from the data file using the Read Next function your
program should therefore follow the sequence indicated below:

STEP OPERATION

1 Open the data file using a BASIC OPEN statement

2 Partition the data file buffer into fields using a BASIC FIELD
statement

£
75

£
L/

~ USING ISAM IN A BASIC PROGRAM

STEP. OPERATION
3 Open the index file using the File Open function

4 Specify the DCB number

5 Set the function code to "RN" or ''SN”

6 Call the ISAM subroutine

7 Check the return code

8 Retrieve the record via a BASIC GET statement

9 Close the data file using a BASIC CLOSE statement

10 Close the index file using the Close File function
Example

BASIC PROGRAM OPERATION

108 OPEN"R',13,'"DFILE",128 Statements 1@@ and 118 open
1140 FIELD 13,128 AS A$ the data file named DF1LE and
120 1SAM%(1)=2 partition the buffer.

13¢ 1SAMS (1)="00" Statements 12¢ to 168 open
149 ISAMS (4)=""INDEXFILE" the index file named
150 GOSUB 6@@@@ INDEXFILE and assign DCB 2 to
160 IF 1SAM%(8)<<>@ THEN GOTO 6¢¢ it.

200 1SAM%(1)=2 Statements 2¢@ to 240 re-
219 ISAMS (1)=""RN" trieve the record whose key
220 GOSUB 6@g0¢ value is the next greater
23¢9 1F 1SAM%(8)<>@ THEN GOTO 789 than the previous key value.
249 "GET 13,15AM%(9) Statement 240 reads the data

. record into the file buffer.
. The retrieved key value is
returned in ISAM$(2).

3¢9 CLOSE 13 Statement 3@ closes the data
310 1SAM%(1)=2 file.

329 ISAMS(1)=""CL" Statements 318 to 34f close
330 GOSUB 6@@g@ the index file.

349

1IF ISAM%(8)<>@ THEN GOTO 8@@

READ PREVIOUS (RP, SP)
The Read Previous function is similar to the Read Next function exept
that it returns the previous sequential key value instead of the next. RP

and SP are functionally identical.

Return code 51 is issued if the previous read operation accessed the
first key in the file.

The following variables must be passed to 1SAM:
- ISAM%(1) - file DCB number
- ISAM$(1) - function code (RP or SP)

The following variables are returned:

- 1SAM%(8) - return code
- ISAM%(9) - data record number
- ISAMS(2) ~ key value

Possible return codes are: @@, 31, 41, 51 and 71.

To retrieve a record from the data file using the Read Previous function
your program should therefore follow the sequence indicated below:

STEP OPERATION

1 Open the data file using a BASIC OPEN statement

2 Partition the data file buffer into fields using a BASIC FIELD
statement

3 Open the index file using the File Open function

4 Specify the DCB number

5 ' Set the function code to '"RP'" or '"SP"

6 Call the ISAM subroutine

7 Check the return code

8 Retrieve the record via a BASIC GET statement

_USING ISAM IN A BASIC PROGRAM

STEP

OPERATION

9

| Close the data file using a BASIC CLOSE statement

19

Close the index file using the Close File function

Example

BASIC PROGRAM

OPERATION

199

110
128
13¢
148
150
160

O

209
218
220
23¢
244

489
419
429
43¢
449

OPEN"R",12,"EMPFILE",128
FIELD 12,128 AS AS

1SAM%(1)=1

1SAMS (1)="00"
1SAMS$(4)=""EMPIND"

GOSUB 6@@@g

1IF 1SAM%(8)<>@ THEN GOTO 8@@

1SAM%(1)=1

1SAMS (1)=""SP"

GOSUB 6@¢0¢

IF 1SAM%(8)<>@ THEN GOTO 9¢@
GET 12,1SAM%(9)

CLOSE 12

1SAM%(1)=1

ISAMS (1)="CL"

GOSUB 6@@a@

IF 1SAM%(8)<>@ THEN GOTO 950

Statements 1¢@ and 118 open
the data file named EMPFILE
and partition the buffer.
Statements 120 to 168 open
the index file named EMPIND
and assign DCB 1 to it.

