' 28000 CPU

POSTBUS 63 - 2700 AB ZOETERMEER .
‘ telefoon 079 - 310100 telex 33332 Programmers Guide

Ya

Zilog Application Note

}

|
|

sl ol wll ol 8 1

MNRM
0)))

Gl medl

Z8000 CPU PROGRAMMER'S GUIDE

The purpose of this application note is to demonstrate haw the features of the
Z8000 CPU can be used to solve typical software problems. The first half
focuses on specific programming techniques. In the second half, fully
worked-out programs are presented for several important or illustrative
problems.

PART I

PROGRAMMING TECHNIQUES

1.1 INTRODUCTION

A goal of programming is to allow computer users to deal with the high-level
operations of their applications and to escape from the details of machine
design and behavior. Many programming techniques have been designed with this
goal in mind. This section introduces some widely used programming techniques

and shows how they are implemented using the 78000 architecture and instruc-
tion set.

1.2 DATA TYPES

All computer applications are based upon the interpretation of collections of
bits--as numbers, text, logical flags and so forth. The term data type refers
to a bit collection of specified size and interpretation.

Every computer provides direct support for some data types, and the programmer
provides programs to support the manipulation of other desired data types. The
78000 architecture provides direct support for several frequently used data
types and the instructions for performing the operations associated with them.,
These are described below,

Bits, A two-valued logical flag 1s the simplest useful interpretation of a
bit collection, and its natural size is one bit. Unlike many earliec com-
puters, the Z8000 has 1instructions that allow any bit in memory ar in any
general-purpose register to be set, tested or cleared. Thus, any bit can be
used as a logical flag, and flags can be packed into words or bytes without
undue increase in processing overhead. An important application of this idea
15 a bit table, an array of 1-bit logical flags stored in consecutive bits of
consecutive bytes of memory.

Digits. An important bit collection is a number, and an important special
case of numbers is a decimal or hexadecimal digit. These are most conven-
iently represented by collections of four bits (occasionally referred to as
nibbles). The Z8000 supports digits with the RRDB, RLDB, and DAB instruc-
tions, and the D and H bits in the Flags register.

611-1790-0006 1-1 6/1/81

Bytes. A collection of eight bits called a byte. Almost all 78000
instructions that take arguments have byte versions. (The Push, Pop, Mul-
tiply, and Divide 1instructions are the only important exceptions.) The two
principal interpretations of bytes are as signed whole numbers and as codes
for text characters. These interpretations are not enforced by the hardware,
but some 78000 features are designed with one or the other interpretation in
mind. For example, the Translate and Test instruction and the P (parity) bit
in the Flags register support the text data type, while the arithmetic
instructions support signed whole numbers. The Z8000 has 16 byte registers.

Words. A collection of 16 bits is called a word. Almost all arqument-taking
instructions have word versions. (The Block Translate and Test instructions
and the decimal arithmetic support instructions are the only exceptions.) The
principal interpretations of words are as signed and unsigned whole numbers,
Z8000 1instructions, index values, and nonsegmented addresses. The Z8000
provides 16 word registers,

Long Words. A collection of 32 bits is called a long word. The principal
interpretations of long words are as segmented addresses and as signed and
unsigned whole numbers. The 78000 provides long-word versions of its Load,
Push, and Pop instructions and supports 32-bit signed whole numbers with long-
word versions of its four main arithmetic operations, add, subtract, multiply
and divide. The 78000 provides eight long-word reaisters.

Quadruple Words. The Long Multiply and Long Divide instructions involve the
use of 64-bit signed whole numbers. Four quadruple-word registers are pro-
vided for this purpose.

In addition to these data types, several other collections of bits are manipu-
lated by certain Z8D00 instructions.

Addresses. The LDA and LDAR 1nstructions generate and save addresses.
Addresses are words or long words, depending upon the segmentation mode of the
CPU at the time of execution.

Register Sets. The LDM instruction manipulates register sets during the move-
ment of information between general-purpose registers and memory. A register
set consists of from 1 to 16 words stored in contiguous memory laocations or in
consecutive word registers.

Data blocks. The 78000 block instructions manipulate data blocks, which can
be from 1 to 65,536 words or bytes stored in contiquous memory locations. An
important special case of a data block 1s a text string.

As subsequent examples illustrate, this large selection of data types offers

Z8000 programmers simple approaches to solving a wide variety of programming
problems,

1.3 ADDRESSING MODES

The ZBOOD addressing modes were chosen and designed with the programmer's
needs 1n mind. Here is a brief summary of the ideas behind these modes,

611-1790-0006 1-2 6/1/81

Direct Addressing. With direct addressing, the actual memory address of the
argument is contained in the instruction. This is especially useful in
programs assembled by hand and in "patches."

Register Addressing. This addressing mode allows fast access to intermediate
results. Almost all two-operand instructions require the use of register
addressing for one of the operands.

Immediate Addressing. Immediate addressing is similar to direct addressing,
but the actual value of the argument rather than its address is contained in
the instruction. Immediate addressing can only be used for source arguments.

Indirect Register Addressing. In this mode the address of the argument is in
an address register (a word or long-word register, depending upon the segmen-
tation mode). Its variants, the Autoincrement and Autodecrement modes,
are used with the Push and Pop instructions to implement stacks, and with the
block instructions to effect operations on sets of contiguous words ar bytes
in memory. Indirect register addressing is used when addresses are passed as
arguments to subroutines and to implement more elaborate access techniques,
such as linked lists. Following is a simple example of 1ts use--a loop to
read successive bytes of memory until a zero terminator is found and to
replace each byte with a modified value:

LDA RR2,X !RR2 = address of text array!
LOOP: LDB RHO,8RR2 'Fetch next character!
TESTB RHO
JR Z,ENDLP 'Done when NUL reached!
!(Modify the character)!
LDB @RRZ,RHO 'Replace character by modified character!
INC R3 'Point at next character!
JR LOOP

ENDLP: , . .

In this example, RR2 is used as an address register to point at (that 1s, contain

the address of) successive bytes of a text string. Notice that the instruc-
tion

INC R3
is used to point to the mext byte. This takes advantage of the way segmented
addresses are stored in registers but assumes that the text string does not
extend outside of the memory segment. A later example deals with arrays that
extend beyond one segment.
Notice also that the instruction

LDA RR2,X

is used to set the contents of the address register RR2. An alternative
instruct{on is

LDL RR2,#X

but it should be avoided, because it needlessly ties the code to a specific
segmentation mode.

611-1790-0006 1-3 6/1/81

Indexed addressing. In the Indexed Addressing mode, a fixed address is stored
in the 1instruction and a displacesent is stored in a register. This is

required when an array 1s being processed using a varying index. For example,
consider the following FORTRAN instructions: .

DO 13 I=N1,N2
13 TABLE(I) = TABLE(I)+1l

This can be implemented using indexed addressing as shown 1in Figure 1-1,

'Assume that the registers have been set:
RO contains N2
R1 contains N1 (R1 will be I)

LD R3,R1 'Use R3 for actual offset!
SLA R3 'Assume two-byte entries!
LOOP: CP R1,RO 'Is T > N2 yet?!
JR GT,DONE 'Done if so!
LD R2,TABLE-2(R3) 'TABLE(I) - FORTRAN arrays start at 1!
ADD R2,R1 'TABLE(1)+1I!
LD TABLE-2(R3),R2 'Replace original TABLE(I) value!
INC R1 'Increment 1!
INC R3,#2
JR LOOP
DONE : . e
Figure 1-1

Two-dimensional arrays can be handled easily by a program that computes the
offset associated with an index pair. Far example, suppose that the M x N
array of bytes TABLE 1s stored consecutively in memory as follows:

TABLE(1,1), TABLE(2,1),...,TABLE (M,1), TABLE(1,2),...

Each column 1s a one-dimensional array, and these one-dimensional arrays are
stored end to end 1n contiguous bytes of memory. (This format is standard in
FORTRAN.) A two-dimensional array can be viewed as a one-dimensional array of
dimension MN, and the element TABLE(I,J) of the two-dimensional array is the
element TABLE([J-1]*M+I) in the one-dimensional array. If R1 contains I-1, R2

contains J-1, and R3 contains M, then the following code loads TABLE(I,J) into
RHO:

LD R5,R2 IRR4 = (xxx,3-1)!
MULT RR&4,R3 'RR4 = (0,[3-1]*M)!
ADD R5,R1 RS = [J-1]*Me[I-1]1

LDB RHO, TABLE(RS)

611-1790-0006 1-4 6/1/81

This code assumes that MN < 65,536. If this is not true, then indexed ad-
dressing cannot be used directly and the assumption that the columns of TABLE
are stored end to end cannot be made. Instead, J is used as an index to a
table of memory addresses (called a "dope vector"), and each of these ad-
dresses is the start of the corresponding column. If R1 contains I-1, R2
contains J-1 and the table of column base addresses is at an address contained
in RR4, then the following code loads TABLE (I,J) into RHO:

LD R3,R2
SLA R3,{2 1IR3 = 4*%(J-1)!
LDL RRé&,RR4(R3) 'RR6 = address of Jth column!

LDB RHO,RR6(R1)

This code uses base-indexed addressing (see below). It is so efficient that
it can be used even when MN £ 65,536.

For nonsegmented operation, indexed addressing can be used to simulate based
addressing (see below), since addresses and offsets are both 16 bits. For
example,

ADD RO,8(R15)
adds the fifth word of the stack to RO. (NOTE: If separate data and stack
spaces are used, this technique does not work. When R15 is used in the

indexed addressing mode, the status outputs ST3-STg reflect data reference,
not stack reference.)

In segmented mode, the same technique can be used if the segment number is
known when the program is assembled. For example, if the stack has been
assigned to segment 12 (that is, R14 contains 0C00), then

ADD R0,<<12>>8(R15)
adds the fifth word on the stack to RO.

Use of indexed addressing to simulate based addressing is helpful because
based addressing is available only with the Load instruction.

Based Addressing. Based addressing specifies the address of an argument as

the sum of a displacement contained in the instruction and a base address
contained in an address register. For example,

LD RO,RR14(#8)
can be used in segmented mode to access the fifth word of the stack.

The Based Addressing mode is the key to a subroutine argument-passing conven-
tion that uses a stack (see Section 1.17).

Based addressing is useful in accessing items in records or more general data
structures of predefined format, especially when the address of the record in
memory is not known in advance. For example, if a number of 80-character

611-1790-0006 1-9 6/1/81

records have been read into memory end to end starting at a location specified
in RRZ, then the code shown in Figure 1-2 steps through the records until one
is Found in which the seventy-third character is equal to 41H.

LOOP: LDB RHO,RR2(#72) 'Get 73rd character!
CPB RHO,#%41 !Compare with %41!
JR EQ,ENDLP 'Done 1f equal!
ADD R3,#80 '0therwise, point at next record!
JR LOOP
ENDLP: . . .
Figure 1-2

Base Indexed Addressing. Base indexed addressing takes both the base address
and the displacement from registers. One example of it was shown above in the

code to handle large two-dimensional arrays. Other examples are shown in Part
2.

Base indexed addressing is also useful in a generalization of the record or
data structure example given in figure 1-2. For example, if the termination
condition were the presence of 41H in any of positions 73 through 80, the code
of Figure 1-2 would appear as shown in Figure 1-3.

LOOP: LD R4,#72 'Set to 73rd position!
LOOP1: LDB RHO,RR2(R4) 'Get R4th character!
CPB RHO,#%41 'Compare with %41
JR EQ,ENDLP 'Done if equal!
INC R4 '0therwise, give R4 next index!
CP R4,#80 'Compare position with last!
JR LT,L00P1 'If not past last, try next position!
ADD R3,#80 'Otherwise, point at next record!
JR LOOP
ENDLP: .
Figure 1-3

Relative Addressing. This is a variant of based addressing in which the base
register 1s always the Program Counter. It helps the programmer produce
position-independent code (see Section 1.6), and it leads to more compact code
in many cases. Also, if separate data and instruction memories are used, the
LDR instruction 1s the only way to refer to a constant that is assembled as
part of the program (except immediate data in instructions).

Further examples using the 78000 addressing modes are given in the following
sections,

611-1790-0006 1-6 6/1/81

1.4 STACKS

A stack is a last-in, first-out (LIFO) buffer of finite but unspecified size.
It is like a stack of plates on a table in a room: plates can only be added
to or removed from the top and while there is no preset maximum number of
plates, the room does have a ceiling. Sometimes the metaphor used is a stack
of plates on a spring in a well (as at a steam table); this accounts for the
names PUSH and POP used for the operations of adding or removing items, but in

the usual computer implementations the items stay fixed like plates on a
table.

