
PERSONAL COMPUTER

BASIC Language
Reference Manual

PREFACE

This is a simple guide to the use
of BASIC on the OLIVETTI M20

System. 1t introduces the reader
to BASIC, with the help of many
figures, tables and examples.
Related statements, commands and
functions are dealt with in the
same chapter.

Previous programming experience is
riot strictly required. Only a
basic knowledge of data processing
is assumed.

ALL BASIC STATEMENTS, COMMANDS,

AND FUNCT10NS ARE LISTED IN AL-

PHABETICAL 0RDER IN APPENDIX E,

FOR SPEEDY REFERENCE.

THIS MANUAL MAY BE USED WITH ANY

M20 MODEL

The followLno aro tr@demarks of lno. C. Olivem & C„ S.p.A:

OLICOM, 6Tl, 0llTEF", OLIWOFID, 0llNUM, 0llsTAT, 0llTUTOF|

OllENTRY, 0llsoRT. 0llMASTEFI

MUITIPLAN is a registered trademark ot MICFlosoFT lnc.

MS-DOS is a trademark ol MICFlosoFT lnc.

CP/M and CP/M-86 are registered trademsrks ol Digital Research

'nc

CBASIC-86 is a trademark ol Digital Rsssarch lnc.

Copyright © by Olivetti.1983.

811 rights reserved

Related Publications

LI M20

PCOS (Professional Computer Oper-

ating System), User Guide

Code: 3985280 D (0)

01STRIBUTION: 6eneral (6)

FOURTH EDITI0N: June 1983

RELEASE: 1.3 onwards

FIRST UPDATE: September 83

PUBLICATION ISSUED BY:

Ing. C. 01ivetti & C. S.p.A.

Direzione Documentazione
77, Via Jervis-10015 IVREA (Italy)

UPDATING STATUS

LEVEL DATE UPDATED PAGES PAGES CODE

0
1 3ml

Preface,12-1+12-7

982434 M

i
©

i
5

©

T

©

©

Pages marked * must be removed

Title:
BASIC LANGUAGE

REFERENCE MANUAL

Newsletter Code: 3982434 M

Date: 83-09-Oi

Publication Code: 3982430 P (3)

Previous Newsletters: NONE

This Newsletter provides updated pages for the subject publication.

The last level completed on the attached form, Updating Status, indicates the pages
to be added, removed or replaced, the number of pages included, and the Newsletter
Code. Pages marked with an asterisk should be removed from the publication. The form
should be filed at the back of the publication as a permanent record of amended pages.

Each amended page is identif ied by the Newsletter Code shown above.
Amended pages remain valid unless otherwise noted in a subsequent Newsletter.

#:f:{hc:t::tniot?htee.Xcth:'nggueres °r tables are indicated by a verticai bar in the outside

Summary of Amendments:

This newsletter documents the "Examine" mode of opening a random
file. This feature is available in BASIC with release 4.0 of PCOS.

lng. C. 0livetti & C., S.p.A. -Direzione Documentazione -Via Jervis 7710015 IVF]EA (TO) ltaly

Copyright € 1983, by Olivetti -AIl rights Teserved

olivetti

CONTENTS

1. WHAT IS BASIC?

THE BASIC LANGUAGE

PCOS AND BASIC

ENVIRONMENTS

USING THE KEYB0ARD

ENTERING CHARACTERS

CONTROL CHARACTERS

CORRECTING TYPING ERRORS

USING `THE M20

AS A CALCULATOR

A SAMPLE PROGRAM

KEYWORDS

CONSTANTS

VARIABLES

FUNCT10NS

EXPRESSIONS

THE USE 0F BLANKS

COMMENTS

RUNNING 0UR PROGRAM

MO0ES OF 0PERATloN

COMMAND MODE

EXECUT10N MODE

LINE EDIT MODE

BASIC STATEMENTS AND

COMMANDS

1-2

1-3

1-4

1-5

1-5

1-7

1-8

1-9

1-9

1-9

1-10

1-12

1-13

1-13

1-15

1-15

1-17

1-17

'1-18

CHANGING MODE 1-19

OR ENVIRONMENT

2. ENTERING, LISTING, AND

EXECUTING A PROGRAM

NOTATloN CONVENT10N

DOCUMENTING A PROGRAM

REM/COMMENT FIELDS

(PROGRAM)

ENTERING A PROGRAM

AUTO (1"EDIATE)

NEW (PROGRAM/1MMEDIATE) 2-7

LISTING A PROGRAM 2-8

LIST/LLIST (1"EDIATE) 2-9

PROGRAM AND DATA FILES 2-11

FILE AND VOLUME

IDENTIFIERS

PASSWORDS

VOLUME PASsmRD

FILE PASSWORD

WRITE PROTECTI0N

SAVING A PROGRAM

2-12

2-16

2-17

2-18

2-19

2-19

SAVE (PROGRAM/1"EDIATE) 2-20

LOADING A PROGRAM 2-24

LOAD (PROGRAM/1MMEDIATE) 2-24

EXECUTING A PROGRAM 2-26

RUN (PROGRAM/1"EDIATE) 2-26

3. UPDATING AND MODIFYING

A PROGRAM

DELETING LINES

DELETE (IMMEDIATE)

REPLACING LINES

INSERTING LINES

RENUMBERINC LINES

3-1

3-2

3-3

3-4

3-4

RENUMBERING AND CROSS- 3-5

REFERENCES

RENUM (1MMEDIATE) 3-6

CHANGING LINES WITH THE 3-7

LINE EDITOR

EDIT (1"EDIATE) 3-7

LINE EDIT MODE COMMANDS 3-8

EXAMINING CURRENT 3-12

VARIABLE VALUES

RENAMING A FILE 3-12

NAME (PROGRAM/IMMEDIATE) 3-13

DELETING A FILE 3-14

KILL (PROGRAM/1"EDIATE) 3-14

MERGING PROGRAMS 3-15

rERGE (PROGRAM/1"EDIATE) 3-15

LISTING THE NAMES 0F 3-16

SAVED FILES

FILES (PROGRAM/1"EDIATE;' 3-17

4. DATA

CONSTANTS AND VARIABLES 4-1

CONSTANTS 4-1

VARIABLES 4-1

HOW BASIC NAMES VARIABLES 4-1

REPRESENTAT10N 0F NUMBERS 4-2

BINARY REPRESENTAT10N 4-2

HEXADECIMAL AND 0CTAL 4-5

REPRESENTAT10NS

HOW BASIC CLASSIFIES 4-6

CONSTANTS

NUMERIC DATA 4-6

STRING DATA 4-6

NORMAL TYPING CRITERIA 4-7

T0 CLASSIFY CONSTANTS

TYPE DECLARAT10N TAGS 4-8

HOW BASIC CLASSIFIES 4-9

VARIABLES

DEFINT/DEFSNG/ 4-10

DEF0BL/DEFSTR

(PROGRAM/IMMEDIATE)

TYPE DECLARAT10N TAGS 4-11

NUMERIC CONVERsloNS 4-12

SINGLE OR DOUBLE 4-12

PRECISION T0 INTEGER

1NTEGER T0 SINGLE 0R

DOUBLE PRECIsloN.

4-13

BASIC LANGUAGE - REFERENCE MANUAL

CONTENTS

SINGLE T0 DOUBLE

PRECISION

DOUBLE T0 SINGLE

PRECISI0N

ILLEGAL CONVERS10NS

4-14

4-15

4-16

SUBSCRIPTED VARIABLES 4-16

AND ARRAYS

ONE DIMENS10NAL ARRAYS 4-17

MULTI DIMENSI0NAL ARRAYS 4-18

DIM (PROGRAM/IMMEDIATE) 4-19

ERASE (PROGRAM/1"EDIATE) 4-22

0PT10N BASE 4-23

(PROGRAM/1MMEDIATE)

5. HOW BASIC INPUTS DATA

ASSIGNMENT STATEMENTS 5-1

CLEAR (PROGRAM/1"EDIATE) 5-1

LET (PROGRAM/IMMEDIATE) 5-3

SWAP (PROGRAM/I"EDIATE) 5-4

THE INTERNAL DATA FILE 5-5

DATA/READ/RESTORE

(PROGRAM)

1NPUT STATEMENTS

INPUT (PROGRAM)

LINE INPUT (PROGRAM)

6. EXPRESSIONS

NUMERIC EXPRESSI0NS 6-1

STRING EXPRESSIONS

RELAT10NAL EXPRESS10NS

LOGICAL EXPRESS10NS

OPERATOR PRIORITY

6-8

6-9

6-12

6-15

7. HOW BASIC 0UTPUTS DATA

SETTING THE NUMBER OF 7-1

NULLS AND THE WIDTH

NULL (PROGRAM/IMMEDIATE) 7-1

WIDTH (PROGRAM/I"EDIATE) 7-2

STANDARD FORMAT 7-3

LPRINT/PRINT 7-4

(PROGRAM/I"EDIATE)

WRITE (PROGRAM/IWEDIATE) 7-10

USER DEFINED FORMAT 7-11

LPRINT USING/PRINT USING 7-12

(PROGRAM/lMMEDIATE)

8. CONTROL STATEMENTS

UNCONDIT10NAL BRANCHES 8-1

GOTO (PROGRAM/1MMEDIATE) 8-1

ON. . . 60TO

(PROGRAM/1MMEDIATE)

CONDIT10NAL BRANCHES

1F. . . GOTO. . . ELSE/

1F . . . THEN. . . ELSE

(PROGRAM/1MMEDIATE)

L00PS

8-3

8-9

FOR/NEXT

(PROGRAM/1MMEDIATE)

WHILE/WEND

(PROGRAM/1 " EDI ATE)

9. FUNCT10NS

INTRODUCT10N

USER DEFINED FUNCTI0NS

DEF FN (PROGRAM)

BUILT IN NUMERIC

FUNCT10NS

ABS (PROGRAM/IMMEDIATE)

ATN (PROGRAM/1"EDIATE)

CDBL (PROGRAM/1"EDIATE)

CINT (PROGRAM/1"EDIATE)

COS (PROGRAM/I"EDIATE)