Statements 20@ to 24@ perform
the Read Previous function,
i.e. the data record retriev-
ed has a key value which is
the next smaller than the
last key value.

Statement 4f@ closes the data
file.

Statements 41@ to 448 close
the index file.

WRITING DATA TO AN 1SAM FILE

00

WRITE ADD (WA, SA)

The Write Add function inserts a new key into the index file, assigns to

~that key the record number of the next available record and returns that

record number in 1SAM%

(9)

For a Write Add to a primary index (WA), your

program must then write the data record into the data file using a BASIC
PUT statement using the record number returned in ISAM%(9). Failure to do

so will result in an index structure that no longer corresponds to the

data file and as a result the index file will need rebuilding.

This function can be used to build new 1SAM file structures or add
records to existing structures. Keys can be added in any order - they
will be inserted automatically in the correct sequence.

When performing a Write Add function on a secondary index the function
code SA must be used. The function in this case is to assign a secondary
index key to an existing data record. Your program must therefore pass to
15AM both the new key value and the number of the record.

The following variables must be passed to ISAM:

I5AM%(1) file DCB number

ISAM%(5) -~ data record number (SA only)

ISAMS (1) function code (WA or SA)

1SAMS(2) key value

The following variables are returned:
- ISAM%(8) - return code
- 1SAM%(9) - data record number

Possible return codes are: @g@, 31, 41, 61 and 71.

Remarks

It is imperative that all files are closed before terminating a program
that uses the Write Add function. Failure to do so will cause permanent
damage to your files. This is because BASIC does not write the end of
file pointers until the files are closed.

To insert a new key into the primary index using the Write Add function,
and to then write the new corresponding data record, your program must
therefore follow the sequence indicated in the following table:

P
VY
2

N

STEP OPERATION

1 Open the data file using a BASIC OPEN statement

2 Partition the data file buffer into fields using a BASIC FIELD

statement
3 Open the index file using the File Open, Create File or
Open/Create File function, as appropriate

4 Specify the DCB number

5 Set the function code to "WA"

6 Specify the new key value

7 Call the ISAM subroutine

8 Check the return code

9 Write the data record with a BASIC PUT statement

10 Close the data file using a BASIC CLOSE statement

1 Close the index file using the close file function
Example

BASIC PROGRAM OPERATION

100 OPEN"R",15,"DFILE-B",128 Statements 1@6@ and 118 open
110 F1ELD 15,128 AS AS the data file named DFILE-B
120 1SAM%(1)=1 and partition the buffer.
13¢ 1SAMS (1)=""00" Statements 120 and 160 open
140 ISAMS (4)=""INDEX-B the index file named INDEX-B
150 GOSUB 6@¢¢@g and assign DCB 1 to it.

168

IF 1SAM%(8)<>@ THEN GOTO 949

BASIC PROGRAM

OPERATION

200
219
220
23¢
240
250

3¢9
319
320
339
340

1SAM%(1)=1

ISAMS (1)="WA"

1SAMS (2)=""JONES"

GOSUB 6@¢@g@

IF 1SAM%(8)<>@ THEN GOTO 958
PUT 15,1SAM%(9)

CLOSE 15
1SAM%(1)=1

ISAMS (1)="CL"

GOSUB 6099

IF ISAM%(8)<>@ THEN GOTO 19d¢

Statements 2@0@ to 250 write
the data held in the data
file buffer to the data
record whose key is JONES.

Statement 300 closes the data
file. Statements 318 to 34¢
close the index file.