In the Z8000, stacks are implemented as arrays of declared fixed sizes, but an
external memory-mapping facility allows stacks to be open ended, with addi-
tional memory allocations made as needed. The Push and Pop instructions are
designed to work with stacks that grow downward; that is, the first i1tem on
the stack occupies the highest-numbered memory location. Programs, on the
other hand, grow upward; that is, as each instruction is added to the program
or as program modules are linked together, higher and higher-numbered
addresses are used. This provides an efficient way for a program and a stack
to share a given block of memory. The program can begin at the lowest-num-
bered address' and grow upward as developments increase its sizej the stack can
begin at the highest-numbered location and grow downward as the program is
executed. This is the most flexible and efficient use of the space. If there
is room for both the program and the stack in memory, then memory is auto-
matically allocated successfully.

A stack in the 78000 uses an address reqister to keep track of the location of
the top item (the lowest-numbered item). The stack register always contains
the address of the top item because of the way PUSH and POP work. PUSH first
decrements the stack register by 2 or 4, causing it to point at the next free-
word or long-word location and then stores its argument at that location. POP
first fetches the item pointed to by the stack register, then increments the
stack register,

Reference to items on a stack can be made using the Based or Base Indexed
Addressing mode. For example, if RR4 is a stack register, then RR4(#0),
RR4(#2), and RR4(#4) refer to the top, second, and third words on the stack,
respectively. Also, as previously explained, indexed addressing can be used to
refer to stack items when the stack's segment number is known at assembly
time, Reference to stack items is illustrated in the Section 1.7, Sub-
routines.

The most common use of stacks is for dynamic allocation of temporary storage
space. The two pieces of code in Figure 1-4 show how a program can accumu-

late words for future processing. The first uses fixed temporary storage; the
second uses a stack,

611-1790-0006 1-7 6/1/81

'Accumulating words in a fixed buffer!

CLR R4 'Word counter!
LDA RR2, BUF 'RR2 always points at next free location!
LP: CALL GETWD 'Get next word!
JR C,DONE '1f C set, no more to get!
LD @RRZ,R0O !Store word, increment pointer!
INC R3,#2
INC R4 'Count the word!
JR LP
DONE : e

!Accumulating words on a stack!

CLR R4 'Word counter!
LP: CALL GETWD 'Get next word!
JR C,DONE '1f C set, no more to get!
PUSH @RR2,R0 !Store word, increment pointer!
INC R4 'Count the word!
JR LP

DONE : .« e

Figure 1-4

In the first piece of code, a buffer called BUF is allocated to the program at
assembly time. Each time this code is executed, words are stored in this
buffer, starting at the beginning of the buffer., The second piece of code has
no storage of its own; every time it is executed it stores words on the stack
controlled by RR2,” It is assumed that the system initializes this stack
before the process including this code begins running.

Using a stack in this way has several advantages:

® The total amount of space needed by the stack is usually less than the
amount required by fixed allocation.

® Storage mangement is separate from the implementation of the function. This
tends to simplify the implementation of functions.

e Program functions can be encoded in ROM more easily and management of RAM
can be localized,

e It is easier to make program functions shareable (see below); in the pre-
ceding example, several different sets of words might have been accumulated
in different parts of the stack by different calls on the code. This would
not be possible with the fixed-buffer accumulation,

611-1790-0006 1-8 6/1/81

There are also some disadvantages to using stacks in this way. In general,
programs that use a stack must leave it exactly as they found it; every item
pushed onto the stack must be popped off before completion of the program.
This is because the same stack used by the program that calls the given

program is also used by programs called by the given program. For example,
consider the follaowing code:

PUSH @RR4,RO
CALL SUBR
POP RO,8RR4

This is a common means of saving a value, in this case RO, that would other-
wise be destroyed by the intermediate operation, in this case CALL SUBR. But
this procedure fails if the SUBR routine does not leave the stack controlled
by RR4 exactly as it was found.

The requirement that each program requlate its stack use can make checkout
difficult, since a subroutine's failure in stack management can lead to
anomalies in the behavior of the calling program. The symptom and cause can
be in seemingly unrelated portions of the program. Also, there is a dedicated
stack register used for subroutine calling; failure in its management can

cause symptoms that are difficult to recognize and usually interferes with the
standard checkout procedures.

Dynamic allocation of temporary storage leads to another checkout problem: it
is difficult to examine memory after the fact to look for the causes of
anomalous behavior. A desired piece of information may have been overwritten,
and it is difficult to determine where a given program stored its intermediate
or temporary data,

In general, stack use is not as flexible as the use of dedicated storage. For
example, in the preceding code, once the words are accumulated in BUF, they
are processed any way the programmer desires. Indexed addressing of the form

ADD R1,BUF (R2)
makes the fixed buffer a random access memory. With a stack, on the other
hand, only the top item is easily available. Other items can be accessed

using based or base indexed addressing of the form

LD R1,RR6(#2)
LD R2,RR6(R3)

If the stack segment number is knaown when the program is assembled, the In-
dexed Addressing mode can be used, as in the preceding ADD example. Ffor
example:

ADD R1, <<seq no>>2(R7)

adds the'next-to~last word received to R1.

The stack addressing methods described allow items in memory to be examined
without giving up their places (as happens with POP), but the offsets (#2 or

611-1790-0006 1-9 6/1/81

R3 in the above lines) are measured from the top of the stack, that is, from
the last item placed there. To process the items in a first-in, first-out
(FIFD) order requires a complicated computation that can lead to errors. For
example, referring to the sample code of Figure 1-4 for accumulating words on
a stack, Figure 1-5 shows the code at DONE that allows the words to be
examined in the order received.

DONE ¢ SLA R4 IMultiply by # bytes/word!
JR Z,FINIS 'No words to examine!
GETNXT: DEC R4,#2 !Convert count to offset!

LD RO,RR2(R4) 'Fetch the word from the RR2 stack!

!(Process the word)!

TEST R4 'R4 contains #f of bytes remaining!
JR NZ,GETNXT

FINIS: N

Figure 1-5

Stack initialization is straightforward. The stack register must be set to
the address one word above (that is, at a higher-numbered address than) the
first word to be used by the stack. This works regardless of whether words or
long words are used. (In fact, there is no problem with mixing words and long
words on a stack, as long as any item pushed with a PUSHL instruction is
popped with a POPL instruction.) So, for example, if a stack wuses locations
FODO-FFFF of segment 6, the first word used by the stack is at location FFFE.
The stack reqister should be initialized to segment 6, offset zera.

Boundary protection has two aspects: overflow and underflow. Overflow occurs
when all locations assigned to a stack have been filled and another push 1is
attempted. Underflow results from an attempt to pop items from an empty
stack. The Push and Pop instructions provide no direct support for boundary
protection. This is achieved in software by using push and pop subroutines
that check for overflow or underflow before pushing or popping. An external
memory management facility can also help detect stack overflow.

The preceding discussion applies to all stacks in the Z8000. The ZB0OOO auto-
matically uses stacks for subroutine calling and for saving CPU status on
traps and interrupts, and for these purposes an implicit stack register is
used. The implicit stack register is R15 for nonsegmented operation and RR14
for segmented operation. Furthermore, there are two copies of the implicit
stack register, one for system mode operation and one for normal mode. In
ordinary operation, each is referred to as R15 or RR14, but when referring to
the normal mode stack register while operating in system mode, the LDCIL
instruction is used with the argument NSP (in nonsegmented operation) or the
arguments NSPSEG and NSPOFF (in segmented operation). It 1s not possible to
refer to the system mode stack register while operating in normal mode.

611-1790-0006 1-10 C6/1/81

There are several points about this implicit stack register that are important
to understand:

e When the implicit stack register is used as an address register (that is,
in a Push or Pop instruction in the Indirect Register mode) or as a base
register i1n the Based or Base Indexed modes, the status lines ST3-STg
reflect stack reference status rather than data reference status.

® An 1nterrupt can occur between the execution of any two ZB000 instructions
(or even between repetitions in the block instructions). The system made
implicit stack register is used for saving the CPU status, so it must
never contain a higher-numbered address than that of any location con-
taining stack data.

e The normal mode implicit stack register is not involved in the processing
of interrupts, but it is used for saving subroutine return addresses in
normal mode. Therefore, whenever a subroutine call is made while
operating in normal mode, the normal mode implicit stack register must not
contain a higher-numbered address than that of any location containing
stack data.

Although the significance of these points may not be immediately obvious, they
need to be considered when the stack is used other than as a last-in, first-
out (LIFD) buffer accessed only with Push and Pop instructions.

One approach to processing stack items in an order other than last-in, first-
out is to alter the value of the stack register temporarily. For example,
after pushing five words onto the stack, one might wish to increment the stack
register by 10 and step through the words in the order received, decrementing
the stack register by two before each access. At the end of this process, the
stack register returns to its correct value. This works with any other stack
(assuming no pushes or pops are done on it during the processing), but with
the system mode implicit stack register, any trap or interrupt causes CPU
status to overwrite a portion of the five words being processed. This tech-
nigue can be used with the normal mode implicit stack register provided that
no subroutine calls are executed in the course of processing.

One approach to processing stack items that avoids these problems 1s to move
the stack register contents into some other address register and then treat
the stack data in question as an array (or other data structure) addressed by
the new address reqgister. Additional pushes and pops on the stack (such as
those caused by traps, interrupts, or subroutine calls) are then handled
correctly without affecting the processing of the stack elements. There are
two potential problems with this approach:

e When the contents of the implicit stack register are moved intoc another
address register and the other register is used for referring to the stack
items, the status outputs S713-STy will show data reference. Thus, this
technique cannot be used without modification if the status outputs are
used for directing references to separate data and stack memories.

® The programmer must be careful in using addresses that point into the
stack. Since the stack storage is allocated dynamically, the same stack

611-1790-0006 1-11 6/1/81

memory locations can be used in other ways that change their contents.
Naturally, a change to the stack location contents before they are com-
pletely processed can only occur as the result of a programming error, but
this sort of error is easy to make, especially if a stack management
scheme is being used. Furthermore, there is no way to determine by
examination of the saved stack address whether the contents are still
valid,

A similar technique, subject to the same potential problems, is to use the
stack for temporary storage of an array, character string, or other data
structure and to pass the address of that structure to a utility subroutine
for processing. The called program generally does not use the implicit stack
register as an address register for processing the structure.

Since the 78000 architecture does not allow words to be stored at odd address-
es, and since an interrupt can occur at any time, the system mode implicit
stack register must never contain an odd address. For this reason, pushes and
pops of bytes cannot be allowed on the system mode implicit stack register.
This is most easily done by providing for no byte Push and Pop instructions.

Saving byte registers can be accomplished by saving the entire word register.
Restoring byte registers without disturbing the other half of the word
reqgister must be simulated. For example, if

PUSH @RR8,R0
is used to simulate PUSHB @RR8,RLO, then POPB RLO,8RR8 can be simulated by

LDB RLO,RR8(#1)
INC R9,#2

1.5 CONDITION CODES

Condition codes are names for logical combinations of flags bits. There are
eight such combinations and an opposite for each, for a total of 16 condition
codes. Of the eight, one is "always true"; four are single-bit combinations
(C=0,V=0,5=0,2=0), and three are multi-bit combinations [5 XOR V =
0, ZOR (S XOR V) =0, COR Z = 0].

Because the condition codes are designed for use in a variety of Z8000
applications, some of these combinations have more than one name. Following

are some typical applications and the condition code names associated with
them.

Arithmetic Result Testing. An arithmetic operation (for example, ADD RO,R1)
is performed and the result is used for conditional control (for example, a

branch).

Code Meaning Opposite Code

z Result 1s Zero NZ (Non-Zero)

MI Result is negative (MInus) PL (Plus)

C Carry (or borrow) occurred NC (No Carry)

ov OVerflow occurred NOV (No OVerflow)

611-1790-0006 1-12 6/1/81

Logical Result Testing. A logical operation (for example, AND RO, R1) is
performed and the result is used for conditional control.

Code Meaning Opposite Code
z Result is Zero NZ (Non Zero)
PE Parity is Even (byte op only) PO (Parity 0dd)

Arithmetic Comparison. Two arithmetic values are compared by CP a,b (for
example, CP RO,R1). The relationship between the values is to be determined.

