

I/0 with External Peripherals
‘User Guide@®

- PREFACE.

- Bl 3
! P
’ b L4

{

,_.",

This Mﬁb» ‘manual-- deseﬂbes —'t;ue
RS-232- c;i(serlal)'“and 1EEE 488 .

(paralle_/) :communications~ 1nter-‘ _

faces and their 'Us“e‘"wﬂh‘""external

_periphgrals.” The first chapt»erm~
1ntrod:.§<_:_es ‘the - readef‘ t6" the con-.hi.._

cept';mused to descrlbe fthe 1nterr'
’ fapes dlscussed #in. -the! two latter
parts _part one covers RS: :232-C

and,pa:t two._covers'{1EEE: 488 Each
"~ part congists. of three chapters.

/_;“ _The first is_on spec1f1c 1nterface

. ware, and programmlng ‘The second

— requrredﬂtp P ogragn the int«erfacemw- -
The last chap{cer‘ ~describes soine "’

o—- *t’fp-];()@l examples of-- the use—-of the-
- 1?f‘terface; and inctudes actual
programs ﬁ_ﬂwﬁ’{

{ . L AU
[o ’

The readfer* is “assumed to be fa-
m111ar:,.w1th the corresponding in-
terﬁace /Standard and to have had
expe;&ence with programm1ng inter-
face¥ for such perlpherals as well
as . ex_yfrlence of _using PCOS and
-MZO BASIC.

i

Some.u.pacts of . -tﬁls : irnanijal are
“derived directly, (or; partially
.modified)._from the ﬁS 232-C and
- -~ ~}EEE- -488-- -Standards (see Appendix

A). o i ”

2

The 'foll"oiling 3teE 'f‘r"ademal‘ks of

Ing. C. 011vett148 C. S.p.A.: OLTCOM, GTL, o

OLITERN, OLI‘NORD OLINUM ~OLISTAT; -OLITEST,
OLITUTOR, OLIENTRY, OLISGRT, OLTMASTER.

The followlng is a reg1stered trademark of
MICROSOFT Inc. : MULTIPLAN. I

&

© by Olivetti, 1982 f ;

1
’
I

REFERENCES

TS

. PCOS (Professional- Computer Opera-’
t1hg ‘System) User. Gu1de ' ‘

*BASIC Language Reference Guide.

DISTRIBUTION: General (G)

__FIRST EDITION: October 1982

) oyt s s bonamir % s e e e

 RELEASE: 1.3 Onwards
,_m.,..-revlatedwconoepts hardware, soft- ...

PUBLICATION 1SSUED BY:

Ing. C. Olivetti & C., S.p.A.
Servizio Centrale Documentazione
77, Via Jervis-10015 IVREA (Italy)

&

- N FIULUUG IO (U
LIBRARY MANORL O l\ 4 THE SYSTEM
. A _ '
\ : \ RIS
1 | PRINTER PR 2400 = '
Ui OPERATING GUIDE T | | OPERATIONS GUIDE(
be] =
[~
AR R E: 2
S 11 3
@ - 8
_ OLIWORD & £ PRINTER PR 1450]
USER GUIDE 1] OPERATING GUIDE 1]
Q I 2 i Py 1= PRERT
A . E CECECEE AR . E-N PN
e \ qe |) <
g « .] Y] ..
2 OLIENTRY - o PRINTER PR 1471 .. !
~ a USER GUIDE (") 12 ~QPERATINGGUIDE = | 3L i !
P e g r e TN
g X E H v' :
] . B [e - g e
@ 2 17F=-| | priNTERPRUBT © -
OUMASTER b3 = . :
s USER GUIDE “a & LIz | |-oPEBATING GUIDE) . -
« - Lt ! * 2.7
APPLICATION e \ .8 N Ty
SOFTWARE 3 — é 114~ e PAAE S 2 C 5
-] OLISTAT (Statistical Andlysis) =2 T |] PRAINTERPRAJO 2.7 2.0
LIBRARY = « | | usercuioe Rht 20 [PO | ppemnue Gume (')
A Py . YIRS 1° - W -
- - 1 X el .
OUTUTOR @ GTL20 - 52 I D NTE T
USER GUIDE] GEOMETRIC FUNCTIONS : g 192 Sge %ne'eume?-) ERRE
= USERGUIDE (")~ - | = ,-.‘:;.) A
o N T U . . - N 1 ~
0 - <
\ -4 s el] o] Y P
PCOS (Professional Computer 8 GTL/20 e 8-4_ .:.,. -~ 1,; a-:
Operating System) L TOOL PATHS el ST b B (RS BE R R
@ USER GUIDE a USER GUIDE (*} - 1 1F. L ue :
p py ~ +] [SFG i bR =
o] \ ~ .]
o L. 4 - w’--\ﬂ'sv Sl B4 B nd o5 Ba 1
3 3 s Afcbln o Yoo
b1 BASIC LANGUAGE - OLINUM (Numerical Analysis) * MN\18:$-F T
® | |5 | | ReFereNcE GuiDE © {1, | |vserecuoe AN F s T
o o iy 1 S Gials X Yo e
3 \ 118 Q 3
& & =\ b LT
-3 —~ « OLISORT B B
BASIC & PCOS @ ’ i
©] |5 | | PocKeT ReFERENCE - © |1, || UsERGUIE . AT & S
e o B
e N\ |8
o %
- ASSEMBLER LANGUAGE 2
) « REFERENCE GUIDE (*} w
o o
118 @
PROGRAMMING | |2 \ g
[--3
-3 ASSEMBLER LANGUAGE 3
LIBRARY & = USER GUIDE (°) ©
\\ s AN 9
<
&
& ASSEMBLER LANGUAGE
Ll a POCKET REFERENCE (%)
! % [
@/‘ =L O WITH EXIE & ISAM (Index Sequential -
PERIPHI © Access Method) N
DERES) a USERGUIDE . 1\
et ’ N\ -
",‘, N i AL
VIDEQTEX @
. 2 FORTRAN
USER GUIDE () o 3 REFERENCE GUIDE - (*)
2
2 A |8
S5 S
OLICOM -3
. PASCAL
: o USER GUIDE i - REFERENCE GUIDE (%)
- [~}
; e \ R
: g OLITERM] o
o
2 - =4 MS-DOS AND cpm 8
2 3 USER GUIDE ” USER GUIDE(*} {0
s = pt -
o a N\ ~
(4 ~ ~F
k -3 - - e
3 -4 &
o (]
P > >
] ADVANCED % \ § T
2 | FACILITIES] a8
5 | LIBRARY S s
8
E; \
3
3
o
”
= -
= AN
j | IR 1 h) \ 1 3

CONTENTS

1. GENERAL INTRODUCTION

THE TWO COMMUNICATIONS 1}1;
INTERFACES
SERIAL TRANSMISSION 1-2
PARALLEL TRANSMISSION 1-2
CONCEPTS 1-3

PART 1

RS-232-C SERIAL INTERFACE

2. THE RS-232-C INTERFACE
THE INTERFACE HARDWARE ~ 2-1
BUILT-IN RS-232-C 2-1
INTERFACE
OPTIONAL RS-232-C 2-3
INTERFACE
M20 TO MODEM - 2-5
M20 TO PERIPHERAL 2-8
M20 TO M20 - 2-10
CURRENT LOOP 2-12
MOUNTING A CONNECTOR 24144
CONFIGURATION ‘*_2-15
THE INTERFACE SOFTWARE 2-16
RS-232-C INTERFACE DRIVER 2-17
COMMUNICATIONS INTERFACE 2-18
STATUS OF THE DRIVER 2-19
STATUS OF THE PERIPHERAL 2-22

PROGRAMMING THE INTER-,_;'M
FACE o m i e

SCoMM

ovew EaL b

INTRODUCTION -~ .+~

SDEVICE - = - #
RS232

CI

CLOSE CALL "¢
READ CALL "r" -
STATUS READ CALL ““"sr'

STATUS WRITE CALL "sw" 3-16 . -

"DEVICES

WRITE CALL ™w" = 3-19
DEVICE RE-ROUTING . - 3-21
INTRODUCTI@N "t*'”3-21<“i‘;

LOCAL DEVICE RE ROUTING

GLOBAL DEVICE RE:RQU. NQ‘“BlédR
. . V‘J ‘ ; 4 e H . .-.v 4._».\”, "{‘ .

NO INTERACTION FLAG ‘3?“‘;3525 |

Ad PN

. RS- 232—C SAMPLE PROGRAMS

INTRODUCTION :;;e”'ﬂ 4-1

SETTING UPVIRANSMISSION 4-1

PARAMETERS ™+«

PROGRAM SET-UP - 4-3

- MAKING C1 RESIDENT 4-3

SELECTING TRANSMISSION 4-3
PARAMETERS

SELECTING HARDWARE STATUS = 4-3

TRANSMIT DATA FROM M20 4-4

DATA TRANSFER 4-4

ERROR CHECK 44

RECCIVE DATA IN M20 4-5

WITHOUT STATUS CHECK 4-5

WITH STATUS CHECK 4-6
" PART 11

1EEE 488 PARALLEL INTERFACE

. 1EEE 488 RELATED CONCEPTS

THE INTERFACE HARDWARE 5-1

THE GENERAL PURPOSE 5-1
INTERFACE BUS

MOUNTING A CONNECTOR 5-3
CONFIGURATIONS 5-3

MECHANICAL RESTRICTIONS 5-4

" INTERFACE SOFTWARE 5-4

CONCEPTS 5-5
INTERFACE FUNCTIONS 5-6
INTERFACE MESSAGES 5-7
THE CONTROL LINES 5-8

DAV, NRFD AND NDAC: 5-9

THE THREE WIRE HANDSHAKE

ATN, IFC, REN, SRQ AND 5-10
EOl: GENERAL INTERFACE
MANAGEMENT

PROGRAMMING THE INTERFACE 5-17

AN INTERFACE OVERVIEW 5-17

1EEE 488 AND BASIC 5-19

. INTERFACE STATEMENTS

INTRODUCTION , 6-1

THE REN/IFC STATEMENTS 6-2

ISET (PROGRAM/IMMEDIATE) 6-2

IRESET 6-3
(PROGRAM/IMMEDIATE)

THE SERVICE REQUEST 6-3
STATEMENTS

ON SRQ GOSUB (PROGRAM) 6-3
POLL (PROGRAM/IMMENIATE) 6-5

THE WRITE STATEMENTS 6-7

WBYTE (PROGRAM/IMMEDIATE) 6-8

PRINT @ 6-9
(PROGRAM/IMMEDIATE)
THE READ STATEMENTS 6-12

RBYTE (PROGRAM/IMMEDIATE) 6-12

INPUT @ 6-14
(PROGRAM/IMMEDIATE)
LINE INPUTe 6-16

(PROGRAM/IMMEDIATE)

CONTENTS

7. 1EEE 488 SAMPLE PROGRAMS C. TEEE 488 CHARACTER CODES
USING THE INTERFACE 7-1 D. I1EEE 488 BASIC ERROR CODES
CREATING TEST/CONTROL 7-{

EQUIPMENT
AUTOMATION 7-1

1EEE 488 AND COMPUTERS 7-2

SOME PRACTICAL EXAMPLES 7-2

USING A PLOTTER ' 7-2
USING A VOLTMETER 7-4

USING A VOLTMETER AND A 7-6
PLOTTER

APPENDICES
A. STANDARDS PUBLICATIONS

EIA STANDARD RS-232-C A-0

CCITT V.24 A-0

ANSI/IEEE Std 488-1978 A-0

o B. RS-232-C SIGNALS AND
SETTINGS
INTERFACE SIGNALS B-1
ELECTRICAL LEVELS AND B-2

LOGLIC REPRESENTATION

INTERFACE SIGNAL B-3

DESCRIPTION

JUMPER SETTINGS B-4

MOTHERBGARD B-4
/ MINIBOARD B-5

:
e

QO

1. GENERAL INTRODUCTION

ABOUT THIS CHAPTER

This chapter introduces the reader to the RS-232-C (serial) and 1EEE 488
(parallel) interfaces and the concepts used in the remainder of the
- manual to describe them. In addition the major classes of connectable
peripherals are also described.

CONTENTS

THE TWO COMMUNICATIONS 1-1
INTERFACES

SERIAL TRANSMISSION 1-2
PARALLEL TRANSMISSION 1-2
CONCEPTS 1-3

| >

i&

s

GENERAL INTRODUCTION

THE TWO COMMUNICATIONS INTERFACES

This M20 manual describes the two communications interfaces: the RS$-232-C
and 1EEE 488 for connecting serial and parallel peripherals respectively.

The serial interface, RS5-232-C, is available in two versions:

- Single RS-232-C which is built into the M20.

- Dual RS-232-C which is ayailable as an option.

The parallel interface, 1EEE 488, is only available as an option.

These two interfaces handle digital data transmission asynchronously,

character by character (byte by byte). The transmission may be half
duplex (i.e. in either direction - in or out of the M20 - but only one

- way at a time) or full duplex (both ways at the same time). Transmission

can be:

- serial (bit by bit) on the SERIAL interface, or

- parallel (all bits together) on the PARALLEL interface

through a communication port. For serial transmission, the transmitted
bits are output in sequence, whereas in parallel transmission the charac-

ters are output serially but the bits representing each character are
output in parallel. See Figure 1-1.

1-1

-

< Direction of transmission (character
identified by position)

. SERIAL
CHARACTER 1 CHARACTER 2
1 1 1 1 1 1 1 1 1
1 2 3 45 6 7 8 12 3 4 5 617 8
Bits identified by position in time.
All on 1 line, .
PARALLEL
CHARACTER 1 CHARACTER 2
- 8Tt L 0
8iIT2 o Y
BIT3 ins inh
BIT4 ° JTL] Bits identified by own individual
BITS o int line.
B8IT6 IiL °
8T 7 Tl o
BT e Il ipe

Figure 1-1 Serial and Parallel Transmission

SERIAL TRANSMISSION

Serial transmission is used for slower speed (under 2088 baud), long
distance (over 6§ feet/2f m) M20-to-modem to communications equipment
transfers. . However, serial transmission is also e tensively used for
high-speed. (at 96f#f baud) direct wire connection of M20-to-terminals
where the connection distance is less than 6§ feet/2¢ m.

The serial interface is designed according to the Recommended Standard
232 C of the Electronic Industries Association of Washington, DC, USA and
hence is referred to as EIA RS-232-C or by its short name of RS-232-C.
(The European equivalent is Recommendation V.24 of the International
Consultative Committee for Telephone and Telegraph, which is better known
under its French abbreviation as CCITT V.24. See also Appendix A.)

PARALLEL TRANSMISSION

Parallel transmission is used extensively in M20-to-peripheral transfers
at higher speed (over S5@gg baud), over short distances (less than
60 feet/2¢ m) but rarely for long distances due to the high cost of the

1-2 1/0 WITH EXTERNAL PERIPHERALS — USER CIINE

GENERAL INTRODUCTION

w»

-
additional circuits required. The IEEE interface is used typically to
connect instrumentation.

The parallel interface is designed according to the Standard 488 of the
Institute of Electrical and Electronics Engineers of New York, NY, USA
and hence its short name of IEEE 488. (See also Appendix A.)

CONCEPTS
) - In this manual, no attempt is made to differentiate between the various
4&;’ types of equipment which may be connected together using these inter-
* faces.

A device is a generic term for a piece of equipment, and may be an in-
strument, a peripheral or a machine. An instrument is a device used as an
implement or tool for scientific purposes (e.g. to measure temperature).
A peripheral is generally a device which can be connected externally to a
computer (e.g. a badge reader). A machine is a device which performs a
particular function via a logic interface (e.g. a numerically controlled
lathe) while a computer has calculation and logic capabilities (e.g. the

M20).

Since this manual deals with the interfaces of a particular computer, the
M20, and no particular device, the terms device, peripheral, instrument
and machine can be thought of as interchangeable, unless otherwise
specified.

An interface is a generalised means of communication between the M20 and
some external input or output device. Hence the standards specify the
necessary conventions for use, as well as electrical and mechanical
requirements. (On the M20 Olivetti has provided the necessary hardware
and software to support peripherals conforming to the operational re-
quirements of these standards in terms of device function and logic.)

The M20 provides a serial interface that allows it to be connected in
a wide variety of configurations to a number of peripheral units, either
-on-line or in a network.

Figure 1-2 shows an M20 configuration that allows for the handling of
peripherals either directly connected or via modem with a connection
to another computer.

‘ Generally, any device that conforms to the EIA Standard RS-232-C or
a 20 mA Current Loop interface can be used. ‘

SERIAL
PERIPHERAL
D £
&8
RS-232
MODEM cable
SERIAL l
J rerienenaL cable M20 m m20 ¢
20mA CURRENT | cummrenT W -
LooP compaTt- | LOOP A 5)
BLE RS-232 '
PERIPH cable
SERIAL
PERIPHERAL
COMPUTER
|
Figure 1-2 M20 System Configuration Example .
- 1 L IT It VW TrmAlatl DOEFOITINDILIICEMALL C "Merm.D 111

L

GENERAL INTRODUCTION

The EIA RS-232-C Interface

The use of this interface allows the M20 to implement all configurations
that come under the standard release by the Electronic Industries Asso-
ciation (EIA) witht he name RS-232-C.

The EIA RS-232~-C standard interface for the connection of two units is
shown below.

LMoo

rFpZ-Z2omMm-

A “____;ESZT~—__’b A

R$-232-C - RS-232-C

P22 m-

=

Figure 1-3 Schematic Diagram of the RS-232-C Interface

The connection between terminal and modem is standardized. The side of
the interface that ends at the terminal is defined as the DTE (Data
Terminal Equipement) side; the side that ends at the modem is defined as
the DCE (Data Circuit-terminating Equipment) side.

The M20 can be used on:
1. The DTE side of the RS-232-C, using the RS-232-C MODEM cable with

which the M20 can be connected to an asynchronous modem or a serial
peripheral used as the DCE side of the interface.

2. The DCE side of the RS-232-C, using the RS-232-C PERIPH cable with
which the M20 can be connected to terminals used as the DTE side of
the interface.

The Current Loop 20mA Interface

The M20 system, (with the RS-232-C Twin board) and the CURRENT LOOP
,cable, implements a CURRENT LOOP 20mA interface for data exchange with
compatible peripherals.

1-5

CURRENT LOOP 20mA

INTERFACE CURRENT
LOOP
20mA
Compatible
Equipment

Figure 1-4 Schematic Diagram of the CURRENT LOOP Interface

1EEE 488 Standard

This interface defines the methods by which a "Controller' (usually a
processor such as a computer) can control a 'Talker" (usually a mea-
surement instrument such as a voltmeter, etc.,) and a 'Listener' or 'Lis-
teners" (usually recording devices such as a printer and a digital tape
recorder, etc.).

Figure 1-5 summarizes one possible system configuration in which the M20
can be used.

)

MAGNETIC
PRINTER TAPE
RECORDER
!
Programmable Programmable Digital
M20 Power Supply Power Supply Voltmeter 0
CONTROLLER, LISTENER LISTENER TALKER,
TALKER, LISTENER LISTENER LISTENER LISTENER
UNIT
UNDER
TEST

Figure 1-5 An IEEE Std. 488 Interface System with M20

Here is a list of types of devices (made by various manufacturers) compa-
tible with the 1EEE Standard 488 Interface System and therefore controll-
able by the M20:

- Stimulation

. Microwave Frequency Synthesizer
. Word Generator

1-6 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

GENERAL INTRODUCTION

. Signal Generator
. Timing Generator
. Power Supply Programmer

- Measurement
. Bigital Voltmeter
. Electronic Counter
. Automatic Capacitance Bridge

- Display

. Numeric Display
. Plotter

1-7

PART | - RS-232-C SERIAL INTERFACE

2. THE RS-232-C INTERFACE

ABOUT THIS CHAPTER

This chapter describes the RS-232-C interface hardware in terms of its
principal integrated circuits (ICs or chips), the pins and signals used
on the connector as well as configuration. The interface software is
described in terms of the input/output ports and status information that
the user needs to program in order to obtain the necessary baud rate and
the other transmission characteristics according to the requirements of
the application. (The commands needed to do this are described in Chapter
3.)

CONTENTS .

THE INTERFACE HARDWARE 2-1

BUILT-IN RS-232-C INTERFACE 2-1

OPTIONAL RS-232-C INTERFACE 2-3

M20 TO MODEM 2-5
M20 TO PERIPHERAL 2-8
M20 TO M20 2-10
CURRENT LOOP 2-12
MOUNTING A CONNECTOR 2-14
CONFIGURATION 2-15
THE INTERFACE SOFTWARE 2-16

RS-232-C INTERFACE DRIVER 2-17

COMMUNICATIONS INTERFACE 2-18

STATUS OF THE DRIVER 2-19
STATUS OF THE PERIPHERAL 2-22

PROGRAMMING THE INTERFACE 2-24

THE RS-232-C INTERFACE

THE INTERFACE HARDWARE

Inside the M20 the RS-232-C interface hardware makes use of two Intel
8259A Programmable Interrupt Controllers. The master is linked to the
external Single, and the slave to the Dual RS-232-C edge connector and
cennector sockets shown in Figure 2-1.

Figure 2-1 Rear View of M20 showing cable connectors

BUILT-IN Rs;zéz;c 1NTERFACE

Mounted on the motherboard are the pr1n01pal 1ntegrated c1rcu1t$'(1Cs)

In corner A there is th
Receiver/Transmitter;{U:
PCOS commands :

bits).
8253 master .
Controller slave is used to "clock" thefbaua rate.’