To insert a new key value into the secondary index file using the Write
Add function your program should follow the sequence indicated below:

STEP OPERATION

1 Open the data file using a BASIC OPEN statement

2 Partition the data file buffer into fields using a BASIC FIELD
statement

3 Open the index file using the File Open, Create File, or
Open/Create File function, as appropriate

4 Specify the DCB number

5 Specify the record number

6 Set the function code to '"SA"

7 Specify the new key value

8 Call the ISAM subroutine

9 Check the error code

19 Close the data file using a‘BASIC CLOSE sta£ement

11 Close the index file using the Close File function

q:j;

O

USING ISAM IN A BASIC PROGRA

Example

BASIC PROGRAM OPERATION
190 OPEN''R",15,"DF1LE-B",128 Statements 1@@ and 11@ open
119 FIELD 15,128 AS AS the data file named DFILE-B
120 1SAM%(1)=2 and partition the buffer.
13¢ 1SAMS (1)=""00" Statements 128 to 16§ open
149 1SAMS (4)=""INDEX-BS" the secondary index file
158 GOSUB 6g@@@ . named INDEX-BS and assign DCB
160 IF 1SAM%(8)<>@ THEN GOTO 7¢¢ 2 to it.
200 ISAM%(1)=2 Statements 2¢@ to 25@ assign
210 1SAM% (5)=RECNO% a secondary key to a record,
229 ISAMS (1)=""5A" where both the key and the
230 ISAMS (2)=KEYS record are input from a
240 GOSUB 6@@@@ variable list.
250 1IF 15AM%(8)<>@ THEN GOTO 758
300 CLOSE 15 Statement 3@@ closes the data
314 1S5AM%(1)=2 file. Statements 318 to 34§
32¢ ISAMS(1)=""CL" close the index file.
338 GOSUB 6@@@¢
349 1F 1SAM%(8)<>@ THEN GOTO 8@#

DELETE FUNCTIONS

KEY DELETE (KD, SD)

The Key Delete function enables you to delete a key from an index file
but without deleting the associated record from the data file. KD and SD

are functionally identical.

This is useful in a situation where a data record might be needed at a
later time but access by key is no longer required.

This function physically removes a key from the index file thus making
that space immediately available for subsequent additions.

The following variables must be passed to 1SAM:

ISAM%(1) file DCB number

- ISAM%(5) - the data record number (duplicate key type file only)
- ISAM$(1) - function code (KD or SD)
- ISAM$(2) - key value for deletion

The following variables are returned:

~ ISAM%(8) - return code

- 1SAM%(9) - data record number

Possible return codes are: @@, 31, 41, 51 and 71.

To use this function to delete a key from an index file
should follow the sequence indicated in the following table:

your program

é%EPl MVOPERATION

1 ‘| Open the data file using a BASIC OPEN statement

2 Partition the data file buffer into fields using a BASIC #{ELE
statement

3 Open the index file using the file open command

4 Specify the DCB number

5 Set the function code to "KD" or 'SD"

6 Specify the key value to be deletgd

7 | Specify the data record number (duplicate key type file only)

8 Call the 1SAM subroutine

9 Check the return code

10 Close the data file using a BASIC CLOSE statement

11 Close the index file using the Close File function

USER GUIDE

L
£ B

Yol

~ USING ISAM IN A BASIC PROGRAM

Example
BASIC PROGRAM OPERATION

3¢ OPEN'R",15,"DATA-1",128 Statements 3@@ and 310§ open
310 FI1ELD 15,128 AS AS the data file named DATA-1
320 ISAM% (1) =1 and partition the buffer.
339 ISAMS(1)="00" Statements 320 to 36f open
349 ISAMS (4)="INDEX-1" the index file named INDEX-1
350 GOSUB 6@@g@ and assign DCB 1 to it.
360 1F 1SAM%(8)<>@ THEN GOTO 908

409 ISAM%(1)=1 Statements 408 to 44f delete
419 ISAMS(1)="KD" from the index file the key
420 1SAMS(2)="1234" whose value is 1234.
425 1SAM%(5)=DATAREC% Statement 425 1is only neces-
439 GOSUB 6@@p@ sary if INDEX-1 is a dupli-
440 1F 1SAM%(8)<>@ THEN GOTO 950 cate key type file.