CSNG (PROGRAM/IMMEDIATE)

EXP (PROGRAM/I"EDIATE)

FIX (PROGRAM/1"EDIATE)

FRE (PROGRAM/l"EDIATE)

INT (PROGRAM/I"EDIATE)

LOG (PROGRAM/1MMEDIATE)

RND (PROGRAM/1"EDIATE)

RANDOMIZE

(PROGRAM/1MMEDIATE)

SGN (PROGRAM/IMMEDIATE)

SIN (PROGRAM/IMMEDIATE)

8-11

8-20

9-1

9-2

9-3

9-5

9-6

9-6

9-7

9-8

9-8

9-9

9-10

9-10

9-11

9-12

9-13

9-14

9-15

SQR (PROGRAM/1MMEDIATE) 9-17

TAN (PROGRAM/1MMEDIATE) 9-18

BUILT-1N STRING 9-19

FUNCTI0NS

ASC (PROGRAM/"MEDIATE) 9-19

CHRS (PROGRAM/1MMEDIATE) 9-20

HEXS (PROGRAM/1"EDIATE) 9-21

1NKEY;

(PROGRAM/IMMEDIATE)

lNPUTi

(PROGRAM/1"EDIATE)

INSTR

(PROGRAM/1 "EDI ATE)

LEFT;

(PROGRAM/1MMEDIATE)

LEN

(PROGRAM/I"EDIATE)

MID;

(PROGRAM/I "EDI ATE)

9-22

9-23

9-24

9-25

9-26

9-27

MIDS (PROGRAM/1MMEDIATE) 9-28

0CTS (PROGRAM/IMMEDIATE) 9-30

RIGHT$ 9-31

(PROGRAM/ 1 MMED I ATE)

SPACE$ 9-32

(PROGRAM/I WEDI ATE)

STRS (PROGRAM/1"EDIATE) 9-33

STRING$ 9-34

(PROGRAM/1 l"EDI ATE)

VAL (PROGRAM/1MMEDIATE) 9-35

BASIC LANGUAGE - REFERENCE MANUAL

CONTENTS

1NPUT/OUTPUT AND SPECIAL 9-36

BUILT-IN FUNCTI0NS

DATES/TIME$ 9-37

(PROGRAM/lMMEDIATE)

CVD (PROGRAM/1"EDIATE) 9-38

CVI (PROGRAM/IMMEDIATE) 9-38

CVS (PROGRAM/I"EDIATE) 9-38

EOF (PROGRAM) 9-38

ERL (PROGRAM/1MMEDIATE) 9-38

ERR (PROGRAM/IMMEDIATE) 9-38

LOC (PROGRAM/IMMEDIATE) 9-39

LPOS (PROGRAM/IMMEDIATE) 9-39

MKDS (PROGRAM/I"EDIATE) 9-39

MKIS (PROGRAM/1MMEDIATE) 9-40

MKSS (PROGRAM/I"EDIATE) 9-40

SPC (PROGRAM/I"EDIATE) 9-40

TAB (PROGRAM/IMMEDIATE) 9-41

VARPTR 9-42

(PROGRAM/IMMEDIATE)

10. SUBPROGRAMS

BASIC SUBROUTINES 10-1

GOSUB/RETURN (PROGRAM) 10-3

0N...GOSUB/RETURN 10-7

(PROGRAM)

PCOS COMMANDS CALLED 10-8

FROM BASIC AND ASSEMBLY

LANGUAGE SUBPROGRAMS

CALL (PROGRAM/1MMEDIATE) 10-9

EXEC (PROGRAM/1"EDIATE) 10-11

SYSTEM 10-13

(PROGRAM/1"EDIATE)

PROGRAMMABLE KEYS 10-13

BASIC VERBS KEYB0ARDS 10-13

DEVICE RE-ROUTING FROM 10-14

BASIC

11. PROGRAM SEGMENTATI0N

WHEN USING PROGRAM

SEGMENTATloN

Lill

PASSING DATA 11-1

PROGRAM CHAINING 11-2

CHAIN (PROGRAM) 11-3

COMMON (PROGRAM) 11-6

12. DISK FILE HANDLING

SEQUENTIAL AND RANDOM 12-1

FILES

SEQUENTIAL FILES 12-2

RANDOM FILES 12-3

0PENING AND CLOSING 12-3

FILES

0PEN (PROGRAM/IMMEDIATE) 12-4

CLOSE

(PROGRAM/ I "ED I ATE)

WRITING A SEOUENTIAL

FILE

12-7

12-9

PRINT #

(PROGRAM/1"EDIATE)

PRINT#USING (PROGRAM/

IMMEDIATE)

WRITE #

(PROGRAM/1MMEDIATE)

LOC

READIN6 A SEQUENTIAL

FILE

INPUT #

(PROGRAM/l"EDIATE)

LINE INPUT#

(PROGRAM/1"EDIATE)

EOF

12-10

12-16

12-17

GET-File

(PROGRAM/lMMEDIATE)

C;N\/C;NS|C;ND

(Pf{OGRAM/lMMEDIATE)

UPDATING RECORDS 0F A

RANDOM FILE

12-39

12-41

12-42

12-18 13. DEBUGQING AND ERROR

RECOVERY

12-19

TYPES 0F ERRORS 13-1

12-20

12-23

12-26

UPDATING A SEQUENTIAL 12-27

FILE

DEFINING A RECORD LAYOUT 12-27

FIELD (PROGRAM/I"EDIATE) 12-28

WRITING RECORDS T0 A 12-30

RANDOM FILE

LSET/RSET 12-31

(PROGRAM/1MMEDIATE)

MKIS/MKSS/MKD$ 12-33

(PROGRAM/1"EDIATE)

PUT-File

(PROGRAM/I MMEDI ATE)

LOC

(PROGRAM/1"EDIATE)

READING RECORDS FROM A

RANDOM FILE

12-35

12-37

12-38

TRACING PROGRAM 13-2

EXECUTI0N

TRON/TROFF 13-2

(PROGRAM/"MEDIATE)

1NTERRUPTING PROGRAM 13-3

EXECUTION

END (PROGRAM) 13-4

STOP (PROGRAM) 13-4

CONT (1"EDIATE) 13-5

ERROR TESTING 13-7

AND RECOVERY

ERROR 13-8

(PROGRAM/1"EDIATE)

ON ERROR GOT0 13-9

(PROGRAM)

ERL/ERR 13-11

(PROGRAM/"MEDIATE)

RESUME (PROGRAM) 13--13

14. GRAPHICS

INTRODUCT10N 14-1

BASIC LANGUAGE - REFERENCE MANUAL

CONTENTS

WINDOWS

WINDOW - T0 0PEN A

WINDOW

(PROGRAM/1"EDIATE)

WINDOW - T0 SET WINDOW 14-8

SPACING

(PROGRAM/l"EDIATE)

WINDOW T0 SELECT A

WINDOW

(PROGRAM/I"EDIATE)

CLOSE WINDOW.

(PROGRAM/I"EDIATE

USING COLOURS

COLOR - CL0BAL COLOR

SET SELECT10N

(PROGRAM/IMMEDIATE)

COLOR - TO SELECT

FOREGROUND AND BACK

GROUND COLOURS

(PROGRAM/1MMEDIATE)

14-9

14-15

CLS (PROGRAM/I"EDIATE) 14-16

CO-ORDINATE SYSTEMS

SCALE

(PROGRAM/1"EDIATE)

SCALEX

(PR06RAM/1"EDIATE)

SCALEY

(PROGRAM/l "EDI ATE)

DISPLAYING P0INTS

PSET

(PROGRAM/1"EDIATE)

PRESET

(PROGRAM/1"EDIATE)

14-21

14-22

14-22

14-22

14-23

P0INT

(PROGRAM/I"EDIAT.E)

DISPLAYING CURSORS

CURSOR

(PROGRAM/lMMEDIATE)

14-24

14-25

14-26

POS (PROGRAM/1MMEDIATE) 14-29

DRAWING LINES. 14-29

RECTANGLES, AND CIRCLES

LINE 14-30

(PROGRAM/lMMEDIATE)

CIRCLE 14-33

(PROGRAM/lMMEDIATE)

DRAW (PROGRAM/IMMEDIATE) 14-35

PAINT

(PROGRAM/1MMEDI ATE)

HOW T0 STORE AND

DISPLAY WIN00WS AND

RECTANGLES

GET-Graphics

(PROGRAM /1"EDIATE)

PUT-Graphics

(PROGRAM/l"EDIATE)

GRAPHICS FACILITIES

PROVIDED BY PCOS

A. ASC11 CODES

14-40

14-44

14-44

14-46

14-50

A-0

8. ASC11 CHARACTER 8-0

EQUIVALENCES

C. BASIC AND PCOS ERRORS C-1

D. DIFFERENCES BETWEEN PCOS D-1

RELEASES

GETCONV. BAS UTILITY D-3

E. BASIC STATEMENTS,

COMMANDS AND FUNCTI0NS

BASIC LANGUAGE - REFERENCE MANUAL

E-1

1. WHAT IS BASIC?

AB0UT THIS CHAPTER

This chapter introduces you to the Model 20 (M20) BASIC language. 1t
illustrates the PCOS (Professional Computer Operating System) and BASIC
environments, and the use of the Keyboard. Moreover, it tells the user
how to use the machine as a calculator, how to enter and run a program,
and the modes of operation in BASIC.

CONTENTS

THE BASIC LANGUAGE 1-1

PCOS AND BASIC ENVIRONMENTS 1-1

USING THE KEYB0AR0 1-2

ENTERING CHARACTERS 1-3

CONTROL CHARACTERS 1-4

CORRECTING TYPING ERRORS 1-5

USING THE M20 AS A CALCULATOR 1-5

A SAMPLE PROGRAM

KEYWORDS

CONSTANTS

VARIABLES

FUNCTI0NS

EXPRESSI0NS

THE USE 0F BLANKS

COMMENTS

1-7

1-8

1-9

1-9

1-9

1-10

1-12

1-13

RUNNING 0UR PROGRAM 1-13

MODES 0F OPERAT10N

COMMAND MODE

EXECUT10N MODE

LINE EDIT MODE

BASIC STATEMENTS AND

1-15

1-15

1-17

1-17

1-18

COMMANDS

CHANGING MODE OR ENVIRONMENT 1-19

TllE BASIC LdlGUA6E

BASIC (Beginner's All-purpose Symbolic lnstruction Code) is a general
purpose high-level programming language.