These characteristics must be programmed by the uservia the RS-232-C
interface, 'set communication and communication 1nterface commands. See - -
the section on Interface software and subsequent chaptgrs. :

TIMER %r o geer 5 P
. o ey 1] *
o Uffﬂo il St 3
n q—;@ t-g.‘ - l Z8001 { Ol MK37000 {0| MK37900 {0
FRe=g <> 3§ s’b'@S 2
=3 mmy] (TS : ve »
sia Top" o B I | (eme 3 MK37000 MK37000
B o g "> g 0 0
(&%} (awvesy [Faisissy : P
L'T"_'boi g "o Moot [(Jasn 3 [(asn
g - -
T [Jaisie8] [Taises] [Faisies) [Fasero} <t =% OLM 70] Mwarom {
"o "o Toi "od racsaue § | raisaa
- ~ . w3y -
PO e T et o=y [MK22000 % l {
‘ o Tijo b Tos A V5 0 0 0
=4 . s e } ™ Q
[Fasn] [(Fas73) [Tasos] (Faisia] - mg,% "og unmo:;)'a'"'
ma o ™ op "ol 29‘2‘; " o § o P ¥ |
[Trsaa 3 [ais2aa] [Gasz0l 474 3 § o> L’ ; l: § [:mas l
) B = =
& o w3 lDusoo [ramel [resond
"['C_)'.J' {t¢ Mceads Nor — (TEEm Yo Tosr "o
U@—O - "o g ey [(Tesy [(eET
bl g g Yo
v PR o »| - -.m
U@—U g =i N v [Gacs1%3 [Fais00] [
'z!_[]g - ol "o "o
<>3$ B v - e Oasml Gasiag [7aLs043
| !__1ux41 “"m"ﬁ‘ om): (s T35 ; iSd ™ g Y " s
"o P oy] " ﬁa
a—MO Cm | [mmmm G INTERRUPT —
- - CONTROLLER 3
S_MU <% <> 3 l 825181 { % I 8259 A {
P S | w 2
a__Ugﬁ - M ooy bl . .
Sl oo . g Co=m 3
30@ ()5, SR - O3 I ——— o3z
cw g §L0T ¥ ===
5 & Dw swvcHes 8
I SN o NN im-'" L (==} s 3
& D an wm w %5 Yo mor % o
2 ¢ & 35y
-y * g
== ==
O (7] (esiy __—° "ot : %5 =% "o
Mool ol EﬂﬂioiEE:' 000D AL LA
[’narz rnsm =) il H <8 s sezael £ sogq;% ppt]
o Mo Mot LT RIERE i
74500} [Fais0d [Taison & = . s o ¥ Ho o
- of* mlocow LIS 1 g
l’ "".<:I>§ "o) . i MR TR
3 -5 8 O <.
T = § D 5 S =l:;l
3 st "o —,
= = —
% woco 3 - : = - dg) l
e f@ l l |74L3145 z T4.5245
:i ']'c>“' — & ~ ey " oos
s C) €]
- [MCides]
e — —) Sse =
A s, 1 i s 1= 1
i i——— % . H H %

Figure 2-2 RS-232-C Interface Areas of Motherboard

2-2

1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

THE RS-232-C INTERFACE

OPTIONAL RS-232-C INTERFACE

Also mounted near corner A is the miniboard bearing the ICs forming the
optional Dual RS-232-C Interface for communication ports 1 and 2. Each
port has its own 8251A and shares one 8253 and slave 8259A PIC with
function and programming as for the built-in Single RS-232-C Interface.

The hardware (via the corresponding connector cables) automatically

isolates the M20 via optical-isolators from the 20mA Current Loop
~ equipment when present.

2.2

QED oD X <IN v
07 07
s
3 3 o > |la3
& 3 E E a
3 2 - -
Ky ~ A 2
06 oa | ST 3 06
oo E oy : I\ B
oa ~ _—
- oo N p
[-1-] i
oo . &
o
05 EE ‘23.0052 § [DO6NKOKL & q {SU“ Lonz P 05
o9 oS oo
s D ¥ so
oo oa
> ’@.nans § DOSNNONL q r{souw“q < EE
oo "o
| @ CTH EE N Y
oo NGO2 R R’ aa
aa 84; g 04«0l " < r{ml " < oo
oa ::
ga_jefea)racsse. any e 123
o

03 l@ﬂ - o{uul"‘ 4 tuuu" q “ill)i;a 03

o 038 FDI0E+
Y] w81 1Y)

8g30t odt fant)
D L1 w3

02 02

01 0t

Figure 2-3 RS-232-C Dual Interface Mini Board

2.4 1/0 WITH EXTERNAL PERIPHERALS - USER CUIDF

THE RS-232-C INTERFACE

M20 TO MODEM

The signals that the M20 transmits to and receives from a modem, on the
same cable, conform to the EIA RS-232-C standard and to recommendation
V.24 of the CCITT.

The interface signals and their functions are described in Figure 2-4 and
are explained in the text that follows. The names of the signals conform
to the EIA RS-232-C standard. The standard pin assignments apply to both
single and dual RS-232-C Interface plugs as shown in Figure 2-4. See also
Appendix B and the section on Configuration.

Signals are classified in three categories: ground, data, and control. In
the explanatory text, references will be found to "Condition ON" and
"Condition OFF'. These relate to the following voltage levels:

Condition ON 3 volts
Condition OFF -3 volts

Ground Signals

Protective Ground: (Circuits: CCITT 101, EIA AA): is a conductor that is
electrically bonded to the machine or equipment frame. It may be further
connected to external grounds as required.

Signal Ground/Common Return: (Circuits: CCITT 102, EIA AB): is a
conductor that establishes the signal common reference potential for the
signals described in this chapter. Within the OCE, it is fixed at one
point from which it can be connected to the PROTECTIVE GROUND by a
metallic strap within the equipment. The strap can be removed to reduce
electronic disturbances.

Data Signals

- Transmitted Data: (Circuits: CCITT 103, EIA BA): is a binary signal that

represents the data to be transmitted on-line from the M20 to the DCE.

Received Data: (Circuits: CCITT 104, EIA BB): is a binary signal trans-
mitted as data from the DCE to the M20.

2-5

Control Signals

Request To Send: (Circuits: CCITT 1¢5, EIA CA): signals on this circuit,
- sent from the M20, control the data channel transmit function. The ON
condition causes the DCE to assume the data channel transmit mode. The
OFF condition causes the DCE to assume the data channel non-transmit
mode, when all data transferred on circuit 183 (TRANSMITTED DATA) has
been transmitted.

Clear To Send: (Circuits: CCITT 1@6, EIA CB): signals on this circuit,
sent from the DCE, indicate whether the DCE is conditioned to receive
data on the data channel. The ON condition indicates that the DCE is
conditioned to receive data on the data channel. The OFF condition indi-
cates that the DCE is not prepared to receive data on the data channel.

Data Set Ready: (Circuits: CCITT 1¢7, EIA CC): signals on this circuit,
sent from the DCE, indicate whether the DCE is ready to operate. The ON
condition indicates that the signal-conversion or similar equipment is
connected to the line and the DCE is ready to exchange further control
signals with the M20 to initiate the exchange of data. The OFF condition
indicates that the DCE is not ready to operate. Note that this signal is
not always significant and, in some cases, may arrive at the control unit
inverted. ‘ '

Data Terminal Ready: (Circuits: CCITT 1¢8/2, EIA CD): signals on this
circuit, sent by the M20, control switching of the signal-conversion or
similar equipment to or from the line. The ON condition, indicating that
the M20 is ready to operate, prepares the DCE to connect the signal
conversion or similar equipment to the line and maintains this connection
after it has been established by supplementary means. The M20 is
permitted to present the ON condition on the circuit whenever it is ready
to transmit or receive data. The OFF condition authorises the DCE to
return to rest status. '

Received Line Signal Detector: (Circuits: CCITT 149, EIA CF): signals on
this circuit, sent by the DCE, indicate whether the received data channel
line signal 1is within appropriate 1limits for data transfer. The ON
condition 1indicates that the received signal is within appropriate
limits. The OFF condition indicates that the received signal is not
within appropriate limits.

2-6- 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

THE RS-232-C INTERFACE

Transmit Clock: this signal controls the rate at which the character will
be transmitted.

Receive Clock: this signal controls the rate at which the character will
be received.

Ring Indicator: (Circuits: CCITT 125, EIA CE): signals on this circuit,
sent by the DCE, indicate whether a calling indicator is being received
by the DCE. The ON condition indicates that a calling signal is being
received. The OFF condition indicates that no calling signal is being
received.

PROTECTIVE GROUND (OR EARTH} PINS
< »1
M
SIGNAL GROUND OR COMMON RETURN C
P
L
TRANSMITTED DATA U
a 2 G
RECEIVED DATA
M [3 .
0 REQUEST TO SEND 1. T0
¢ DCE
P CLEAR TO SEND
< 5

(READY FOR SENDING)

5 i DATA SET READY
:f:j') < 6

DATA TERMINAL READY

$120
{READY TO RECEIVE)
L, RECEIVED LINE SIGNAL DETECTOR
" (DATA CHANNEL RECEIVED LINE SIGNAL DETECTOR)
P TRANSMIT CLOCK — (SOURCE DCE)
.
1

RECEIVE CLOCK — (SOURCE OCE)

J 3

RING INDICATOR

A

TRANSMIT CLOCK -~ (SOURCE DTE)

v

Figure 2-4 Signals Transmitted on the RS-232-C MODEM Cable

M20 TO PERIPHERAL

The signals that the M20 transmits to and receives from a serial peri-
pheral conform to the EIA RS-232-C standard.

The interface signals and their functions are described in Figure 2-5 and
are explained in the text that follows. The names of the signals conform
to the EIA RS-232-C standard. These pin assignments apply to both Single
and Dual RS-232-C 1Interface plugs as shown in Figure 2-5. See also
‘Appendix B and the section on Configuration. As the electronic
interpretation of each signal may vary according to the equipment connec-
ted to the M20, it is suggested that the manufacturer's equipment hand-
book be consulted for additional explanation of the signals.

Signals are classified in three categories: ground, data, and control. In
the explanatory text, references will be found to '"condition ON" and
“"condition OFF'. These relate to the following voltage levels:

Condition ON 3 volts
Condition OFF -3 volts

Ground Signals

Protective Ground: (Circuits: CCITT 141, EIA AA): is a conductor that is
electrically bonded to the machine or equipment frame. It may be further
connected to external grounds as required.

Signal Ground/Common Return: (Circuits: CCITT 1¢2, EIA AB): is a
conductor “that establishes the signal common reference potential for the
signals described in this chapter. Within the peripheral unit, it is
fixed at one point from which it can be connected to the PROTECTIVE
GROUND by a metallic strap within the unit. The strap can be removed to
reduce electronic disturbances.

Data Signals

Transmitted Data: (Circuits: CCITT 143, EIA BA): is a binary signal that
represents the data to be transmitted on-line from the peripheral unit to
the M20.

7_0 170 WITH EXTERNAL PERIPHERALS - USFR GUIDE

THE RS-232-C INTERFACE

Received Data: (Circuits: CCITT 1¢4, EIA BB): is a binary signal
transmitted as data from the M20 to the peripheral unit.

Control Signals

Request To Send: (Circuits: CCITT 1¢5, EIA CA): signals on this circuit,
sent from the peripheral unit, control the data channel transmit func-
tion. The ON condition notifies the M20 that the peripheral is ready to
transmit data. The OFF condition indicates that the peripheral has no
data to send. (This signal 'is not always significant. Its use depends on
the peripheral.)

Clear To Send: (Circuits: CCITT 1¢6, EIA CB): signals on this circuit,
sent from the M20, indicate whether the M20 is conditioned to transmit
data on the data channel. The ON condition indicates that the M20 is
conditioned to transmit data on the data channel. The OFF condition
indicates that the M20 is not prepared “to transmit data on the data
channel.

Data Set Ready: (Circuits: CCITT 1¢7, EIA CC): signals on this circuit,
sent from the M20, indicate whether the M20 is ready to operate. The ON
condition indicates that the M20 is ready. The OFF condition indicates
that the M20 is not ready.

Received Line Signal Detector: (Circuits: CCITT 199, EIA CF): signals on
this circuit, sent from the M20, indicate whether the M20 is ready to
transmit data to the peripheral unit. The ON condition.indicates that the
M20 is ready. The OFF condition indicates that the M20 is not ready.

Data Terminal Ready: (Circuits: CCITT 1¢8/2, EIA CD): signals on the
circuit, sent from the peripheral unit, indicate whether the peripheral
unit is ready to exchange information with the M20. The ON condition
indicates the unit is ready. The OFF condition indicates the unit is not
ready. (This signal is not always significant. Its use depends on the
peripheral.)

Reverse Channel: (non-standard circuit): the significance of this signal,
which is sent from a peripheral unit, depends on the peripheral connected
to the M20. 1t is sometimes used to transmit a ''busy'" or an "anomaly"
status to the M20.

2-9

PROTECTIVE GROUND (OR EARTH) PIN
< »i1
F
: E
SIGNAL GROUND OR COMMON RETURN M
< 7 A
L
E.
P
TRANSMITTED DATA L
< 2 4
_ G
. RECEIVED DATA
pi3
M REQUEST TO SEND
2 ¢ 4 }— 70
{ DTE
O!
[CLEAR TO SEND
{ . ’ 5
(READY FOR SENDING)
DATA SET READY :
' »16
RECEIVED LINE SIGNAL DETECTOR 8
(DATA CHANNEL RECEIVED LINE SIGNAL DETECTOR)
DATA TERMINAL READY
< . 20
REVERSE CHANNEL
& 11
(DTE Busy)

Figure 2-5 Signals Transmitted on the RS-232-C PERIPHERAL Cable

M20 TO M20

As shown in previous sections, the RS-232-C can support an M20 on either
side of the interface: on the DTE side, with an RS 232 MODEM cable; on
the DCE side, with an RS-232 PERIPH cable. The text that follows
describes the connection of an M20 on the DTE side with an M20 on the DCE
side. The connection is schematically shown in Figure 2-6.

2-10 _ 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

THE RS-232-C INTERFACE

RS-232 MODEM CABLE RS-232 PERIPH CABLE

onN
(@])

DTE Side DCE Side

Figure 2-6 M20 to M20 Connection

The interface signals used are described in Figure 2-7 and are explained
in the previous sections. The names of the signals conform to the EIA
R5-232-C standard. The standard pin assignments apply to both Single and
Dual RS-232-C Interface plugs as shown in Figure 2-7. See also Appendix B
and section on Configuration.

CANNON FEMALE PILUG CANNON MALE PLUG

!

PINJPIN
PROTECTIVE GROUND 1]l PROTECTIVE GROUND
'V| 4D~lk >l¢—pi¢ lVl
2 SIGNAL GROUND/COMMON |7 71 SIGNAL GROUND/COMMON 2
>le¢ dle >
() RETURN P RETURN ()
E M
R 0
TRANSMITTED DATA |2 ! D TRANSMITTED DATA
PpleE 2e
H M
RECEIVED DATA 3 3 RECEIVED DATA
- L "_'C*’—‘c >
0 0
N N 6
DATA SET READY DATA SET READY
pENa—Np >
E
RECEIVED LINE SIGNAL |8 »-c 8] RECEIVED LINE SIGNAL »
DETECTOR T Ts DETECTOR
R ND 5 CLEAR TO SEND
CLEAR TO SE »5 oo >
R R
ATA TERMINAL READY 120 2 DATA TERMINAL READY
2 «—2%«
REQUEST TO SEND 4 REQUEST TO SEND
<« —le—He
< REVERSE CHANNEL 11 19 TRANSMIT CLOCK >
(DTE Busy) {SOURCE DCE)
17 RECEIVE CLOCK >
{SOURCE DCE]
RING INDICATOR
22 0 N
¢ 24 | —TRANSMIT CLOCK
(SOURCE DTE)

Figure 2-7 Signals Exchanged Between Two 1920s

CURRENT LOOP

As shown in Figure 2-8, a Current Loop cable contains four wires without
a connector, two assigned to the transmitter and two to the receiver. The
wires must be connected as shown; the significance of the individual
signals depends on the type of peripheral unit connected.

- an 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

THE RS-232-C INTERFACE

Note >

| All manufacturers use the coloured wires and terms specified for Current
Loop 20 mA compatible equipment. The current source can be supplied by
| : the M20 ("active" usage) or by the connected equipment ("passive" usage).
} - Refer to manufacturer's publications for full details.

TRANSMITTED DATA

WHITE wire Tx+ BLUE wire Rx«+
RETURN
- RED/WHITE wire Tx-— e RED wire Rx—
M 20 | : ,
RECEIVED DATA CURRENT LOOP
BLACK/WHITE wire Rx+ - WHITE wire Txe+ 20 mA
COMPATIBLE
EQUIPMENT
RETURN
BROWN/WHITE wire R x — o BLACK wire Tx—

Figure 2-8 Signals Transmitted on Wires of a Current Loop Cable
The Dual RS-232-C Interface can be connected to one or two Current Loop

compatible peripherals. Such circuits may not be in parallel. See the
~section on Configuration. /

M20 As Receilver

The usual connection between the M20 as receiver and the compatible
equipment as transmitter is the serial circuit of Figure 2-9..

2-13

470 Q Rxe Tx+

+12 vi-AAN s’ o —L

& T {
20 mA CURRENT LOOP
COMPATIBLE TRANSMITTER

M20 RECEIVER

-

Figure 2-9 Serial Connection With M20 as Current Loop Receiver

M20 As Transmitter

The usual connection between the M20 as transmitter and the compatible
equipment as receiver is the serial circuit of Fiqure 2-14.

470 Q

+12 v'—’V\/\f—l

Tx+ Rx+

Tx— Rx—

{
R ;s

M20 TRANSMITTER 20 mA CURRENT LOOP
COMPATIBLE RECEIVER

Figure 2-1¢ Serial Connection with M20 as Current Loop Transmitter

MOUNTING A CONNECTOR

Olivetti supplies an RS-232-C conversion cable to 1link the connector
at the back of the M20:

- for the Single RS-232-C interface to an RS-232-C compatible connector:

. a male Cannon plug for Modem connection, or .

2-14 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

THE RS-232-C INTERFACE

o
. a female Cannon plug for Peripheral connection;

- for the Dual RS-232-C interface to:
. a pair of:
* female Cannon plugs for connection to 2 Peripherals, or
* Current Loop cables for connection to 2 Peripherals;
or

. one female Cannon plug and one Current Loop cable for connection to 2
Q Peripherals, or

p-Se)

. one male Cannon plug for connection to a Modem and one Universal
cable (to be wired by the user) for connection to:

* a female Cannon plug for a Peripheral, or
* a male Cannon plug for a Modem, or

* a Current Loop peripheral.

CONFIGURATION

Each RS-232-C Interface port can be connected to only one RS-232-C com-
patible device at a time. But each port can be used independently as can
é l the Single and Dual RS-232-C Interfaces.

The valid combinations of cocnnections on the three ports are as shown in
Table 2-1, where capital letters indicate pre-wired cables and small
letters user wired connections (M and m for Modem, P and p for Peripheral
and ¢ for Current Loop).

SINGLE R5-232-C DUAL RS-232-C INTERFACE

INTERFACE

PORT ¢ PORT 1 ' PORT 2

M M m

p

o]

P P

C

P M "M

p

C

P P

C

] C

Table 2-1 M20 RS-232-C Interface'Port Connections

THE INTERFACE SOFTWARE

The interﬁéce software has to program the two RS-232-C ils for each port.
This is achieved by:

- the user loading the RS-232-C driver with the PCOS RS232 command:
- setting the transmission characteristics of individusl ports with the
PCOS SCOMM (set communication port) command, where parameter values are

selected by the user or the system defaults are used;

- the user programming the processing at individual ports with a series
of BASIC "ci" calls to the communications interface;

- and possibly, the user redefining the names of any port with the PCOS

SOEVICE (set device) command and redirecting input/output with the PLQS
'+t and '~' redirection extension. I

2.16 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

 THE RS-232-C INTERFACE

RS-232-C INTERFACE DRIVER

The RS-232-C Interface driver is a general purpose asynchronous com-
munication utility, which is invoked by use of the PCOS RS232 command. ="

Via the PCOS SCOMM command, the user may specify the baud rate, parity, ...
stop bits, and data bits for the communication line. In addition, the s
SCOMM command can specify the standard XON/XOFF handshake, a variable-
length input buffer, and either character echoing or no character echoing
at input.

The RS-232-C Interface driver makes use of the PCOS byte stream inter-
face. : . - Lo -

The receive mechanism is interrupt driven and maintains an input ring
buffer. The output routine is not interrupt driven. y

0C1: set on-line when the M20 is ready to communicate.

SCOMM Defaults

The default values for a serial port are: baud rate = 96@f, parity = ..
NONE, stop bits = 2, data bits = 8, duplex = HALF, handshake = ON, buffer
size = 128. .

Handshake

Handshaking can be enabled or disabled by-using SCOMM. When the hand- iwi:
shaking is enabled, the RS-232-C Interface driver implements the standard ==
XON/XOFF serial handshake. When the input buffer is three-quarters full ‘==
the receiving routine will send an XOFF character (DC3 ‘= 13 hexadecimal)
to the transmitting device (setting bit 5 of table 2-2 to 1). When the
buffer becomes less than half full an XON character (DC1 = 11 hexadeci-
mal) is sent to the sending device (and bit 5 is cleared to #).