:> 5¢9 CLOSE 15 11 Statement 50@ closes the data

510 ISAM%(1)=1 file. Statements 518 to 54§
520 ISAMS(1)=""CL" close the index file.
53¢ GOSUB 6p@@d
549 IF ISAM%(8)<>@ THEN GOTO 1¢¢@

DELETE RECORD (DR)

The Delete Record function deletes a record from a data file. It does
this by deleting the associated key from the index file then placing the
record number on top of the delete stack for later reclamaton by the
Write Add function.

The Delete Record function should only be used for primary keys. If a
secondary key exists to the deleted record, this must be removed using

the Key Delete or Secondary key Delete function.

It is generally good practice to flag a deleted record by setting a
delete code within the record. This indicates which records have been

deleted but not yet reused.

The following variables must be passed to ISAM:

ISAM%(1) -~ file DCB number

- 1SAM%(5) - data record number (duplicate key type file only)
- ISAM$(1) - function code (DR)
- ISAM$(2) - key value for deletion

The following variables are returned:

- 1SAM%(8) - return code

- 1SAM%(9) - data record number

Possible return codes are: @@, 31, 41, 51 and 71.

To delete a data record using the Delete Record function your program
should follow the sequence indicated below:

STEP Ei - OPERATION

”;”““”] Openbthe data file using a BASIC OPEN statement

"é VTPartltlon the data file buffer into fields using a BASIC FIELDA

| statement

3 Open the {na*ex *me u;ing"'{;;; File Open command ' '
4 Specify the DCB number - -

5 Set the function code to "DR"“ *

6 Specify the key value

7 Specity the record number (dupiiéate key type file’;ﬁly)

8 Call the ISAM subroutine

9 Check the return code

19 Close the data file using a BASIC CLOSE function

11 Close the index file using the Close File function

ISAM - USER GUIDE

USING ISAM IN A BASIC PROGRAM

Example
BAS1C PROGRAM OPERATION

106 OPEN"R",12,"RECFILE",128 Statements 10@ and 118 open
110 FIELD 12,128 AS A$ the data file named RECFILE
120 1SAM%(1)=3 and partition the buffer.
13¢ ISAMS (1)="00" Statements 120 to 168 open
148 1SAMS$(4)=""1FILE-B" the index file named 1FILE-B
150 GOSUB 6¢@p@ and assign DCB 3 to it.
160 IF 1SAM%(8)<>@ THEN GOTO 68§
209 | 1SAM%(1)=3 Statements 200 to 24@ delete
218 | | ISAMS$ (1)="DR" from the data file the record
229 | ISAMS (2)=""SMITH" whose key is SMITH.
225 1SAM%(5)=DATAREC% Statement 225 reads the data
239 . |GOSUB 6¢00@ record number from a variable
24¢ . 1IF 1SAM%(8)<>@ THEN GOTO 65@ list - it is only necessary

! if IFILE-B is a duplicate key

(type.
309 i‘CLOSE 12 Statement 3@@ closes the data
319 - ISAM%(1)=3 file. Statements 318 to 34¢
320 [1SAMS (1)="CL" close the index file.
339 | GOSUB 6@p@p
34 | IF 1SAM%(8)<>@ THEN GOTO 80p

//‘ .
RN

APPENDICES

ABOUT THESE APPENDICES

This list of Appendices comprises an "ISAM Tutorial Program" in Appendix
A; this program is meant as an instructive excercise for programmers
using ISAM for the first time. The ISAM Dump Utility is described in
Appendix B; this utility allows the user a closer examination of ISAM
files. Appendices C, D and E are lists of ISAM variables, Function Codes
and Return Codes respectively.