YOU CAN USE BASIC T0 SOLVE B0TH BUSINESS AND SCIENTIFIC PR0BLEMS.

BASIC IS EASY TO LEARN AND USE, AS IT CONSISTS OF SELF-EXPLANATORY STATE-

MENTS AND COMMANDS.

Different BASIC versions are available on different computers. The first
was developed at Dartmouth College by John G. Kemeny and Thomas E. Kurts.
From now on, when we speak of BASIC we refer to the version used on the
Model 20 (M20).

THE M20 BASIC IS A MICROSOFT BASIC VERSI0N, EXTENDED WITH GRAPHICS AND

1EEE 488 STANDARD INTERFACE PACKAGES.

PCOS AND BASIC ENVIRONMENTS

The M20 System may be simply defined as a computer and a set of programs
supplied by Olivetti. These "System Programs" are resident on a 51/4 in.
floppy disk (system disk). Theymay be loaded onto the hard disk in an M20
hard disk system.

The System Programs, which include PCOS and BASIC, permit you to instruct
the computer in a manner similar to human language. They work by
converting your instriictions into a machine-language understood by the
computer itself . You interact with the computer using PCOS and BASIC
commands and sets of statements referred to as BASIC programs.

Note: From now on we shall use:

-diskette instead of 51/4 in. floppy disk, for brevity;
- disk instead of either a diskette or the hard disk.I.`.

SYSTEM PROGRAMS

niiiiiiiii
lnitialize a disk

PCOS BASIC

En{er a program

Name a disk List a program

Copy a disk Save a program

List the directory Execute a program

Assign a password Debiig a program

Create a file Modify a program

Write - protect a file Use the M20 as a calculator

+^-- -J=, - - -__ . +,` -=(--- r----- -Jm pictwes

Figure 1-1 System Programs

USING THE KEYB0ARD

The keyboard allows entry of all the standard text and control charac-
ters.

Alphanumeric Section

®oo®o®®`oooooo
@©®000000©0@CD
00@00©000000CD

@000@000000CDO
ijyitll

ln
0©00
©©©00®00
00_®0

Numeric Section

Figure 1-2 The Keyboard (USA-ASC11 Version)

Note: All the characters shown in this manual refer to the USA-ASC11
Keyboard. Appendix 8 shows the national equivalents for those ASCII
characters which will appear on the disp|ay screen or printer.

1_2 E - REFERENCE MANUAL

When we want to specify the keys the user must press to perform a certain
action, we shall show the exact sequence of keys in reverse (white on
black): the keys illustrated in reverse in figure 1-2 are also included
in this sequence; for example:

11 11 EI 11 m

::::::7b:a:,:,::a:.:d:däTTEii,e::1:t':jä-ofanly,he¥hlt:o:rle:e:;;::::::;
USA ASCIl and USA-ASCIl with BASIC verbs keyboards have SHIFT written on
the keys).

When we want to remind the user to press |m to send a line to the
system, we shall show m at the end of the line. For example:

DELETE 100 -2oO m

ENTERING CHARACTERS

you press a key (or the character it represents is immediately shown
a combination of keys) on the screen. When characters are being

entered, the blinking cursor (-) indicates the
position the next character will occupy

you want to enter alowercasecharacterorthelowersymbol onthosekeyscontainingtwosymbols just press the key, e.g. H for a

you want to enter hold down one of the two - keys and press
upper case charactersortheuppe'rsymbolonthesekeyscon-tainingtwosymbols the corresponding key, e.g. -n for A.

YOU MAY ENABLE 0R DISABLE SHIFT LOCK FOR LETTERS

(A-Z) By PRESSING 1-|m| (see ControlCharactersbelow)

you want to enter a use either the top row of the alphanumeric
number section, or the numeric section

Lr

you hold down a key
for more than a
moment

you want to send a
line to the system (a
BASIC line, a PCOS

command, or data in
response to an lNPUT/
LINE INPUT statement)

you want to move the
cursor to a new line
before reaching the
margin

the corresponding character is entered r.epeat-
edly, until you release the. key

press |m, which positions the cursor at the
beginning of the next line on the screen.

you must press lrd?!tll the requisite number of
times

CONTROL CHARACTERS

Control characters are entered when pressing ei.ther lmlfl- or 1"1"1"
and another key together. The table below summarises all the M20 control
characters .i]r_
IIßII D
(Break)

Ilk]I D

lIRII ID
(Backspace)

iTRT -
(Logical Reset)

1-4

THEN. . .

you interrupt program execution. M20 returns to
BASIC Command Mode and displays Ok (if you are
in BASIC) or to PCOS and displays > (if you are
in PCOS). See also "Correcting Typing Errors"
below

the cursor changes its shape and blink rate and
the display of entered characters is suppressed
(Hide State).

TO RETURN T0 NORMAL DISPLAY STATE YOU MUST PRESS

[|i=ii |I AGAIN, OR D

the last character typed is deleted and the
cursor is moved one position to the left

the memory is cleared and PCOS is loaded again
f rom disk

BASIC LANGUAGE - REFERENCE MANUAL

-D screen output.is suspended

THE SUSPENDED 0UTPUT IS RESUMED BY TYPING ANY

KEY-lm Insert State is exited, while remaining in Line
(Escape) Edit Mo.de (see Chapter 3)1-Im enables Shift Lock for letters (A-Z).

TO DISABLE SHIFT LOCK, PRESS -|"llr±"-im|AGAIN

CORRECTING TYPING ERRORS

You can correct typing errors either before or after you have sent a line
to the system.

1F you notice an error THEN. . - OR. . .

before you have com- delete the last move the cursor to the
pleted a line (i.e. character(s) by next line by -||
before pressing m) - ID andretypeit/them and retype the line

after you have com- enter the line enter Line Edit Mode
pleted a line (i.e. correctly with the and use Line Edit Mode
after pressing m), same line number Commands (see Chapter

AND IF THE NEW LINE WILL 3)
the line is a program1ine REPLACE THE 0LD 0NE

USING THE M20 AS A CALCULATOR

You may use the M20 as a calculator for qaick computation, and debugging

purposes.

You are in BASIC. The special .prompt Ok is on the screen.

You may enter || |I |D |n |D (or simply q), followed by an ex-
pression and m. The expression is evaluated and its value displayed.
You may also enter || || |D followed by a variable name (a string of
characters whose first character is a letter), followed by an assignment
operator (=), then by an expression, and |m. The expression is
evaluated and its value assigned to the variable. You may use the
variable to represent that value in successive computations.

The following table gives some examples.

1_6 BASIC LANGUAGE - REFERENCE MANUAL

A SAMPLE PR06RAM

You may also use the M20 to enter and run BASIC programs.

By writing and running a program you may solve problems that could not be
solved using the M20 as a calculator.

A BASIC program consists of a series of statements. A statement is a
complete instruction in BASIC, telling the M20 to perform specific op-
erations®

You may enter either one or several statements per line. In the latter
case, each statement must be separated by a colon (:).

Each line in a BASIC program begins with a line number: an integer

greater than or equal to ¢ and less than or equal to 65529 and ends when
you press m.

You are in BASIC. The special prompt Ok is on the screen. A sample prog-
ram may be constructed by entering the following statements:

1¢ REM RECTANGLEl m
2¢ |NPUT MLen8th";L m
3¢ IF L<=¢ THEN 2¢ D
4o INPUT nwidthM;W m
50 IF W<=® THEN 40 m
6¢ LET AREA=L*W m
7¢ PRINT "Area=";AREA;" L=";L;" W=";W E

SO GOTO 2¢ E
9¢ END D

These statements form a complete program that solves a very simple prob-
1em.

The problem is to f ind the area of a rectangle by entering the values of
length and width via the keyboard. It has been selected both for its
simplicity and to illustrate a variety of BASIC features. Other more
concise solutions exist (as we shall see in Chapter 3).

You have entered one st.atement per line. You could also enter more than
one statement per line, using the colon (:) as statement separator and
reducing the number of lines. For example:

1Qj REM RECTANGLEl m

2¢ |NPUT MLen8thM;L:IF L<=o THEN 2o m
30 INPUT Mwidthn;W:IF W<=o THEN 3o m
4¢ LET AREA=L*W m
5¢ PRiNT nArea=n;AREA;" L=";l,;" W=";W m
60 GOTO 2¢:fND m

You may enter up to 255 characters per (logical) 1ine, including the line
number. A logical line may appear on the screen orL several physical
lines. For example:

2¢ 1NPUT "Length";L:IF L<=O

THEN 2g m

is one logical line divided into two physical lines. To change lines
before reaching the margin press the [1Iitll key the requisite number of
times.

KEYWORDS

Each statement begins with a keyword (or reserved word). The keyword is a
mnemonic of an English word. 1t must be preceded and followed by at least
one blank.

Note: You may not use a keyword as a variable name.

The keyword defines the type of statement to be carried out. One or more
operands (constants or variables) or expressions follow the keyword. Some
statements have more than one keyword .e.g. lF... THEN. The statements of
our program contain the keywords REM, INPUT,1F... THEN, LET, PRINT, GOTO

and END. BASIC keywords may be entered in lower case or upper case
letters. They are converted to upper case letters when listing the prog-
ram (see Chapter 2). Besides keywords, other reserved words are BASIC
command names (e.g. RUN, LIST etc..) and function names (e.g. SIN, COS,

etc.). See Appendices C,D, and E for a complete list. .

1-8 BAstc LANGUAGE - REFERENCE MANÜAL

CONSTANTS

Specific numbers (such as 0,150, -31.7) are called "numeric constants"
and specific strings (such as "Length", "Width", "Area =", " L=" and
" W=") are called "string constants". This means that their values remain

the same throughout program execution. For example when the constant 150
is used in a-program, it remains fixed at that value throughout program
execution. Numeric costants may be integer (e.g. 15¢) or non integer
(real) e.g. -31.7. String constants are always quoted (i.e. included in
a pair of quotation marks), unless differently specified. Unquoted
strings may be used for instance within DATA statements and answering to
an lNPUT or LINE INPUT statement. For further information see Chapter 4.