When handshaking is enabled, the receive interrupt routine scans incoming
characters for either the XON or XOFF character, and will set or reset a i
flag to indicate the receiving bit 3 of the handshake status (see bit 3
of Table 2-2). The transmitting routine will look at this flag prior to
transmitting a character and will wait until the XON character has been
received before sending the character. ‘

2-17

DevicevParameter Table

A table of values called the Device Parameter Table (DPT) is used by the
driver to control the RS5-232-C Interface (serial 1/0) ports. This table
contains the port status word, all of the 1/0 port addresses and device
commands, and the receive buffer control parameters. The SCOMM command
will use the DPT to set the port parameters.

Handling'lnput Errors

Errors that occur when a character is input (a ring buffer overflow, or a
‘hardware parity, overflow, or framing error) will cause flags to be set
in the driver (see Table 2-2). The first operation that performs a read
from the input buffer will return the error code for Disk 1/0 Error (PCOS
error code 57) and will clear the error bits. (The error bits can be read
and not cleared with the 'ci'" Status Read command, or can be cleared
selectively with the "ci' Status Write command.)

This will allow any program running to know that an error has occurred,

but cannot identify which is the erroneous character as the input buffer
neither stores nor identifies the status for each character.

COMMUNICATIONS INTERFACE

The Communications Interface is the interface from the BASIC interpreter

to the RS-232-C Interface ports. A relocatable utility called ‘'ci.sav" is.

provided as a part of PCOS, which can be called from BASIC.

1If the RS-232-C Interface driver ''rs232.sav" has not been loaded prior to
the execution of 'ci.sav'", then a PCOS error will be returned in the
Error variable of the PCOS "ci' command. :

The general format for the calls is:

call "ci" (Port number, “1/0 Command",@ Error, Parameter list)

where

2 .
- Port number identifies the specific serial 1/0 channel. Port numbers
are defined as follows:

- 8

[}

Main RS-232-C port (on Single RS-232-C 1Interface)

. 1 = First expansion port

) (on Dual RS-232-C Interface)
Second expansion port

.
~N
i

2 109 T /A 1I1TTU CVYTEDMAL DEDIDULCDAIL S 11D i1 nC

THE RS-232-C INTERFACE

- 1/0 Command specifies which operation is to be performed. The following
are valid operations: '

. "q" - Open the port

. "¢" - Close the port

. "w" - Write to port

. '"r'" - Read from port

. '"'sr'' - Status read from port
N . "sw" - Status write to port

- @ Error is a value returned in an integer variable (which must be
preceded by an "at" (@) sign). A non-zero value indicates unsuccessful
completion of the command.

- Parameter list, which is not required for Open or Close, includes any
parameters passed to, or returned from, the utility.

STATUS OF THE DRIVER

The status of the RS-232-C Driver can be ascertained from reading Oriver
Status word associated with the port identified in the PCOS Status Read
function call (see Chapter 3, "STATUS READ (sr)" Command). The format is
to be interpreted as shown in Table 2-2.

STATUS BIT POSITION LEGAL VALUE* : MEANING*
Duplex mode | 15 1 full echoing of all input
)] No echoing of input
(reserved) | i4] ~ (not used)
JFraﬁingnérror 13 1 a valid stop bit has not

been detected at the end
of each character. (Re-
ported from 8251A - Table
2-3)

¢ No Framing Error

e

Table 2-2 Driver Hardware/Software Status Word - Driver State Flag

. (cont.)

2-.10

STATUS BIT"POSITION LEGAL VALUE*" ~ MEANING*

Overrun Error 12 1 a character has not been
read before the next one
becomes available. (Re-"
ported from 8251A - Table

2-3)
¢ No Overrun Error
Parity Error 11 1 a change in parity value

has been detected. (Re-
ported from 8251A - Table

2-3)
) No Parity Error
Timeout Error 19 1 a timeout has occurred

while waiting for the
Transmit Ready line on

the 8251A
[No Timeout Error
HMemory Error 9) 1 driver failed to open
buffer - no Open Port
call or insufficient mem-
ory.
) No Memory Error
Buffer Error 8 1 interrupt routine tried
to overwrite the buffer.
g No Buffer Error
(reserved) 7 g (not used)
Free-running é 1 free~running protocol,
protocol)] Handshake protocol using
XON/Y.OFF
XOFF /XON Flag 5 1 XOFF character,) sent in
(M20 previously previous
acted as trans- transmis-
mitter)] XON character jsion

Table 2-2 Driver Hardware/Software Status Word - Driver State Flag
(cont.)

- N 170 11ITH EXTCRNAI PERIPHERAI S - USEFR CHIDE

THE RS-232-C INTERFACE

STATE B1T POSITION
Hardware state 4
XOFF /XON Flag 3
(M20 acts as
receiver)

»
»

LEGAL VALUE*

‘state @ - XON

MEANING*

state 1 ~ Buffer 1is 75%
full. XOFF is
sent from M20
i.e. other sen-
der should
stop.

state § - Input buffer is
ready to re-
ceive charac-
ters (default
state). XON is
sent from M20
i.e. other sen-
der should
start again.

hardware present and
8259A passed interrupt
mask test.
No hardware
test

or failed

XOFF character,) detected
in cur-
rent re-

XON character Jception

state 1 - XOFF character

is received
from outside.
No characters
will be trans-
mitted.

received
from outside.
Characters will
be transmitted
(default
state).

Table 2-2 Driver Hardware/Software Status Word - Driver State Flag

(cont.)

2-21

STATE 81T POSITION
(reserved) 2
(reserved) 1

T(Fesérved) g

LEGAL VALUE*
g
g
]

“* with respect to M20 RS-232-C interface

»
>

MEANING*
(not used)
(not used)

(not used)

Table 2-2 Driver Hardware/Software Status Word - Driver State Flag

Correspondingly the Driver Status word can be changed by using the ci

“sw'' status write command.

STATUS OF THE PERIPHERAL

The status of the B8251A for each port can be ascertained reading the
status byte of the port address identified in the PCOS Status Read
function call. In this case the format is to be interpreted as shown in

Table 2-3.
STATUS BIT POSITION
Data Set Ready 7
SYN detected 6
'Framing Enfor 5
’Overrun Error 4

-

-LEGAL VALUE*

1
g

MEANING*

data Set Ready signal ON
OFF

asynchronous transmission

a valid stop bit has not

been detected at the end
of each character.
No Framing Error.

This bit is reset by
Error Reset bit in Table
2-4

a character has not been

‘read before the next one

becomes available.
No Overrun Error.

This bit 1is reset by

Error Reset bit in Table

2-4

Table 2-3 Peripheral Hardware Status - 8251A Status Byte {(cont.)

222

1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

THE RS-232-C INTERFACE

STATE BIT POSITION LEGAL VALUE* - MEANING
Parity Error 3 : 1 a change 1in parity value
has been detected.
) No Parity Error.

This bit is reset by Error
Reset bit in Table 2-4

Transmitter 2 1 the 8251A has no charact-
- empty ers to send.
g Transmitter is not empty
0 Receiver ready 1 1 a character received by

8251A is ready to be
input to M20.

g Receiver not ready
Transmitter g 1 the 8251A is ready to
ready receive a character for
transmission.
@ Transmitter not ready

* with respect to M20 RS-232-C interface
Table 2-3 Peripheral Hardware Status - €251A Status Byte

Correspondingly this status can be changed by writing the command byte on
the port address using the ci "sw" command, which sends the hardware

\j command directly to the 8251A. See Table 2-4.
FUNCTION BIT POSITION = LEGAL VALUE* MEANING*

Enter Hunt 7) asynchronous transmission

mode

‘Internal Reset 6 g no internal reset

hequest to Send 5 1 activate Request To Send
line

Error reset 4 1 reset parity, overrun and
framing errors

. Table 2-4 Peripheral Hardware Status - 8251A Command Byte (cont.)

2-23

T

FUNCTION BIT POSITION LEGAL VALUE#* , MEANING*
Send Break 3) no break character
character
Receive enable 2 1 ‘enable Hardware Receive

state

Data Terminal 1 1 activate Data Terminal
Ready 4 ' Ready line
Transmit -enable g 1 enable Hardware Transmit

state

* with respect to M20 RS-232-C Interface

able 2-4 Peripheral Hardware Status - 8251A Command Byte

PROGRAMMING THE INTERFACE

The RS-232-C Interface is programmed for each port. The user:

A

loads the RS-232-C driver using the PCOS command "rs232";

sets the transmission characteristics of individual ports with the PCOS
SCOMM (set communication port) command, where parameter values are
selected by the user or the system defaults are used;

programs the processing at individual ports with a series of PCOS 'ci"
commands (a set of BASIC calls to the communications interface);

possibly, redefines the names of any port with the PCOS SDEVICE (set
device) command and redirecting input/output with the PCOS '+' and '-'

redirection extension.

11 these commands are déscribed in Chapter 3.

2_24 B 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

-~

3. RS-232-C COMMANDS

ABOUT THIS CHAPTER

This chapter describes all those PCOS commands directly usable with the

RS-232-C Interface. These are RS232 to invoke the RS-232-C Driver, SCOMM

- to specify the port data characteristics, SDEVICE to define the port
device names, the 'ci' calls from BASIC to program the functions needed
on each port, and the "+" or "-'" command indicators for redirection of
input or output.

CONTENTS | SIMULTANEOUSLY ACTIVE 3-25
‘ DEVICES
INTRODUCTLON 3-1
NO INTERACTION FLAG 3-25
SCOMM 3-1
SDEVICE 3-3
RS232 3-4
c1 3-5
OPEN CALL "o" 3-7
CLOSE CALL "c" 3-9
READ CALL "r" 3-11
STATUS READ CALL "sr* 3-14
STATUS WRITE CALL "sw' 3-16
WRITE CALL "w" 3219
DEVICE RE-ROUTING 3-21
INTRODUCTION 3-21
LOCAL DEVICE RE-ROUTING 3-22

GLOBAL DEVICE RE-ROUTING 3-24

RS-232-C COMMANDS

INTRODUCTION

This chapter deals with the PCOS command CI and other PCOS features
'specifically related to the use of the RS-232-C interface. The examples
contain M20 BASIC statements and may cite other PCOS commands, of which a
working knowledge is assumed. The BASIC statements used are not deséribed
here but are fully illustrated in the "“BASIC Lanquage Reference Guide'.
More details on PCOS and its commands are to be found in the
"Professional Computer Operating System (PCOS) User Guide'.

SCOMM

Sets various environment parameters for an RS-232-C communications port.

D[z wmmﬂmww
Figure 3-1 SCOMN
Where
SYNTAX ELEMENT MEANING
port name the string line name specified by the SDEVICE
command (or a default name, such as COM or .
com2).
baud rate an integer that may be either 5@, 11¢, 3¢¢, 6¢d,
1200, 1800, 240d, 4800, 9604.
parity check a string that may be either ODD, EVEN, or NONE.
stop bits an integer that may be either @,1, or 2. (4 = 1

stop bit; 1 = 1.5 stop bits; 2 = 2 stop bits)

SYNTAX ELEMENT MEANING
data bits an integer that may be either 5, 6, 7,'or 8.
duplex : a string that is either HALF or FULL. When FULL

characters are echoed as they are received.
When HALF no echoing occurs.

handshake a string that is either ON or OFF. The ON
indicates that the driver will carry on the
standard XON/XOFF handshake. The OFF indicates
that no handshake should be done.

buffer size the integer that indicates the size of the input
buffer which is allocated on the :heap.

Characteristics

In particular, the user may specify the baud rate, parity check, number
of stop bits, number of data bits, duplex, handshake, and size of input
buffer. !

1f RS232, the communications driver RS232.SAV, has not been loaded prior
to execution of SCOMM, a device not found error will be returned.

If no parameters other than the port name are specified the current

values for that port will be displayed. 1f a null parameter is specified
that particular parameter will remain unchanged.

Example

IF you enter... THEN. ..

sc coM:,,,2,,,, FULL KGH on port # (com:) the number of stop
: bits 1is changed to 2, characters

are echoed as received and all

other parameters are left as before

-~ 170 4TI TW CXYTERNAI PERIPHERAI S _ 1ISFR it1nc

RS-232-C COMMANDS

»
-

Remarks

The default values for a port are: baud = 960@, parity = NONE, stop bits
= 2, data bits = 8, duplex = HALF, handshake = ON, buffer size = 128.

Changes made using the SCOMM command can be made permanent by using the
PCOS PSAVE command.

SDEVICE

Displays the device table and optionally renames a device.

new device . L 2 2N
name * o

o

Figure 3-2 SDEVICE

Where

SYNTAX ELEMENT MEANING .

device name _ the current name of any device (that exists in
the device table) consisting of - at most 13
printable characters followed by a colon. This
can be either the name assigned in the last
- SDEVICE command (in the current working session)
or, in the absence of -a preceding SDEVICE
command, the default device name, or, if a
customized PCOS is being used, the PSAVEd device
name.

new device name the name to be assigned to the device in ques-

tion. The name must be at mest 13 characters
long and must be followed by a colon (:) ‘

3-3

Default device names *
prt: = PCOS Printer Driver
cons: = PCOS Console Driver
(video and keyboard)
Com: = Standard RS-232-C
cormunication port
Com1: = First expansion RS5-232-C
communication port
Com2: = Second expanSion RS-232-C S
“communication port ' |
Characteristics

Default usage of SDEVICE will display the device table for those devices
available. Each device is described in terms of R(ead) or W(rite) to
indicate capability for input, output or both.

RS5232

Causes the RS-232-C Cbmmunications Interface device driver to be loaded.

Figure 3-3 RS232
Characteristics

This device driver is a general purpose asynchronous communication util-
ity. '

3-4 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

RS-232-C COMMANDS

By using the SCOMM command the user can Specify the baud rate, parity,
stop bits, and data bits for the communication line. In addition, the
standard XON/XOFF handshake, a variable-length input buffer, and (no)
character echoing (DUPLEX) is supported.

The interface for the device driver is a PCOS byte-stream interface.

All driver parameters are specified in the Device Parameter Table so that
accessing the parameters 1is simplified. The receive mechanism is
interrupt driven and uses an input ring buffer, while the output routine
is executed without using a buffer.

The default receive buffer 'size can be increased manually using a "ci"
parameter. Such an increase does not alter the user memory space.

Cl

Allows the user to program 1/0 operations on the Communications Inter-
face, provided the R5-232-C Driver has already been invoked (see RS232).

—’@*@" ggrn:ber "'"@"@"’ ::lt)?nmand

‘ error -J—>‘ ’ ; —>§ parameter ":@—»

Figure 3-4 (I

Where

SYNTAX ELEMENT MEANING

port number any valid RS-232-C interface port number:
g - built-in port

1 - first expansion port
2 - second expansion port

3-5

SYNTAX ELEMENT

1/0 command

error _

parameter

Characteristics

»
»

MEANING
any valid CI command mnemonic:

o "~ Open the port
c Close the port

r Read from the port

W Write to the port

sr Status Read from the port
SW ‘Status Write to the port

a valid integer variable name used to receive
the returned error value:

Meaning
] correct functioning of the operation
1 invalid parameters
2 incompatible port status

where higher values have meanings according to
the function of the Cl function call

a parameter chosen according to the function of
the C1 function call

Any C1 command must be called from BASIC using CALL statements. The first
such call will cause CI to be loaded and made memory resident. ~

1f the Communications Driver has not been loaded prior to the execution
of any Cl1 command, the error integer variable will return the value of
the PCOS error code corresponding to 'command not found" (92).

The RS-232-C Communications Driver, being held in RS232.5AV, only needs
to be loaded once by use of the PCOS RS232 command (or an EXEC statement)
prior to using any Cl command.

3-6

1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

RS-232-C COMMANDS

Example
DISPLAY ' COMMENTS
LIST Define initial values for port
. {(built-in one) and error variables.
. Load RS232 Communications Driver
Open port @ (built-in on. mother-

. board)
19 PN% = @: E% = @ '
28 EXEC *'rs"

3¢ CALL "ci' (PN%, "o",@E%)

Remarks

The error is returned in an integer variable (which must be preceded by
an "at" (@) sign). A zero return value always indicates no error has
occurred in the command. PCOS error 92 will be returned in the error
variable, if the driver command file, RS232.5AV, has not been executed
beforehand.

The parameter list must include at least three parameters (port number,
command, error). 1f one of these is missing, PCOS parameter error 99 is
returned. ;

OPEN CALL “o"

Causes the RS-232-C Communications Interface input buffer space to be
allocated and the hardware to be initialised.

3-7

~E@-0-O-0-O-E}-0-0-0-

-

Figure 3-5 CI "o"

Where
SYNTAX ELEMENT | : MEANING

port number any yalid RS-ZSZ—C interface port number:
#§ - built-in port
1 - first expansion port
2 - second expansion port

) thé valid C1 command mnemoric:

i o | open the port
error a valid integer variable name used to receive

the returned error value:
Meaning

correct functioning of the operation
invalid parameters

port already open

input buffer too big for heap

time out error on initial XON (only
in handshake mode)

HWN -2

3-8 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

RS-232-C COMMANDS

Example
DISPLAY COMMENTS
LIST
19 PN% = @: E% = @ : Open port # (built-in on mother-
3@ CALL "ci" (PN%,"o",eE%) board)

CLOSE CALL '"c"

Causes the RS-232-C Communications Interface buffer space to be deal-
located and the hardware interrupts to be disabled.

-@-0-O-0-0-E=]-0-0-0-

error —»@——»

Figure 3-6 CI1 "c"

Where
SYNTAX ELEMENT MEANING
port number any valid RS-232-C interface port number:
@ - built-in port
1 - first expansion port
2 - second expansion port
c the valid CI command mnemonic:
B c . close the port
error A a valid integer variable name used to receive
the returned error value:
Meaning
@ correct functioning of the operation
1 invalid parameters
2 port not open
3 input buffer was never allocated
Characteristics

Any CI command must be called from BASIC using CALL statements. The first
such call will cause CI to be loaded and made memory resident.

If the Communications Driver has not been loaded prior to the execution
of any CI command, the error integer variable will return the value of
the PCOS error code corresponding to "command not found' (92).

The RS-232-C Communications Driver, being held in RS232.SAV, only needs

to be executed once by use of the PCOS RS232 command (or an EXEC state-
ment) prior to using any CI command.

2. 10 T/N 11T CVTEDNAI DEDTIDUCDAI S HCED MHUINEC

¢

RS-232-C COMMANDS

Example

DISPLAY COMMENTS

190 CALL 'ci'' (PN%, "c", @E%) close port @ {(built-in on mother-
. board)

READ CALL "r"

Causes the string variable specified to be filled with the data received
from the serial port on the RS-232-C Communications Interface.

—~@-O-O-~O-O- % [~ O~O-O-0O

@—»@—-» error - —» stl.'ing l@—‘ count "*@-—5

Figure 3-7 CI "r"

3-11

Where
SYNTAX ELEMENT MEANING
port number any valid RS-232-C interface port number:
@ - built-in port
1 - first expansion port
2 - second expansion port
r ‘ the valid CI command mnemonic:

- r Read from the port . @
error a valid integer variable name used to receive
the returned error value:

Meaning
)] correct functioning of the operation
1 invalid parameters
2 port not open .
3 time-out error on XON handshake
4 character (parity, overflow, framing)
error or buffer overflow error
string a valid name for the string variable to receive
data read from the port
count a valid integer variable name for the optional
maximum number of characters to be read in from
the port
Characteristics

If the optional count is not specified, either the string is filled with
the length of the string, or, if a separator character is encountered in
the input stream before the string is full, the string is filled up to,
but not including, the separator character. (The separator character is
specified with the Status Write "sw" command. The default separator
character is a carriage return.)

3-12 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

RS-232-C COMMANDS

-
An optional count can be specified which specifies the number of charac-
ters to be read from the port. This causes the string to be filled either
up to its 1length or up to the count, whichever is least. (Note: the
separator character will not terminate the command in this case.)

In either case, the length of the string is set equal to the number of
characters received. Also, in either case, the command will wait to
receive characters until the termination condition is satisfied. (Note:
in order to detect the presence of received characters and to avoid the
wait, the Status Read CALL "sr'' may be used to determine the number of
characters received in the input buffer.)

?\,3 i Example

DISPLAY COMMENTS
LIST statements to use default port
. characteristics of 96@@ baud; 7-bit
. - characters with no parity, 2 stop
. bits and no echo; etc. (see SCOMM).
19 PN% = @: E%X = ¢ Define 1initial values for port
15 C$ = SPACE $(1) (built-in one), error and string
variables. '

Line 15 defines a space C$ which
. will be filled by received data.
129 CALL "ci" (PN%,"r",eE%,eC$,1) read one character (string length =
1)

Remarks

The data read in is returned in a string variable (which must be preceded
by an "at" (@) sign). Space for the string variable must he allocated
before the call is made.

A PCOS parameter error will be returned, if a Read CALL is used without
the string variable.

12

STATUS READ CALL “sr*

Allows the BASIC program to read the current status of the hardware and
the RS-232-C Communications Interface device driver.