Code Meaning Opposite Code

£qQ a=b (Equal) NE (Not Equal)

LT a<b (Less Than) GE (Greater or Equal)
LE a2 b (Less than or Equal) GT (Greater Than)

Unsigned Arithmetic Comparison. Two unsigned values (for example, addresses)
are compared by CP a,b (for example, CP RDO,R1). The relationship between the
values is to be determined,

Code Meaning Opposite Code
EQ a=b (Equal) NE (Not Equal)
uLt a <b (Unsigned Less Than) UGE (Unsigned Greater
or Equal)
ULE a {b (Unsigned Less than UGT (Unsigned Greater
or Equal) Than)

Miscellaneous Situations. There are many 78000 instructions (for example,
MREQ, shift instructions, block instructions) that set specific flags bits in
other ways. Also, the programmer can use the flags bits for passing informa-
tion between routines. SETFLG and RESFLG are provided for this purpose and
any of the 16 combinations can be tested using any of the available names.

Code Meaning Opposite Code
LT SXORV =1 GE

LE (5 XOR V) OR Z = 1 GT

ULE COR Z=1 UGT

Ov,PE,V* V=1 NOV,PO,NV*
MI,S* S=1 PL,NS*

Z,EQ Z=1 NZ,NE

C,uLT C=1 NC,UGE

(*v, NV, S, NS not recognized by all assemblers)

It is important to understand the operation of the Jest instruction. TEST
sets 5 and Z to reflect the value of its argument; that is, 5 1s set if the
high-order bit of the argument is set, and Z is set if the value of the argu-
ment is not set zero., The only other bit set is P/V. For byte arguments it
is set to reflect the parity, for long-word arguments it is undefined, and
for word.arguments it 1s unaffected. C is always unaffected by TEST.

611-1790-0006 1-13 6/1/81

MI and EQ are the only condition codes solely dependent upon Z and S, so there
is no easy way to determine whether the tested argument is less than or equal
to zero. There are several ways around this:

e CP a, #0 can be used instead of TEST a, and C, Z, S, and V will be set

according to their arithmetic meanings. This works for byte, word, or
long-word arguments,

e For word arguments only, if V is clear, TEST a can be used, and if a < 0,
then LE is true.

8 TEST a can be followed by two tests:

TEST a
JR LT,X
IR EQ,X
(come here if a > 0)

X: (come here if a < 0)
This works for byte, word, or long-word arquments.

It is often desirable to postpone the testing of a condition until after the
execution of instructions that must be performed regardless of the outcome of
the test. For this reason, 78000 instructions do not change the flags bit
settings except to report the outcomes of their operations. In particular,
the transfer instructions (CALL, CALR, JP, JR, RET) and the data-moving in-
structions (CLR, LD, EX, SET, TCC, etc.) do not affect the flags bits. For
example, 1n the code of Figure 1-6, the result of the addition is stored via
the pointer RR4, regardless of the FLAGS settings.

If the LD @RR4,R0O instruction affected the flags bits, it could not be placed
before the tests. Instead, a LD @RR4,RO 1nstruction would have to appear at
each of the four locations to which control might pass as a result of the
testing, and the code would take the form shown in Figure 1-7.

ADD RO,R1
LD @RR4,RO
JR OV, W
R Z,X
JR MIL,Y
'(otherwise come here)!

Figure 1-6

611-1790-0006 1-14 6/1/81

ADD RO,R1
JR OV, W
R Z,X
JR MI,Y

LD @RR4,RO

W: LD @RR4,R0O

X3 LD 8RR4,RD

Y: LD @RR4,R0O

Figure 1-7

1f, however, the example in Figure 1-6 required the unconditional execution
of

INC R5,#2

after the LD instruction (to point RR4 at the next word of storage), the INC
instruction could not have been placed before the conditional JR instructions,

since INC affects Z, S, and V. (However, POP RO,8RR4 would solve that diffi-
culty.)

To avoid duplicating the increment instruction at each of four locations in
the program, the Flags register can be saved and restored as follows:

LDCTLB RH6,FLAGS
INC RS5,#2
LDCTLB FLAGS,RHA

The saving and restoring of the Flags register is not a privileged operation.

One important use of flags bits 1s based upon the ability to postpone testing:
passing information back from subroutines. For example, consider the routine
in Figuré 1-8,

611-1790-0006 1-15 6/1/81

!Test the ASCII character in RLD to see whether it is a hex digit.

CALL TSTHEX; RLO = the character

Return with registers unchanged and C=0 if a digit, C=1 if not.
!

ASCZER=%30; ASC9=ASCZER+9 !0-9 range!

ASCA=%41; ASCF=ASCA+5 'A-F range!
TSTHEX: CPB RLO,#ASCZER !Compare with "zero™!
JR ULT,NOTHEX 'All digits are > "zero"!
CPB RLO,#ASC9 'In "0" to "9" range?!
JR ULE, ISHEX 'Yes--success!
CPB RLO,#ASCA 'Now try "A" (> "zero")
JR ULT,NDTHEX 'Between "9" and "A"--fail!
CPB RLO,#ASCF 'In "A" to "F" range?!
JR ULE, ISHEX !Yes--success!
NOTHEX: SETFLG C 'Return C=1!
RET
ISHEX: RESFLG C 'Return C=0!
RET
Figure 1-8

This routine might be called in a sequence like

LP: CALL GETCH !Get next char into RLO!
CALL TSTHEX 'Is it hex?!
JR C,X IC=1 means "no"!
'(Code for the case: char is hex)!
JR LP
Xs '(Code for the case: char not hex)!
JR LP

There are several advantages 1in using condition codes this way:

e Reqisters are undisturbed. The flags bits are usually available, since
they cannot be used for long-term storage. If registers are used to pass
this kind of information, additional instructions are necessary for saving
and restoring previous register values,

e The calling routine can ignore the information if it is irrelevant to the
specific case. This is in contrast to the commonly used technique of sig-
naling different conditions by returning to different locations (for
example, to the first or second word after the call). This difference is
especially important if the return of an error condition is being added to
an existing routine. In this case, existing calls do not need to be
modified immediately.

611-1790-0006 1-16 6/1/81

e The use of flags bits takes advantage of the Z8000's conditienal instruc-
tions. Any scheme other than returns to different locations has to be
followed by a testing procedure, which would involve the use of flags
bits anyway.

The technique of using flags bits to return information from subroutines can
be adapted for use with "system call" routines as well, so a sequence such as
the following is possible:

SC #HXTEST
JR C,X

This sequence cannot be accomplished by using the SETFLG and RESFLG instruct-
ions in the system routine. System routines called through the SC mechanism
behave like interrupt routines: CPU status (including FLAGS) is saved on the
R15 or RR14 stack when the SC is executed, and it is restored from the stack
when the IRET is executed. Therefore, the copy of FLAGS saved on the stack
must be modified to reflect the desired returned settings. Modification of
stack locations by called programs is tricky. For example, when the SC trap
first occurs, the saved FCW is the second word an the stack; it can be ac-
cessed as R15(#2) or RR14(#2). If the SC handling program then calls the
subroutine corresponding to the given index (#HXTEST in the example above),
the subroutine return is stored on the stack. Access to the saved FCW is then
done as R15(#4) or RR14(#6). If the called subroutine begins by saving
registers, the offset changes again. For example, after a

PUSHL @15,RR0

or a

PUSHL @RR14,RRO

the new offsets become R15(#8) and RR14(#10). Similarly, each tLime the pro-

cessing routine calls a subroutine or uses the stack for temporary storage,
the situation changes.

Not only is changing the FCW value saved on the stack potentially error prone,
but the type of error that can occur is serious., Thus, change to the saved
FCW value is better done by the SC-dispatch routine, the routine whose address
appears in the program status area entry corresponding to the SC trap. An
SC-dispatch routine to accomplish this 1is shown in Figure 1-9.

Many variations on this dispatch mechanism are possible, depending on the
system 1n which it functions. This example illustrates the use of condition
codes, but is not a model SC dispatcher.

1.6 POSITION-INDEPENDENT PROGRAMS

A position-independent program is one that can be moved to different locations
in memory without changing its behavior. The instructions and program con-
stants are 1in a fixed order, but their behavior does not depend upon the
actual addresses of the memory locations where'they are stored.

611-1790-0006 1-17 6/1/81

An example of a position-independent program is the subroutine TSTHEX of

Figure 1-8. Figure 1-10 contains an assembled version of

starting at location 1000H.

this subroutine

SCDISP: EX R13,8RR14
PUSH @RR14,R12
PUSH @RR14,R0

LDB RLO,RR14(#7)

!'Save RR12, get "reason" into R13!

'Use RLO to pass saved FLAGS!
1(0ffset of FLAGS is 7 after
above saves)!

'(Code to compute processing subroutine

address from "reason" and leave it in RR12)!
'Call processing routine!
'Dont use updated FLAGS!

CALL @RR12
JR C,NOMSG

LDB RR14(#7),RLO

NOMSG : POP RD,BRR14
POP R12,@8RR14

LD R13,8RR14
IRET

'Update flags on stack!

'Restore RO!
'Restore RR12!

Figure

1-9

1000 0AD8 3030

1004 E709
1006 0AD8 3939
100A E308
100C 0A08 4141
1010 £E703
1012 0ADB 4646
1016 E302
1018 8081
101A 9EDB
101C 8D83
101E 9e08

TSTHEX:

NOTHEX =

ISHEX:

Figure 1

CP8
JR
CcPB
JR
CPB
JR
CcPB8
JR

RLO,#ASCZER
ULT ,NOTHEX
RLD,#ASCY
ULE, ISHEX
RLO,#ASCA
ULT, NOTHEX
RLO,#ASCF
ULE, ISHEX

SETFLG C

RET

RESFLG C

RET

-10

Because of relative addressing,

two instances of the instruction

the hex values of the instructions remain the
same wherever the program is assembled. This is true despite the fact that
the symbols NOTHEX (at location 1018) and ISHEX (at loeation 101C) are
referred to by instructions in the program. To understand this, consider the

JR ULT,NOTHEX

611-1790-0006

6/1/81

The hex values corresponding to these two instances are not the same, because
NOTHEX is used in these two instructions simply as a convenience to the
programmer. They are actually two different instructions:

IR ULT,$+%14
JR ULT,$+%

In other words, these instructions do not rely on the fact that NOTHEX is at
1018H. Instead they require the destination to be 14 or 8 locations after the
location containing the instruction.

Position~independent programs contribute in several ways to achleving
modularity. One way is by using "silicon software." Imagine a set of
programs, each available on a ROM, that provide a variety of software tools,
such as a debugger, an editer, a text-formatting program. If each of these
programs is position-independent, the system designer can select from among
these ROMs and assign a set of memory addresses to each, thus building a
custom-tailored system. A variation of this idea is a "demand loading" memory
system that loads position-independent programs from secondary storage into
any available RAM area whenever calls are made on them.

As another example, consider a debugging program that can be loaded into RAM
wherever space is available. For example, it could reside in a buffer area
while the initialization code was executing and then move to overlay the
initialization code while the program used the buffers.

These examples show some of the uses of position-independent programs. When
writing position-independent programs, the main rule is, "Don't use
addresses in instructions." Addresses in instructions are generally used in
the direct and indexed addressing modes and as immediate arguments. Direct
and indexed addressing cannot be used in position-independent programs except
when indexed addressing is used as previously described to simulate based
addressing. The use of addresses as immediate arguments should be avoided.
The same result can be achieved with the LDA and LDAR instructions.

Relative addressing--the CALR, JR, LDR, and LDAR instructions--is the
principal tool available to the programmer writing position-independent
programs. Another important tool is the use of fixed-location utilities
called from position-independent programs. For example, 1n a demand-loading
scheme, segment zero might be dedicated to routines that are always resident.
If so, the first 256 bytes of segment zero can consist of subroutine entry
points, and calls can be made on these subroutines by using direct or indexed
addressing from position-independent programs. (The first 256 bytes of each
segment can be addressed by using a short segmented address.) The system call
trap can also be used to access system routines from position-independent
programs,

Many variations on these 1deas are possible, depending on what is to be fixed
.and what is to be position independent. Use of the stack for temporary
storage automatically achieves position independence of the data, If the stack

611-1790-0006 1-19 6/1/81

is not used, position independence of data can be achieved using the LDAR

instruction, the Indirect Register, or the Based and Base-Indexed Addressing
modes ,

The kind of positien independence discussed here is an independence from the
particular range of addresses assigned to the program. Another kind of posi-
tion independence is provided by an external memory-mapping facility, which
allows a given address range to correspond to different physical memory
locations.,

1.7 SUBROUTINES

The principal property of Z8000 subroutines is that they use RET as an exit so
that they can be called from more than one place. Invocation of subroutines
1s accomplished with the CALL (or CALR) instruction. CALL and RET perform
complementary functions. When a CALL (or CALR) instruction is executed, the
address of the following memory location is saved on the RR14 or R15 stack.
Then transfer is made to the address specified in the CALL instruction. When
a RET instruction is executed, the address on top of the RR14 or R15 stack is
popped into the PC; that is, it is removed from the stack and a transfer to
that address is made.