VARIABLES

A variable is a named data item whose value may change during program
execution. The length of the name of a variable may be maximum of 40
characters. The first character must be a letter. Examples of variables
in our program are:

L , W , AREA

Like keywords, variable names may be entered either in lower or upper
case letters. They are converted to upper case letters when listing the
Program.

A variable may be a simple variable (e.g. L,W,AREA mentioned above) or a
subscri ted variable.

A subscripted variable is an array element, i.e. an element of a
collection of variables under one name. You can distinguish different
elements by the value(s) of one or more subscripts appearing in
parentheses after the array name. For example, if A is a one dimensional
array, A(O) is the first element, A(1) the second element, and so on.

An array may have any number of dimensions. A one dimensional array might
be thought of as a list of items. A two dimensional array is like a table
of values. In thisi:=:e the first subscript designates the "row" iFIF=
array and the second subscript designates the "column", for example
8(1,2) is the element belonging to second row and the third column.

For further information see Chapter 4.

FINCTloNS

We can classify functions as either built-in or user-defined functions.

We shall speak briefly of built-in functions here, whilst user-defined
functions will be described later (see Chapter 9, where you can also find
detailed information on all BASIC functions).

Built-in functions provide a set of commonly used numeric operations (as
square root, sine and natural logarithm etc...) and string operations (as
extracting group of characters - a substring - from a larger string
etc.). The user can invoke them within any BASIC program, writing the
name of the function (e.g. SIN followed in parentheses by the value(s) of
one or more arguments (e.g. SIN (1.5)).

A function call may be an operand within an expression (e.g. 1 +
2*COS(.4)) and the arguments may also be expressions (e.g. LOG(45/7)).

For example:

SIN(1.5) is.997495 (SIN returns the sine of the argument)

1 + 2*COS(.4) is 2.84212 (COS returns the cosine of the argument)

LOG(45/7) is 1.86075 (LOG returns the natural logarithm of the
argument)

SQR(10) is 3.16228 (SQR returns the square root of the argument)

EXPRESSIONS

We can classify expressions as numeric, string, relational or logical.

Let us define briefly what we mean for numeric, string and relational
expressions.

Logical expressions will be defined later (see Chapter 6, where we shall
also describe all the types of expressions in detail).

Ntimeric Expressions

A numeric expression can be either a numeric constant, a simpl.e numeric
variable, a numeric array element, a numeric function, or a mixture of
them linked by means of special symbols, called numeric operators.

The numeric operators are:

1-10
BASIC LANGUACE - REFERENCE MANUAL

+ addition (e.g. A+B+C)

- subtraction (e.9. A-B)

\ integer division (the operands are rounded to the nearest integers
before the division is performed, and the quotient is truncated to
an integer, e.g. 25.68\6.99 is 3)

MOD modulus arithmetic (it gives the integer value which is the
remainder of an integer division, e.g. 25.68 MOD 6.99 is 5, as 26/7
is 3 with remainder 5)

* multiplication (e.g. A*B)

/ division (e.g. A/B)

- (negation it changes the sign of the operand, e.g. -A is 35 if the
value of A is -35)

^ exponentiation (e.g. A^B)

String Expressions

A string expression can L)e either a string constant, a simple string
variable, a string array element, a string function, or a mixture of them
linked by plus signs (+).

By using the plus sign, strings can be joined - "concatenated" is th-e
technical term.

For example:

10 AS = "Chicago,"
2' BS = "1L.',,
30 CS = AS+BS+"USA"

The cortcatenation in statement 30 would result in CS being assigned the
string:

Chicago,1L. , USA

Relational Expressions

Relational expressions compare either two numeric or two string
expressions by means of a relational operator.

The relational operators are:

equals
> greater than
< 1ess than
>=or => greater than or equal to
<= or =< 1ess than or equal to
<>or>< not equal to

The result of a relational expression expression may be ±[±±g or ±!±E± and
may be used to make a decision regarding program flow. For example we
used a relational expression in the statement:

3¢ 1F 1<=0 THEN 20

1t returns control to statement 20 if L is negative or zero.

THE USE 0F BLANKS

Blank spaces may be inserted in the statements to make them more read-
able. The use of blanks is almost always optional in BASIC with the
following exceptions:

-at least one blank must precede and follow a keyword

- blanks are significant within string constants

-blanks are forbidden within numeric constants (including line numbers),
keywords, variable names, and function names.

For example:

2¢ 1NPUT "Length"; L

and

20 lNPUT "Length"; L

are equivalent, but

20 1NPUT "L e n g t h"; L

is not equivalent, as it contains a longer string constant.

1_1Z BAS1€ lANGUAGE - REFERENCE MANUAL

COMMENTS

You may document your program by the REM (Remark) statement. After REM

you may enter any string of printable ASCIl characters. For example:

10 REM RECTANGLEl m

Another way of documenting your program is the through use of comment
fields (a string of printable ASCIl characters preceded by an apostrophe
and ended by m).

For example:

1ßO GOTO 100 'Loops for ever m

Both REM and comment f ields may be inserted anywhere in your program as
they are not executable statements but they appear on the program listing
and increase the readability of your program. For further information see
Chapter 2.

RUNNIN6 0UR PROGRAM

Let us run our sample program. If you have already entered it via
Keyboard (and have not switched the M20 off in the interim) it will be in
memory. Enter ||nnnm; the listing will appear on the
screen. At the end of the listing when Ok appears on the screen, enter
11 u ln m.

DISPLAY COMMENTS

LIST M20 begins executing statements
10 REM RECTANGLE1 sequentially. Because statement
20 lNPUT ''Length";L 1¢ is a REM(ark) it is not
3¢ 1F L<=¢ THEN 2¢ executed; execution in this case
401NPUT "Width";W starts with statement 29.
501F W<=g THEN 40

When an lNPIJT statement is60 LET AREA=L*W

7¢ PRINT "Area=";AREA;" L=";L;" W=";W encountered (see statements 2¢
8¢ GOTO 20 and 40) program execution is
90 END suspended and M20 prompts a
Ok message indicating that you
RUN should enter a value. You could
Length? 3.5 enter for example 3.5 for the
Width? 4.2 1ength and 4.2 for the width.
Area= 14.7 L= 3.5 W= 4.2

Length? -7.3
Length? 7.3
Width? 1.3Q

?Redo f rom start
Width? 1.32

Area= 9.636 L= 7.3 W= 1.32

Length? ^ C
Break in 2¢
Ok

Statement 6¢ calculates
value of AREA. Statement
displays the values of AREA,
and W. Statement 80 returns
control to statement 20.

1f you enter a negative value
(e.g. -7.3), for L, statement 20
is executed again, as statement
30 returns control to statement
2¢ if L is negative or zero.

If you enter a negative value
for W, statement 4¢ is executed
again, as statement 50 returns
control to statement 4¢, if W is
negative or zero.

If you enter a string value for
L or W (e.g.1.3Q for W) the M20

displays an error message:

?Redo f rom start

and you must re-enter the value.
This program continues to run
until you press ["ID to
stop execution. The M20 displays
a break message and enters
Command Mode. To resume execu-

i i) tion, enter || 11 IU D [n

MODES 0F 0PERAT10«

BASIC has three modes of operation.

MODES OF OPERATION

Figure 1-3 Modes of Operation

COMMAND MODE

Whenever the M20 enters Command Mode, it displays a special prompt:

Ok

ln Command Mode, BASIC does not accept your input until you complete the
line by pressing m.

Program and lmediate Lines

BASIC always ignores leading spaces in a line - it jumps ahead to the
first non-space character. 1f this character is not a digit, BASIC treats
the line as an immediate line. If it is a digit, BASIC treats the line as
a program line (see below).

i=_._._lT
-1'_

you enter a program
line, i.e. a line num-
ber (¢ to 65529), one
or more BASIC state-
ments or commands

(separated by colons)
andD

you enter an immediate
(direct) line, i.e.
one or more BASIC
stetements or commands
(separated by colons)
andD

you enter a sequence
of program lines

THEN. . .

:.the line is stored in memory, when you press

: , D. The line is not executed until you enter11 lu ln lg.
:i ' For example:

i ! 1¢0 PRINT "The LOG of 5 is";LOG(5)

is a program line. When you press m BASIC
stores it in memory. To execute it, press
11 D lu D
the line is executed as soon as you press m.

For example:

PRINT "The LOG of 5 is";LOG(5)

is an immediate line. When you press m BASIC
executes it

i the lines are stored in memory to form a BASIC
Program.

They are stored in line number sequence,
irrespective of the order they were entered.

The program is not executed until you enterD lu ln m

Submodes

Command Mode includes the following Submodes:

-lmmediate (or Direct), when you enter an immediate line

-Program, when you enter a program line.

1-16 BASIC LANGUAGE - REFERENCE MANUAL

EXECUT10N MODE

The M20 executes both BASIC immediate and program lines in BASIC
Execution Mode and PCOS commands in PCOS Execution Mode. A BASIC program
is executed in ascending line number sequence, unless a control statement
(GOTO, ON...GOTO, IF...THEN...ELSE, 1F...GOTO...ELSE, FOR/NEXT,

WHILE/WEND) dictates otherwise.

LINE EDIT MODE

BASIC includes a Line Editor for correcting program lines. This is useful
for correcting long and complicated lines without having to re-enter them
completel`y.

Note: The current line is the last line entered or edited. 1f while
FLFFing a program an error is encountered the line containing the error
becomes the current line. (See "Syntax Errors" below).

1f M20 enters Edit Mode, you can begin editing on the line (deleting,
inserting, and replacing characters) by use of Edit Mode subcommands (see
Chapter 3).

ln Edit Mode BASIC-takes your input as soon as you enter a character,
without waiting for you to press m. By pressing m BASIC exits Edit
Mode .