RO YO Yo YO N [m No Wo, Wy W, Wola 1

hardware J driver JA ’ buffer L XN)
status 4 status count

r Y

at least one parameter must be included

Figure 3-8 C1 "sr"

Where
SYNTAX ELEMENT MEANING
port numﬂ%f any valid RS-232-C interface port number:
- built-in port
1 - first expansion port
2 - second expansion port
sr the valid C1 command mnemonic:

sr Status Read from the port

- aa : T /A LITTI CVTCOMAG DCDTIDUCDAIC _ 1HCED CIHINE

RS-232-C COMMANDS

SYNTAX ELEMENT MEANING

error _ ~a valid integer variable name used to receive
. the returned error value:

Meaning
g correct functioning of the operation
1 invalid parameters
2 port not open
hardware status ‘a valid integer variable name used to receive

the returned hardware status value. This is the
.value of the byte defined in Table 2-3

driver status a valid integer variable name used to receive
the returned driver status value. This 1is the
value of the word defined in Table 2-2

buffer count ‘ a valid integer variable name used to receive
the returned buffer count. This is the count of
the characters in the input buffer

Characteristics

Up to three integers are returned which indicate the hardware status, the
RS-232-C device driver status and the current buffer count. Examining the
buffer count before a Read CALL 'r", permits the BASIC program to
determine whether a character has been received before actually com-
mitting to reading a character. ‘

The driver status word accessed via a Status Read CALL "sr" and the
driver control word (accessed via a Status Write CALL "sw'", below) are

identical.

The hardware status parameter is defined in Table 2-3 and corresponds to
the 8251A Programmable Communication Interface (USART) STATUS byte.

The RS-232-C driver status parameter 1is defined in Table 2-2 and
corresponds to the RS232.SAV driver internal STATE FLAG word.

3-.18

For example, for the RS232.SAV driver:

hex @#@1¢ default internal driver state after Open Com-
mand:

Half Duplex, Handshake Enabled, XON, no

errors;
Buffer allocated and Hardware exists.

DISPLAY COMMENTS

LIST

10 PN% = @: E% = @

14 HS% = @:05% = @9:8BC% = ¢

19@ CALL "ci' (PN%,"sr'",eE%, Get status and buffer count

@HS%,0D5%,08C%)

STATUS WRITE CALL "sw"

Allows the BASIC program to write control information directly to the
hardware and the RS-~232-(device driver.

3-16 1/0 WITH EXTERNAL PERIPHERALS - USFER GUIDE

RS-232-C COMMANDS

- O~-O~-O-0 m.,}

O O [J O—L@—» iy 'J- v, ()

[

at least one parameter must be included

Figure 3-9 CI "sw"

Where

SYNTAX ELEMENT MEANING

port number any valid RS-232-C interface port number
@ - built-in port

1 - first expansion port
2 -~ second expansion port

sw the valid C1 command mnemonic:

sw Status Write to the port

error a valid integer variable name used to receive
' the returned error value:

Meaning
@ correct functioning of the operation
1 invalid parameters
2 port not open

SYNTAX ELEMENT 'MEANING

_ separator a valid integer name for the character used to
separate items read by Read command. The default
character is a carriage return.

hardware control a valid integer variable name used to define the
hardware control byte. See Table 2-4

driver control a valid integer variable name used to define the
driver control word. See Table 2-2

The driver control word accessed via the Status Write CALL "sw' and the
driver status word in Table 2-2 are identical.

Characteristics

The first parameter is an integer and specifies the separator character
to be used in separating input for the Read CALL "r' command.

The driver control word accessed via the Status Write CALL "sw' and the
driver status word in Table 2-2 are identical.

The hardware control parameter is a byte defined in Table 2-4 and
corresponds to the 8251A Programmable Communication Interface (USART)

COMMAND byte.
For example, for the RS232.SAV driver:

hex 37 default command byte:
parity, overflow and framing error bit is
reset; Request to Send and Data Terminal
Ready signals are set to @, receive and
transmit are enabled.

hex 15 clear error command byte:
parity, overflow and framing error bit is
reset; Request to Send and Data Terminal
signals are unchanged; receive and trans-
mit are enabled.

2.18 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

T

N
{xig
&

RS-232-C COMMANDS

Example

DISPLAY COMMENTS
LIST
10 PN% = §: E% = @
14 HS% = @: DS% = @: BC = §
619 CALL "ci" (Pi%, "sw",0E%,,HS) set hardware status
Remarks

In order to reconfigure the baudrate, parity, stop bits, data bits,
duplex, handshake enable, or input buffer size of the RS-232-C driver,
the PCOS set communications command SCOMM should be executed. If the
hardware control byte is specified, the hardware status bits and the
error bits of the driver control word may change.

WRITE CALL "‘w"

Causes the parameters specified in the list (a mix of integers and
strings) to be transmitted from the specified port on the RS5-232-C
Communications Interface.

3-19

@O~ OO e |- O~ OO~

@—v error —o@] parameter @-—0

Figure 3-10 CI "w"

Where
SYNTAX ELEMENT ' MEANING
port number any valid RS-232-C interface port number:
@ - built-in port
1 -first expansion port
2 - second expansion port
W the valid CI command mnemonic:

. W write to the port QE?
error : a valid integer variable name used to receive
the returned error value:

Meaning

g correct functioning of the opera-
tion

1 invalid parameters

2 port not open

3 time-out error on character trans-
mission

parameter an integer or a string of any length to be

transmitted via the specified port.

3-20 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

RS-232-C COMMANDS

Example

DISPLAY COMMENTS

LIST

1¢PN°’0=¢: E%=¢

60 LINE INPUT "enter string",AS receive string from keyboard
70 CALL "ci' (PN%, "w",0E%,AS$,13) write string (followed by carriage
return) to the port o

Remarks

The parameter list includes at least one parameter which is to be passed
via the Cl command. A PCOS parameter error will be returned, if no para-
meters are used in the parameter list.

The parameter list may contain any number and mix of integers and strin-
gs. Integers are used to send control or binary information to the con-
nected device. The RS-232-C driver sends only the least significant byte
of the integer. Strings can be of any length and are sent as a string of
bytes.

DEVICE RE-ROUTING

INTRODUCTION

Normal operation of the M20 system involves entering information via the
keyboard and receiving responses on the video. In some cases however the
user may wish to use additional input and/or output devices; for sxample
a printer can be used to get a print of what is displayed on the video;
this can be done on the M20 using 'Device re-routing parameters'.

3-21

Device re-routing can be specified on two levels: Local and Global. These
two cases are dealt with in detail below. ' :

LOCAL DEVICE RE-ROUTING

Re-routes input and output of the PCOS command being executed.

>

parame

- e

2] command v
-—»‘ command ; g tj‘ 9 } = +

device
name

()
° Q ifg:ntiﬁer

Figure 3-11 Local device re-routing

Where

SYNTAX ELEMENT
command

S

s

command parameter

MEANING

any PCOS command to be executed via the devices
specified in the device re-routing parameters

a parameter to be passed to the PCOS command in
question

the device or file specified is to be allocated
the device or file specified is to be cancelled

specifies the device to be a source (for input
into the M20). It can be entered in upper or
lower case.

e

specifies the device to be a destination (for
output from the M20). 1t can be entered in upper
or lower case.

170 WITH EXTERNAI PERIPUERAI S - USER (Clli1ne

o

RS-232-C COMMANDS

SYNTAX ELEMENT MEANING

device name a string of up to 13 printable ASCI1 characters
the first of which must not be a digit, denoting
the device in question. This can be the device
default name or any other name assigned to the
device using the SDEVICE command.

Note: A device name must be followed by a colon

(L]]
.

file identifier a file identifier complying with the con-
ditions described in the PCOS (Professional
Computer Operating System) User Guide. 1f the
file specified does not exist it will be created
on either the specified disk or the disk
inserted in the last selected drive.

Note: + or -, S or D and Device name or File name follow each other
without any spaces in between. The command parameters may also follow the
device re-routing parameter block.

Local device re-routing can only be implemented from BASIC via the EXEC
statement. Furthermore, it can only be terminated either by returning
control to PCOS or by explicitly deactivating it via an EXEC statement
(see example).

For reasons of compatibility with previous software releases, the printer
can be specified either by +DPRT: or simply +PRT (without a colon). See
Figure 3-12.

command) 4
»{ command AI’I parameter ‘ @

Figure 3-12 Re-routing local output to printer

.72

Example
IF you enter... THEN. ..

ba + STEXT the M20 will go into the BASIC environment and
take in commands from the TEXT file and
keyboard; but the local effect to accept com-
mands from TEXT file will cease when environment
returns to PCOS.

ba LB - : M20 enters the BASIC environment, then the first

EXEC ''vl 3:,+d1:out"Hl EXEC statement lists the files contained on the
I disk inserted in drive 1, but re~routes the

output to the file "out". All subsequent output

is routed to this file until the 3second EXEC

EXEC "-d" {3 statement cancels the re-routing.

ba HEH M20 enters the BASIC environment, then the EXEC
EXEC "v1 1:,+dprt:" J{ statement lists the files contained on the disk
SYSTEM HdH mounted in drive 1 and re-routes the output to

the printer. +dprt: 1is then cancelled by
returning to PCOS.

GLOBAL DEVICE RE-ROUTING

Re-routes 1input and output of all PCOS commands executed thereafter in
operation until otherwise specified or until the system is reset.

P k I device
7y ° e name [
O L e
identifier
o-

Figure 3-13 Global device re-routing

3-.24 1/0 WITH EXTERNAL PERIPHERAI S - LISFR CHITAC

RS-232-C COMMANDS

Global device re-routing will occur if the parameters described in the
syntax diagram for local device re-routing (see Figure 3-11) are speci-
fied in the absence of a command and command parameters.

Example
IF you enter... THEN. ..
+SCOM: , +dcom : G ‘the M20 will accept input from both the keyboard

and the standard built-in RS-232-C communication
port; output will be displayed on the video and
directed to the extension RS-232-C communication
port 1

STMULTANEQUSLY ACTIVE DEVICES

The keyboard is not automatically disabled when other input devices are
specified. In general, all specified input and output devices will be
simultaneously active. This requires the user to exercise a degree of
caution when re-routing input, in order to avoid data from several
devices becoming intertwined. '

The local keyboard can be disabled by specifying ''-SCONS:'". However if

this 1is done on a Global level, control cannot be regained unless an
external active device issues a "+SCONS:" or the system is reset.

NO INTERACTION FLAG

1f the flag is set, the display of any parameters and/or related error
messages 1s suppressed. '

command
parameter

a

G O O g+

Figure 3-14 No interaction flag

Where
SYNTAX ELEMENT MEANING
command any PCOS command to be executed
% string flag indicator
n suppresses the display of the parameters and/or
related error messages. 1t can be entered in
upper or lower case
command parameter a parameter to be passed to the PCOS command in
question
Example
IF you enter... THEN. ..
vf %N 1: IS the M20 will format the disk in drive 1 without

..giving any indication of any user intervention
' ‘required, the track being formatted or any error
condition that may arise.

2A_DA 170 LITTHY EXYTEDNAL PERIPUERAI S o HSED ctiInc

N - 4. RS-232-C SAMPLE PROGRAMS

ABOUT THIS CHAPTER

This chapter illustrates with the use of example programs, two typical
uses for this interface. These are the transfer of data out of the M20
via the RS-232-C interface and receipt of data into the K20 (with and
without status checking). There is one sample program for each cor-
responding example.

CONTENTS
INTRODUCTION 4-1
SETTING UP TRANSMISSION 4-1
PARAMETERS

PROGRAM SET-UP 4-3
MAKING C1 RESIDENT 4-3
SELECTING TRANSMISSION 4-3
PARAMETERS

SELECTING HARDWARE STATUS 4-3

TRANSMIT DATA FROM M20 4-4
DATA TRANSFER 4-4
ERROR CHECK 4-4
RECEIVE DATA IN M20 4-5
WITHOUT srAfus CHECK 4-5
WITH STATUS CHECK 4-6

. \

RS-232-C SAMPLE PROGRAMS

INTRODUCTION

This chapter describes two very simple, but useful, applications of the
RS-232-C interface (Transmission of data in and out of an M20). The first
example describes the use of a small BASIC program to permit the user to
set up the required transmission parameters (character length, baud rate,
etc.) ready for transmission of data in or out of an M20. The second
example describes the use of a small program to accept a string keyed in
and to transmit it over the RS5-232-C interface. The third example
describes s small program to receive a string of character codes over the
RS-232-C interface and display them on the M20 screen. The fourth example
in addition uses a Status read to check that the data has been received
without parity, frame or overrun transmission error.

Four example programs which could perform these functions are worked
through.

SETTING UP TRANSMISSION PARAMETERS

This first example sets up the transmission parameters by defining an
SCOMY (set communication port) command according to the desired transfer
characteristics (lines 19¢ to 394). The sample program is 1listed in
Figure 4-1: it asks the user to make a selection from the transmission
parameters offered or accepts default settings.

19 REM

20 REM program to set up transmission parameters

3¢ REM

4¢ DIM PNS (3)

5@ DATA “com:","coml:","'com2:"

68 FOR 1 =1 TO 3 : READ PNS(1):NEXT 1

7¢ DIM RS(8)

8¢ DATA “S5@","114","3¢@", 6gg", " 1200", 240¢" ,480@" ,"9608"
9f FOR 1 =1 TO 8 : READ RS(1) : NEXT 1

199 DIM PS(3)

118 DATA '"none', 'odd', '"even'

126 FOR 1 = 1 TO 3 : READ PS(1) : NEXT 1

139 PRINT :INPUT “'rs' already executed? (yes-no) ", A$
148 IF AS<>"no" THEN 169

158 EXEC "rs"

168 PRINT :INPUT "'ci' already resident? (yes-no) *,AS

Figure 4-1 Program to set up transmission parameters {(cont.)

178 1F A%<>"no" THEN 199
189 EXEC 'pl ci
199 PRINT :INPUT “enter port number (0-1-2)", PN%
208 1F PN% <@ OR PN% >2 THEN PRINT "wrong selection' : GOTO 1949
218 PRINT :INPUT “enter baud rate (5@-11§-3¢@-600-12080-2490-4800-9688)
u’BRS .
22p FOR 1=1 TO 8:IF R$(I)=GR1 THEN 25¢
236 NEXT 1
- 249 PRINT "wrong selection" : GOTO 218
25¢ PRINT:INPUT "enter parity (none-odd-even)', PA$
26§ FOR 1=1 TO 3:1F P$(1)=PAS THEN 299
279 NEXT 1 .
28§ PRINT "wrong selection":GOTO 25§

-5529¢ PRINT :INPUT “enter no. of stop bits (f=1 bit 1=1.5 bits 2=2 bits)"

SBS
+ 398 1F SBS<"@™ OR SBS>"2" THEN PRINT “wrong selection' : GOTO 299
314 PRINT :INPUT "enter no. of data bits (5-6-7-8) *, DBS
32¢ 1F DBS<'5" OR DBS>"8" THEN PRINT "wrong selection':GOTO 318
33¢ PRINT:INPUT "enter duplex (full-half) **, DUS
349 1F DUS<>'full®™ AND DUS<>"half" THEN PRINT "wrong selection': GOT0 33#
35§ PRINT :INPUT "enter handshake (on-off) ', HA$
368 IF HAS<>"on' AND HAS<>"off' THEN PRINT "wrong selection'':GOTO 35¢
37§ PRINT :INPUT "enter buffer size (>@) ", BSS
386 IF BS$<= "@" THEN PRINT "wrong selection' :GOTO 37¢

399 ESS = "sc "+PNS(PN%+1)+","4BRS+', +PASH! +5BS+", "+DBS+", "+DUS,
"+HAS+","4BSS

40@ EXEC ESS ‘set communications port

AP E% = B

428 CALL "ci' (PN%,"o",@E%). ‘open port ‘

43¢ 1F E%=@ THEN GOTO 468
449 PRINT “port open error = ";E%
45¢ STOP
469 PRINT:INPUT "default transmission parameters ok? (yes-no)”, A$
478 1F A$<>'no" THEN 658
480 HS% = ¢
49¢ AS$ = "transmit enable":GOSUB 789
5P@ HS% = HS% + 1%
“451¢ A$ = "data terminal ready" : GOSUB 7¢@
520 HS% = HS% + 2*1% o
;53¢ AS = "receive enable":GOSUB 7¢#
T54p HS% = HS% + 4*1%)
550 AS = “send break character":GOSUB 7¢¢
568 HS% = HS% + 8*1%
57¢ AS = "error reset" ': GOSUB 7¢¢
588 HS% = HS% + 16*1%
598 AS = "request to send" : GOSUB 7¢@
68¢ HS% = HS% + 32*1% :
61p CALL “ci" (PN%,"sw",@E%,,6HS%) 'set hardware status
62¢ IF E%=0 THEN GOTO 658
639 PRINT “status write error = "; E%
649 STOP
659 PRINT : PRINT "end of setup program"
66@ END
799 PRINT
718 PRINT AS;" (1=yes,@=no)";
728 INPUT 1%
73p 1F 1%<>3 AND 1%<>1 THEW PRINT "wrong selection': GOTO 7¢¢
748 RETURN

Figure 4-1 Program to set up transmission parameters

a?

170 WITH EXTERNAL PERIPUEDAI € - #HHCD CIIINC

RS-232-C SAMPLE PROGRAMS

PROGRAM SET-UP

In accordance with normal CI and BASIC programming practice:

all variables are defined as integer before usage; three arrays are
dimensioned to contain the set of port device names (line 4¢), baud rates
and parity check values (line 1#¢).

MAKING CI RESIDENT

Line 13¢ asks the user if the RS-232-C driver is already resident and if
not, makes it resident by use of the EXEC statement in line 158.

Line 160, asks the user if C1 is already resident and if not, makes the
command resident by use of the EXEC statement in line 18f.

SELECTING TRANSMISSION PARAMETERS

Line 19¢-37¢ allow the user to set up each of the SCOMM parameters port
by port. In each case he is asked to choose one of the valid values
available and advised of a wrong selection otherwise. '

Then the desired port is opened (line 42@) and any discovered port open
error indicated (line 44@). See also Cl Open command.

SELECTING HARDWARE STATUS

The user is asked to make & selection from all the .available possible
defaults in the hardware status byte (see also Table 2-2). When the
selection is complete the status byte is written on the desired port
(line 610). :

Then the user is advised that the set-up program is complete (line 658).
Should such a set-up not be possible, the corresponding error message and
value is displayed (line 63@). See also Cl Status Read command.

4-3

TRANSMIT DATA FROM M20

The second example deals with the actual transmission of data from the
M20.

The sample program listed in Figure 4-2 specifically transmits a string
of characters entered at the keyboard when prompted by the system and is
considered complete when a carriage return is entered. To interrupt
program execution, the user must enter .

1¢ REM

20 REM program to transmit data

3¢ REM

40 PN% = @

5S¢ E% =@

6@ LINE INPUT "enter string",A$

7¢ CALL '"ci™ (PN%, "w",@E%, AS, 13)

80 1F E%<>@ THEN PRINT “write error ="; E% :STOP
9¢ GOTO ¢ ‘

Figure 4-2 Program to transmit data from M20

DATA TRANSFER
Line 6f asks the user to enter a string of characters.

Each character of the string is then sent to the transmission line by the
Cl command (line 7).

The end character is not transmitted.
ERROR CHECK

The returned error value from the CI Write command is used to display a
suitable message.

4-4 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDFE

RS-232-C SAMPLE PROGRAMS

RECEIVE DATA IN M20

The third and fourth examples both deal with the actual receipt of data
in an M20.

The sample programs both specifically receive a string of ASCII codes on
the interface when prompted by the system and considers the string
complete when a carriage return code is detected.

WITHOUT STATUS CHECK

Figure 4-3 lists this program.

18 REM

20 REM program to receive data (without status check)
3¢ REM

40 PN% = @

5¢ E% = #

60 BC% = ¢

78 C$ = SPACES(1)

8¢ PRINT : PRIKT "ready to receive"”

99 CALL *“ci" (PN%, "sr',©E%,,,6BC%) 'check one character
160 1F E%<>@ THEN PRINT '"status read error = ";E% :STOP

118 1F BC%=§ THEN GOTO 9¢

128 CALL *ci™ (PN%, “r,@E%,@C$, 1) ‘receive one character
13¢ 1F E%<>@ THEN PRINT 'read error = ";E% : STOP

14¢ 1F ASC(C$)<>13 THEN GOTO 17¢

158 1F AS = "END" "THEN GOTO 194

168 PRINT AS : AS = " : GOTO 8¢

178 AS = AS + C$

18¢ GOTO 99

198 CALL "ci' (PN%, *¢",@E%) ‘close port

288 1F E%<>@ THEN PRINT "port close error = ":E% :STOP
218 PRINT : PRINT *end of receive program”
220 END .

Figure 4-3 Program to receive in M20.(without status check)

Data Transfer

When set-up is complete, line 8f ensures that by a message on the screen
the user 1is aware that the M20 is ready to receive. The Cl1 command of
"line 12§ receives the ASCII codes one by one over the port (returned
variable C$). '

Lines 140 to 16@ build these codes into a string of ASCII characters
displayed on the video screen once the carriage return terminator has
been detected.
Receipt Check
Lines 99 to 11¢ make use of the buffer count (returned value BC) in a Cl
Status Read command to detect when a character has been received on the

serial RS-232-C port.

Any Read error is indicated with a suitable message (1line 13¢).

End of Data

When the "END" string has been received (line 156), input is returned to
the keyboard (line 198) and the port is closed with an indication of any
related error (line 2¢@) and the final message of line 214.

WITH STATUS CHECK

Figure 4-4 lists this program which is similar to that of Figure 4-3
except for.the status check (lines 18§ to 26@) and the use of the com-

posite status mask variable SM.

The description of the part common to the two programs is not repeated
here. (See description of without status check version).