CONTENTS

A. ISAM TUTORIAL PROGRAM A-1
B. ISAM FILE DUMP UTILITY B-1
C. ISAM VARIABLES C-1

VARIABLES PASSED TO ISAM C-1

VARIABLES RETURNED FROM C-2

ISAM
D. FUNCTION CODES D-1
E. RETURN CODES E-1

A. 1SAM TUTORIAL PROGRAM

This program is designed to teach the concepts of 1SAM.
Before using the program you must load your system disk containing the
1SAM program files, enter the BASIC Interpreter using the BA command and

have a ready-formated disk in one of the drives to contain your trial
ISAM files.

Invoke the tutorial program by typing:
~ run'isamx.bas"

The program then asks you to enter the name of the data file and the data
record length:

Enter data file name: 1:dfile
Enter data record length: 128

The program then generates a menu which lists the selectable functions.
This menu is shown in Figure A-1.

FUNCTION CODE SELECTIONS

RK, SK - Read Key 00 - Open Existing File

RG, SG - Read Generic 0C - Create New File

RN, SN - Read Next OF - Create and/or Open File
RP, RN - Reaa Previous CL - Close File

WA, SA - Write Add

DR - Delete Record
KD, SD - Key Delete X - Examine variables
M1 - Method Initialise

MS - Method Status

Figure A-1 Function Code Selection Menu

You may now try out the functions listed in Figure A-1 but remember that
the first function you use must be a Method Initialise (MI) function.

You may find it useful to get used to the program by trying out the
example given below before experimenting with your own ideas.

Note that file number 1 1is reserved for the data file. The first
available DCB number is, therefore, 2.

DISPLAY DESCRIPTION
Enter desired function code or 'end': mi You will subsequently be al-
v lowed a maximum of two index
M1 - Method Initialise files open at one time. This
must be the first function
Enter maximum number of files open: 2 : performed otherwise an error
code 31 (invalid function

Enter number of additional buffers: 2 order) will occur.

ISAM Initialised

Enter desired function code or 'end': oc IThis section creates and
iopens -the index file IFILE1
0C - Create New File ion drive 1, assigns DCB 2 to
it and specifies the file as
Enter Index File Name: 1:ifilel being a unique type.

Enter DCB number: 2
Enter Duplicate/Unique type (D/U): u

Create Function successful

Enter desired function code or ‘end': wa This section attempts to in-
sert key value ‘abc' into

WA - Write Add the data file assigned DCB 3
: and to write text '123' into

Enter DCB number: 2 the corresponding data re-
cord. It fails, however,

Enter key value: abc because DCB 3 has not been

assigned to an index file.
Enter data record text: 123

Error 15AM%(8)=71 Open/Close

Error

APPENDICES

WA - Write Add
Enter DCB number: 2

Enter key value: @@

Enter data record text:

Data Record number = 3

ghi

DISPLAY DESCRIPTION
_ Enter desired function code or ‘end': wa This section successfully
; inserts key value 'abc' into
WA - Write Add data file IFILE1, sets up a
pointer to the index record
Enter DCB number: 2 and inserts text '123' in
that record.
Enter key value: abc
Enter data record text: 123
Data Record Number = 1
Enter desired function code or 'end': wa This section inserts key
‘def' into the 1index file
WA - Write Add and writes '567' into the
corresponding data file rec-
Enter DCB number: 2 ord.
Enter key value: def
Enter data record text: 567
Data Record Number = 2
Enter desired function code or 'end': wa This section performs an-

other Write Add operation.

DISPLAY | DESCRIPTION

Enter desired function code or 'end': rk This section performs a Read
Key function on key value

RK - Read Key ‘def' and retrieves data
567.

Enter DCB number: 2
Enter key value: def

Data Record Number = 2

Key = def
567
Enter desired function code or 'end': rg This section performs ia Read
" Generic function on key value
RG - Read Generic 1. The first key greaﬁer than
~or equal to this 1is K "abc"
Enter DCB number: 2 hence its corresponding data
: record is retrieved and has a
Enter key value: 1 value of "123".
Data Record Number = 1
Key = abc
123 i
Enter desired function code or 'end': rn ; This section reads the next
sequential key value, 1i.e.
RN - Read Next the next key greater B than

"abe' in this case ''def'.
Enter DCB number: 2

Data Record Number = 2
Key = def

567

 u§ER§GU1nEg,$¢

QU

APPENDICES

DISPLAY

DESCRIPTION

Enter desired function code or ‘end':

RP‘- Read Previous
Enter DCB number: 2
Data Record Number = 1
Key = abc

123

rp

This section reads the data
record corresponding to the
previous key value, i.e. it
reads key value '"abc".