Syntax Errors

lf , during execution of a program line. a syntax error is detected, M20
displays:

Syntax error in nn...n
Ok

nn. . .n

and automatically enters the Line Edit Mode.

Here nn.. .n stands for the line number where the error occurred.

Edit States

Line Edit Mode provides the following states:

- Delete

- Change

- 1nsert

To enter these states or to exit from them, you must use the appropriate
Edit Commands (see Chapter 3).

BASIC STATEMENTS AND COMAl\lDS

1t is sometimes diff icult to distinguish a BASIC statement f rom a BASIC
command, as both may be used in a program or an immediate line, but:

- BASIC statements are generally used in program lines and entered in
sequence to form a program (with the exception of PRINT, LPRINT, LET
and SWAP, which are also often used in immediate lines, when using the
M20 as a calculator or for debugging purposes)

- BASIC commands are used to manipulate programs and for utility pur-

poses, such as listing programs or clearing the memory. They are gen-
erally used in immediate lines (with the exception of KILL, LOAD, RUN,
SYSTEM, TROFF, TRON and WIDTH which are also often used in a program).

Later in the manual, when introducing a BASIC statement, command or
function we will write:

-(1MMEDIATE), if it may be used only in an immediate line

-(PROGRAM), if it may be used on.ly in a program line

-(PROGRAM/1MMEDIATE), if it may be used both in a program and an

immediate line.

CllANGIN6 MODE 0R ENVIRONMENT

The operation mode (Command, Edit, or Execution Mode) or environment
(PCOS or BASIC) may be changed by entering certain commands or control
characters, or if certain conditions occur.

The table below summarizes how you can change mode or environment.

IF M20 is in. .. AND IF... THEN. . .

BASIC you press:-DwhenM20is executingaBASICprogramoranimmediateline execution is interrup-
Execution Mode ted and M20 entersBASICCommandMode

you press:lm- memory is cleared and
PCOS is reloaded

a Syntax error M20 enters BASIC Line
is detected Edit Mode at the linethatcausedtheerror

the execution of a M20 enters BASIC Com-

BASIC program orcommandiscompletedORanerrorotherthanasyntaxerrorlsdetected)ORaSTOP(orEND)statementisencountered

-

mand Mode

BASIC Command Mode you enter an immediate M20 enters BASIC Execu-

line

I

tion Mode, executes the1ineandreturnstoBASICCommandMode Lr

1_1q

you enter:DlnD 11 11 ln 20 enters PCOS. BothheBASICinterpreterndtheusermemoryare

mNote: SYSTEM may alsoErTsedinaBAsicPr09ram 1 ea r ed .

you enter:11D11 ID Em 'ID11...11mOR111111lD-Im 20 enters BASIC LineditMode

you press:-Dm emory is cleared andCOSisreloaded

BASIC Line Edit Mode you press:m 20 enters BASIC Com-andMöde.(Thenewlyodifiedlineisdis-played).Allprogramvariablesarecleared

you press:D(Exit) M20 enters BASIC Com-mandMode.Theremain-derofthenewlymodi-fiedlineisnotdis-playedandallprogramvariablesarecleared

you press:m(Quit Editing) M20 enters BASIC Com-mandModeandcancelsallthechanges'thatweremadetotheline.Noprogramvariableiscleared

you press:-Im memory is cleared andPCOSisreloaded

WHAT IS BASIC?

you enter:

+„fl
you enter any other
PCOS command

you press:-Im
you enter a file
identifier that has
the BAS extension
(e.g. FILEA.BAS).

OR

you enter the BASIC
command followed by
a file identifier
(e.g. BA FILEB)

BASIC is loaded and M20
enters BASIC Command

Mode

M20 enters PCOS Execu-
tion Mode

memory is cleared and
PCOS is reloaded

M20 enters BASIC Execu-

tion Mode and the spec-
if ied program is exe-
cuted

2. ENTERING, LISTING, AND
EXECuTING A pROGFmM

AB0UT THIS CHAPTER

This chapter illustrates notation convention, how to document a program,
and the most useful BASIC commands. These allow you to enter, list, save,
load and execute programs.

CONTENTS

NOTAT10N CONVENTI0N 2-1

DOCUMENTING A PROGRAM 2-2

REM/COMMENT FIELDS (PROGRAM) 2-3

ENTERING A PROGRAM 2-4

AUTO (IMMEDIATE) 2-5

NEW (PROGRAM/"MEDIATE) 2-7

LISTING A PROGRAM 2-8

LIST/LLIST ("MEDIATE) 2-9

PROGRAM AND DATA FILES 2-11

FILE AND VOLUME IDENTIFIERS 2-12

PASSWORDS

VOLUME PASSWORD

FILE PASSWORD

WRITE PROTECT10N

2-16

2-17

2-18

2-19

SAVING A PROGRAM 2-19

SAVE (PROGRAM/"MEDIATE) 2-20

LOADING A PROGRAM 2-24

LOAD (PROGRAM/1MMEDIATE) 2-24

EXECUTING A PROGRAM 2-26

RUN (PROGRAM/1MMEDIATE) 2-26

ENTERING, LISTING, ANÜ EXEcllTING A PROGRAM

NOTAT10N CONVENT10N

The syntax of BASIC is described by means of syntax diagrams.

A syntax diagram is a flow-chart with one entry and one exit. Each path
through the diagram defines an allowable sequence of symbols. The follow-
ing. table summarizes the rules the user must follow to draw a syntax
diagram.

NO. RULE EXAMPLE

1 1 all items enclosed by a

l'nefluNniimber

rounded envelope (ovals or
circles) must be entered
exactly as shown.

ltems enclosed in a rec-
tangular box are names of

',le , p

parameters used in a idenr(ifier

statement, a command, or
a function.

A description of each
parameter is given in the
text following the draw-
ing

2 a fork indicates a choice:

you must select one path.

- #:emberL-...
For example after RUN you
may either:

f„e
-enter a line number identifier

OR

-a file identifier

3 a branch without a para-

R

meter indicates that the
alternative is a bypass
(used to indicate ,R is
optional)

2-1

t

a loop indicates a repe-
tition. For example vari-
able may be repeated n
times in a READ statement,(
and each variable is sep- i
arated f rom the next one i
by a comma i

this manual shows BASIC
reserved words in upper
case letters, even though`

you may enter them in
lower case letters. Some
examples of reserved words
are shown on your right.
They are the keywords of
our sample program
(RECTANGLE1)

PCOS command names are

mnemonic. For example:

BASIC - go to BASIC

VCOPY - volume copy

and so on.

::e¥o::¥ ::s:n::r:: :;:::r i! |
1

case letters. They are nor-
mally entered in lower ca-
se letters and in their
short form (the first two
letters) as shown in the
syntax diagrams

DOCUMENTIN6 A PROGRAM

Often you may want to insert comments in order to make your program logic
easier to follow. This can be done by using:

2-2 BASIC LANGUAGE ~ REFERENCE MANUAL

` ENTERING, LIST"G, AND EXECÜT]N€ A PR86RAM

- the REM statement, or

-comment fields.

COMNENT FIEIDS
-+`,.`--u \J ~-'

The REM (Remark) statement is one way to document your program.. You can
write any message you want following the keyword REM.

Another way to document your program is to write a comment fiel,d, i.e. a
string of characters preceded by an apostrophe (') and ended by m.

§tring Of
characters

string Of
characters

Figure 2-1 REM Statement

Figure 2-2 Comment Field

Exanples

IF you enter. . . THEN. . .

10 REM RECTANGLEl m

.

a REM statement titles your prog-
ram. 1t is good programming prac.-
tice to title programs

1¢0 REM SUBROUTINEl m

-

a REM statement marks the beginning
of a subroutine (see Chapter 10).
1t is good programming practice to
title subroutines.

LLr

10 .RECTANGLEl m

15¢ LET A=(A1+A2)/2 'Average |n

a comment f ield titles your pro-
gram.

Note: In this case the apostrophe
JäFEs iike REM, as the comment
occupies a line

a comment f ield ends a statement

Remarks

A REM statement may not be followed by other statements on the same line.
1t can however be the last statement on a multi statement line.

A comment field may:

- occupy a line (in which case the apostrophe has the same function as
REM)

- end a statement.

Both REM and comment fields can appear anywhere in a program. They are
not executable statements, but they appear in the listing.

ENTERIN6 A PROGRAM

The Ok prompt is on the screen. BASIC is waiting for you to start. You
might start immediately by entering the first statement, beginning by
entering the line number 1¢. There is, howev;r, a preliminary step that
can make your task a little easier. You can request the system to number
your lines for you. You do this with the AUT0 coümand, which is described
below.

ön the other hand, if you have already entered a program and you want to
enter a new one, you must first enter a NEW command. This causes the

program in memory to be deleted allowing you to enter a new program (see
below). The program in memory is also deleted when LOADing a new program
from disk, or when entering a SYSTEM command (to return to PCOS), or when

turning off the machine.

ln these cases it would be wise to save your program first (unless you
already have a copy).

Let us enter our sample program (RECTANGLE1), by pressing the following
keys :

2-4 BASIC LANGUAGE - REFERENCE MANUAL

ID D ID iriT![ii m
This will clear the memory.

Then enter:

1¢ REM RECTANGLEl m
20 INPUT "Length";L m
3¢ 1F L< =¢ THEN 2¢ D
4¢ INPUT MwidthH; W m
5¢ 1F W<=¢ THEN 4¢ m
6¢ LET AREA = L*W m
7rpRINT "Area="; AREA; " L=";L;" W=";W m
8¢ GOTO 2¢ m
9¢ END ln

lt is conventional to use an interval of 10 between each line number.
This allows you to modify a program simply by inserting statements bet-
ween existing lines.

Although program lines can be entered in any order they are ordered in
memory in ascending line number sequence.

For example, we may enter the statement whose line number is 5¢, then the
statement whose line number is 1¢ etc... and obtain the same listing
(i.e. the same program).

You may enter keywords and variable names in upper case or lower case
letters. They will be converted into the corresponding upper case letters
when listing the program.

AUTo ("rED1^TE

Starts automatic line numbering.