Ak 1/0 WITH EXTERNA! PFRIPHERAIS =~ USER GUIDE

RS-232-C SAMPLE PROGRAMS

19 REM

2¢ REM program to receive data (with status check)
3¢ REM

40 PN% = @

50 E% = 0
6f HS% =
7¢ 8C% =
8¢ C$ = SPACES(1)

9¢ PRINT : PRINT “ready to receive"

198 CALL "ci' (PN%, "sr",eE%,@HS%,0D5%,eBC%) ‘get status & buffer
11¢ 1F E%=f THEN GOTO 13¢ ‘count

12¢ PRINT “status read.error = ';E% : STOP

13¢ 1F BC%=@ THEN GOTO 104

148 CALL “ci® (PN%, “r,eE%,eC$, 1) ‘get one character
15¢ 1F E%=@ THEN GOTO 27¢

168 PRINT '‘read error = ",E%

17¢ 1F E%<>4 THEN STOP

18P SM% = HS% AND &H8

198 IF SM%=&H48 THEN PRINT '"parity error"

208 SM% = HS% AND &H1§

219 1F SM%=&H1¥ THEN PRINT 'overrun error"

228 SM% = HS% AND &H2¢

230 1F SM%=&H2¢ THEN PRINT "“framing error"

24¢ SM% = DS% AND ZH19¢

25@ 1F SM%=&H1¢@# THEN PRINT "buffer overflow error"

268 STOP

27¢ 1F ASC(C$)<>13 THEN GOTO 3¢9

28¢ 1F A$<="END™ THEN GOTO 32¢

2984 PRINT AS : A$ = '™* : GOTO 94

3¢ AS = AS + C$

31¢ G0TO 199

32¢ CALL "ci' (PN%, "c",@E%) ‘close port

33¢ 1F E%<>@ THEN PRINT "port close error = '";E% :STOP

340 PRINT :PRINT "end -of receive program"

35¢ END

g :05%=¢
9

Figure 4-4 Program to receive in M20 (with status check)

Status Check

/'Lines 18¢ to 260 make use of the hardware status byte and driver status
word. The returned values HS and DS read on the port (line 18@) are used
to detect parity, overrun and framing errors. The nature of the error
detected is displayed on the screen {lines 194, 21@, 23¢ and 258).

4-7

s
e

Sebriy

PART Il - IEEE 488 PARALLEL INTERFACE

&

5. IEEE 488 RELATED CONCEPTS

ABOUT THIS CHAPTER

This chapter describes the hardware and software concepts behind 1EEE 488
to aid understanding of the programming statements in chapter 6. The
final section shows the relationship between these concepts.

CONTENTS -
THE INTERFACE HARDWARE 5-1 AN INTERFACE OVERVIEW 5-17
“THE GENERAL PURPOSE 5-1 1EEE 488 AND BASIC 5-19

INTERFACE BUS

MOUNTING A CONNECTOR 5-3
CONFIGURATIONS 5-3
MECHANICAL RESTRICTIONS 5-4
INTERFACE_SOFTWARE 5-4
CONCEPTS &3 5-5
INTERFACE FUNCTIONS 5-6
INTERFACE MESSAGES 5-7
THE CONTROL LINES 5-8
DAV, NRFD AND NDAC: 5-9

THE THREE WIRE HANDSHAKE

ATN, IFC, REN, SRQ AND EOI: 5-10
GENERAL INTERFACE MANAGEMENT

PROGRAMMING THE INTERFACE 5-17

IEEE 488 RELATED CONCEPTS

THE INTERFACE HARDWARE

Inside the M20, the interface hardware consists of an extension board and
a 24-wire cable, linking this to the connector socket on the back panel
of the machine. The hardware conforms to the IEEE 488 Standard (see
Appendix A), and uses the Port Addresses listed in appendix D. A half
size representation of the board is shown in figure 5-1.

OLIVETTI M20 |EEE 488 8BD GO0220 339026 S 0041-05-00 REV C
C
. - Jeell e o (] 24
8291A eeaade agsetecs “—ﬁg»ﬁ/- I e .
> e]
' = 8293
F00000060000000608060060 DA XTI YINXL))
-C_Dp—5 eI D
000000000 slossee a ope [) (]
8292 (XX]
—=re] = \
KR
0400000000000 000000 00.0\‘0\0\00005 '\
o, 0 Ty 2 = Ug. . ___» U0,
' 4-============-7-rﬂrrr!nrqr--n-rﬂr';!nrmrﬂre\
8259A ’ o0 :_‘i Iol b g 3 Cyp }o Al N
Y x:\\. 3T qe o .
N oo fertropie n o I\
oo G ' %_/ 1 s © T >
lk},\—-—i.//r/// ., or—je na
1 . o . o

29

Figure 5-1 The 1EEE 488 Expansion Board

The main IEEE 488 integrated circuit (IC or chip) is the 8291A GP1B
(General Purpose Interface Bus), which performs all of the functions
-except for that of the controller, which function is performed by the
8292 GPIB Controller.

THE GENERAL PURPOSE INTERFACE BUS

Together, the 8291A and the 8292 form the complete interface which han-
dles communication between the M20 and the 1EEE 488 bus via the 24 wire

5.1

connector. They handle the handshake protocol, talker/listener addressing
procedures, data transfers, service requests, and serial polling. The M20
itself is not interrupted unless a data byte has arrived, or is to be
sent out.

The two 8293 GPIB 1ICs provide the electrical interface for the
talker/listener and talker/11stener/control configurations. They form the
‘interface between the 8291A and 8292 and the IEEE 488 bus itself. Their
main function is to convert incoming and out-going signals to a form the
eventual receiver will understand - many signals need to be inverted.

M20 SYSTEM BUS

T —
' INT INTA
y
S 8259A
INTERRUPT
CONTROLLER .~ .

TCi 4 8291A
GPi8
Geis INT TALKER/
: CONTROLLER LISTENER
sl
INTA = interrupt Acknowledge
INT = finterrupt
TCH = Task Complete .
Interrupt
SPt = Special Interrupt]
8293x 2
8US
TRANSCEIVE

GENERAL PURPOSE INTERFACE BUS

Figure 5-2 1EEE 488 Block Diagram

The last IC on the board, the 8259A, is the interrupt controller, which
interrupts the M20 when the 8291A and 8292 request service (SRQ), and
decides on an order of priority for these messages. The ICs are all
clearly marked in Fiqure 5-1.

As Figure 5-2 shows, the 8259A and the 8293s do not have quite the same

function. A simple analogy is that the 8293s act as a Toll gate, through
which each bit must pass. The 8259A on the other hand, acts like traffic

5«2 170 WITH EXTERNAI PERIPHERALS - USFR ciiine

IEEE 488 RELATED CONCEPTS

'S
»

police, merely keeping the information flowing, but not 1ntrud1ng unless
it s absolutely necessary. :

The location of the connector - socket on- the back panel is displayed
in Figure 5-3. The IEEE 488 connector conforms to the specifications
indicated in the IEEE 488 Standard (see Appendix A).

COWNEST 10
EARTH GROUND

|EEE 488 CONNECTOR

Figure 5-3 . The 1EEE 488 Connector and its' Location onthe 120

'MOUNTING A CONNECTOR

Ollvettl supplies 1EEE 488 connection cables in 4 3 ngths (1.8, 2. Q,,
and 4.¢m), all having a suitable connector ~on each end. i
connection cables are available from’ 1EEE 488 dev1ce’nanufactures”
important to ‘note that there are two types of moﬁﬁtiﬁg'fastener
and ‘English. The M20:is supplied with metric screw fasteners,
readily . identified by their black: colour Engltsn “threaded
fasteners are szlver‘_ON NO ACCOUNT:attempt to mate black: to
silver to black, as thls can damage the hardware: 1tse1f

CONFIGURATIONS

Peripherals can'be connected in a star or a linear combi ation network':}_g
In a linear network, each cable end connects’ elther t”ja ‘device only”“ﬁ°'
or to a- dev1ce an ‘another -cable. x s S

»
»

In a star network, each cable end connects either to a central device or
to another device (see Figure 5-4). This network has a limitation: no
more than 4 cables should be fixed to a device. This limitation can be
overcome by combining linear and star networks.

STAR

LINEAR

r~—-1—————J f::::¥£1——J‘ 1

Figure 5-4 Linear and Star Networks

Any combination of these can be used, provided that no more than 15
devices are linked together, and provided that certain mechanical re-
strictions laid out below are adhered to.

i

MECHANICAL ;RESTRICTIONS

In order to’ensure the accurate transmission of data, there is a 2@ metre
limit to the length of cabling allowed. Further, there should be no more
than two metres per device. Thus, if there are 4 devices, there should be
no more than 8 metres of cable, but if there are 12 units, they must be

~confiqured using only 2@ metres of cable between them.

INTERFACE SOFTWARE .

The following paragraph describes the interface at a user level only.
Once these concepts are understood, further details can be obtained from
the 1EEE 488 Standard (see Appendix A).

5-4 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

IEEE 488 RELATED CONCEPTS

»

»
The 1EEE 488 Standard defines a total instrumentation interface package
which not only defines to very strict limits the hardware, as described
in the section on hardware above, but also the software, so that the
problems of ‘instrumentation integration are minimised.

This means that instruments which are IEEE 488 compatible all have the
same, standard, connectors and all can respond to the complete set (or a
subset) of I1EEE commands. This section describes how these commands are
passed to and fro.

CONCEPTS

During communications between devices on the IEEE 488 Bus each device may
perform one or more of the following roles defined by the Standard:

System Controller

Controller-in-Charge

Talker

Listener.

Only one System Controller can exist in a given Interface System and it
must remain active as long as any operation is in progress on the System.
(When the operation is finished the System Controller can yield the
control to another device that has the appropriate capabilities). The
System Controller is the only device that can interrupt any operation (by
issuing the command Interface Clear-1FC) to start another activity right
away. It can define itself to be the Controller-in-Charge or it can pass
the control to another device with Controller capability.

Only one Controller-in-Charge can be active at a time on the 1EEE 488
Bus. 1t controls actions in other devices on the Bus. Only one Talker can
be active at a time on the IEEE 488 Bus. But the Controller-in-Charge can
stop the current Talker and start another. In any case the active Talker
places data onto the Bus for any current Listener(s).

One (or more) Listener(s) can be active as selected by the Controller-
in-Charge. Each active Listener accepts data from the 1EEE 488 Bus from
the active Talker.

Data transfers from the active Talker to any Listeners are byte-serial
bit-parallel. IEEE 488 Bus lines D101-8 carry data codes in either of two
forms: when the Controller-in-Charge wants attention (ATN = true),

addresses and commands are listened to by all devices, and lines DIO1 - 7

.5

»
carry ASCI1 (1S0) bits 1 - 7 while line D108 is avé&lable for a parity
bit; when the Controller-in-Charge no longer wants attention (ATN =
false), only the device currently addressed to talk will talk, and only
the device(s) currently addressed to listen will listen. Then all eight
DIO lines can carry any code, of eight or fewer bits, that is understood
by both the talker and the listener(s).

The Interface System must have at least one Talker device (for example, a
digital voltmeter) and one Listener device (for example, a printer). The
System can also have one (or more) Controller device(s) and one (or more)
other Talker(s) and one (or more) Listener(s).

The 1EEE 488 Interface defines the methods by which a "Controller" (here
the M20) can control a "Talker" (usually a measuring instrument such as a
voltmeter) and a "Listener", or ‘'Listeners'" (usually recording instru-
ments, such as a prlnter, tape punch etc.). In actual fact, talker-only
or 11stener ~-only ‘devices are rare. Most have at least a limited capacity
‘to do both. Nonetheless, a tape -recorder which can also talk would, for
ordinary purposes, be referred to as a listener.

The 1EEE 488 Interface bus is essentially a 24 wire device interconnec-

or. These are divided into control and timing (8 wires), and data trans-
mission (8 wires). In addition, there are 8 ground wires. This accounts
for all 24 pins on the IEEE 488 connector.

The M20 Implementation

In the M20, implementation of IEEE 488 the M20 is the system controller.
Only the M20 is able to be active controller; it cannot pass control to
another device.

INTERFACE FUNCTIONS

The interface functions defined by the IEEE 488 Standard, and implemented
on the M20 are:

- SH1 (Source Handshake): This means the M20 can be one of two or more
devices that exchange data in an interlocked sequence. There must be an
acceptor handshake function active in at least one other device.

- AH1 (Acceptor Handshake): This means the M20 can be one of two or more
devices that exchange data in an interlocked sequence. There must be

only one source handshake function active in another device.

- 76 (Talker): This means the M20 can send data to other devices.

| Y /0 LUTITY CYTEDNAI PEDTPHEDAI S _ (ISEQ CHIDE

IEEE 488 RELATED CONCEPTS

-~ L4 (Listener): This means the M20 can receive data from another device.

- C1, €2, C3, C4, C27 (Controller): This means the M20 can send universal
commands, addresses, and addressed commands to devices on the IEEE 488
Bus. The M20 can also conduct serial polls of other devices.

INTERFACE MESSAGES

The 1EEE 488 Standard defines the operation of the functions above in
terms of '"states". Each function has several clearly defined states, but
it can only exist in one state at a time. For example, the Listener state
can be in one of the: Listener 1Dle State (LIDS); Listener ADdressed
State (LADS); or Listener ACtive State (LACS). Thus at any one moment,
each supported function, in each attached device, must be in ONE, AND
ONLY ONE, permitted state. The most frequently discussed state is
“active", as a device must be active to operate. An active listener is
thus one which is in LACS state. Correspondingly, an active talker is
TACS. A device may contain both talker and listener functions, without
being active in either, if it is in the relevant idle state.

The type of communication permissible for a given device at any given
time is determined by the states of its functions. For example, a talker
cannot transmit data while it is in the Talker 1Dle State (TIDS), or can
only respond to a serial poll if it is in the Serial Poll Active State
(SPAS). '

The rules governing when active functions can change from one state to
another are defined in the IEEE 488 Standard, and are beyond the scope of
" this document, but in general, the elementary conditions causing a state
transition may include: -

other current states (in other functions)

- the occurence of specified events within (or after) defined time
intervals

- local messages - conditions occurring within the device, according to
device-dependent logic

- interface messages - information received over the bus from the
controller.

More details on these, and all the other states can be found in the
IEEE 488 Standard.

5.7

The Interface message above is a remote message. A second type of Inter-
face message is device-dependent messages. Interface messages control the
interfaces in other devices, device-dependent messages include the data
bytes transmitted between the devices. Interface messages thus function
as commands.

Some commands are defined states of a single interface line, for example
IFC true; these are called uniline messages. Other messages are defined
combinations of states of both control and data lines, for example '‘un-
~ talk"; these are multiline messages. Only one multiline mesSage (message
byte) may be sent at any one time, but several uniline messages may be
sent concurrently.

The BASIC-statements discussed in Chapter 6 allow the user to issue any
-byte in Command Mode, but only a small number of bytes are valid
multiline interface messages (see Appendix C). Appendix C shows messages
involved in parallel polling and ‘''take control" also which are not
supported on the M20.

THE CONTROL LINES

The eight control lines are al} assigned to connector pins, as follows:

PIN ° MNEMONIC LINE NAME

5 EO1 . End Or ldentify

N 6 DAV Data Valid

- 7 NRFD Not Ready For Data
8 NDAC Not Data Accepted
9 1FC InterFace Clear
10 SRQ Service ReQuest
1 ATN ATteNtion

17 REN Remote ENable

These 8 lines can be further divided into 2 categories, Handshake (DAV,
NRFD, NDAC), and Management (Control).

5-8 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

IEEE 488 RELATED CONCEPTS .

{M20} . {e.g. voltmeter) (e.g. signal generator) (e.g. paper tape reader)
DEVICE A DEVICE B . DEVICEC DEVICE D
Abte to tatk, listen Able to talk and Only able to listen Only able to talk
and contro! fisten
o] | !]
REN Y
AN T ‘
IFC 2t
NDAC IA\ »
NRFG - —————3%
DAV A >
P N
DIO 1.8) -3 >
: Data Bus
(8 signal lines)
Data Byte Transfer
Control
(NANDSHAKE) Lines
(3 signal lines)
General Interface
Management
(CONTROL} Lines

(5 signat lines)

Figure 5-5 1EEE 488 Signal Lines

Figure 5-5 shows diagrammatically the IEEE 488 signal lines, and cor-
relates some of the ideas already discussed with some of those that will
be discussed now.

DAV, NRFD AND NDAC: THE THREE WIRE HANDSHAKE

Data transmission from the talker to the listener(s) occurs asynchronous~
ly so that devices of different speeds can operate from the same 1EEE 488
Bus. Thus data is always transmitted at the speed of the slowest device
on the Bus. To understand how, consider a competitive examination given

- to qualify candidates for admittance to a college. An administrator is
assigned (addressed) and the candidates are invited (addressed). To
ensure impartiality, certain procedures are followed, including displays
of each question:

1. No characters of a question are made ready for display until all
candidates are ready for a new question.

2. Only after all characters of a question have been made ready is a
question displayed. :

3. All candidates must accept the question (understand and agree with
L),

4. As soon as all candidates have accepted the question, the display is
no longer needed and is ended.

5. As each candidate accepts a question he/she starts work on the answer
but each finishes at his/her own speed.

6. Steps- 1 through 5 repeat until all questions have been answered.

Applying the above steps to an 1EEE Std. 488 System, they can be restated
with the Talker in place of the administrator, the Listeners in place of
the candidates, and a byte of data transmitted instead of a question
" displayed:

1. No bits of a byte are made ready for transmittal until all Listeners
are ready for a new byte. (Signal NRFD-Not Ready For Data-goes false).

2. Only after all bits of a byte have stabilised on the 1EEE 488 Bus is
the byte transmitted. (Signal DAV-DAta Valid-goes true).

3. All Listeners must accept the byte. (Signal NDAC - Not Data ACcepted -
goes false).

4. As soon -as all Listeners have accepted the byte it is no longer needed
- and is cancelled. (Signal DAV goes false).

e

5. As each "Listener accepts the byte it starts to use the byte but
finishes at its own speed. (Signal NRFD goes true).

6. Stepé 1 through 5 repeat until all bytes have been used.

“Handshaking" thus uses three 1EEE 488 Bus lines: DAV, NRFD, and NDAC.

ATN, IFC, REN, SRQ AND EO1: GENERAL INTERFACE MANAGEMENT

The data lines carry command instructions as well as data. To inform the
peripheral that the incoming information is an interface message, the ATN
line is set true - Command Mode. To comply with the Standard, every
device must:

§_10 " 1/0 WITH EXTERNAL PERIPHERALS -~ USER GUIBE

IEEE 488 RELATED CONCEPTS

- monitor the ATN line at all times, so that it is aware how to treat the
data '

- respond to ATN going true within 2¢§ ns
-~ at the end of the instruction(s), ATN must be set false - Data Mode, so.
that the listener(s) can read the subsequent information as data.
“ATN Line

The rest of this subsection describes the various cbmmands that can be
i ;' - sent while ATN is set true. 1f it were not true, the byte(s) would be

treated as data.

When ATN (ATteNtion) 1is set true, the listeners are to interpret the
incoming byte(s) as commands, i.e. interface messages.

Addressing a peripheral: The Talker has 8 data lines with which to talk
to the Listeners. The 8 data lines operate in binary format - either
sending a logical @ or logical 1. Each line corresponds to a "bit". They
do this simultaneously so the Listener receives 8 bits at once. These 8
bits (or a byte) of data can be followed serially by further bytes. Thus
the interface is bit parallel, byte serial.

1In the simplest case there are only two attached devices, but up to 15
may be connected so it is important that each has a unique address. This
is done using the 5 least significant bits of the (first) byte. Of the 32
possible values for the device address that this prowides, only 31 (@-39)
are available. Decimal 31 (11111) is used by the system to show that the
instruction is a wuniversal "untalk" or "unlisten'.:1f it is Universal
Unlisten, 31 (hex 1F) is added to hex 2¢ (1isten) making 3F. For
Universal Untalk, 1F is added to 4@, making 5F (see Universal Commands
below). Most devices come with a default value set. This can be alteresd
using the Dip-switches provided, or some instruments allow front panel,
programmable entry. _ P

5-11

ADDRESS

81INARY DECIMAL DEVICE
) @ System controller
g1go¢ 8 .~ Oscillator

19094 ¥ 16 Tape punch

11099 ‘ 24 Voltmeter 1

11919 26 Voltmeter 2

1111 31 7 I1legal - used for universal
‘ untalk or unlisten

-

These are ‘just a sample of the addresses. Appendix C shows them all. The
most significant bit of the byte is never used.

Bit 6 is hex 4@, bit 5 hex 2¢. These are used to indicate Device Talk and
Device Listen respectively.

1 Byte

1bit :j'k/““e" Individual Device Address
its
v7%6 54 3 2 41 ¢ 4 Hex ASCl

ol1|o0|o|lo|d|o|d|40] @

dl0|1|0(0|0|0][0|20|SP

o
()
-

(S
-
-
-y
-
-t

SF| _

olo|1|1]|1|1]|1|1]|3F| 2
f t

most significant bit feast significant bit

() Bit6=1, Bit 5=0 TALKER
Bit 6=0, Bit 5=1 LISTENER -

Figure 5-6 Bit Configuration Convention
To talk/listen a specific device, their respective number must be added

to the device number, when using WBYTE or RBYTE. So, for example, to Talk
(1000008) voltmeter 1, the byte 1¢119@@ would be sent:

5-12 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

IEEE 488 RELATED CONCEPTS

1900009 +
11009 =

1911909

Similarly, to Listen (@10@@@@) the tape punch, @110@@¢ would be sent.
These addiesses, with the talk or listen instruction added, are sometimes
referred to as "my talk" or '"my listen' address. 1f an active talker
reads a talk address which is not its own, it automatically drops to its
idle state. This is not true of the listen address, because more than one
listener can be present on the system at one time. Appendix C shows the
ASC11 code and the binary value. for all possible address numbers.