In this way, the programmer can encode commonly used functions in one place
and then make use of them by CALLs whenever they are needed. The CALL of the
given subroutine 1s like another instruction added to the CPU's instruction
set. This is the most important tool of the assembly language programmer,
because it allows instructions to be used that are relevant to the application
at hand, thereby simplifying and elarifying assembly language programs.,

The CALL and RET instructions provide the subroutine calling mechanism but do
not dictate a specific means of arqument passing. For example, if a sub-
routine 1s needed to compute the square root of a number, the programmer must
decide how to specify that number to the subroutine. The programmer must also
decide how the subroutine will report the answer.

There are three commonly used methods for argument passing:

e In a register
e On a stack
® In the program, in locations following the call

Each of these methods can be used to pass actual arguments or to pass the
address of an argument table.

The return of answers to the calling program has Ffour commonly used options:

e In a register

e On a stack

® By returning to addresses at varying offsets from the CALL
® By manipulating flags bits

611-1790-0006 1-20 6/1/81

The use of registers for subroutine argument passing and result returning is
the most popular and most efficient option. For example, to implement the
FORTRAN statement Y=SQRT(X) the following code can be used:

LDL RRO,X 'Get X!
CALL SQRT !Compute square root!
LDL Y,RRO !Store in Y!

Here the subroutine SQRT takes its arqument 1n RRO and returns the answer in
RRO.

The code for a SQRT routine that takes arguments and returns results on a
stack might be:

PUSHL @RR6,X
CALL SQRT
POPL Y,8RR6

This assumes that a stack controlled by RR6 is available for use in argument
passing.

There are times when passing arguments on a stack is preferable to using
registers. There might be more arguments than can be accommodated in the
registers, or it might be desirable to make the subroutine re-entrant (see
Section 1.8). When a stack is used for passing arguments, the subroutine
usually uses the Based or Base-Indexed Addressing modes to refer to them. For
example, suppose that the subroutine BIGSQRT accepts an array of 14 numbers on
the RRé stack and replaces each with its square root. The code might look
like that of Figure 1-11.

BIGSQRT: LDK R2,#14 !'Set argument Counter!
CLR R3 'Initialize 1index!

LOOP: LDL RRO,RR6(R3) 'Get next arg!
CALL SQRT 'Compute square root'
LDL RR6(R3),RRO 'Store it back!
INC R3,{#4 'Arguments are 4 bytes!
DINZ R2,L00P 'Loop 1f more arquments!
RET

Figure 1-11

In nonsegmented operation or in segmented operation when the stack segment
number is known at assembly time, indexed addressing can also be used to refer
to stack i1tems. The passing of arguments by including them 1in the program
following the CALL, and the return of status information by returning to ad-
dresses at varying offsets from the CALL are i1llustrated in the following
code:

611-1790-0006 1-21 6/1/81

CALL SQRT !Compute square root!

X 'Adr of argument!
Y !Adr at which to store result!
JR NEGX 'Error return: X was negative!

(Execution resumes here if no error)

The subroutine SORT used with this sort of call might look like the one in
Figure 1-12,

SQRT: LDL RR12,@RR14 'Get saved return!
LDL RRZ,@RR12 'Get address of X!
LDL RRO,8RR2 'Then get X itself!
INC R13,#4 'Step over adr of X!
LDL RR2,8RR12 'Get address of Y!
INC R13,#4 1Step over adr of Y!
TESTL RRO Test X!

JR MI,ERREX 'Error if X < Q!

INC R13,4#2 !Step over error exit!
! (Compute square root)!
LDL @RR2,RRO 'Store in Y!

ERREX: LDL @RR14,RR12 'Put updated Return adr on stack!
RET

Figure 1-12

The code makes it apparent that this means of passing information is awkward.
It was originally developed for computers that had few registers and no
multiple-word instructions and that stored their return addresses in the
subroutines rather than on a stack. It is not well suited to the 7Z8000.

Often it 1s convenient to use an arqument table whose address is passed to the
subroutine. The subroutine refers to the table elements as it would to arqu-
ments on a stack--it uses based or base-indexed addressing. An example of
such a table is given in Section 2.4.

The flags bits provide a convenient means of passing error or status inform-
ation back from a subroutine. Since RET does not affect any flags bits, a
condition can be set 1n a subroutine and tested in the calling program. For
example, the SQRT routine might use C to indicate that an error condition

prevented it from computing a square root. The calling program might look
like this:

LDL RRO,X 'Get the argument!

CALL SQRT !Compute the square root!
JR C,ERREX IC set if error!

LDL Y,RRO !Store the result!

4

611-1790-0006 1-22 6/1/81

1.8 RE-ENTRANT PROGRAMS

Often 1in computer systems, two or more distinct processes seem to be running
simultaneously. Actually, the computer alternates between these processes,
dropping each one in turn, then picking it up at the point at which it was
dropped. Since the CPU's most fundamental resources are generally not dup-
licated, the two processes share them. For example, the values of the FCW and
the PC being used for one process must be saved before they are set to the
values appropriate for the next process. There are other resources that may
need to be saved, such as the general-purpose registers and memory. The
context of the processes is the total set of registers and memory that needs
to be saved for each process when it is suspended and later restored. The
operation of saving one context and restoring another is called context
switching,

A re-entrant program is a program that can be used simultaneously by two or
- more processes, A program is re-entrant if and only if it refers only to
registers and memory locations that are included in the process contexts.

One example of concurrent processes arises when interrupts are used. In this
case, the CPU provides for the automatic saving of the PC and FCW. Let us
assume that we are working with a system in which every interrupt-processing
routine saves and restores RRO and RR2. Figure 1-13 shows three pieces of
code that form the basis of an extended illustration of how re-entrancy is
achieved. :

The routine MULTEN is re-entrant, since it refers only to registers and memory
locations in the context assumed above. The references to RR14(#4) are tao a
location in the context. " This is because the contents of RR14 (or R15 in the
nonsegmented case) are implicitly saved and restored in switching to and from
interrupt processing, and all memory locations at a positive offset from the
base defined by RR14 are in effect separate copies of that portion of the
context, .

The example shows how the execution of MULTEN, called from the code starting
at 100, is interrupted to allow the interrupt-processing routine IROUT to run.
In turn, IROUT calls MULTEN, so MULTEN must work in two contexts simul-
taneously.

This example follows the changing contents of the registers RO, R1, R2, R3,
RR14, PC, and FCW, and shows the section of the stack used during execution of
this portion of the program. Figure 1-14 lists the assumed initial valyes.

As the first instruction, at 100 of segment 6, is executed, the stack register
value changes to (0400,0098) and stack location 98 contains 0003, the contents
of R3, The PC is incremented to (0600,0102), and everything else is
unchanged. The next instruction is the call to MULTEN, Figure 1-15 shows the
status following that call.

611-1790-0006 1-23 6/1/81

Calling Program (in segment 6)

100 93E3 PUSH @RR14,R3
102 5F00 0600 2000 CALL MULTEN
108 97E3 POP R3,@RR14
04
MULTEN Program (in segment 6)
2000 31E1 0004 MULTEN: LD R1,RR14(#4)
2004 BD2A LDK R2,#10
2006 9920 MULT RRO,R2
2008 33E1 0004 LD RR14(#4),R1
200C 9E08 RET

Interrupt-Processing Program (in segment 8)

'Put argument on stéck!
'Multiply it by 10!
'Return argument’ to R3!

!Get argument!

'Constant Multiplier!

110 x argument!

'Replace arg with result!

600 91E0 IROUT: PUSHL @RR14,RRD !Save!
602 91E2 PUSHL @RR14,RR2 ! registers!
604 31E0 0008 LD RO,RR14(#8) 'Get "reason'"!
608 93£0 PUSH @RR14,R0O 'Compute!
60A 5F00 0600 2000 CALL MULTEN ' 10 x "reason"!
610 97E0 POP RO,B8RR14 'RO gets 10 x "reason"!
------------------ '(Perform other tasks)!
630 95E2 POPL RR2,8RR14 'Restore!
632 95E0 POPL RRO,BRR14 ! reqgisters!
634 7B00 IRET
Figure 1-13
Re-entrant MULTEN Routine, a Calling Program,
and an Interrupt-Processing Program
Registers Stack

Name Contents Address Contents

RO 0onn (none used yet)

R1 11M

R2 2222

R3 0003

RR14 (0400,009A)

PC (0600,0100)

FCW D880

Figure 1-14

Initial Values for MULTEN Routine

611-1790-0006

6/1/81

Registers Stack

Name Contents Address Contents
RO o000 98 0003 argument
R1 "N 96 0108 saved PC
R2 2222 94 0600
R3 0003
RR14 (0400,0094)
PC (o600,2000)
FCW D880
Figure 1-15

Values After Call to MULTEN from 102

Figure 1-16 shows the situation after the first two instructions of Multen
have been executed. Suppose at this point that an interrupt occcurs and that
IROUT 1s the processing routine. Figure 1-17 shows the status immediately
following the interrupt. The first two instructions of IROUT push RRO and RR2
onto the stack. Then the "reason" is fetched and pushed onto the stack as an
argument for the call to MULTEN, MULTEN is called, and after the first two
instructions of MULTEN have been executed, we are exactly where we were before
the interrupt. Fiqure 1-18 shows the new status.

Register Stack
Name Contents Address Contents
RO 0000 98 0003
R1 0003 96 0108
R2 D00A (10 = %A) 94 0600
R3 0003
RR14 (0400,0094)
PC (0600,2006)
FCW D880

Figure 1-16

Status Before the Interrupt

The stack locations 7E, 80, and 82 in Figure 1-18 play the same role as did
94, 96, and 98 in Figure 1-16, If the contents of stack locations 84 thru 98
in Figure 1-18 are covered up, there would be no essential difference between
the two- figures. The only record of the first execution of MULTEN 1s stored
in these stack locations, Conversely, in Figure 1-16, 1f Lhe portion of the
stack with addresses 100 through 114 were shown (nothing tells us where the

stack originally started), the context of a previous execution of MULTEN might
be found.

611-1790-0006 1-25 6/1/81

Registers
Contents

RR14
PC
FCW

0000
0003
000A
0003

(D400,008C)
(0800,0600)

Da00*

Stack
Address Contents
98 0003
96 0108
94 0600
92 2006 saved PC
90 0600
8E DB80 saved FCW
8c 0005 "reason'*

*To make the example concrete, assume a value of 0005 for
"reason" and an FCW value of D800 associated with the interrupt.

Figure 1-17
Status Immediately Following the Interrupt

Assume that execution proceeds without further interrupts. MULTEN computes
5 x A and stores the result at stack location 82 [at RR14(#4)]. Its RET causes
the contents of 7€ and 80 to be popped into the PC and execution resumes in

IROUT, where the 0032 (5 x A) is popped into RO and presumably is used in the
"perform other tasks" section of IRQUT.

Register

Name Contents

RO 0000

R1 0005

R2 000DA

R3 D003

RR14 (0400,007E)
PC (D600,2006)
FCw D800

Stack
Address Contents
98 0003 Argument & return address for first
96 0108 (interrupted) execution of MULTEN
94 0600
92 2006 CPU status & "reason" pushed auto-
S0 0600 matically when the interrupt
8E pbsso occurred
8C 0005
8A 0003 RRO,RR2 values saved by IROUT (contain
88 0000 register values set during first exe-
86 0003 cution of MULTEN)
84 00DA
82 0005 Argument & return address for second,
80 0610 execution of MULTEN
7E 0800

Execution of MULTEN is at the exact point reached before the interrupt
Every value in Figure 1-16 is somewhere on the stack

(Figure 1-16).
in this figure.