Figure 2-3 AUT0 Command

SYNTAX ELEMENT MEANING OEFAULT VALUES

1ine number the first line number 1 1¢ (if the interval is
generated

(

omitted, otherwise ¢)

the first line number
generated is the num-
ber of the current
1ine

interval is the interval bet- 10

ween line numbers

Examples

1F you enter...

AUT0 m

AUTO .,3o m

AUT0 1¢¢ m

AUTO 15¢, m

AUTO 2¢¢,2¢ m

AUTO, 3 m

THEN line numbering begins... AND line interval is...

at line 1¢ (default 1¢ (default value)
`value)

||at th current line
3¢

llat line ,„
1¢ (default value)

[at line 150 the last interval spec-
ified by a preceding
AUT0 command or, if
none were preceding, 1¢
(the default value)

at line 200 2¢

! at line ¢
3

ENTER"6, LISTIN6, AND EXECUTIHS A PROGRAH

An Asterisk after Line Number

lF. . . THEN. . .

AUTO 9enerates a lii-,e an asterisk is displayed after the line number
number that already to warn the user that any input will replace an
exists existing line. However, typing m immediately

after the asterisk will save the existing line
and generate the next line number.

±!g±±: This will happen only if you enter AUTO
when a program already exists

To Terminate Line llumbering

J.F v.)u press. .. THEN. . .-D M20 terminates automatic line numbering and
Command Mode is entered.

Note: The line in which -m is pressed is
not saved

Deletes the current program and variables allowing you to enter a new
Program.

NEW switches off the trace flag in the same way as TROFF (see Chapter 13)
and closes all data files (see Chapter 12).-
Figure 2-4 NEW Command

2-7

Exairii]1es

1F you enter... TliEN . . .

NEIJ m the prograR currently in memory is c!eleted

10 REM RECTANGLEl m
20 iNpuT "Length";L m

you enter a new program from keyboard.

Note: 1t is not necessary to enter NEW before
15=äing a program from disk, by issuing a
LOAD or a RUN command (as they automatically
clear memory)

LISTING A PROGRAM

Once a program is `in main memory it can be listed. To list your program,
enter either the LIST command (the listing will appear on the screen) or
the LLIST command (the listing will appear on the printer).

You cannot list a protected program (SAVEd with the P option, see below).
The LIST and LLIST commands edit your programs by converting to upper
case letters any reserved word (keyword, var:`able names,. a-nd function
names) and to PRINT any question mark (?) used instead of PRINT. Moreover
stdtements are ordered in ascending line numbe,. sequence, even though you
may have entered them in a different order.

To iist our sample program on the screen enter || || E] D m. You
will see the following.

ENTERING, LIST"€, ANB EXECIIT"G A PROGRAM

LIST

10 REM RECTANGLE1

2¢ INPUT "Length";L
3¢ IF L<=O THEN 2¢
4¢ INPUT "Width";W

5¢ IF W<=O THEN 4¢

60 LET AREA=L*W

7¢ PRINT "Ar`ea=";AREA;" L=";L;" W=";W

SO GOTO 20

9¢ END

Ok

At the end of a listing the M20 enters Command Mode and displays Ok.

LIST lists program lines on the screen, LLIST lists program lines on the
printer.

Figure 2-5 LIST Command

2-9

Figure 2-6 LLIST Command

Examples

IF you enter. . . THEr'. . .

LIST D the entire program is listed

LIST 150 m 1ine 15¢ is listed

LIST . m the current line is listed

LIST 2¢¢- D

LIST -1¢¢¢ D

LIST 1¢¢-19¢ m

LIST .-5¢¢ m

1ine 2¢0 and all higher-numbered lines are
l isted

all lines from the beginning to 1000 are listed

all 1ines from 10¢ to 190 are listed

all lines from the current line to 50¢ are
l isted

BASIC LANGUAGE - REFERENCE MANUAL

ENTERING, LISTING, ANß EXEcllT"G A PR06RAM

Suspending a Listing

1F . . . THEN. . .

you press:-11 1isting is suspended, without entering Command
Mode ,

You may continue the suspended listing by typing
any key

you press:-D M20 enters Command Mode and abandons the listing

the end of the program 1isting is terminated and Command Mode is en-
is reached tered

PROGRAM ANI) DATA FILES

A file is a sequence of statements (program file) or data (data file)
which may be stored on a disk.

The table below sumarizes the main characteristics of program and data
files.

FILE TYPE MEANING

program files a program file is a sequence of program lines.
They are stored in memory in line number se-

quence, irrespective of the order in which they
were entered. A program file is stored in memory
in a packed binary foma.!:, and saved on a disk
either in this forr,iat or in ^SC11 format (if you
use the A option to save it). ASC11 format files
are seqLiencesL of ASCIl characters; effectively
they contai.n t.he source listing of your program.
Wnen loaded into-memory (by a LOAD or R" com-
iiiami) ttiey are always convcrted into packed
binary format ,

2-11

data files a data file is a sequence of numeric and/or
string data, which is stored on a disk.

A data file is created by a BASIC program. First
of all it must be opened by an OPEN statement
which specifies the access mode, a file number
and the name of the file. The value of the file
number must be in the range 1 to 15.

Each following lnput/Output statement in the
program will specify the file by the file
number.

When yoii have finished with the file, it is good

programming practice to "close" it using the
CLOSE statement. ln any case all data files will
be closed when an END statement is encountered.

Note: When closing a data file, .the program
====ot access it unless .a new OPEN statement is
executed. This Tnay specify a new file number and
a new access mode. Only the file name must
remain the same

FILE AND VOLUME lt)ENTIFIERS

A disk may contain one or more program and/or data files. A single file
may not be fragmented over more than one disk.

A group of files stored on the same disk forms a "volume". Each file and
each volume has an identifier. Each file name must be unique on any one
volume. Saving a program file which already exists on a volume causes the
original file to be overwritten.

YOL may assign an identifier to a file either by an öPEN statement (data
files), or by a SAVE command (program files), or by a FNEW PCOS command.
You may ässign an identifier to a volume by a VFORMAT, a VNEW, or a
VRENAME PCOS command.

The system recognizes a volume identifier and can find any of its files
only if the corresponding diskette is mounted in a drive. This restric-
tion will not be applied to the hard disk, as this unit is always on
l i ne .

2-12 BASIC LANGUAGE - REFERENCE MANUAL

3" !~>y_tj#_ iagä*_#¢ ¢vyB

SYNTAX ELEMENT MEANING

volume name string of up to 14 printable ASCIl characters
(for illegal characters see below).

To select a volume in a PCOS or BASIC command or

in an OPEN statement you must specify a volume
name or a drive number. The volume name (or the
drive number) may be followed by a volume

password. At the end of a volume identifier a
colon must be entered. For example:

SAVE HVOL1 :FILEIM m

Here VOLl is a volume namep FILEl is a file name
and VOL1:FILEl is a file identifier. You save
the program file FILEl on the disk named VOL1

(for more details see the SAVE command below)

Note: When specifying a file or volume identi-
fier in a BASIC statement.or command you must
either include the identifier in a pair of
quotation marks, or write a string variable or a
string expression whose value is the identifier.

When specifying a file or volume by name in a
PCOS command you must not include the identifier
in a pair of quotation marks. For exampl.e:

Vn VOLi : m

Note: In BASIC a volume identifier may be
specified only if included in a file identifier.
The only excer`ti.on is with the FILES command
when you want to list all the files of a volume.
For example:

FILES UVOL2:H m

drive number the drive number may be either 0 (indicating the
drive on the right), or 1 (indicating the drive
on the left) or 1¢ (indicating the hard disk
drive). With a. hard disk system drive ¢ is on
the left and drive 1 does not exist. For

ENTERING, LISTING, AND EXEcllT"6 A PROGRAM

LOAD U1 :FILE002M m

Here 1: indicates that file FILE002 resides on
the diskette inserted in drive 1. The command
1oads the file into memory (for more details see
LOAD command below)

file password string of up to 14 printable ASCIl characters
ORvolumepassword (for illegal characters see below).

Passwords give the user protection at volume or
file level (see below). They may be entered
after a volume name, a drive number, or a file
name and are preceded by a slash. For example:

RUN Mg:RECTANGLE17RIH m

Here you load file RECTANGLEl which has the

password Rl and run it. RECTANGLEl resides on

the diskette inserted in drive 0 (for more
details see the RUN command below)

file name 1 string of up to 14 printable AScll characters
(for illegal characters see below).

To select a file in a PCOS or BASIC command or
in an OPEN statement you must specify a file
name. The file name may be preceded by a volume
identifier and followed by an extension and/or
by a (file) password. For example: .

sAVE ni :pFUMENUMBERS;PNH m

Here you save the BASIC program PRIMENUMBERS on

the diskette inserted in drive 1 and give it the
password PN.

Note: 1f you do not specify any volume identi-
i==F before the file name,the search is limited
to the last selected drive.

Note: The file name may include an extension
name, i.e. a string of up to 12 printable ASC11
characters, preceded by a period (.). For
illegal characters see below.

2-15

t

111egal Characters

Note: filename.extension cannot exceed 14 char-
=tI€rs in total (including only one period).
For example:

LOAD MFILEA.CHARW m

will 1oad FILEA which has the extension CHAR. 1t
resides on the last selected drive.

Note: Some extensions have special meanings: BAS
i5rilc programs); CMD (PCOS transient commands);
SAV (PCOS transient commands which becorr,e
resident the first time they are executed). For
more details see "Professional Computer Oper-
ating System (PCOS) User Guide".

comma (,)

plus (+)
asterisk (*)
double quote (")

hyphen (-)
hash (#)
equals (=)
semicolon (;)

or any control character

slash (/)
colon (:)
Space

backslash (\)
single quote (')

question mark (?)

PASSWORDS

Passwords give the user protection at volume or file-1evel as desired.

1f a password has been assigned to a volume it must be specified to
enable the volume. By convention a volume is said to be enabled either if
it has no password or if the password has been specified in a BASIC or
PCOS command.

The user must enter the corresponding password correctly on all occasions
when using volume and file identifiers.

!!B£!: 1f you have forgotten a password for a file or volume you will not
be allowed access to that file or volume by BASIC or PCOS.