When using PRINT@ , INPUT@ , or LINE INPUT@ the relevant bit (hex 4§
for talk, hex 2§ for listen) is added automatically to the device number.
The user is thus only concerned with the talk or listen command addition

if WBYTE or RBYTE is being used.

Universal Untalk and Universal Unlisten, which are discussed below, are
the talk and listen addresses, with the device address set at 11111 -
which is why it is an 1illegal device address. Thus Universal Untalk
becomes 1811111 (5F), and Universal Unlisten becomes #111111 (3F).

Programming the interface is carried out using the nine BASIC statements
discussed in Chapter 6. Two of these, RBYTE and WBYTE, can be used to
transmit any of the nine supported I1EEE 488 commands, or to address
devices as talkers or listeners.

The 1EEE commands can be divided into two categories, Universal commands
which address all the attached devices;' and addressed commands, which
only talk to specified devices. The mnemonics of these commands are

listed in appendix C.

Universal Commands: These six commands are illustrated in the table below
(see also Appendix C):

COMMAND ~ CODE

MNEMONMIC NAME HEX - DECIMAL ASCI11
UNT UNTalk SF 95 -
UNL UNListen 3F 63 ?
DCL Device Clear 14 20 DC4

5-13

COMMAND CODE

MNEMONIC ~ NAME HEX DECIMAL ASCI1
LLO Local LockOut 1" 17 DC1
SPE Serial Poll 18 24 CAN
- Enable
SPD Serial Poll 19 25 EM
Disable
Table 5-1

- UNT (UNTalk}: unaddresses the current talker. Since addressing one
talker to talk automatically unaddresses all the other talkers, it is
not necessary to use untalk when switching from one talker to another.

- UNL (UNListen): unaddresses all current listeners - it is not possible
to unaddress one listener at a time. This command should be used each
time a listener, or group of listeners, is to be addressed, to ensure
that only the required 1listeners are actually listening (so the
transfer is not held up by slow listeners who <o not need the
information anyway). '

- DCL (Device Clear): causes all peripherals to be cleared. The
definition of this state varies from one device to another, but
individual manuals should make the situation clear for each device. The
peripheral devices should respond to the command whether they are
addressed -or not.

- LLO (Local LockOut): disables the return-to-local or reset on a
specific device. This means that local control cannot be regained by
using these. Thus the settings made remotely through the interface
cannot be tempered with. Like DCL, this is a universal command, so
devices recognising it should enter a lockout state whether they are
addressed or not. To return to normal use, REN must be set false, which
places all devices back under local control.

e

- SPE/SPD (Serial Poll): on the M20, Serial Poll Enable and Disable are
performed by the same BASIC statement, POLL. When a device receives a
POLL, it responds with a single eight-bit byte which shows the device
status. Only devices which are capable of talking (many devices
functioning mainly as listeners can talk, e.g. printers can warn users
that they are out of paper) can output this byte, so they are the only
ones which can be polled. When the controller receives the status byte,

£_14 1/0. WITH EXTERNAI PERTPHERALS — USER. GUIDE

IEEE 488 RELATED CONCEPTS

the serial poll disable byte is sent out to the device. The device
remains in the talker state.

Addressed Commands: These three commands are illustrated in the table
below (see also Appendix C):

COMMAND CODE

MNEMONIC NAME . HEX '~ DECIMAL ASC11
GET Group Execute g8 8 BS
Trigger
SDC Selected De- g4 4 EOT

vice Clear
GTL Go To Local 1 1 SOH
Table 5-2

- GET (Group Execute Trigger): provides a way to trigger several
listeners simultaneously. All devices that are currently addressed to
listen are triggered to start a previously programmed action.

- SDC (Selected Device Clear): the device which had been previously
addressed to listen is now to go to its clear state. This is exactly
the same as DCL, except that only one, named, peripheral is involved.

- GTL (Go To Local): returns control to Local lockout, i.e. control is
returned to the front panel of the instrument in question.

IFC, REN, SRQ and EOI Lines

The other 4 lines which are in the General Interface Management organise
the transmission. This is necessary to ensure that the right information
is going to the right device(s) and that they are able to accept it (the
printer has not run out of paper for example).

These 4 functions are:
- IFC (lnterFace Clear): initialises, or reinitialises several functions

to their idle states (talkers and listeners idled and unaddressed, and
talkers serial poll mode exited, if previously active).

- REN (Remote ENable): allows a device to respond to the instructions

issued by the controller or another talker. Whilst' other talkers can-

issue the instructions, only the controller can issue the REN, which
establishes remote control.

- SRQ (Service ReQuest): tells the controller that it needs to communi-
cate, as one of the peripherals has a problem. SRQ does not indicate
what the problem is, nor who has the problem, this is up to the con-
‘troller to determine, by polling.

- E01 (End Or 1dentify): with ATN false, signals that this is the last
byte of data in a multibyte sequence. On the M20, the control of EOI is
automatically done by the PRINT@ and WBYTE statements (see Chapter 6).

The first two, IFC and REN, are used only by the controller. Devices must
respond to the command within 18§ ms, but only devices which are capable
of remote and local operation need monitor REN.

On the M20, SRQ acts as an interrupt, but only when the user has enabled
the interrupt. When SRQ is received, the BASIC interpreter interrupts the
current series of events, to find out what the problem was. In this
context, data-ready-for-transmission would count as a problem. The con-
. troller performs this task by conducting a serial poll.

Serial Poll

A serial poll enables the controller to ascertain if a device, or group
of devices, requires service. In return, the controller may receive a
byte defining the status of each individual device on the interface. This
return byte is called the Status byte. Since only talkers can return this
byte, only talkers (or 1listeners with the ability to talk) can be
serially polled.

To conduct the poll, the controller addresses each device sequentially
(by sending an SPE (Serial Poll Enable) if IFC (InterFace Clear) is
false, and then addressing the device to talk) and evaluates each of the
returned status bytes in turn.

One problem with polling in this way is that two devices might send an
SRQ at the same time, and only one of them will be discovered (the first
one). Therefore it is advisable (but not essential) that the installation
is programmed to check each and every device when and SRQ is requested.

5216 1/0 WITH EXTERNAL PERIPHERALS - USEFR GUIDE

IEEE 488 RELATED CONCEPTS

PROGRAMMING THE INTERFACE

Programming the interface 1is done in the BASIC language. This has been
upgraded with 9 statements specifically oriented towards 1EEE. These
statements are fully defined and detailed in the next chapter. They
require both the presence of an 1EEE 488 expansion board and the PLOADing
of the PCOS command 1EEE 488, the driver. The absence of either of these
generates a user visible error (see Appendix D). This section is merely
an introduction, to try to show how these statements relate to all the
other lists of mnemonics which have been presented in this chapter, and
Appendix C. '

AN INTERFACE OVERVIEW

Figure 5-7 below attempts to show this relationship. The two main boxes
represent, on the left the M20, and on the right a peripheral device. In
between the two are arrows running in both directions. These represent
the 1EEE 488 interface.

The first set of mnemonics discussed in this chapter were the interface
functions; the abilities required of the connected devices. 1t was point-
ed out there that not all functions were implemented on the M20 IEEE
package. Only those implemented are listed. In order to keep the diagram
as simple as possible, AH and SH are omitted, and since this implementa-
tion does not support peripheral devices being assigned active controller
status, this function is not shown as being present in the ''device". With
these exceptions, the remaining functions are shown as they relate to
each side of the diagram.

5-17

SH . - SOURCE HANDSHAKE RL .~ REMOTE/LOCAL
AM - ACCEPTOR HANDSHAKE PP - PARALLEL POLL
T - TALKER OC - DEVICE CLEAR
L - USTENER DT - DEVICE TRIGGER
SR SEAVICE REQUEST C . - CONTROLLER
funcrioN Message FuncTIoN
0A8
WEYTE OATA e} T €01 g
PRINT@® DATA ——— . P e S e r v - ’ N
.
...... IFCPULSE” _ =
MLA UNL
>
SDC.DCL
M 20 : » ©oc DEVICE
i
GET
» or
- Cc
WBYTE COMMANDS ————vom—ne—p}
RBYTE COMMANDS et PO SPE
PRINT@ ADDRESSES -] >
INPUT@ ADDRESSES ~——s} s/
UINE INPUT @ ADRESSES ——rmns) €~ — - SROTRUE -
GTLALD N i
REN_TRUE/FALSE * RL
________________ ~9]
MTAOTAUNT
IFC_PULSE *
REYTE DATA * T
INPUT@ DATA #r—ee L OABSTB (DURING POLL)
LINE INPUT@ DATA #mmr—is < ot
POLL STATUS VAR. - - ~ =
- omitted functions: omitted tunctions:
RLPPSR.OC.OT (not supparted) o MULTILINE MESSAGE R g,‘: il Cool SAL S
AHSH = = = ~# UNILINE MESSAGE AHSH MTA = MY TALKER ADDRESS
* FAOM ISETRESET DTA = OTHER TALKER ADORESS
STATEMENTS) MLA = MY LISTENER ADDRESS

Figure 5-7 Functional Diagram of the Interface

Next come the control lines, These are listed under another of their
"features', uniline messages. These are messages which are passed back
and forth over the interface, in the direction shown. Since the handshake
is not being indicated, DAV, NRFD and NDAC are not present. Nor is ATN,.
as it too is a special case; to show the effect it has on the multiline
(addressed and universal) commands would over-complicate the diagram.
This leaves four uniline commands, which are all shown.

The multiline messages come next. For the sake of completeness, the di-
agram contains multiline messages treated, in this document, not as
"commands'', but as special cases: data and status bytes (sent with ATN
false) and talker and listener addresses. The abbreviations, MTA (My
Talker Address) and MLA (My Listen Address) make reference to the
particular device and OTA makes reference to other devices.

5-18 . 1/0 WITH EXTERNAL PERIPHERALS - USER GUibE

IEEE 488 RELATED CONCEPTS

K3

S
Lastly the BASIC statements themselves. These are used to allow the M20,
as a programmable controller, to interact with the interface, so they are
only shown on that half of the diagram. In some cases, the keyword
appears twice, once followed by '"data', and once followed by either
"addresses" or "commands'. Data is all the information passed over the
interface after the semicolon of any particular statement. Addresses and
commands are both written before the semicolon.

1EEE 488 AND BASIC

As discussed in the previous section, there are 8 data lines (D101:D108).
These are the ones which transfer the commands and data. The 9 1EEE 488
BASIC statements carry out the. necessary instructions to perform these
duties, thus making programming the interface considerably easier.

The control lines also affect the attached devices. For example, in order
to address a particular instrument, the control line ATN (ATteNtion) must
be set true. This is done automatically, by the BASIC interpreter, when a
device address is issued by the (user) program.

5-19

6. INTERFACE STATEMENTS

ABOUT THIS CHAPTER

This chapter describes all the statements available to program the IEEE
488 Interface bus in the BASIC programming language, provided the PCOS
command 1E has been PLOADed. A general knowledge of BASIC is assumed

throughout the chapter.

CONTENTS

INTRODUCTION

THE REN/IFC STATEMENTS
ISET (PROGRAM/IMMEDIATE)
IRESET (PROGRAM/IMMEDIATE)

THE SERVICE REQUEST
STATEMENTS.

ey
259

ON SRQ GOSUB (PROGRAM)

an

POLL (PROGRAM/IMMEDIATE)

THE WRITE STATEMENTS

WBYTE (PROGRAM/IMMEDIATE)
PRINT@ (PROGRAM/IMMEDIATE)

THE READ STATEMENTS

RBYTE (PROGRAM/IMMEDIATE)

INPUT@ (PROGRAM/IMMEDIATE)

6-1 LINE INPUT@ 6-16
(PROGRAM/IMMEDIATE)

6-3

6-3

6-3

6~5

INTERFACE STATEMENTS

INTRODUCTION

This chapter deals with those BASIC statements which are specifically
related to I1EEE 488. Of necessity, the examples contain other BASIC
statements, of which a working knowledge is assumed. All statements used,
but not described here, are fully illustrated in 'the M20 BASIC Language
Reference Guide. :

Before any of these statements can be utilised, the PCOS gommand 1EEE 488
(IE) must be PLOADed, to load the group of programs which execute the
BASIC statements. '

The 9 BASIC 1EEE extension statements can be classified into 4 groups:
1. Those which control single, specific, bus lines - ISET, IRESET

2. Those which ~nable, disable, or respond to service requests -
ON SRQ GOSuB, POLL.

3. Those which write data to the bus - WBYTE, PRINTe.
4. Those which read data from the bus - RBYTE, INPUT@, LINE INPUTe.

The inclusion of IEEE facilities within the interpretative BASIC lanquage
aids the development and debugging of software programs.

The M20 contains a 'time out' feature. 1If one of the participating
devices of the handshake routine (see below) is unable to complete its
part of the hardshake within approximately 15 seconds, the M20 will abort
the attempted BASIC statement. Such a procedure prevents the M20 from
waiting indefinitely for an incompleted Input/Output operation (if this
happened, the only resolution would be to reboot the system). Since ISET,
IRESET and ON SRQ GOSUB do not use the handshake, this feature is not
present in them.

The user is visually warned in some cases, eg. Talker = Listener Address.
A full list of the error codes used is provided in Appendix D.

6-1

THE REN/IFC STATEMENTS

As discussed in the previous chapter, REN true allows a device to
respond to instructions from the controller, or some other talker. Thus

- REN must be set true before using an instruction command (WBYTE or

RBYTE). It must be set false again in order to restore exclusive local
control to the devices.

 ISET (PROGRAM/IMMEDIATE)

The ISET REN statement sets the Remote ENable to true.

The 1SET IFC statement generates an Interface Clear pulse. \igi

Figure 6-1 1SET Statement

Where
SYNTAX ELEMENT . MEANING @
ISET REN remote enabled is asserted true
1SET 1FC the interface clear pulse is generated
Remarks

REN must be set true in order that the devices on the interface can
listen.

6-2 1/0 WITH EXTERNAL PERIPHERALS - USEFR GCUIDE

INTERFACE STATEMENTS

Example

For test purposes, a series of IFC pulses can be generated using a BASIC
program loop.

19 FOR K=1 TO 14
26 ISET IFC
3@ NEXT K

IRESET (PROGRAM/IMMEDIATE)

r\‘)) Resets REN (Remote ENable) to false.

IRESET REN

Figure 6-2 1RESET Statement

THE SERVICE REQUEST STATEMENTS

The ON SRQ GOSUB and POLL statements provide the user with a simple means
of detecting, and responding to, service requests from both talkers and
listeners. ON SRQ GOSUB @ disables the SRQ (Service ReQuest) interrupt -
the request will be ignored. ON SRQ GOSUB line number enables the SRQ
interrupt. '

ON SRQ GOSUB (PROGRAM)

Enables or disables the SRQ interrupt.

e ED e €D CD o O

line

number
Figure 6-3 ON SRQ GOSUB Statement
Where
SYNTAX ELEMENT MEANING
g ~ disables the service request interrupt
line number enables the SRQ interrupt. On occurrence of
an SRQ, control will be transferred to the
subroutine starting with the line number
specified. '
This statement would ordinarily initiate a
BASIC interrupt service routine, containing
a Serial Poll and ending with a RETURN
statement.
Example
DISPLAY COMMENTS
14 DEFINT N A series of "4@"s will be displayed
20 N2=0 on the screen. When a service re-
3¢ ON SRQ GOSUB 79 quest occurs, the message 'service
4¢ PRINT "'4g" : routine entered" will be displayed.
5@ 1F N2=1 THEN STOP A serial poll will then be executed
69 GOTO 49 ~ (see below).
78 PRINT '"Service routine entered"
8¢ POLL 7,N
9¢ PRINT ''device status = '",N
18¢ N2=1
118 RETURN

6-A4 170 WITH EXTERNAL PERIPHERAIS — LISFR CGULIINDF

2

INTERFACE STATEMENTS

POLL (PROGRAM/IMMEDIATE)

Determines whether a device (connected to the 1EEE 488 bus) has requested
service. Only one-instrument is checked at a time.

.(> > tatker 1 .(: > » numeric
POLL 1 address variable »

Figure 6-4 POLL Statement

Where

SYNTAX ELEMENT MEANING

talker address a hexadecimal number corresponding to the
5-bit binary code for the individual
device's identify code.

numeric variable the name of an integer variable which is to
store the status byte returned from the
polled device.

Characteristics

The POLL statement starts the following sequence: :

1f attention (ATN) is set false, it is asserted true.

The following values (hexadecimal) are written to the bus: 3F (UNListen),
18 (Serial Poll Enable), and the talker address specified (with hex 4§
automatically added). h

ATN is reset (false).

The M20 then inputs {reads) one byte from the bus (the status byte), and

saves it in the numeric variable. The requesting device sets bit 6 ON to
identify itself.

6-5

B
ATN is asserted true, and hex 19 (Serial Poll Disable - SPD) is written
to the bus.

ATN is reset (false), thus returning the bus to Data Mode.

Example

The following example is very simple in order that the byte transmission
in the proceeding diagram can be followed. A more typical example of the
use of this statement is shown in Chapter 7.

DISPLAY COMMENTS
1% DEFINT N N is defined as the integer variable
2¢ POLL 7,N which will accept the status byte (line

3¢ PRINT "device status = " N 18). Line 2@ polls device 7, -eads one
byte from the bus, and stores it in the
variable N. 4
Line 3@ prints out the status byte.

Using the example above, the following bytes would be sent across the
bus:

BYTE COMMENTS
TRANSMITTED RECEIVED ATN

T if ATN is false, it is
set to true

3F - T UNL unlisten
18 - T SPE serial poll enable »
47 - T talker address (hex 7)
plus hex 44¢
‘ - 43 F example input from the
: .polled device
19 - T SPD serial poll disable
device status = 67 will be displayed on the
screen. 67 1s the decimal
equivalent of the hex 43.
Table 6-1

6-6 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

INTERFACE STATEMENTS

Example

This second example shows the use of POLL statements within an interrupt

service routine.

DISPLAY

19¢ ON SRQ GOSUB 2¢¢

209 POLL 5,N%

219 1F N% AND MASK=64
THEN GOSUB 3¢@

220 POLL 9, N%

23¢ 1F MN% AND MASK=64
THEN GOSUB 4¢g

24¢ POLL 14, N%

250 iF N% AND MASK=64
THEN GOSUB 5@@

COMMENTS

On occurrence of an SRQ, control is
transferred to the subroutine starting
at 2¢@. The 3 attached devices (5, 9 and
14) are addressed one at a time. The
requesting device sets bit position 6 to
identify itself (x1xxxxxx). Each of the
devices which are thus detected then has
a separate routine for handling its
particular servicing problem. The AND
MASK at 218, 23@ and 250 is set at #
except for bit 6 (=64). Thus any value

- with bit 6 set will be caught in the

logical gate. ;

26@ RETURN

THE WRITE STATEMENTS

The WBYTE and PRINTe statements enable the user to send one or more
command and/or data bytes to listeners. .

WBYTE writes one or more commands (each command may also be a device
address) followed by numeric data.

PRINT@ writes a listener address followed by numeric and/or string data
(numeric data is transmitted as a string of characters, where each digit
is represented by the associated ASCII character).

Before sending data bytes, WBYTE and PRINT@ sent SF (UNT). This stops the
current talker without enabling another.

An optional " @' at the end of these two statements sends END (EOI true,
ATN false) with the last byte of data. If " @' is omitted, CR with END
terminates the data.

WBYTE (PROGRAM/IMMEDIATE)

Writes commands to the bus with ATN true, then writes numeric values with
ATN false.

—>(worre s G '=@—L -

Figure 6-5 WBYTE Statement

Where

SYNTAX ELEMENT MEANING

command any numeric integer constant or variable
which is the command to be transmitted
(with ATN true). The command may also be
a talker or listener address.

numeric value any numeric integer constant or variable
(#:255) which is to be transmitted as
data (with ATN false).

e if " @" 1is present at the end of the

statement, the END message (EOIl = true,
ATN = false) is sent with the last byte
of data. If not, CR (hex @D) with END
terminates the data.

Note: WBYTE is used by the controller to transmit data to other devices
on the bus, which must therefore have the ability to listen (see Remark
below).

A_R 1/0 WITH EXTERNAI PERIPLHERAI S - USER CUINDE

INTERFACE STATEMENTS

Example

DISPLAY COMMENTS

@5 DEFINT N after writing the command byte @3, @5
14 N1=85 and @7, WBYTE writes the contents of the
20 N2=178 variables N1 and N2, i.e. 85 (hex 55)
3¢ WBYTE 3,5,7;N1,N2 and 17¢ (hex AA)

The next diagram shows the bytes that would actually pass across the
interface.

BYTE COMMENTS -
TRANSMITTED RECEIVED ATN ~ ’
@3 - T #3, #5 and @7 are command
g5 - T bytes transmitted across the bus
@7 - T
5F - T UNT(UNTalker)
55 - F the hex code for 85, the first
byte of data
AA - F the hex code for 17@, the second
byte of data ‘
@D - F carriage return. This is accom-
panied by EOI true.
Table 6-2
Remark

To listen/talk to a specific device the listener or talker flag (hex 2§
or 4@) must be added by the user to the device address.