Enter desired function code or ‘'end':

0C - Create New File

Enter Index File Name: ifile2

Enter DCB number: 3

Enter Duplicate/Unique type (D/U): d

Create function successful

ocC

This section opens and cre-
ates secondary index file
IFILE2 and assigns DCB 3 to
it. Furthermore, it is defin-

'led to be a duplicate type.

Enter desired function code or ‘'end': sa This section performs a Sec-
ondary Write function via

SA - Write Add index file IFILEZ2.

Enter DCB number: 3

Enter key value: 125

Enter data record number: 18

Enter desired function code or ‘'end': sa This performs another Second-

SA - Write Add
Enter DCB number: 3
Enter key value: 125

Enter data record number: 1

ary Write function.

DESCRIPTION

DISPLAY
Enter desired function code or 'end': ms ;;This section performs a Meth-
; od Status function on IFILEZ2
MS - Method Status to determine how many records
{are active in the file, the
Enter DCB number: 3 number of unused deleted re-
cords and whether the file is
Total Records Active = 9 |ja duplicate or unique type.
Unused deleted records = 1§
Duplicate/Unique flag = D
Enter desired function code or 'end': ms "This section does the same
for IFILET.
MS - Method Status
Enter DCB number: 2
Total Records Active = 3
Unused Deleted Records = §
Duplicate/Unique Flag = U
Enter desired function code or 'end': cl This section closes IFILET.
Enter DCB number: 2
DCB number 2 Closed
Enter desired function code or 'end': cl This section closes 1FILEZ.
Enter DCB number: 3
DCB Number 3 Closed '
Enter desired function code or ‘end': end

ISAMX - complete

Ok

Now try some ideas of your own.

APPENDICES

B. ISAM FILE DUMP UTILITY

The 1SAM File Dump utility enables you to examine your ISAM files and
thereby ensure your programs are working correctly.

Before using the program you must load your system disk containing the
ISAM program files into memory, enter the BASIC Interpreter using the BA
command and have in one of the drives the disk containing the files you
are interested in.

Invoke the program by typing:
- run''isamd.bas"

The program gives you the option of console and/or line printer output
then asks you to name your data and index files. It subsequently asks you
if you wish to examine the index file. An affirmative reply will cause
the program to display the header record (record @) of the index file and
ask you if you wish to examine more records. If so, you will be asked for
the record number.

Once you tell the program that you no longer wish to examine any more
index records, it will then ask you if you would like to look at the data
file. If so, each record will be displayed in terms of record number, key
number and record contents.

Example

On executing the file dump utility a display such as that shown in Figure
B-1 appears on the screen. In this case the console has been chosen to be
the output medium. The index and data files selected are 1:1FILEA and
1:DFILEA, respectively, and the data record length defined as 128 bytes.

ISAM File Dump Utility
(c) Copyright 1982, OLIVETTIL

How do you wish the output to be displayed?
1. At the console.
2. At the printer.

3. Both.

Enter desired selection: 1
Enter index file name: 1:ifilea
Enter data file name: 1:dfilea
Enter data record length: 128
Print index file? (Y/N): y
Figure B-1 Sample Display of File Dump
The response to the last prompt in Figure B-1 requests that the index

file be displayed. The program responds by displaying record §§ of the
index file - the header record which is illustrated in Figure B-2.