2-16 BASIC LANGUA6E - REFERENCE MANUAL

IF you want to. .. THEN. . .

assign a password to issue a VPASS commänd, specifying the password.
a volume For example:

VP MyvoL:,MypASS m
1F

the volume already has a password this must be
specified by the VPASS command, which, in this
case, will change the password. For example:

VP VOLlyoLDPASS: ,NEWPASS m

access a volume that enable that volume specifying the volume pass-
has a password (or a word after the volume, name or the drive number,
file saved on a volume in a BASIC or PCOS command or in an OPEN

that has a password) statement.

Note: Once a diskette password has been specifi-
ed, it need not be specified again until the
diskette has been removed and another diskette
has been referenced in the drive unit in which
the diskette was rnserted. For the hard disk,
once the password has been specified, it need
not be specified again until PCOS is rebooted.

remove apassword volume issue a VDEPASS command.

Note: You must know the password to use a
VDEPASS command

hide a volumepassword press - m.
The cursor will change its shape and blink rate
and the display of entered characters is
suppressed, (Hide State).

To return to normal Display State you must press
-D again, or m

FllE PASSWORD

1F you want to... THEN. . .

assign a password to issue an FPASS command, specifying the password
a file 1F

the file already has a password, this must be
specified by the FPASS command which, in this
case, will change the password

assing a password and FPASS can be issued, or else the password
to a program file(thathasnone) can be specified in a SAVE command. For example:

SAVE "FILEABC7PASSABCU m

access a file that specify that password after the filename. For
has a password

`example:

LOAD nFiLEzi7pAssziu m

1f the volume also has a password, you must
specify it too (unless the volume has already
been enabled)

remove a filepassword issue a FDEPASS command.

Note: You need to know the file password to
remove or change it

hide a filepassword press - m.
The cursor will change its shape and blink rate
and the display of entered characters is
suppressed, (Hide State).

To return to normal Display State you must press
-D again, or m

2-18 BASIC LANGUAGE - REFERENCE MANUAL

ENTERIN6, LISTING, AND EXEcllTING A PROGR

WRITE PROTECTION

Write protection can be applied by the user at volume or file level.

1F you want to... THEN. . .

write protect a cover the write protect notch with an aluminized
volume (i.e. to pre-ventanywriting

h3±:! it is not possibie to write protect the

to that diskette) hard disk, but it is possible to write protect
its files

unprotect a volume remove the aluminized label

write protect a file

'

issue a FWPROT command, specifying the file
identifier

unprotect a file issue a FUNPROT command, specifying the file
identifier

SAVIN6 A PROGRAM

A program is kept in memory only as long as the M20 is switched on. As
soon as you turn off the machine, your program is lost. If you want to
retain your newly written program for future use, then you must issue a
SAVE command to store it on a disk.

You can save the current program on other occasions too. The table below
summarizes them. In any case the disk must be enabled otherwise you must
specify the volume password in the SAVE command. Moreover, if you want to
save the program on a diskette, this must not be write protected.

lF you want to... THEN. . .

turn off the machine save the current program (unless you already
have a copy)

enter another program save the current program (uhless you already
from keyboard have a copy) L

1oad another program Save the current Program (unless you already
from disk (by entering have a copy)
a LOAD or RUN command)

go to PCOS (by Save the current Pr09 ram (unless you already
entering a SYSTEMcommand) have a copy)

replace the old Save the current Program' specifying the same
version of your name as the old version
Program AND

the same password if the old version already has
a password

save the currentprograminASC11format Spec ify the A opti onin the SAVE co mmand

protect the currentprogramagainstanyattempttolist,edit,orsaveitagain Spec ify the P opti onin the SAVE co mmand

Note: During a `caving operation the disk-unit red light comes on. When it

goes off , your program has 'ocen saved, and Ok appears on the screen.

Saves the current program on a disk, gives it a name, and optionally a
password.

Figure 2-8 SAVE Command

BEFERENCE MA

SYNTAX ELEMENT MEANING

file identifier may be either a string constant or a string
variable. Specifies the name of the program to
be saved. The file identifier may include a file
password and a volume identifier

A specifies tha't the program must be saved in
ASC11 format

P specifies that the program must be saved pro-,
tected against any attempt to list, edit, or
save it again

Examples

ln each of the following cases the volume must be enabled and must not be
write protected.

1F you enter. .. THEN. . .

SAVE "RECTANGLE1" P RECTANGLEl is saved on the disk

inserted in the last selected drive.

RECTANGLEl has no password

SAVE Ug:RECTANGLEIM m RECTANGLEl is saved on the diskette insert-
ed in drive 0.

RECTANCLEl has no password

SAVE U1¢:RECTAN6LEIU m RECTANGLEl is saved on the hard disk.RECTANGLElhasnopassword,'

SAVE nvoL1 :RECTANGLEln m RECTANGLEl is saved on VOL1, which may be

inserted in either of the two drives (as
the volume name is specified`).

RECTANGLEl has no password
Lr

Replacing a File

ln each case the volume must be enabled and must not be write protected.

IF you enter... AND IF... THEN . . .

SAVE "FILE1" FILEl already exists the current program
on the selected disk, will replace the old

AND version with the same
has no password name

SAVE "FILE1/PASS1" FILEl already exists the current program
on the selected disk, will replace the old

AND version with the same
has the password name and the same pass-
PASS1 word

FILEl already exists no replacement takes
on the selected disk, place, and the system

AND displays an error mes-
has a dif.ferent pass- sage (see Appendix C).
word

FILEl already exists the current program
on the selected disk, will replace the old

AND version with the same
has no password name and the new ver-sionwillhavethepasswordPASS1

Option A

lf you specify the A option, the file is saved in ASC11 format.

1f you do not specify the A option (i.e. either no option or the P option
is selected), the file is saved in a packed binary format.

2-22 BASIC LANGUAGE - REFERENCE MANUÄL

• ASC11 format takes more space on the disk than the packed binary format,

but some commands require that files be in ASC11 format. For instance the
MERGE command requires an ASC11 format file.

1f you want to save a file using the ''A" option, the maximum number of
characters in a (logical) 1ine is 255.

After BASIC executes a SAVE command with the "A" option in a program, it
te rmi nates .

1F you enter... THEN . . .

SAVE MGEOMETRyM,A m GEOMETRY is saved in AScll format (i.e. a se-

quence of ASCIl characters) on the disk ins.erted
in the last selected drive.

GEOMETRY has no password. The disk is presumed
to be enabled.

Option P

lf you specify the P option the file is not only saved in packed binary
format, but it is also protected against any attempt to:

- 1ist

- edit

- save it again.

Note: P protection cannot be removed.

1F you enter. . . THEN. . .

SAVE Ug:GEODEsyH,P m GEODESY is saved prot;cted on the enabled
diskette inserted in drive ¢.

EODESY has no password

LOADING A PROGRAM

If the program you want to enter into memory resides on a disk, you must
issue a LOAD command.

LOAD deletes all variabl.es and program li-nes currently residing in mem-
ory, thus before entering a LOAD command you should save the current

program if you want to use it again. You do not'have to save the current
program if you already have a copy of it on disk.

To LOAD a program file from a disk, it must be enabled or you must
specify the volume password in the LOAD command. To LOAD a program file
which has a password, you must specify this file password in the LOAD
command.

1f you specify the R option all open data files are kept open, and the
program is RUN after it is LOADed.

tmo"/I

Loads a program file and optionally runs it.

Figure 2-9 LOAD Command

Where

2-24 BASIC LANGUAGE - REFERENCE MANUAL

Examples

1F you enter. . . THEN . . .

LOAD HIO:RECTANGLEIH m RECTANGLEl is loaded from the hard
disk.

RECTANGLEl has no password and its
volume has already b.een enabled

LOAD WVOL1 :RECTANGLE17PIU m RECTANGLEl is loaded from the
volume VOLl which may reside in
either of the two drives.

RECTANGLEl has the password P1 and
VOLl is presumed to be enabled

LOAD UV3yp3:FAAH m FAA is loaded from the volume V3
which has the password P3. The
volume V3 may be inserted in either

of the two drives. 1ts password is
indicated in the LOAD command to
enable the volume.

FAA has no password

LOAD BS trie program specified by the Con-
tents of the variable BS is loaded
into memory

Option R

lf you specify the R option, all open data files are kept:open and the
program is RUN after it is LOADed.

1f you do not specify the R 6ption, LOAD closes all open data files.

Note that:

LOAD file identifier,R m

and

RUN file identifier,R m

have the same effect.

lF you enter. ..

LOAD MACCOUNTU,R m

THEN. . .

program ACCOUNT is RUN after it is LOADed, and
all open data files are kept open. ACCOUNT
resides on the disk inserted in the last
selected drive.

ACCOUNT has no password and its volume has
already been enabled

EXECUTIN6 A PROGRAM

Once a program is in main memory, it can be executed (or "run", as this
is frequently called). To tell the M20 to execute a program, you issue a
RUN command (or a LOAD with the option R).

The RUN command runs the current program i.e. the program currently in
memory; or loads a program from a disk and runs it. When the RUN command
specifies a file identifier, this must include:

- the file password, if the file has a password

- the volume password, if the volume has a password (and it has not yet

been enabled).

1f you specify the R option all open data files are kept open.

Before entering a RUN file identifier (or RUN file identifier,R), save

your current program (unless you already have a copy).

BASIC statements are executed in line number sequence, unless a control
statement (GOTO, ON...GOTO,1F...GOTO...ELSE, IF...THEN.. ELSE, FOR/NEXT,

WHILE/WEND) or a subroutine call statement (GOSUB, ON...GOSUB) dictates
otherwise.

•ffiu_"_(ii

Runs the program currently in memory or loads a program f rom disk and
runs it.

BASIC LANGUA6E - REFERENCE MANUAL

SYNTAX ELEMENT MEANIN6

1ine number specifies the entry point of the program, i.e.
the current program is run starting from the
specified line number. If you do not specify a
1ine number the current program is run from the
beginning.