PRINT@ (PROGRAM/IMMEDIATE)

Writes the listener address (with hex 2@ automatically added) then data
to the bus. Data items may be numeric or string.

If numeric, they are automatically ccnverted into decimal form (if
hexadecimal or octal) and then transmitted as sequences of characters

6-9

where each digit 1is represented by the associated ASCII1 character.
Moreover each sequence of characters corresponding to a numeric value is
preceded and followed by a space (hex 28).

" Commas used to separate data within the statement are also transmitted to

the bus.

list \ AN 4] y -~ y
‘ a'dder::; w ¥ e ,@J_, , _

PRINT@

Figure 6-6 PRINT@ Statement

Where

SYNTAX ELEMENT MEANING

listener address the hex code for the number assigned to
the listener.
Hex 2§ is added to this numter before
transmission.

data a numeric or string constant or vari-
able. (A string expression may also be
used.)

@ _END is sent true with the last byte of
data. Without it, CR with END terminates
the data.

6-10 170 LITTY EXTEONAL PERIDUCDAI S {ICCD HI1TINC

INTERFACE STATEMENTS

Example

DISPLAY COMMENTS

LIST _ "the data 12, 24 and 36 are transmitted
1¢ PRINTE@ 13;12,24,36 across the bus to device number 13.

This latter is a listener address.

This data would be transmitted as the following bytes, across the

interface:
BYTE COMMENTS
TRANSMITTED RECEIVED ATN
20 - T the listener address, decimal 13,
is hex @#D. @D plus hex 2§ is 2D.
5F - T UNT (UnTalker)
20 - F hex 2@ is ASCI1 code for space.
31 - F 31 1
32 - F 32 2
20 - F 20 space
2C - F 2C .
29 - F 29 space
32 - F 32 2
7 34 - F 34 4
$ 2 - F .20 space
~. 2C - F 2C .
20 - F 20 space
33 - F 33 3
36 - F 36 : 6
2 - F 20 s space
gD - F) carriage return
accompanied by EO1
true.
Table 6-3

6-11

Remarks

Hex 2§ is added automatically to the listener address to tell the
peripheral to listen. This does not have to be done by the user.

THE READ STATEMENTS
Three input statements are available:

- the RBYTE statement writes commands and reads values (@ + 255) into
numeric variables

~ the INPUT statement outputs addresses and inputs numeric and/or string
data into numeric and/or string variables

- the LINE INPUT statement outputs addresses and inputs a line of data
into a string variable.

RBYTE (PROGRAM/IMMEDIATE)

Writes command bytes to the bus (as WBYTE), then reads values from the
bus and places them in the specified numeric integer variables.

\J r . f » \ numeric y
—D(RBYTE Vaw $] command w P Laivte >

O

Figure 6-7 RBYTE Statement

=

6-.12 1/70 WITH EXTERNAL PERIPHERALS - USER GUIDE

INTERFACE STATEMENTS

Where

"SYNTAX ELEMENT

command

numeric variable

MEANING

any numeric integer constant or
variable which is to be transmitted
to the bus in Command Mode (thus
with ATN true). The command may
also be a talker or listener
address.

the name of a numeric integer
variable into which a value

(§ = 255) read from the bus will be
stored (with ATN false).

At the end of transmission END is
received (EO1 true, ATN false).

Here is a simple example using the RBYTE statement:

DISPLAY

@5 DEFINT N

19 N3=14

2¢ RBYTE N3,5,7;N1,N2

3¢ PRINT '"values received are'",N1,N2

COMMENTS

Commands 14 (hex @E), 5 and 7 are
transmitted, then the data return-
ed by the device are stored in the
variables N1 and N2.

Line 3@ prints out the data
returned. :

The following table shows the bytes transmitted and received across the

bus:

, BYTE S

TRANSMITTED RECETIVED ATN
gE - T
g5 - T
g7 - T
- 55 F

COMMENTS

hex @€ (dec 14)

example input

TRANSMITTED

BYTE

AA

RECEIVED

values received are 85

Table 6-4

Remark

179

ATN

»
»

COMMENTS

F example input (as this is the

last data byte read EO1

true).

is

set

will then be displayed on the

screen.

To listen/talk to a specific device the value hex 2@ or 4¢ (the listener
and talker flags) must be added by the user to the device address.

INPUT@ (PROGRAM/IMMEDIATE)

Outputs addresses (with ATN true) and then inputs data into specified
variables (with ATN false). END must be sent true with the last byte. The
driver ignores a single CR, LF at the end of each line.

y

talker
address

Figure 6-8 1INPUT@ Statement

4L 1 A

listener y
3 address

- £ L ITTVl v TCrAl At

&

» variable

M TMIMTYNAY ™

PR

INTERFACE STATEMENTS

Where

SYNTAX ELEMENT

talker address

listener address

variable

Example

DISPLAY

. 18 INPUTe 3,6;N1,N2,N3

2# PRINT “received = '";N1,N2,N3

MEANING

the hex code for the talker address.
The talker flag, hex 4@, is automat-
ically added to this before transmis-
sion.

the hex code for the listener ad-
dress. The listener flag, hex 2f, is
automatically added to this before
transmission.

the name of either a string or a
numeric variable into which a value
read from the bus will be stored.
Data must be separated by commas and
be of the same type as the variable.
END must be sent true with the last
byte.

COMMENTS

talker number 3 is addressed to talk,
listener number 6 1is addressed to
listen. The controller (M20) will
assign the data transmitted by the
talker to the variables N1, N2, and N3.
The listener with address number 6 will
also receive the information.

Finally, the data will be displayed on
the screen.

1If the three values sent to the M20 are 75, 26 and 14 respectively, then
the following bytes will be sent across the interface:

BYTE
TRANSMITTED RECEIVED

43 -

26 -

- 20
- 37
- 35
- 26
- 2C
- 26
- 32
- 36
- 29
- 2C
- 20
- A
- 34

received = 75, 26, 14
Table 6-5

Remark

The values hex 2§ or hex 4@ (the listener and talker flags) are added

MM T T T T T M M M M

ATN

COMMENTS

device address hex 3, plus hex
4 to indicate its talker
status, is hex 43.

device address hex 6, plus hex
20 to indicate listener status,
is hex 26

- hex 2¢ is ASC1l code for space

37 7
35 5
26 space
2C ,
20 space
32 2
36 6
20 space
2C R
20 space
31 , 1
34 4

The last byte is sent with EOI |

true, to indicate the end of
the data stream.

will then be dispiayed on the
screen.

automatically, and do not need to be added by the user.

LINE INPUTe (PROGRAM/IMMEDIATE)

Outputs addresses with ATN true and then inputs a line of data and
assigns it to a string variable (with ATN false). END must be sent true
with the last byte of data. The driver ignores a single CR, LF at the end

of each line.

T /N 10T TLU CVTCDAMAL

OrCDIDUrDAI © ; HECED ~lLITNRC

e

INTERFACE STATEMENTS

When 255 characters have been received, no other character can be input
(as the maximum length of a string is 255 characters, see also the LINE
INPUT statement).

4

() | i Al . string >
3 address >@_’ variable

LINE \ a)] talker
mvu'r@J 1 address

Figure 6-9 LINE INPUT@ Statement

Where

SYNTAX ELEMENT MEANING
talker address - the hex code for the talker address.
Hex 4 is automatically added to this

. before transmission.
listener address the hex code for the listener address.
Hex 2§ 1is automatically added to this

-before transmission.
% string variable the variable name to which the string

input is to be assigned.

6-17

Example
DISPLAY COMMENTS
1@ LINE INPUT@ 3,6;N$ Statement 1§ outputs the address 3 as
20 PRINT "received = ";N$ a talker, and address 6 a listener. It
then receives one line of data input
and assigns it to the string variable
N$. The listener 6 also receives the
output from the talker.
- Statement 2@ displays the value of the -

N$ variable.

1f the data input in response to the program above was 'IEEE TEST', the
following bytes would be sent across the interface:

BYTE : COMMENTS
TRANSMITTED RECEIVED ATN

43 - T device address 3, plus the
talker address 4§ is 43.

26 - T device address 6, plus the
listener flag 2§, is 26.

- 49 F hex 49 is ASCII code for 1
- 45 F 45 E
- 45 F 45 E
- 45 F 45 E
- 29 F 20 space
- 54 F 54 T
- 45 F 45 E
- 53 F 53 S
| - 54 F 54 T
this last being sent with EOI
! ‘ , true, to indicate the end of
the message.
received = 1EEE TEST will then be displayed on the

screen.

Table 6-6 ‘

6-18 1/0 WITH EXTERNAL PERIPHERALS -"USER GUIDE

INTERFACE STATEMENTS

Remarks

The values hex 2§ and hex 4@ (the listener and talker address flags) are
set automatically and do not need to be added by the user.

oo

7. IEEE 488 SAMPLE PROGRAMS

ABOUT THIS CHAPTER *

This chapter illustrates, with the use of example programs, two typical
uses for this interface. These are followed by an example showing how
- these particular devices might be used together, and how 1EEE 488 can be
used to run such a system.

CONTENTS

USING THE INTERFACE 7-1
CREATING TEST/CONTROL 7-1
EQUIPMENT

AUTOMAT ION 7-1
1EEE 488 AND COMPUTERS 7-2
SOME_PRACTICAL EXAMPLES 7-2
USING A PLOTTER 7-2
USING A VOLTMETER 7-4
USING A VOLTMETER 7-6

AND A PLOTTER

IEEE 488 SAMPLE PROGRAMS

USING THE INTERFACE

1EEE 488 is used for many different purposes, for example:

" CREATING TEST/CONTROL EQUIPMENT

In this case, the 1EEE 488 is used to connect together otherwise indepen-
dent pieces of (test) equipment. Limitations on the maximum length of
cabling allowed necessitate that these devices are located close to one
another, usually on the same test-bench. 1f distance between devices is a
problem, it can be got round in several ways, including, for example,
linking the test equipment to the controller via an RS-232-C line.

By providing such a connection, the separate devices are linked *together,
each able to communicate with the other, and so can be thought of as one
unit. In addition, one of these devices can be a processor, (e.q. the
M20) which can run these peripherals instead of an engineer having to
operate each in turn. The final stage in this process is to program the
processor, so that little or no human intervention is required.

To take an example, suppose that a particular circuit-board needs to be
tested. The same test may need to be carried out hundreds, or even
thousands, of times. This repetition may be carried out thousands of
times on the same board, in a QA or experimental environment; or once, on
thousands of boards, in a production environment.

With a set up as described above, instead of an engineer connecting up
each device manually, adjusting the settings and then taking the
readings, a technician can do the job. With a suitable program on the
machine, all that would be required of such a person is to read the
results from the screen of the processor.

AUTOMATION

A common area for the use of IEEE is in industrial automation. By having
detectors and the devices which change the environment (thermometers and
air-conditioners, tachometers and generator power supply, to take two
simple examples) as closely linked as IEEE enables them to be, the
machines can run without manual intervention. Service ReQuest (SRQ)
should be suitably programmed to warn of conditions outside the control
of the automatic system, so that manual control may be re-established.

7~-1

Such a system not only alleviates the necessity for constant vigilance,
and the human errors that inevitably result, but even more importantly,
allows a far greater degree of accuracy. Conditions controlled by such a
system can be tested and adjusted thousands of times a second if re-
quired.

1EEE 488 AND COMPUTERS

Because of the three-wire handshake, the interface is able to transfer
data at very high speeds and with a great deal of accuracy - because the
listener governs the speed, it can always keep up. For this reason, IEEE
is very common as a connector between main-frame machines and peripheral
equipment. The interface can thus cope with the differences in speed that
a disc drive and a printer, for example, require their data to be
transmitted.

SOME PRACTICAL EXAMPLES

The rest of this chapter describes two very simple, but useful, applica-
tions of the 1EEE interface. The first example describes the use of a
small program to write data to a plotter, and have it draw such infor-
mation. The second describes the use of a voltmeter in connection with
the M20. These examples are followed by a third, more complex, example
which combines these two, with a program that plots out the data read
from the voltmeter.

The PCOS -command 1EEE 488 must be PLOADed before any of these programs
can be run.

The examples are described and three sample programs which could perform
each of these applications are worked through.

USING A PLOTTER

The following example requires the plotter to draw a circle and to label
it “OLIVETTI M20". The program described uses a specific plotter, and
some of the data sent to it as instructions may therefore be different
for another machine. What these instructions are, and how they are in-
terpreted, is always made clear by use of comments within the program
itself.

7.2 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

IEEE 488 SAMPLE PROGRAMS

This example shows how data can be transmitted to a peripheral device,
using the interface. However, it 1is essential that the programmer is
familiar with the peripheral itself, as well as with the 1EEE programming
statements, if the device is to be able to respond to commands and detect
the difference between commands and genuine data.

For example, line 7§ of the following program sends the data "POLIVETTI
M20" to the plotter. In the case of this plotter, the first character, P,
is read as the command "Print' which indicates that all the following
characters should be treated as data and printed as required. 1f this
first character had been S for example, then the following characters
would have been included in the command, telling the plotter the size of
printing required. This situation is illustrated in line 5§.

Figure 7-1 shows an example program to carry out the requirements above.

g5 REM PROGRAM SENDING DATA TO A PLOTTER

1@ 1SET REN

20 PA=6 'plotter address

3¢ XY$="1¢¢d,58"

4¢ PRINT@ PA;"M"+XY$

5@ PRINT@ PA;"S15"

6@ PRINT@ PA;™Q@"

79 PRINT@ PA;"POLIVETTL m2g"

8¢ R=190¢

9¢ XY$=STRS(18@@+R*COS(@))+", " "+STRS(13¢@+R*SIN(E))
1¢¢ PRINT@ PA;"M"+XY$ 'move to first point on circle w/pen up.
11¢ FOR X=@ TO 6.3 STEP .1
12¢ XY$=STRS(18@@+INT(R*COS(X)))+","+STRS(13¢@+INT(R*SIN(X)))
13¢ PRINT@ PA;"D"+XY$

14¢ NEXT

15¢ PRINT@ PA;"H" 'home w/pen up.

Figure 7-1 Example Program Sending Data to a Plotter

The Plotter Example
1SET REN in line 1¢ sets all devices on the interface to Remote ENable.
Line 2§ sets the plotter address (in this case 6) to the variable PA.

Line 3¢ sets the variable XY$ equal to "1¢@@,5¢''. These are the co-ordi-
nates of a point, that will be sent to the plotter as data.

Line 40 asks the plotter to receive the data M, 10@@, comma and 5¢. This
specific plotter interprets this as '"Move the pen to the absolute
co-ordinate "19@g@, 50" with the pen up'. The next data to be sent to the
plotter is "S$15'", which means that any text is to be printed at 15 times
the basic size. "“Q@" then specifies the orientation to print in and
finally the string "POLIVETTI M20" is sent, which tells the plotter to
print OLIVETT1 M20 (in orientation @ and character size 15).

Lines 8¢ to 14¢ look more complicated, but in fact the Complication is
only the mathematics required to draw the circle.

Line 9¢ shows that XY$ is to become a string containing: the value 18¢¢ +
R * C0S(#), (where R has been set in line 8¢ to 19¢@), a comma, then
another string value, this time 130@.+ R * SIN (#). Thus XY$ becomes
equal to X,Y as it did in line 3@, but now the co-ordinates specify the
first point of the circle.

Line 12¢ is exactly the same, except that the trigonometric functions
have @ replaced by X, where X is set by the loop at lines 11¢ and 14¢.

Line 11¢ shows that the X parameter will change 63 times, so the circle
will be made up of 64 straight line connections, joining these points.

Line 13¢ sends the data "D" and XY$. This means draw a straight line from
where the pen is now to the co-ordinates specified in XY$. The final
instruction, "H", tells the plotter to return the pen to the Home posi-
tion, with the pen up (not all plotters return with the pen up, a separa-
te command is then required to prevent the pen from drawing across to the
Home position).

Although these instructions may vary from machine to machine, the method
of transmission of this data remains the same.

USING A VOLTMETER

This example requires the voltmeter to produce a voltage reading each
time the SRQ is triggered. For demonstration purposes this could be done
manually, using an external trigger, so that readings can be performed
whenever necessary. These readings are displayed on the VDU. Figure 7-2
gives an example of a program that would carry out the requirements
above. As in the previous example, some of the instructions issued may be
specific to the peripheral used.

7-4 1/0 WITH E¥YTERNAI PERIPHFRA!'S — USEFR CUIDE

IEEE 488 SAMPLE PROGRAMS

#5 REM PROGRAM TRIGGERING. AND READING VOLTMETER OUTPUT
1¢ CLEAR
2¢ DEFINT A-Z
3¢ DVM = 1
4¢ 1SET REN
5¢ WBYTE 33,4; 'Send SDC
6@ PRINT e DVM; “F1R7M3T2D1Ag"
7¢ ON SRQ GOSUB 19¢¢
8¢ PRINT "Waiting for srq"
9¢ 'P=P0S{1) 'Returns row of text cursor.
1¢@ CURSOR (1,2) : I=1+1 : PRINT 1 : GOTO 19¢
11¢ END
19¢¢ *SRQ ROUTINE
1619 PASS = PASS + 1
192¢ POLL DVM,STATUS
193¢ CURSOR (1,19
1949 PRINT “STATUS=";STATUS,"PASS="';PASS
105¢ LINE INPUT@ DVM ; VOLTSS
166¢ PRINT ""READING 1S",VOLTSS
1979 PRINT e DVM;
1980 ON SRQ GOSUB 1999 : RETURN

Figure 7-2 Example Program Triggering and Reading Voltmeter Output

The Voltmeter Example

Line 1¢ is the BASIC statement which closes all previously open files.
Line 2@ then declares that all variables in the program starting with an
alpha-character will be integer variables. Line 3¢ sets the first of
these variables, DVM, to 1. This is a mnemonic for the Digital Voltmeter,
and its address, 1. 1SET REN sets all the device on the. interface to
Remote ENable (although for the purposes of this program the DVM is the
only device on it).

The WBYTE statement at line 5@ then sends Selected Device Clear to the
DVM. The device address is 1, plus listen (32) adds to decimal 33, the

. first command. Following the comma, the second command, 4, is the code
for SDC. (See Appendix C).

In order to send string information, the PRINT statement is used next.
As in the previous example, the data is recognised and interpreted by the
DVM. The string "F1R7M3T2D1Ag" is interpreted by this specific voltmeter
as:

- F1 DC Volts

- R7 Auto range

- M3 Maths off

- 12 Trigger external

- D Data ready RQS (sets SRQ on valid data)
- Ag Auto calibration off.

Line 7¢ then sets up the GOSUB statement to jump to the routine which
will take the voltmeter reading each time there is a service request.

Line 1¢¢ provides a waiting loop, which counts from 1 onwards until the
SRQ is triggered. By repositioning the cursor each timeé, each number
overwrites its predecessor. The end of the program proper follows, then
the service request subroutine starts at line 10@d.

After the title, the first line merely counts the number of times the
subroutine has been called. Line 1@§2@ then POLLs the DVM for its STATUS.
The voltmeter outputs this status information which is printed, with the
pass number, at line 1@4@8. Line 1@3@ has meanwhile repositioned the
cursor so that it does not overwrite the counter.

Line 195§ addresses the DVM to output its current reading to the con-
troller (M20). This data is displayed on the VDU by the PRINT@statement
at line 1¢6@. Line 197¢ is a dummy PRINT@ statement which causes the DVM
to become a listener again, which it needs to be to listen for the next
SRQ trigger.

Line 198f resets the GOSUB statement then, in the same line, returns:
control to the main body of the program. By having these two statements
on the same line, the interrupt routine is completed before another can
be acknowledged.

USING A VOLTMETER AND A PLOTTER

This example uses the DVM to take readings of the mains voltage and plot
each of the readings graphically, using the plotter. The example is more
complicated because of the interaction between the two instruments.

7-6 170 WITH EXTERNAI PERIPHFRAL S — USER CUINF

IEEE 488 SAMPLE PROGRAMS

R
»
~
@ REM PROGRAM USING TWO PERIPHERALS
1 TIME = 19¢¢
5 ON ERROR GOTO 9¢¢g
7 CALL "pl ie"
19 XMIN = -3¢
20 XMAX = 14
3¢ INPUT “Enter your A.C. line voltage: '‘;ACV
46 YMAX = .2 * ACV
S¢ YMIN = -YMAX
60 MAXY = YMAX / 2
7¢ MINY = -MAXY
- 8¢ NUMTIC = MAXY - MINY

9% TICINC = INT(13¢@/NUMTIC)
198 PLOTTER = 6
105 'Functions FNXS$ & FNY$ return plotter units in string form that is
suitable for sending to plotter.
119 DEF FNX$S(X) = STRS(INT ((X-XMIN)*360@/(XMAX-XMIN)))
12¢ DEF FNYS$(Y) = STRS(INT((Y-YMIN)*2688/(YMAX-YMIN}))
13¢ C$ = "Move" : X =@ : Y = MINY : GOSUB 10¢¢@
14¢ GOSUB 2¢¢¢
17¢ C$ = "Move" : X =
175 X0% = @ : X1% = 1§
188 Xg$ = FNXS(Xg%)
182 X1$ = FNX$(X1%)
184 TICINC = INT((X1%-X0#%)/1¢)
186 PRINT -PLOTTER;"X1," +STRS(TICINC) + ",1¢"
188 GOSuUB 21¢¢
2¢¢ ODVM = 1
219 1SET REN
22¢ WBYTE 63,95;
239 PRINT@ DVM;"F2R7T2T73"
24¢ WBYTE 33,8;
25¢ INPUT@ DVM;ACV1
255 WBYTE 63; ‘UNL
260 Y = ACV - ACV1
27¢ C$ = "Move": X = ¢ : GOSUB 1¢d¢
288 FOR X = 1 TO 10¢
285 C$ = D"
29¢ WBYTE 33,8; 'GET
3¢@ INPUT@ DVM;ACV1
316 Y = ACV - ACV1
320 GOSUB 18¢9g
322 C$ = "Move" : GOSUB 1¢¢¢
325 FOR K = 1 TO TIME : NEXT K
330 NEXT X
34¢ PRINT@ PLOTTER;"H"
35¢ END
g 1999 *Sub plot
1¢1¢ CODES = LEFTS$(CS,1) 'Get rid of all but the first character.
1¢2d 1F CODE$ = "H* THEN PLOTS = CODES : GOTO 1¢7¢ 'Home needs no

g :Y=¢: 60Sus 1909
¢

]

parameters

. Figure 7-3 Example Program Using Two Peripherals (cont.)