Figure 1-18

Current and Saved Contexts for MULTEN

611-1790-0006

1-26 6/1/81

When execution in IROUT reaches 630, the RR2 and RRO values are restored from
the stack. At this point, status 1s exactly as shown in Figure 1-17, except
that the PC (and possibly the FCW) has a different value. The execution of
the IRET restores the saved values of PC and FCW, leaving the status
originally shown in Figure 1-16.

Execution of MULTEN proceeds at 2006 as if there had never been an interrupt.
The result of 3 x A (1E) is stored in stack location 98 [R14(#4)]. The RET at
200C causes the saved PC to be restored from stack locations 94,96. Execution
of the original program then resumes at 108 of segment 6, where the result of
the multiplication is popped into R3. The status at this point is shown in
Figure 1-19. All of the values here are exactly as they would have been if
the execution of MULTEN had not been interrupted.

Registers Stack
Name Contents Address Contents
RO 0000 {(none still in use)
R1 001E Result of MULT RRO,R2
R2 000A Result of LDK R2,#10
R3 001E Result of POP R3,@8RR14
RR14 (0004,009A)
PC (0600,0104)
FCw D800 FLAGS set by MULT RRO,R2

Figure 1-19
Final Values for MULTEN Routine

This example also 1llustrates how the definition of re-entrancy depends upon
the properties of the surrounding system. If RR4 and RRé6 instead of RRO and
RR2 had been preserved by interrupt-processing routines, then MULTEN would not
be re-entrant and it could not be called from interrupt-processing routines.

The MULTEN example illustrates context switching triggered by interrupts.
Another instance of re-entry, for which it is harder to provide a simple
illustration, 1s a program shared by a number of concurrent processes, each
doing approximately the same thing. For example, a BASIC or PASCAL time-
sharing system might have one copy of the interpreter that works on the users'
programs "concurrently,”" switching from one to the next either at the expira-
tion of a "time slice" or when the user's program pauses for I/0. Each user
would have an interpretable program and a temporary storage stack. These
would be in the user's private memory and would be addressed using a base
register and an offset (pseudo-PC) register for the interpretable praogram and
a stack .register for the stack. These registers and the other general-purpose
registers used by the interpreter constitute the context to be switched. The
re-entry of the interpreter depends upon its reference to the users' memory
areas only through the use of the registers making up the context.

611-1790-0006 1-27 6/1/81

1.9 CONTEXT SWITCHING

In Section 1.7, we defined the context of a process to be the values of all
registers and memory locations that need to be saved before another process
running "at the same time" can have its turn at using them. In general, the
context of a process consists of the entire register and memory contents, but
in most applications measures are taken to keep the size of the context to a
minimum. . Fixed storage locations can be avolded, and the times at which
context switches occur can be controlled.

Fixed storage locations must become part of the context of a process if some
other process can change the contents between the time its value is set and
the time it is no longer needed. On the other hand, a process that "ties up
the loose ends" before another process can run can have a small context, even
though 1t may use and abandon many registers and locations during the period
in which other processes cannot run. The recursive subroutine QUICK presented
in Section 2.6 is an example of this phenomenon.

In most context-switching schemes, the stack is used for storage of all or
part of saved process contexts, as illustrated in Section 1.8. Saving
registers on the stack 1s accomplished efficiently by using the LDM instruc-
tion. For example,

DEC R15,#16 'Can't decrement by 28!
DEC R15,#12 ! all at once!
LDM @RR14,R0,#14

causes registers RO through R13 to be saved on the RR14 stack.

Saving control registers, if necessary, is accomplished by loading them into
registers and then saving the registers. If it is necessary to save the FCW
explicitly, care must be taken that the saving operations do not affect the
flags bits before they are saved or after they are restored. For example, the
DEC instruction affects V, Z, and S, so after the above instructions have

been used to save the registers, it is too late to save FLAGS. A variation on
the preceding code that saves FLAGS is:

PUSHL @RR14,RR12 'Make room to work!

LDCTL R12,FCW 'Get FCW into R12!

SUB R15,#24 'Finish saving registers!
LDM @RR14,R0,#12

PUSH @RR14,R12 !Save FCW!

Of the control registers, the Normal Stack Pointer is the one most likely to
be part of a process context in a multi-processing system. To save it, the
following instructions are added to the abaove:

LDCTL R12,NSPSEG
LDCTL R13,NSPOFF
PUSHL @RR14,RR12

611-1790-0006 1-28 6/1/81

If fixed locations are part of the process context, their contents also must
be saved. In the code shown in Figure 1-20, assume that RR2 contains the
address of a list of fixed word locations whose contents must be saved. Assume
that the list is terminated by a double word, -1. This code causes the
contents of these locations to be saved on the stack, each accompanied by the
corresponding address,

LOOP: LDL RR4,8RR2 1Get next item!
CPL RR4,#-1 'Test for terminator!
JR EQ,DONE 'Done if -1 encountered!
LD RO,8RR4 !Get contents!
PUSH @RR14,R0 !Save bath!
PUSHL @RR14,RR4
INC R3,#4 !Increment list pointer!
JR LOOP
DONE: —eeee

Figure 1-20

1.10 INTERRUPTS

An 1nterrupt forces a context switch. Since there is almost no control of the
time a switch to the interrupt context occurs, interrupt routines must save
and restore the values of any registers, control registers, or memory loca-
tions they use. (An exception is a memory location purposely changed by the

interrupt routine, such as a flag indicating that output of a given line of
text is finished.)

Before interrupts can be used, the linkage between the interrupt and the proc-
essing routine must be established. This is done using the program status
area (PSA) and the program status area pointer (PSAP). The format of the
program status area is described in the 78000 CPU Manual (document 00-2010-C).
In the PSA, a CPU status (FCW and PC) is specified for every allowed interrupt
type. In contrast with machines that used fixed memory locations for such
interrupt response definition, the PSA of the Z8000 can be anywhere in
Program memory so long as it is on a 256-byte block boundary (that 1s, the
last eight bits of its address are zero). This means that the PSA can be
assembled with the program without conflicting with the loader's use of the
interrupt facility. The only thing remaining to be done at initialization time
is to set up the PSAP and then to enable interrupts. If the PSA beqins at
PSALOC, setting up the PSAP can be done by:

LDA RRD,PSALOC
LDCTL PSAPSEG,RO
LDCTL PSAPOFF ,R1

611-1790-0006 1-29 6/1/81

The use of interrupts for input or output of data requires communication
between the program requesting the input or output and the associated inter-
rupt-processing routines. Furthermore, an interrupt-processing routine must
communicate with itself; that is, whenever an interrupt occurs, it must know
exactly what it is doing and how far along it is.

The solution to providing communication between interrupt and application
routines and to provide temporary storage for the interrupt routines is a set
of fixed memory locations (often called a process status block or context
block) contalning pointers, counters, flags, etc.

When the application routine needs to perform an 1/0 operation, it calls on an
initiator routine. For example, it may need to send the ASCII characters for
"HELLO" to a CRT screen. The initiator program sets a pointer in the context
block to the zero-terminated string of ASCII characters for "HELLQ" provided
by the application program, and it sets a flag in the context block to "BUSY."
Then it does whatever 1s necessary to assure that output interrupts for the
CRT screen begin to occur. As each interrupt occurs, the processing routine
transmits another character of the string and advances the pointer in the
context block. When the pointer reaches the terminating zero, the interrupt
routine sets the flag in the context block to "DONE." Meanwhile, the applica-
tion program can be doing other things. 1If it needs to output another string,
it waits for the flag to change from "BUSY" to "DONE." It can enter a loop in
which all it does is test the flag, or it can do other things while the output
proceeds.

This sort of communication between tasks proceeding under interrupt and appli-
cation programs is sometimes used to implement an event-driven timesharing
system. Instead of entering a loop to wait for the flag to change from "BUSY"
to "DONE," the program defers to other tasks, allowing them to execute until
they too are held up waiting for an 1/0 operation to be completed.

1.11 INITIALIZATION

For the programmer responsible for the entire CPU instead of simply providing

programs to run under some system, the sequence of operations following a cold
start (reset) is important.

Execution begins when the CPU fetches its CPU status (FCW and PC) from in-
st uction memory addresses beginning at segment 0, offset 2, The FCW is at

ffset 2, the PC at offset 4, If an external memory-mapping unit is in use,
it must be capable of dealing properly with these initial fetches, even before
any code is executed to establish memory-mapping parameters.

The PC value at location 4 is the address of the first instruction to be
executed, The FCW value should leave the CPU in system mode and segmented
operation (unless the CPU is a Z8002) with all maskable interrupts disabled.
The nonmaskable interrupt (NMI) should be disabled at this point also, but
that is impossible, so the system must be designed so that the NMI cannot
occur immediately after a reset,

611-1790-0006 1-30 6/1/81

The initialization code first sets the PSAP to point at the previously
assembled PSA. The implicit stack register (R15 or RR14) must then be set. If
an external memory mapping facility is used, its parameters are set up as soon
as possible. Until then, it must continue to handle all instruction, data and
stack references properly. - Once the stack register and the PSAP are properly
initialized, interrupts can be enabled. If the Refresh register is to be
used, it is initialized during this sequence.

1.12 PROGRAMMING FOR BOTH SEGMENTATION MODES

It is important for 78000 programmers to know how to write programs for oper-
ation in one segmentation mode that can be adapted for use in the other seg-
mentation mode with minimal alterations. The only way two modes differ is in
the format of addresses--in instructions, in general-purpose registers, in the
PC, in control registers, and on the stack after subroutine calls, traps, or
interrupts., Therefore, the solution to this lies in finding mode-independent
ways of handling addresses. Addresses are manipulated by programs in many
ways. The most common are:

e Loading them into registers.
e Performing arithmetic on them.

® Using them in the Indirect Reqgister, Based and Base-Indexed Addressing
modes.

e Moving them out of registers and into memory or onto the stack.

The two program fragments shown in Figure 1-21 are segmented and nonsegmented
versions of the same algorithm, If symbolic definitions are given for the
address registers, the code takes the form shown in Figure 1-22.

Non-Segmented Segmented

LDA R2,XYZ LDA RR2,XYZ

LD RO,@R2 LD RO,@RR2

INC R2,#12 INC R3,#2

LD R1,@R2 LD R1,@RR2

PUSH @R15,R2 PUSHL @RR14,RR2
LD R4,R2 LDL RR4,RR2

Figure 1-21

611-1790-0006 1-31 6/1/81

ADREG = R2; ADOFF = R2 ADREG = RRZ; ADOFF = R3

SAVREG = R4 SAVREG = RR4

SR = R15 SR = RR14

LDA ADREG,XYZ LDA ADREG,XYZ

LD RO,@ADREG LD RO,@ADREG

INC ADOFF,#2 INC ADOFF, #2

LD R1,@ADREG LD R1,8ADREG

PUSH @SR,ADREG PUSHL @SR,ADREG

LD SAVREG,ADREG LDL SAVREG,ADREG
Figure 1-22

With the symbolic definitions, the two pieces of code are very similar. The
remaining problem is the "L" in the mnemonies. If there were an assembler
that recognized the perfectly unambiguous source statements

LD RR4,RR2
PUSH @RR14,RR2

and generated the long-word versions of the instructions, then at the source
code level the segmented and nonsegmented programs would be identical. Without
such an assembler, the only other possibility is conditional assembly. Except
for very small programs, this is unlikely to be workable, unless the condi-
tional instructions are built into a set of address-manipulation macros.

For example (following no particular macro syntax), an address pushing macro
could be defined as follows:

APUSH x,y =
if y is an RR, then
"PUSHL @x,y"
else
"PUSH @x,y"

Then,
APUSH SR, ADREG

is the next-to-last line of either of the programs in Figure 1-22.

611-1790-0006 1-32 6/1/81

PART 11

PROGRAMMING EXAMPLES

Part I showed how specific features of the 78000 are related to standard
programming techniques. This section presents some complete examples to give
a clearer picture of how 78000 instructions and features are used.

2.1 ADDING AN ARRAY OF NUMBERS
Problem: To find the sum of an array of 16-bit signed numbers.

Solution: The items are added one at a time to an initially cleared accum-
ulator. Any occurrence of a V indication following any of the additions is
registered, and V is set upon completion if overflow occurs at any point
during the operation,

Notice that the sum can be correct even if overflow occurs; for example, let
the array be (32,765, 8, -25). The first sum, 32,765 + 8, yields -32,763 and
an overflow indication. The second sum, (-32,763) + (-25) yields 32,748 and
another overflow indication. The final answer is correct:

32,748 = 32,765 + 8 + (-25).