R O P B 7 2 L . T LA BT A

INDEX FILE 1:ifilea |
RECORD ¢

HEADER CONTROL BLOCK ‘

Length of file name
Last key pointer

DCB use count 8
g

Next record pointer 22
1
)
g

{ First key pointer
Next node pointer
Delete stack pointer
Duplicate flag
Number of levels

Root node pointer
Delete stack offset
Unused deleted records

veEe® W -

, Doryou wish to look at more records? (Y/N): y

Enter record number: 1

Figure B-2 File Dump of Header Control Block (record @)

This display provides information about the index file. The responses
given to the last two prompts then select record 1 for display - the root
node record. This is shown in Figure B-3.

INDEX FILE 1:ifilea
RECORD 1

INDEX NODE
Index level 2 Key count 4
Pg pointer @
REC KEY LENGTH NODE POINTER KEY VALUE
4 12 3 444567834523
7 14 4 789432348765aa
19 12 6 rem453976567
15 16 5 u444567834523-aa
Do you wish to look at more records? (Y/N): y
Enter record number: 4

Figure B-3 Sample File Dump of Index Node Record

The display lists the keys contained in the record along with the
corresponding data record number (displayed for duplicate files only),
the key length, and the pointer to the next lower node. In this case node
4 is selected for display and is illustrated in Figure B-4. It is a leaf
node containing four keys.

INDEX FILE 1:ifilea

LEAF NODE

Index level 1 Number of keys 4

Forward pointer 6 Reverse pointer 3

REC KEY LENGTH KEY VALUE -

7 14 789432348765aa

8 14 889432348765ab

9 12 995676543765

20 20 q567483456823branchb ‘ £
Do you wish to look at more records? (Y/N): n |

Print data file? (Y/N): y

Figure B-4 Sample File Dump of a Leaf Node Record

The responses given to the last two prompts given in Figure B-4 select
the data file for display. This is illustrated in Figure B-5.

DATA FILE 1:dfilea

Data record number 1
000

Data record number 2
000000000000001177111111111111111111111111

Figure B-5 Sample file dump of the data file.

C. 1SAM VARIABLES

VARIABLES PASSED TO 1ISAM

VARIABLE DESCRIPTION
1SAM%(1) File DCB number
1SAM%(2) Unused
15AM%(3) Unused
1SAM%(4) Unused
1SAM%(5) Data record number
15AM%(6) Number of additional file buffers
1SAM%(7) Maximum number of open index files
1SAM%(8) Unused
1SAM%(9) Unused
1SAMS(1) Function code
1SAMS(2) Key value
1SAMS(3) Unused
1SAMS (4) Index file name
ISAMS(5) Unused
ISAMS (6) Duplicate/Unique flag
1SAMS(7) Unused
1SAMS(8) Unused
1SAMS(9) Unused

VARIABLES RETURNED FROM 1SAM

VARIABLE DESCRIPTION
1SAM%(1) File DCB number
1SAM%(2) Unused
1SAM%(3) Unused
1SAM%(4) Unused
1SAM%(5) Unused
1SAM%(6) Total number of records active
1SAM%(7) Number of unused deleted records
15AM%(8) ‘Return code
1SAM%(9) Data record number
1SAMS (1) Unused
1SAMS(2) éKey value
1SAMS(3) ;EUnused
1SAMS (4) EUnused
1SAMS(5) Unused
1SAMS (6) Duplicate/Unique flag
I1SAMS(7) Unused
ISAMS(B) Unused
1SAMS(9) Unused

D. FUNCTION CODES

APPENDICES

FUNCTION CODE DESCRIPTION
00 Open File
oc Create File
OF Open/Create File
CL Close File
RK Read Key
RG Read Generic
RN Read Next
RP Read Previous
SK Secondary Index Read
SG i Secondary Index Read Generic
SN Secondary Index Read Next
SP Secondary Index Read Previous
WA Write Add
SA Secondary Index Write Add
DR Delete Record
KD Key Delete
SD Secondary Index Key Delete
M1 Method Initialise
MS Method Status

.

A

N

elb) Cegelor tydedAdiely WY feil

etere el fev Féziby