1925 'X$ & Y$ are the plotter units in string form while X% & Y% are the
same values in numeric form.

1030 X$ = FNX$S(X)

1940 Y$ = FNYS(Y) ¢

185¢ PLOTS = CODES + X$ +"," + Y$ 'Build string to send to plotter.

1979 PRINT@ PLOTTER ; PLOTS 'Send string to plotter.

1975 WBYTE 63; 'UNL

1¢8¢ RETURN

209@ 'Sub Y-axis

2005 PRINT® PLOTTER;"X@" + "," + STRS(TICINC) + "," + STR$(NUMTIC)

2019 C$ = "Move" : X =-4 '

2020 PRINTe 6,"S2" 'Small character size

‘2030 FOR Y = MAXY TO MINY STEP-1

2949 GOSUB 1¢¢¢

2¢5@ PRINT@ PLOTTER; "P*" + STRS(Y)

206@ NEXT Y

2665 WBYTE 63; ‘'UNL

2679 RETURN

2199 'Sub Xaxis

2185 XT = 19¢

2119 C$ = "Move" : Y =-1

2120 FOR X = 98 TO 8 STEP-1§

2139 GOSUB 1dgg

2140 PRINT@ PLOTTER;"P" + STRS$(XT)

2145 XT = XT-19

2150 NEXT X

2160 RETURN

9998 ‘Error recovery

9919 RESUME NEXT

Figure 7-3 Example Program Usiﬁg Two Peripherals:

Line 1 sets the time interval between the readings. If this is to be a
long period (more than 1§ seconds) the program should be amended to 1ift
the pen after each point is plotted, so that the pen does not leak onto
the paper. This is easily done using a dummy Move statement, causing the

pen to move to the co-ordinates it is already at (so it does not move)

but the pen is lifted until the next Draw statement. Inserting line 322
as C$ = "Move" : GOSUB 10¢@ would perform this operation.

Line 5 prevents the program being halted by an error - the error routine
causes the program to go on to the next plot. Line 7 calls up and loads
the 1EEE 488 package, using the PCOS command IE.

Lines 10 and 2§ define the upper and lower limits of the X axis, and 3@
allows the user to input the line voltage which will be used. Lines 4¢
and 5¢ define the limits of the Y axis as plus or minus 20% of the line
voltage input, while 6§ and 7§ define the limits that the axis will be
plotted to. Thus the scale will cover the middle half of the paper, but

7-8 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

IEEE 488 SAMPLE PROGRAMS

the actual graph can be plotted to the edges (given a 2¢% fluctuation in
voltage).

Lines 8¢ and 9¥ set the number of increments and their interval for the
Y axis (138¢ is the number of units used internally by the plotter). As
before, a mnemonic (PLOTTER) is assigned the device address (6) at line

190.

The next 3 lines, as 105 describes, return the plotter units in string
form, which is how they will be sent to the plotter. '

Line 130 sets the pen up to plot the Y axis, starting at X=@ as the
lowest value of Y. To transmit this data to the plotter, the subroutine
at line 19@@ is used.

Subroutine 1¢@#@: Sending Co-ordinates to the Plotter

Line 1910 strips CODE$ of all but the first character. Lines 1¢3¢ and
1040 assign the values of X and Y to plotter units, then 1058 strings the
3 values into PLOTS. The PRINT@ statement then sends this string to the
plotter.

If the letter left in CODES is "H", the PLOTS is assigned this in line
1826, and lines 1¢3@, 1640 and 1050 are jumped over, as Home does not
need the extra parameters X and Y.

Before returning to the main body of the program, the Universal UNListen
is sent by line 1475, so that the system is ready for further instruc-
tions.

Drawing the Y Axis

Returning to the main body of the program, another subroutine is called
(line 14¢). This subroutine, starting at line 2@@@ actually draws the Y
axis, and the increment numbers beside it. Line 2¢@5 tells the plotter to
plot the Y axis (X@# command for that specific plotter) with NUMTIC number
of segments, drawn at TICINC intervals.

Line 2¢1¢ then sets C$ to Move again (the X@ command used in 2§@5 leaves
the pen down) and X is set to -4, so that the scale is drawn to the left
of the Y axis.

The PRINT@ statement at line 2020 sends the plotter (device 6) the data
S2, which sets the character size (as in the first example). For

7-9

k'
efficiency, since the Y axis was drawn from bottom to top, the scale is
printed from top to bottom, so that the pen does not have to travel the
length of the axis to start. Thus line 2(¢3¢ starts a loop, decrementing Y
by 1 each time; beginning with the value MAXY and ending at MINY.

The string variable PLOTS is built by subroutine 1¢@@ again. X is con-
stant and already set at -4 (line 2@¢1#) and the loop varies Y to move the
pen vertically down the page.

Line 2¢5@, another PRINT statement, addresses the plotter with the data
"P" and STR$(Y). This instructs the plotter to print the value Y.

Subroutine 10@@ then resets the pen to the next position where 2¢5¢
prints the value, and so on. When this is completed, line 2865 sends a
Universal UNListen (thus including the voltmeter), then at line 2¢7¢
control returns to the main program body.

Line 17@ resets C$ to Move and X and Y to @. Subroutine 1¢@@ then carries
this out, i.e. moves the pen to #,d.

Drawing the X Axis
Line 175 assigns X@% and X1% variables.

Lines 18¢ and 182 set string variables X@$ and X1$§ to the minimum and
maximum of X, in plotter units, so these can be sent to the plotter.
TICINC 1is reset, this time to be the integer part of the value
(X1%-X@#%)/1@. Thus there are to be 10 intervals along the X axis.

Line 186 is similar to 20@5, but this time the X axis is to be drawn,
with 1@ ticks, at intervals of TICINC. Line 188 transfers control to
subroutine 210@ which adds the scale to the X axis.

Line 2105 sets the start point for the X co-ordinate, the 211¢ sets C$ to
Move once more and Y to -1 (so that the legend will be below the axis).
The loop is set up in line 212¢, starting at 98 so that the numbers are
directly under the tick marks.

As before, subroutine 10@@ then moves the pen to the co-ordinate re-
quired, with Y constant at -1 and X decreasing by 1§ each time. Line
2140, as 2050, then instructs the plotter to print the new value for XT,
which 1is altered each time round by line 2145. Line 2150 completes the
loop, and when this is finished 216@ returns control to the main program
once more.

7-10 1/0 WITH EXTERNAL PERIPHERALS - USFR CUIDE

IEEE 488 SAMPLE PROGRAMS

Setting up the DVM

The plotter is now ready, and all that remains before the 'experiment'
can run is to set up the voltmeter.

As on previous occasions, a mnemonic is used for the device address. Line
20¢ sets DVM to 1. Line 21@ Remote enables the system (so all devices can
listen) then 22¢ performs a Universal UNListen (63) and UNTalk (95), so
that the plotter will not listen to the proceeding instructions.

Line 23¢ sends the string “F2R7T2T3" to the DVM. This is interpreted as:
- F2 AC Volts
- R7 Auto range

- T2-T3 A special trigger mode to enable the DVM to respond to a GET
signal.

1n order that the first point on the graph is a 'real' point, not where
the pen happens to be (normally @), the first GET is triggered outside
the main experiment loop, at line 24@. This addresses the DVM as a lis-
tener (1+32) and then sends the GET command.

The GET (Group Execute Trigger) will be sent each time line 29¢ is re-
ached.

Plotting the Graph

Line 25§ accepts the input from the DVM and stores it as variable ACV1.
Line 26§ then computes the difference between the "mean" line voltage
input at line 3¢ (ACV) and the measured voltage (ACV1) and assigns this
value to the Y co-ordinate. Line 27@ sets C$ to Move, X to @ and diverts
control to subroutine 19@@ which positions the pen at this point.

Line 280 starts the loop of the experiment. 1¢@ readings are to be taken
and the loop variable is used to increment the X co-ordinate. Line 285
sets C$ to Draw, so the pen will map movement from now on. '

Lines 29¢, 3¢@ and 31¢ correspond exactly to 24¢, 25¢ and 26§, triggering
and accepting the data from the DVM. As usual, this information is used
by subroutine 10@@# to reposition the pen (but this time the pen is
drawing).

Line 325 runs the time interval set at line 1, then the process repeats
until all 1¢@ points are plotted (1¥1 including the first).

7-11

Finally, the plotter is sent the data "H'" by the PRINT@ statement, which
returns the pen to the Home position. This could equally have been done
by C$=HOME : GOSUB 1¢@@ as the subroutine is prepared for such action in
line 1@2@. Line 35§ then terminates the program.

- Figure 7-4 shows an example of the output from this program. How constant
the graph is will depend on the time interval chosen, and the variability
of the mains voltage in the area.

- -
o =

O = N W s e N 09

[T T S W S S I |
© @ NS B AW N -
-3 3

'
-]

[
-
-

Figure 7-4 Plotting the Graph (Sample Output)

7-12 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDFE

A. STANDARDS PUBLICATIONS

EIA STANDARD RS-232-C

Interface between Data Terminal Equipment and Data Communication
Equipment employing serial binary data interchange, dated: August 1969

Published by: ELECTRONIC INDUSTRIES ASSOCIATION
Engineering Department

20¥1 Eye Street, NW
WASHINGTON, DC 2¢@g6

CCITT V.24 ey

This standard is entitled:
Recommendation V.24

LIST OF DEFINITIONS FOR INTERCHANGE CIRCUITS BETWEEN DATA-TERMINAL EQUIP-~
MENT AND DATA CIRCUIT-TERMINATING EQUIPMENT

and forms part of Volume VII1.1 (i.e. Part 1 of Volume VII1) of:

CCITT SIXTH PLENARY ASSEMBLY
Geneva, 27 September - 8 October 1976

VOLUME VI1I.1

DATA TRANSMISSION OVER THE TELEPHONE NETWORK, dated: 1977

Published by: INTERNATIONAL TELECOMMUNICATIONS UNION
GENEVA, Switzerland

ANSI/1EEE Std 488-1978

1EEE standard digital interface for programmable instrumentation

Published by: The Institute of Electrical and Electronic Engineers, Inc.
345 East 47th Street,
New York,
New York 19¢17

AN 1706 WUITH EXTERNAI PERIPHERAI € o ISER CUINE

B. RS-232-C SIGNALS AND SETTINGS

ABOUT THIS APPENDIX

This appendix describes the RS-232-C interface in terms of its signals,
definitions and functions as applied to a particular peripheral, or
-printer. As an aid to ensure correct functioning of the M20 RS-232-C
interface, the jumper settings corresponding to port # (asynchronous
usage) as well as ports 1 and 2 (asynchronous or Current Loop usage) are
shown.

CONTENTS
INTERFACE SIGNALS B-1
ELECTRICAL LEVELS AND B-2

LOGIC REPRESENTATION

INTERFACE SIGNAL B-3
DESCRIPTION

JUMPER SETTINGS B-4
MOTHERBOARD . B-4
.MINIBOARD B-5

RS-232-C SIGNALS AND SETTINGS

R
»

INTERFACE SIGNALS

The following table shows the signal descriptions by V.24 and RS-232-C
name and circuit identifier; direction relative to source; M20 name and .
pin on connector.

INTERFACE SIGNALS

CCITT v.24 EIA RS-232-C ’ SIGNAL DI- SIGNAL PIN ON
. ~ RECTION NAME CON-
CIRCUIT. SIGNAL DE- CIRCUIT SIGNAL DE- RELATIVE NECTOR
SCRIPTIOM SCRIPTION TO SOURCE*
181 Protective AA Protective - GROUND 1
ground ground
1092 Signal AB Signal - EARTH 7
ground ground
193 Transmit- 84 'Transmit- from T193A 2
ted data ted data
194 Received BB Received to R1g4A 3
data data
195 Request to CA Request to from T1¢5A 4
send send
197 Data set cC Data set to R1g7A 6
ready ready
198/2 Data ter- cD Data ter- from T1¢8A 20
minal minal
ready ready
199 Data CF Received to - R199A 8
channel line sig-
{ " received nal de-~
o tector
ok Reverse *k Reverse from RECH@ 1
channel channel
118 Transmit- SBA Secondery from T118A 14
ted Back- transmit-
wards ted data

B-1

INTERFACE SIGNALS

CCITT v.24 EIA RS-232-C SIGNAL SIGNAL PIN ON
_ - DIRECTION NAME CON-
CIRCUIT SIGNAL DE- CIRCUIT SIGNAL DE- RELATIVE A NECTOR
SCRIPTION SCRIPTION TO SOURCE*
120 Transmit- SCA Secondary from T120A 19
ted channel request to
- line signal send
NOTES: * M20 on MODEM cable and PERIPHERAL on PERIPHERAL cable égg

** Circuits not present on both standards.

ELECTRICAL LEVELS AND LOGIC REPRESENTATION

VOLTAGE LEVELS ON LINE

NEGATIVE (V=-3 MIN.) POSITIVE (V=+3 MIN.)

Binary status 1 g
~ Signal MARK SPACE
Function OFF (disabled) ON (enabled)

The voltage levels are measured at the line connector pins.

The max voltage level for MARK must be -25V, while for SPACE it must be
+25V.

The time which elapses for signal excursion between the voltage levels
+3V and -3V must not exceed 3% of the bit nominal time.

R 1/0 WITH EXTERNAL PERIPHERALS -~ USER GUIDE

IEEE 483 SAMPLE PROGRAMS

INTERFACE SIGNAL DESCRIPTION

The following table shows how these signals are used with a printer.

CCITT
CIRCUIT
IDENTIF.

19

162

193

194

145

| 187

PIN SOURCE
1 _—
7 —_—
2 Printer
3 Host
system
4 Printer
6 Host
system

NAME

Protective
ground

Signal

ground

Transmitted
data

Received
data .

Request
to send

Data set
ready

DESCRIPTION

To be connected to the machine
cabinet

Logic ground. It must be connec-
table to circuit 11 through a
removable jumper

This circuit can be used to
signal the printer status to the
driving host system. Normally it
is in MARK condition (-V) and
goes to SPACE condition (+V)
when the printer is '"Busy" or in
“"anomaly" status (e.g.: pa-
per-out, out of service). This
circuit can be used as an alter-
native to circuit 118 (Secondary
transmitted data) or to Reverse
Channel circuit

During the intercharacter time
intervals, and when circuit 149
is OFF (-V) this signal is
maintained at MARK level (-V)

It is maintained at -ON level
(+V) when circuit 183 1is used.
Otherwise it 1is maintained at
OFF level (-V)

The ON level (4V), indicates

that the host system is ready to
transfer data

8-3

CcClTT
CIRCUIT
IDENTIF. PIN SOURCE
198/2 v 20 Printer
minal
1099 8 Host

- system
118 14 Printer
120 19 Printer

— 11 Printer

JUMPER SETTINGS

MOTHERBOARD

For the built-in RS-232-C Interface, the user should check that the

NAME

Data ter-

Received
line sig-
nal de-
tector

Secondary
transmitted
data

Secondary
request to
send

Reverse
channel

DESCRIPTION

The ON level (+V), indicates
that the printer is ready to
receive data. It goes OFF (-V)

- when "anomaly' or ''local" con-,

ditions occur

The ON 1level (+V), indicates
that data are present on cir-
cuit 1§4 (if activated)

It is used alternatively to
circuit 1¥3 or Reverse channel
circuit, to signal the '"Busy"
or "anomaly'" status to the host

Permanently maintained at ON
level (4V)
{

It is wused alternatively to
circuits 183 and 118 transmit
the "Busy' or "anomaly' status
to the host

following jumpers are in position for port §:

B-4

1/0 WITH EXTERNAL PERIPHERALS — USER CUIDE

IEEE 488 SAMPLE PROGRAMS

Y1 to Y24
Y3 to Y22
Y5 to Y20
Y7 to Y18
Y9 to Y16
Y11 to Y14
P1 to P
N2 to P2
MINIBOARD

LN

For the extension RS-232-C Interface, the user should check that the
following jumpers are in position:

ALWAYS
1 B to B
I to Z
AND
2. FOR PORT 1: AND FOR PORT 2:
1 to 6 A to A
to R 2 to W
2 to S 2 to Y
EITHER
FOR ASYNCHRONQUS USE
3. FOR PORT 1 AND FOR PORT 2
1 to M 1 to T
to U
~ OR

FOR 2Cma CURRENT LOOP USAGE

4. FOR PORT 1

‘ AND

3 to M

B-S

TRANSMIT
ACTIVE PASSIVE
J to K J to L
L to M M to N
N to P
FOR PORT 2
AND .
TRANSMIT
ACT1VE PASS1VE
7 to 8 7 to
9 to 10 10 to
11 to 12
R-A

OR
ACTIVE

>

to
to
E to

<

OR
ACT1VE

1 3 to

1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

PASSIVE

RECEIVE
" PASSIVE

P A to
c D to
F‘

T

U

RECEIVE

2 1 to
4 4 to
6

C. IEEE 488 CHARACTER CODES

N
»
(SENT AND RECEIVED WITH ATN =1)
bg e 0 @0 0 o 1 1
by o |msc| o [msGg| 1 |msg| + | msc|o |msGg| o |msG
[— o 1. 0 1 o 1
B,
ts b3 & By b
1111 0 1 2 3 4 5
k)
0000 o] NuL DLE se| 2 10| 4 |e| 4 1|p |4
000 1] 1| sor|GTL |pctiLLo] 1 1 A a
0oo1o0]| 2] stx oc2 - 2 B R
0011} 3| €ETx oc3 # 3 c s
w W w w
0100) 4| €oT|socfocalpcL| s | © |4 | & || O |T]| S
> S S S —
010 1] 5 | ena|prc®nak|eel® % | 2 | s W le|@ vl
e v 10 6] Ack SYN a| 2ls]l o |{rlelvie I
o] Q - a "
0111} 7| BEL ETB @ 7w 6| lw|w b3
T TE T T e *
1000 8 | Bs jGeTlcanfsre | (| 5 (8 | 2 |H | 2 |x |2
“’(’ 71 %] o
10011 9 HT |Tc™ em [spo |) 9 < 1 « Y <
— S ST E T e
1010|110/ LF sus .| = =1 VRS R~ N 20 B~
101 111] vr ESC . ; K [
110012 FF Fs , < L N
1101]13] cr Gs - = ™M]
111014 so RS) >| v [N -
-
111115 st us I | w]?2|un|o| ¢ |— |unT
Se— N p— g ~ v
ADDRESSED UNIVERSAL LISTEN TALK
COMMAND COMMAND ADDRESS ADDRESS
GROUP GROUP GROUP GROUP
(ACG) (UCG) (LAG) (TAG)

“v*

PRIMARY COMMAND GROUP (PCG)

NOTES: (1) MSG = INTERFACE MESSAGE
@ by = DI01...bg = DIO7
(® NOT AVAILABLE ON THE M20

Table C-1

Cc-0 1/0 WITH EXTERNAL PERIPHERALS - USER GUIDE

D. IEEE 488 BASIC ERROR CODES

»
>

ERROR CODE DESCRIPTION AS OUTPUT COMMENTS
AN 1EEE invalid Talker/ use of illegal talker listener
Listener address address '
32 1EEE: Talker = Listener an attempt has been made to
address talk to a talker, or listen to

a listener

33 1EEE: Unprintable error _an error message is not print-
' ~ able 1i.e. corresponds to an
- error with an undefined error ;o
code ' ‘
34 1IEEE: Board not present an attempt has been made to use

1EEE on a machine which does
not have the optional 1EEE
board

n-n X 170 1UTTUY CVYTCOMNAI DEDIDUCDALIC fICcrD ritTncd

NOTICE

Ing. C. Olivetti & C. S.p.A. reserves the right to make improvements in
the product described in this manual at any time and without notice.

This material was prepared for the benefit of Olivetti customers. 1t is
recommended that the package be test run before actual use.

Anything in the standard form of the Olivetti Sales Contract to the
contrary not withstanding, all software being licensed to Customer is
licensed "as 1is". THERE ARE NO WARRANTIES EXPRESS OR IMPLIED INCLUDING
WITHOUT LIMITATION THE 1IMPLIED WARRANTY. OF FITNESS FOR PURPOSE AND
OLIVETT1 SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR
INCIDENTAL DAMAGES IN CONNECTION WITH SUCH SOFTWARE.

The enclosed programs are protected by Copyright and may be used only by
the Customer. Copying for use by third parties without the express
written consent of Olivetti is prohibited.

GU Code 3982300 N (0)
Printed in ltaly

GU Code 3982300 N (0)
Printed in italy