An overflow indication is set upon completion of the addition, and the pro-
grammer can choose to take action. Alternatively, the addition program might
take action on overflow (such as by terminating the process), but the pro-
grammer calling the function has more information about the intended use of
the sum and the nature of the data. The code for this appears in Figure 2-1.

611-1790-0006 2-1 6/1/81

!Addition subroutine
CALL SUM with RR2 array address
RO number of words in the array (0 to 32,767)
Returns sum in R1; V is set on return if an arithmetic overflow
occurred in any of the addition operations used in forming the
sum.
The contents of RO, R2, R3 and R4 are lost.

SUM: CLR R1 'Initialize sum to zero!
CLR R4 'R4 saves any V's!
LooP: CP RO,#0 'Done when RO no longer!
JR LE,ENDLP ! greater than zero!
ADD R1,BRR2 'Add in the next!
TCC 0OV,R4 !Save overflow indication!
INC R3,#2 !Increment array pointer!
DEC RO !Decrement loop counter!
JR LOOP
ENDLP: RESFLG V
TEST R4 'V=0 if no overflow!
RET Z
SETFLG V !Otherwise V=1!
RET
Figure 2-1

1. Notice that the test for the loop termination condition is done first;
this allows the program to behave properly if the initial value of RO is
zero--it returns a sum of zero. Also notice that the test is for LE
instead of for EQ. This is simply a precaution. If the count becomes

negative, then there is a programming error somewhere, and it is best to
stop immediately.

Given that we wish to test for a counter value less than or equal to zero,
we use

CP RO,#0
instead of

TEST RO

Because the TEST instruction leaves the V bit unaffected, while the
definition of LE is Z OR (S XOR V).

An alternative to

CP RO,#0

is the sequence

611-1790-0006 2-2 6/1/81

RESFLG V; TEST RO

but this sequence does not work with the TESTB instruction, because TESTB
uses V to report the parity of the byte (since P = V), and this is
unrelated to the sign.

2. Notice the use of the TCC instruction. Initially R4 is cleared; if V is
clear (no overflow occurred in the ADD), then

TCC 0V,R4
leaves R4 unaffected, If V is set (overflow did occur), then
TCC OV,R4

causes the low-order bit to be set. This means that if overflow ever
occurs, R4 will be non-zero for the remainder of the time, since the only
instruction affecting R4 after it is initially cleared is the TCC, which
either sets it or leaves it unaffected.

It is important to note that the TCC instruction does not set the destina-
tion value to zero if the specified condition code is false.

3. Notice the use of

INC R3,#2

to increment the array pointer RR2. This is done because the segmented

address arithmetic is done separately on the segment and offset portions
of the address.

As written, the program wraps around the end of a segment, treating the
word at offset zero as the successor to the word at offset 65,534 (FFFE).
If this is to be treated as an error, a test can be made for this condi-
tion. Z can be used, but this does not necessarily work with larger
increments; if long words are being added, for example, INC R3,#4 might
change R3 from FFEE to 2. Another approach is to test for this condition
on entry, using the initial values of RR2 and RO.

2.2 DETERMINING THE PARITY OF A BYTE STRING

Problem: To find the parity of an arbitrarily long byte string and to set P
(PE true) if the total number of bits in the string of bytes is even, to clear
P (PO true) if the total number of bits is odd.

Solution: The parity of a byte string is, by definition, the sum of 1its bits
modulo 2. Since addition is associative (i.e., the sum is the same if the
items are grouped, subtotals computed for the groups, and the subtotals
added), the parity of the byte string is the sum of the parities of its bytes.

611-1790-0006 2-3 6/1/81

Furthermore, if a and b are binary numbers (in particular, if they are bytes),
then the parity of (a XOR b) equals the parity of a plus the parity of b, (It
suffices to prove this for one-bit arguments a and b, since the parity of an
n-bit binary number is the sum of the parities of its n bits. The proof for
one-bit arguments is accomplished by considering the four possible bit com-
binations.) Therefore, the total parity can be determined as follows:

e Initialize a register to zero.

e for each byte of the string, compute the XOR of the byte with the current
contents of the register,

e Test the parity of the final contents of the register.
The code for this appears in Figure 2-2.

!Subroutine to test the parity of an arbitrarily long

byte string
CALL BIGPAR with RR2 = address of the byte string

R1 = number of bytes (0 to 32,767)

Returns with P set (PE true) if parity is even, P
clear (PO true) if parity is odd. Contents of RO,
R1, R2 are lost.

1

BIGPAR: CLRB RLO 'Accumulate parity in RLO!

LOOP: CP R1,#0 'All tested yet?!

JR LE,ENDLP !1f so, determine final parity!

XORB RLO,@RR2 'XOR this byte with RLO!

INC R3 ! and set up!
DEC R1 ! for next byte!
JR LOOP
ENDLP: TESTB RLO 'Final parity!
RET
Figure 2-2

Notes:

1. Notice that by initially clearing RLO, we assure that a zero-length string
has even parity. :

2. If we wish to allow for from 0 to 65,535 bytes in the string, we replace
JR LE,ENDLP
with

JR EQ,ENDLP

611-1790-0006 2-4 6/1/81

In this case we are using the contents of R1 as an unsigned number in the

r??qe 0 to 216-1 instead of as a signed number in the range =215 to
2121,

3. If we wish to allow for from 1 te 65,536 bytes in the string, we remove
the instructions

CP R1,#0
JR LE,ENDLP

and move the label LOOP down to the XORB instruction. The instructions

DEC R1
JR LOOP

become
DINZ R1,LO00P
and the label ENDLP is no longer be needed.

4. For long byte strings, the efficiency of this routine can be increased by
using the XOR instruction to process whole words at a time. Special tests
have to be included to handle strings that begin at an odd byte or end at
an even byte,

2,3 ACCESSING AN ARRAY LARGER THAN 65,536 BYTES

Problem: To manage a one-dimensional array that is too large to fit within
one memory segment and has too many elements to be indexed by a 16-bit word.

Solution: Two solutions to this problem are presented. One provides high
efficiency but little flexibility, and the other provides great flexibility,
but at a substantial cost in processing overhead.

The high-efficiency scheme uses an arbitrary segmented address as the address
of the first array element and assumes that the array is stored contiguously
in memory. Segmented address (N+1, 0) is assumed to follow address
(N,65,535); that is, consecutively numbered segments are treated as contiguous
pieces of the address space. If the segment number bits were bits 6 through 0
of the high-order segmented address byte, this interpretation would be
achieved automatically simply by treating segmented addresses as 32-bit
unsigned integers. Since this is not the case, the addition of an offset to
the starting address of the array must include an operation that takes bits
6-0 of the high-order word of the result and adds them to the segment number
field, which is in bits 14-8.

A subroutine is provided to take the base segmented address in one long-word
register and an offset in another long-word register. The offset must be less
than 223, The algorithm used causes a wraparound from segment 127 to segment
0, so the full 223 bytes of segmented address space are used, regardless of
the base segmented address. The code for this version appears in Figure 2-3,

611-1790-0006 2-5 6/1/81

!Address-mapping subroutine (high-efficiency version)
CALL ADMAP with RR2 = virtual address (23 bits)
RR4 = starting segmented address
Returns with RR2 = segmented address corresponding

to the given virtual address and RR4 preserved.
1

ADMAP: ADD R3,RS
ADCB RL2,RHA4

EXB RHZ,RL2
RET

NOTE: The EXB instruction is unnecessary if the result
is returned in RR4. The code for this is:

ADMAP: ADD R5,R3
ADCB RH4,RL2
RET

The longer version given above allows the array base to
be maintained in RR4 at all times.

Figure 2-3

The high-flexibility scheme also uses a 23-bit offset, or virtual address, but
instead of a starting segmented address and a contiguous array, it uses a

virtual-to-segmented address mapping scheme that works as follows (see Figure
2-4):

® An array of "virtual" addresses in ascending numerical order (Vq, Vg,
++s5Vy 1s provided, A segmented address (Sgy S1seves Sn-1) 1s associated
with each. Virtual addresses 0 through V1-1 are mapped into a contiguous
block of segmented addresses, starting at Sg. V1 through V-1 are mapped
into a block at S4, and so on.

e The given virtual address, v, is compared with each of Vis, Voseee, Vpy
until the first V; is found for which v < Vj. If v 2 Vny an error indica-
tion is returned.

e The segmented address S;_q1 + (v-Vj_q) is returned (Vg 1s assumed to be
Zero).

The address calculation S;_q1 + (v-Vj_q) 1is performed as for the high-
efficiency scheme above, so that consecutively numbered segments are treated
as contiguous, and wraparound occurs from segment 127 to segment 0.

611-1790-0006 2-6 6/1/81

Array Offset
(virtual address)

:// .

(=

A3

Mapping Table
Vs Sp
Var S5

virtual

address Lol >

Ver Ss

0, 0

Figure 2-4

Segment ed
Addresses

So 'o_y1, /// 65535
Ao
65535
5 Y 0
1 1-V2
N
65535
S 0
VgV
65535
/{4{/7 /0// 0
s / oty ///
T 65535
0//2’/ 0
. w‘ess;s
\\\§§§ 0
S3 v,-vai§§§§\
; 65535
0
//v
54

43; SEA 65535

e AN AN

Seq O

Seqg 1

Seq 2

Seg 3

Seq 4

Seg 5

Seq 6

Seqg 7

As an example, suppose we have an array of 200,000 bytes that we wish to store

in memory in three sections:

0 - 84,999 starting at segment 6, offset 30,000
85,000 - 131,071 starting at segment 14, offset 0
131,072 - 199,999 starting at segment 19, offset 45,000

The subroutine is called with the address of the virtual-to-segmented address
mapping table in one double-word register and the virtual address in another.
For this example, the mapping table takes the form shown in Figure 2-5.

611-1790-0006

2-7

6/1/81

MAPTAB: 0; 0
%600; 30000

1319464

%E00; 0

2; 0
%1300;-20536

35 3392

0; 0

0; 0

1Vp=0!
1Sg=(6,30000)!

1v4=85,000 (= 216 + 19464)!
159=(14,0)!

1Vp=131,072!

152=(19,45000)!

1V3=200,000 (= 3 x 216 4+ 3392)1
'Two 32-bit zeros terminate!

The means of expressing the 32-bit constants and segmented addresses depends
upon the specific assembler used. Simpler ways are possible with some

assemblers.

Figure 2-5

In this example, suppose that RR2 contains a virtual address, that is, an

index between 0 and 199,999.
with the following code:

It can be translated into a segmented address

LDA RR4,MAPTAB
CALL ADMAP

The code for the high-flexibility solution appears in Figure 2-6.

!Address-mapping subroutine (high-flexibility version)
CALL ADMAP with RR2 = virtual address (23 bits)
RR4 = address of mapping table
Returns with C=0 and RR2 = segmented address; or
C=1 if virtual address out of range
The contents of RR4 are lost.

ADMAP: INC R5,#8
TESTL @RR4
JR Z,ERREX
CPL RR2,@RR4
JR GE,ADMAP
FIND: DEC RS,#8
SUBL RR2,@RR4
INC RS,#4
ADDL RR2,@RR&4
ADDB RH2,RL2
CLRB RL2
RESFLG C; RET
ERREX: SETFLG C; RET

'Step to next entry!
'Terminator?!

! Yes-out of range!

!Compare v with V;!

' If v > Vi, try next!

'Back up to Viog!

'RR2 = v-V;_q!

!Step to S;_1q!

'RR2 = Sj_1 + (V-Vi_1)!
'Carry overflow to segment field!
'Clear '"reserved" bits!

'C=0 for success return!

'C=1 for out-of-range return!

Figure 2-6

611-1790-0006

2-8 6/1/81

Notes:

1. The algorithms here are designed for random access. A loop to step

through a byte array addressed for the high-efficiency version uses the
following sort of address computation:

LDL RR2,RR4 !Start at the beginning!
LODP: 'If at end of array, exit!
'Perform operation on the array element!

INC R3 !Step to next address!
JR NZ,L00P 'Still in the segment!

INCB RH2 'New segment!

JR LOOP

2. Notice the use of the Vg entry in the MAPTAB table. FEven though Vg can

only be zera, the program is simplified by including an entry for it in
the table.

3. There is no error checking performed in either routine. Several errors can
occur: RRZ can contain a virtual address of greater than 23 bits, or
MAPTAB can be incorrectly formed or can define an array that overlaps
itself.

The checking of RRZ in either version must be done dynamically. The
checking of MAPTAB can be done once when the table is created or each time
it is changed. A special routine can be provided for this purpose.

4. The DEC R5,#8 and INC R5,#4 instructions in the mapping computation are
required because the Based Addressing mode cannot be used with the ADD and
SUB instructions. If it could, the code at FIND might be

FIND: SUBL RR2,RR4(#-8)
ADDL RRZ,RR&4(#-4)

In the nonsegmented mode, indexed addressing can be used to simu;ate based
addressing (see Section 1.2 Addressing Modes), but of course, this program
would not be used in nonsegmented operations.

5. Many applications using large arrays do not need to have the entire array
in memory at all times. The high-flexibility version of address mapping
can be used to implement a demand-loading scheme. For this, the code at
"FIND:" must recognize a special value for the base segmented address S;_4
that signifies that the array section in question is not currently present
in main memory. (51_1:231-1 is a good value for this purpose.) At this
point a call can be made an a demand-loading routine that loads the

section 1n question and passes back its actual segmented address for
storage in the address-mapping table.

611-1790-0006 2-9 6/1/81

2.4 REMOVING TRAILING BLANKS

Problem: To replace a fixed-length array of text (such as a card image) by a
possibly shorter array containing the initial segment of the original array up
to and including the last non-blank character. This type of operation is
useful when a set of fixed-length arrays (for example, a card deck) is to be

read into memory. Elimination of trailing blanks allows more records to fit
into a buffer of given size.

Solution: The ZB000O block instructions that use the autodecrement mode are
designed to handle this sort of problem. The array is scanned backward until

the first non-blank character is found. The code for this appears in Figure
2-7.

'Subroutine to remove trailing blanks
CALL STRIP with RR2 = address of the array
R1 = # of bytes in the array (1 to 65,536)
Returns with RO = number of bytes in stripped array.

The contents of RO, R1 and RR2 are lost.
!

BLANK=32 'ASCII Code for blank!
STRIP: LDB RLO,#BLANK IComparison character!
ADD R3,R1 !'Set RR2 to point!
DEC R3 ! at end of array!
CPDRB RLO,@RR2,R1,NE !Scan backward to non-blank!
LD RO,R1 'Remaining count (Z not affected)!
RET NZ '1f all-blank return R0O=0!
INC RO !Count the final non-blank!
RET
Figure 2-7

1. Notice the computation to set RR2 to point at the last byte of the array.
R3 is the offset portion of the address in RR2. Adding R1 (the number of
bytes in the array) to R3 leaves RR2 pointing at the first byte following
the array. DEC R3 brings RR2 back to its array. (R1 = 0 means 65,536
bytes.)

2. The Block Compare instruction terminates when the count in R1 reaches zero
or when one of the CPB RLO,@RR2 operations causes the NE condition to be
true. R1 is decremented for each comparison, whether or not there is a
match. Therefore, if a match occurs (which the block compare instruction
signals by setting Z), the count remaining in R1 is one less than the
number of bytes in the stripped array. If no match occurs, R1 is

decremented to zero, which is equal to the number of bytes in the stripped
array.

611-1790-0006 2-10 6/1/81

2,5 DETERMINING WHETHER A 16-BIT WORD IS A BIT PALINDROME

Problem:
dition

for n=0, 1, 2, ..., 15.

Bit n = Bit (15-n)

indrome, since it reads the same frontwards and backwards.

Solution:

To determine whether or not a given 16-bit word satisfies the con-

A word meeting this condition is called a bit pal-

This problem illustrates the use of the 78000 bit-testing instruc-

tions that allow the bit number to be specified in a register. The solution

given here is the straightforward one: comparing bit n with bit (15-n) for n =

0, 1, 2, ..y 7.

The code appears in Figure 2-8.

!Subroutine to test for bit palindromes
CALL BITPAL with RO = 16-bit word to be tested.
Returns with C=1 if not a bit palindrome, C=0 if it is.

Register use: R1 = n; RZ = 15-n; RH3 = loop count; RL3

1

BITPAL: CLR R1
LDK R2,#15
LDB RH3,#8
CLRB RL3
BIT RO,R1
TCCB NZ,RL3
RLB RL3
BIT RO,R2
TCCB NZ,RL3
TESTB RL3

JR PO,NOTPAL
INC R1
DEC R2
DBINZ RH3,L00P
RESFLG C; RET
NOTPAL: SETFLG C; RET

LOOP:

= scratch.

1Set n = 0!
' and 15-n = 15!
'Set loop counter!

'Test Bit n and!

! move it into RL3!

'Make room for Bit 15-n!
'Test Bit 15~-n and!

! move it into RL3!

'Bit n = Bit 15-n if and!

! only if parity of RL3 is even!
'Increment n!

IDecrement 15-n!

"Loop until count exhausted!
'Success: set C=0 and return!
'Failure: set C=1 and return!

Figure 2-8

1. This example illustrates the operation of the Bit Test instruction.

A

more efficient solution to the problem involves a direct comparison of the
two bytes of RO after reversing one of them with a loop like:

LDK R2,#8
RLCB RLD
RRCB RL1
DINZ R2,L00P
RLCB RLO

LODP:

611-1790-0006

2-1

6/1/81

2. The condition code NZ is used in the TCC instructions. BIT sets Z if the
bit is clear and clears Z if the bit is set.

3. 1CC instructions are used to save the bit values, and TEST is used-to com-
pare them by testing the parity of the byte into which they have been
stored. Both simplify the flow of control. Not using these techniques
results in the sort of jumping around shown in Figure 2-9.

“Not Palindrome"
EXIT

Loop
Count.
Exhausted

"Palindrome"”
£xIr

Figure 2-9. A Poor Alternative to the Use of TCC

2.6 SORTING

Problem: Given an array A of "items" and an order relation "<", rearrange

the items of A in such a way that for integers 1, j and items é;, aj, aj S_aj
whenever 1 < j., The items of A can be integers, floating poin numbers’,
character sf?ings or any other data type. The order relation can be any
ordering appropriate to the given data type, for example, dictionary order for

character strings.

Solution: An adaptation of the "quicksort” algorithm of C.A.R. Hoare is used.
A program is written to sort an array of 16-bit 2's complement integers in
ascending numerical order. The organization of the program into subroutines
indicates how other items and orderings can be used.

611-1790-0006 2-12 6/1/81

Assume that A is an array indexed from 0 to N. Quicksort is a recursive pro-
cedure that begins by arbitrarily selecting one of the items of A as the
"pivot" value. Then a preliminary rearrangement of A is made as follows: For
some i, 0 <1 <N, aj is the pivot value and a, Laj 1f 0 <k <1y g > a; af
i < k < N. That 1s, all items less than or equal to the pivot are moved 1into
the "left half" of the array and all those greater than or equal to the pivot
are moved into the "right half."

Once this is done, the same process is performed on each of the two array
segments ag to aj_q and aj,q to ay. These segments are usually not of equal
size. Implementation of the algorithm requires a minimum of stack storage if
at each stage the smaller segment 1s sorted first,

In this example assume that array offsets are 23-bit numbers in the range of O
to 8,388,607 and that the array elements are 16-bit signed 1ntegers. A base
segmented address and an address computation similar to that of the high-
efficiency version of ADMAP (Section 2.3) are used. Ihe generalization to
other types of element is straightforward. The code for this appears in
Figures 2-10 through 2-15.

'Subroutine Quicksort
CALL QUICK with RR12 = array address
RR10 = U (offset of upper limit)
RR8 L (offset of lower limit)
Returns with array elements at offsets between L and U (inclusive)
sorted. L and U are 23-bit integers in the range 0 to 8,388,607.
Register use:
RR14: Stack Register
RR12: Always contains starting segmented address of array
R@B: (L,U) on call; shorter (L,U) range returned by SHORT
RQ4: longer (L,U) range returned by SHORT
RQO: used by subroutines of QUICK

n un

!
QUICK: CPL RR8,RR10 'Compare L,U!

RET GE 'Return if L > U!
CALR PART 'Partition: RQ4, RO8 get ranges!
CALR SHORT 'Put shorter range in RG8, longer in RQ4!
DEC R15,#8 - 'Save RQ4 - longer (L,U) range!
LDM @RR14,R4,#4
CALR QUICK 'Recursive call to sort the shorter range!

LDM R8,@RR14,#4 'Restore longer range - into RQ8!
INC R15,48

CALR QuICK 'Recursive call to sort the longer range!
RET

Figure 2-10

611-1790-0006 2-13 ' 6/1/81

!Subroutine of QUICK to put shorter range first
CALL SHORT with RQ4 = one (L,U) range

RQ8 = another (L,U) range
Returns with shorter range in RQ8, longer in RQ4

Register use:

]
SHORT:

LDL RRO,RR6
SUBL RRO,RR4

as for QUICK. RRO contents are lost.

'RRO = U-L for RQ4!

PUSHL @RR14,RR0O !Save first U-L!

LDL RRO,RR10

SUBL RRO,RR8

CPL RRO,BRR14

POPL RRO,@RR14
RET LE

EX R&4,R8

EX R5,R9

EX R6,R10

EX R7,R11

RET

'RRO = U-L for RQ8!

!Compare lengths!

!Clear the stack!

'Return if RQ8 length < RQ4 length!
'Exchange RQ4 & RQ8!

Figure 2-11

'Partitioning subroutine of QUICK

CALL PART with registers as for QUICK

Returns with array segment between L and U partitioned

around a pivot element with index I,
ranges to be sorted: (L,I-1) in RQG8 &

Register use: RQB = (L,U); RQ4 = (I1,J).

Returns the two
(1+1,U) in RQ4.

On return,

RQ4,RA8 are new ranges. RGO is used by subroutines.

!
PART:

LPI:

MOVPIV:

CALR SETPIV
LDL RR4,RR8
LDL RR6,RR10
CALR DECI
CALR UPI
CALR DOWNJ
JR C,MOVPIV
CALR EXCHIJ
JR LPI
CALR EXCHIP
LDL RR6,RR10
LDL RR10,RR4
CALR DECI
EX R4,R10
EX RS,R11
CALR INCI
RET

'Choose pivot; initialize pivot routines!

1Set I = L!

1Set J = U!

'Decrement I: I=L-1!

!Increment I until aj > pivot value!
'Decrement J until aj < < pivot or J < I
1J < I: only pivot remains to be moved!
'Exchange aj and aj values!

'Exchange aj and pivot values!

'Move I to end of RQ4 (where J was)!
'Move I to end of RQ8 (where U was)!
'Decrement I: RR4 = I-11

'Exchange RR4,RR10: !

'Now RQ8 = (L,I-1); RR4 = I!
'Increment I: Now RQ4 = (I+1,U)!

Figure 2-12

611-1790-0006

6/1/81

!Subroutines of PART for moving I and J

CALL UPI: returns with I incremented until ajp 2> pivot value
CALL DOWNJ: returns with J decremented until aJ < pivot

or J < I; returns C=1 if J < I, otherwise C=0

Register use: As for PART.
!

UPI: CALR INCI !Increment I!
CALR CPPI 'Compare pivot value with ay!
RET LE 'Return if pivot value < aj!
JR UPI 'Otherwise keep incrementing!
DOWNJ: CALR DECJ !Decrement J!
CPL RR4,RR6 'Compare I,J!
JR LT,DJ31 '1 < J: proceed!
SETFLG C; RET 'J < I: return C=1!
DJ1: CALR CPPJ Compare pivot with aj!

JR LT,DOWND 'Keep decrementing 1f pivot value < aj!
RESFLG C; RET 'Otherwise return with C=0!

'Routines to increment or decrement I or J.

ESIZE = 2 'Entries are words: two bytes!
INCI: ADDL RR&4,#ESIZE

RET
DECJ: SUBL RRé6,#ESIZE

RET
DECI: SUBL RR4,#ESIZE

RET

Figure 2-13

'Pivot Setting and Comparison Subroutines

CALL SETPIV - chooses pivot & saves its value in a
register
CALL CPPI - compare pivot value, al. Set FLAGS.
CALL CPPJ - compare pivot value, aj. Set FLAGS.
Register use: as for PART. RO = temp. R1 = saved pivot
value. RR2 = calling argument and actual address

returned by ADCOMP
!

SETPIV: LDL RRZ,RR10 1RR2 = U!
CALR ADCOMP 'RR2 = actual address of ay!
LD R1,@8RR2 'Choose a) as pivot value!
RET

CPPL: LDL RR2,RR4 IRR2 = I!
JR 1M

CPPJ: LDL RR2,RR6 'RR2 = J!

-IIM: CALR ADCOMP 'RR2 = adr of item to be compared!
CP R1,@RR2
RET

Figure 2-14

611-1790-0006 2-15 6/1/81

'Exchange Subroutines

CALL EXCHI - exchange ay and pivot values.

CALL EXCHIJ - exchange aj and aj values.

Register use: as for PART. RO = temp. R1 = saved pivot
value. RR2 = calling argument and actual address

returned by ADCOMP
1

EXCHIJ: LDL RR2,RR4 'RR2 = I!
CALR ADCOMP 'RR2 = actual address of aj!
LD RO,@RR2 'RO = ag!
PUSHL @RR14,RR2 !Save address of ap!
LDL RR2,RRé6 'RRZ = J!
CALR ADCOMP 'RR2 = actual addresss of ag!
EX RO,@RR2 !Exchange: RO=ay, aq replaced by aj!
POPL RR2,8RR14 !Restore aj address!
LD @RR2,R0 'Replace aj by ay!
RET
EXCHIP: LDL RR2,RR4 'RR2 = I!
CALR ADCOMP 'RR2 = actual address of ar!
EX R1,@RR2 'Exchange ay with saved pivot value!
LDL RR2,RR10 'RR2 = U (offset of pivot element)!
CALR ADCOMP 'RR2 = actual address of q!
LD @RRZ,R1 'Replace ay by ay!
RET
ADCOMP: ADDL RR2,RR12 'Add array base to offset!
ADDB RH2,RL2 !Carry overflow into segment field!
CLRB RL2 'Clear reserved bits!
RET

Figure 2-15

1. This code falls into two principal categories: the code to implement the
algorithms and the code to manipulate the indices and data items. The
algorithm is implemented by the routines QUICK, PART, SHORT, UPI, DOWNJ
and SETPIV. The manipulation and comparison of data items and the arith-
metic on array indices occur in the routines INCI, DECI, DECJ, cpPI, CPPJ,
EXCHIP, EXCHIJ, and SETPIV. The mapping of array offsets into actual
memory addresses occurs in ADCOMP.

The organization used here facilitates the alteration of QUICK for other
applications. For example, a nonsegmented version can be produced simply
by changing all instances of 8RR2 to @R3 and keeping the nonsegment ed
array address in R13 with a zero in R12. All references to RR14 also
have to be changed to refer to R15. The resulting code is less efficient
than a tailor-made nonsegmented version, but this does not matter in many
applications.

611-1790-0006 2-16 &/1/81

As another example, QUICK could be changed so that it sorts bytes by
redefining the symbol ESIZE to take the value 1. Instead of using RO as 2
temporary location and R1 for the saved pivot value, the routines SETPIV,
CPPI, CPPJ, EXCHIP, and EXCHIJ need byte registers. Then the four LD
instructions, the CP instruction, and the two EX instructions in those
routines must be changed to byte versions.

Sorting on the basis of other ordering relations is facilitated by this
program orgnization. For example, decreasing numerical order could be
used simply by replacing the instruction CP R1,BRR2 with:

LD RO,@RR2
CP RO,R1

in the CPPI/CPPJ routine (CP @RR2,R1 is not a legal instruction). The
program could have byte constants representing the various flags combina-
tions it wishes to return. For example, the less than condition can be
returned by the following sequence of instructions at the end of the
subroutine:

LDB RHO,#LTVAL
LDCTLB FLAGS,RHO
RET

The symbol LTVAL might have the value %20, corresponding to C = 0, Z = 0O,
$=1,V=0,D=0, H= 0.

2. The CPPI and CPPJ routines illustrate the useful programming technique of
multiple entry points. An alternative organization is

CPPI: LDL RRZ,RR4
CALR IJIM
RET

CPPJ: LDL RR2,RR6
CALR IIM
RET

The code at IJM in both organizations is shared. The objective of this is
not principally to save memory space but rather to assure that these two
related functions are carried out according to a common algorithm,

3. The SETPIV routine is mainly concerned with data manipulation, but it also
implicitly embodies a part of the quicksort algorithm, the choice of a
pivot element. Use of aj for the pivot is inefficient 1f the array 1s
already sorted, Other algorithms can be used to make the choice.

4. The use of 23-bit indices stored 1n lang-word registers simplifies 1index
comparisons such as those that occur in QUICK and SHORT. To use the same
code for one-word registers, the index values would have to be restricted
to 15 bits. 1If 16-bit indices are used, the comparisons must be the
unsigned versions. In that case, special tests must be made for the case
L > U, in both SHORT and QUICK. In particular, the case U = -1, L =0, a
termination condition for QUICK, needs further special handling.

611-1790-0006 2-17 6/1/81

2.7 POLYNOMIAL EVALUATION

Problem: Given a set of coefficients ag, a1,...,8n and a variable x, compute
f(x) = ag + ajx + apx2 + ... apx",

Solution: The coefficients agy«++yan, the variable x, all of the products
akxk, the intermediate sums, and the final sum are assumed to be within the
range of 32-bit signed integers, -231 to 237-1,

A subroutine is provided that accepts as its arguments the variable x and the

address of a parameter table describing the array. The table has the follow-
ing format:

n (1 word)
ag (2 words)

a, (2 words)

The subroutine returns the value f(x). In addition, the results of computa-
tions are checked at each stage to verify that they remain within the stated
bounds. If the bounds are exceeded at any stage, V is set when the subroutine
returns its final result. The code of this routine appears in Figure 2-16.

The code is arranged so that multiplications are required at two places. In

each case, the arqguments are manipulated in the registers so that the
required instruction is

MULTL RQ8,RR6

A subroutine is provided to execute this instruction and to verify that the
result fits into RR10, the low-order half of RQ8. If not, a bit is set in an
error-flag register that is initially cleared to zero by the main routine. The
code for the multiply and check routine is shown in Figure 2-17.

611-1790-0006 2-18 6/1/81

'Subroutine to perform polynomial evaluations!
CALL POLY with RRD = x

RRZ = adr. of table (n, agy ..., a,)
Returns with RR4 = f(x), contents of RR2 and Ré- %r13 lost
V = 0if all values in bounds, 1 otherwise.

Register use: RRO, RR2Z -- calling arguments
RR4 —- rEnnlng sum R12 -- coefficient counter
RR6 -- x¥ (k=0,1,...,n) R13 -- error flag
RG8 -- scratch
1

POLY: POP R12,8RR2 'Get n from table to set counter!

LDL RR6,#1 'Initialize: xX = 1 (i.e., k = 0) !
LDL RR4,#0 ! f(x) =0 !
CLR R13 ! Error flag = O !
LOOP : POPL RR10,8RR2 !Get a) from the table!
CALR MILCH 'RR10 =
ADDL RR4,RR10 !f(x) = r'f) + apxK1
TCC 0OV,R13 'Remember overflow, if any!
DEC R12 'Decrement coefficient counter!
JR MI,POLEX !' Done if < O!
LDL RR10,RRO Get x!
CALR MULCH IRR10 = xk+1
LDL RR6,RR10 !Replace xX by xK*1 (i.e., increment k)!
JR LOOP !Perform computation for new k!
POLEX: RESFLG V
TEST R13 !Were there any overflows?!
RET Z ! No -- return with vV = 0!
SETFLG V; RET ! Yes -- return with V = 1!

Figure 2-16

'Multiply and check subroutine!
MULCH: MULTL RQB,RR6 'Perform the multiplication!
PUSHL @RR14,RR8 !Save high-order 32 bits!

EXTSL RQ8 !Set high-order 32 bits to proper value!
CPL RR8,8RR14 'Was it already OK?!
TCC NE,R13 'If not, then overflow occurred!
INC R15,#4 'Discard saved RR8!
RET
Figure 2-17

611-1790-0006 2-19 6/1/81

Notes:

1. Notice the structure of the loop in POLY. There is no test at the begin-
ning, so the loop is always executed at least once. The effect of this is

that tables with negative values of n will be treated as if they had n =
0.

There 1s also no test at the end of the loop. Instead, the decrement of
the coefficient counter and the test for termination appear immediately
following the latest update of the running sum and before the computation
of xK+1." The overall length of the program can be shortened by moving
this test to the end of the loop, but then xN+1 js always computed
unnecessarily. In addition to the wasted computation, this leads to an
erroneous overflow indication if x™1 exceeds the 32-bit limitation.

2. The subroutine MULCH illustrates the use of the multiplication and sign
extension instructions. The 1nstructien

MULTL RQ8,RR6
causes the contents RR10 (the low-order half of RQ8) to be multiplied by
the contents of RR6 and the resulting value to be stored in RQ8. The
original contents of RQ8 (the high-order half of RQ8) are irrelevant.

The 1instruction

EXTSL RQ8
causes the contents of RQ8 to be replaced by a number whose value is the
same as that of RR10 but which has twice as many bits. Assuming that all

results are within the range of signed 32-bit numbers, the EXTSL instruc-
tion should cause no change to RR8. This explains the test performed in

MULCH.
3. The use of the 1CC instruction to remember the occurrence of overflows is
similar to its use in Section 2.1.

2.8 PSEUDD-RANDOM NUMBER GENERATION

Problem: To provide a subroutine that returns an "unpredictable" 16-bit
number.

Solution: The solution presented 1s sometimes referred to as the power
residue method. A large positive number N with few prime factors is chosen. -
The values returned by the function RND on successive calls 1,2,... are
defined as follows:

RNDy = N2 (mod 216)

RNDy = (RND,_q AND (212-1)) X N (mod 216)

for k = 2,3,...

611-1790-0006 2-20 6/1/81

The algorithm used requires that the routine know at each stage the value it
returned when last called. The storage space for remembering this value is
provided by the caller in a table whose address is passed to the routine each
time it is called. An initializing routine is provided for setting up the
table. Figure 2-18 shows the code for the initializing routine and the
pseudo-random number generator.

'Random-number routines
CALL INRAND with RR2 = address of 2-word temp storage table.
Returns with table "initialized," R1 lost, and RO = N,

CALL RAND with RR2 = address of the table.
Returns with RO = "random" number & table updated.

Register use:
RRO: Dest for multiplication; RO returns the random number.
RR2: address of table.

!
N = 15419 IN = 17%907!

RAND: LD R1,RR2(#2) !R1 = RNDj_4!
RES R1,#15 'R1 = RNDy_q AND 215_11
MULT RRO, BRR2 !RRO = (RND,_q AND (215-1))xn1
LD RO,R1 'RO = RNDy!
LD RR2(#2),R0 !Remember RND, for next call!
RET
INRAND: LD RO,#N
LD @RR2,R0O 'Save N in table!
LD RR2(#2),R0 !'RNDp = N!
RET
Figure 2-18

1. This is a quick and dirty pseudo-random number generator. ¥or a thorough
discussion of random-number theory and algorithms, refer to Chapter 3 of
"The Art of Complete Programming, Volume 2: Seminumerical Alagorithms," by
Donald E. Knuth.

2. Similar routines can be used for 32-bit random numbers. In fact, RAND
could be generalized to take its argument size from the table. The de-
sired size could be passed to INRAND, which would set up the table
acecordingly.

3. The choice of the number N could be made by the caller and passed, pos-
sibly as an option, to INRAND,

611-1790-0006 2-21 6/1/81

4, Note the use of the ipstruction

RES R1,#15
as an alternative to

AND R1,#%7FFF.

5. Note that the use of an argument table makes RAND a re-entrant routine.

611-1790-0006 2-22 6/1/81

	Title
	Part I - Programming techniques
	1.1 Introduction
	1.2 Data types
	1.3 Adressing modes
	1.4 Stacks
	1.5 Condition codes
	1.6 Position-independent programs
	1.7 Subroutines
	1.8 Re-entrant Programs
	1.9 Context switching
	1.10 Interrupts
	1.11 Initialization
	1.12 Programming for both segmentation modes

	Part II - Programming examples
	2.1 Adding an array of numbers
	2.2 Determining the parity of a byte string
	2.3 Accessing an array larger than 65,536 bytes
	2.4 Removing trailing blanks
	2.5 Determining whether a 16-bit word is a bit palindrome
	2.6 Sorting
	2.7 Polynomial evaluation
	2.8 Pseudo-random number generator