Note: RUN line number and GOT0 line number have

üTrsame effect, except that RUN also clears
program variables

file identifier may be either a string constant or a string
variable which specifies the program file to be
loaded from disk into memory and run

R specifies that all open data files are kept
open. 1f R is omitted all data files are auto-
matically closed

Exanples

ln the following cases the volume is presumed to be enabled.

IF you enter. .. THEN. . .

RUND the current program is run

RUN 15ß m the current program is run starting
from line 150

RUN "1 :Newfile" m program Newfile is loaded into
memory and run. 1t resides On the
diskette inserted in drive 1, and
has no password

RUN "NewvoL:Newfile" m program Newfile is loaded into
memory and run. It resides On the
disk named NewvoL which may be
inserted in either of the two
drives. Newfile has no password

RUN "1 :Newfile/NewpASS" m program Newfile is loaded into
memory and run. 1t resides On the
diskette inserted in drive 1 and
has the password NewpASS

RUN Ai m the program specified by the Con-
tents of the variable AS is 1oaded
into memory and run

Option R

lf you specify the R option, all open data files are kept open.

If you do not specify the R option, FWN closes all open data files.

Note that:

RUN file identifier,R m
and

LOAD file identifier,R m

have the same effect.

1F you enter. .. THEN . . .

RUN "i¢:Newfile",R m program Newfile is loaded into memory and run,
leaving the opened files open. Newfile resides
on the hard disk.

Newfile has no password and the hard disk is

presumed to be enabled

1F . . . THEN. . .

you press:-D a program interrupt occurs, the message "Break
in line nnnnn" is issued and Command Mode is
entered.

ORaSTOPstatement isencountered No open file is closed. You can display program
variables (by an immediate PRINT) or change
their values (by an immediate LET).

You can resume execution by entering a CONT
command (unless you modify some statements).

an error is detected a program interrupt occurs, the error message is
(except Syntaxerrors) issued and Command Mode is entered.

You cannot resume execution.

No open file is closed; you can display program
variables (by an immediate PRINT)

a Syntax error is a program interrupt occurs, the "Syntax error"
detected

-

message is issued, and Edit Mode is entered at
the line that caused the error.

You can modify the line, but you cannot display
program variables (unless you enter Command Mode
by pressing m). You cannot resume execution. '

an END statement
is encountered

| a program interrupt occurs and Command Mode is
entered. All open files are closed. You can

g±±p±±j[program variables (by an immedi===
PRINT)

You can resume execution by entering a CONT
command

Suspending Screen Output

1F. . .

you press

111:]1 EI

THEN . . .

screen output is suspended, but no program
interrupt occurs.

No open file is closed. You cannot display

program variables

You can resume screen output by pressing any
key.

BASIC LAN6UAGE - REFERENCE MANUAL

3. UPDATING AND MODIFylNG A PROGlnM

AB0UT THIS CHAPTER

Even an experienced programmer often needs to make changes and correc-
tions to a program.

Your program can be updated in several ways e.g., deleting lines,
replacing 1ines, inserting lines. renumbering lines, editing lines using
the Line Editor.

This chapter describes these functions, making use of the sample program
RECTANG`LE1. Moreover it will explain how to rename a file, how to delete
it from a disk, how to MERGE two programs and how to list the names of
files residing on a specified disk.

Note that any modifications to the resident program will close data files
and clear program variables.

CONTENTS

DELETING LINES

DELETE (1MMEDIATE)

REPLACING LINES

1NSERTING LINES

RENUMBERING LINES

RENUMBERING AND CROSS-

REFERENCES

RENUM (1MMEDIATE)

CHANGING LINES WITH THE

LINE EDITOR

EDIT (1MMEDIATE)

3-1 NAME (PROGRAM/IMMEDIATE) 3-13

3-2 DELETING A FILE 3-14

3-3 KILL (PROGRAM/1MMEDIATE) 3-14

3-4 MERGING PROGRAMS 3-15

3-4 MERGE (PROGRAM/IMMEDIATE) 3-15

3-5 LISTING THE NAMES 0F SAVED 3-16

FILES

3-6 FILES (PROGRAM/IMMEDIATE) 3-17

3-7

3-7

LINE EDIT MODE COMMANDS 3-8

EXAMINING CURRENT VARIABLE

VALUES

RENAMING A FILE

3-12

3-12

"G AND M0I}IFYI«6 A PROGRAM

DELETING LINES

We will use the program called RECTANGLEl from chapter 2 as an example
for demonstration purposes.

First of all, once the program RECTANGLEl is in memory, issue a LIST com-
mand .

DISPLAY COMMENTS

LIST RECTANGLEl uses two separate
10 REM RECTANGLE1 INPUT statements for L and W.
2ß INPUT "Length";L Let us modify the program to use
3¢ IF L<= 0 THEN 20 only one statement. First delete
401NPUT "Width";W line 40
50 IF W<= ¢ THEN 40

60 LET AREA=L*W

7¢ PRINT "Area=";AREA;" L=";L;" W=";W

80 GOTO 20

90 END

Ok

1f you want to delete line 40, enter:

11 11 11 11 11 11 ILlyitll 11 ml m
Or

11 lu m
To see the result of this, issue another LIST command.

DISPLAY COMMENTS

LIST As it stands now, RECTAN6LE1

10 REM RECTANGLE1 will not execute. You must now
20 INPUT "Length";L correct line 20 (which asks for
30 lF L<= 0 THEN 20 only one input value) and line
501F W<= 0 THEN 40 5¢ (which refers to a line no
6¢ LET AREA=L*W 1onger in the program). We
7¢ PRINT "Area=";AREA;" L=";L;" W=";W shall correct our program in
8¢ GOTO 20 the following pages
9¢ END

Ok

+ +++ +

Deletes program lines. The M20 enters Command Mode after a DELETE has
been executed.

Figure 3-1 DELETE Command

Examples

1F you enter. . .

DELE.TE . m

5¢¢D
0R

DELETE 5¢¢ D

DELETE 1¢¢-2¢¢ |g

DELETE -400 m

THEN. . .

the current line is deleted

line 5¢¢ is deleted

all 1ines between 1¢0 and 200 inclusive are
deleted

all lines from the beginning of the program up

i i to and including line 4¢¢ are deleted

Note: If any line number specified in a DELETE command is not present in
the program, "11legal function call" will be issued by BASIC.

3-2 BASIC LANGUAGE - REFERENCE MANUAL

iiiiiääHH`

UPDATING AND MODIFYING A PROGRAM

REPLACIN6 LINES

To change a line you can:

- replace the entire line by entering the number of that line and its new
contents

- edit the line using Edit Mode.

First let us use the former method and replace the two mentioned lines of
RECTANGLEl by entering:

20 INPUT "Length and Width";L,W m
50 IF W<=ß THEN 20 m

and obtain another listing:

DISPLAY COMMENTS

LIST This version of RECTANGLEl will
10 REM RECTANGLE1 execute correctly. However to
20 lNPUT "Length and Width";L,W terminate execution you still
30 lF L<= 0 THEN 20 have to press - D
5¢ lF W<= 0 THEN 2¢

60 LET AREA=L*W

7¢ PRINT "Area=";AREA;" L=":L;" W=";W

80 GOTO 20

9¢ END

Ok

1t is clumsy to have to press [|kll |D to terminate execution. We
shall, therefore, make some additional modifications.

We can replace statement sO with the following two statements:

1) INPUT "Again:YES=Y,NO=N";X$

2) IF XS=!.Y" THEN 2¢

To replace the GOT0 statement at line sO, enter:

8¢ iNpuT "Again:VES=Y,NO=N";XS m

Note: XS is a string variable.

INSERTING LINES

Now we must insert statement 2) between line 8¢ and 90. We may choose 85
as the line number, entering:

85 iF xS=ny" THEN 2ß m

Let us issue another LIST command, and obtain:

DISPLAY

REM RECTANGLE1

1NPUT "Length and Width";L,W

1F L<=O THEN

IF W<=¢ THEN

LET AREA = L*W

PRINT "Area=";AREA;" L=";L;" W=";W

INPUT "Again:YES=Y,NO=N";XS

85 1F XS="Y" THEN 20

90 END

Ok

COMMENTS

This version of RECTANGLEl does

not require that you press
[.[:,- Iu to stop it.

However, the qjrrent line num-
bering is no longer in regular
increments of 10

When you run the program this is what happens. After calculating the area
of the rectangle whose length and width are entered as input, the program
asks if you want to run it again. 1f you do, you enter Y. When statement
85 is encountered, the program will loop back to statement 20 and cycle
through the statements again. If you do not want another calculation, you
enter N. The condition tested at statement 85 will not be satisfied and
the program will continue to the END statement.

RENUMBERING LINES

As we have seen, the current line numbering of RECTANGLEl is no longer in
increments of 10. This is no great drawback for a simple program, but for
a complex program for which changes may still be planned, haphazard line
numbering can cause problems.

The RENUM command allows you to renumber the lines of a program, starting
for example at 10 and incrementing each additional line by 10. Simply
enter:

3-4 BASIC LANGUAGE - REFERENCE MANUAL

UPDATING AND MODIFYING A PROGRAM

11 D ln lu ID m
To see the result, you can issue another LIST command.

LIST

1¢ REM RECTANGLE1

20 INPUT "Length and Width"; L,W
3¢ IF L<= 0 THEN 20
4¢ IF W<= 0 THEN 2¢
50 LET AREA=L*W

6¢ PRINT "Ai`ea=";AREA;" l,=";L;" W=";W

70 INPUT "Again:YES=Y,NO=N";X$

80 IF XS="Y" THEN 20

9¢ END

Ok

FtENUMBERINe AND CROSS-REFERENCES

When a program is resequenced by a RENUM command, all cross-references
within the program are updated where necessary. For example, if a program
contains the statement GOT0 140 and line 140 is subsequently renumbered,
the reference in the GOT0 will be automatically updated to reflect the
change .

General Rule

RENUM changes all line number references following GOTO, GOSUB, THEN,

ELSE, ON...GOTO, ON...GOSUB and ERL to reflect the new line numbers.

If nonexistent lines are referenced in the program, RENUM causes the
following message:

Undefined line xxxxx in yyyyy

The program will be renumbered. correctly and the references to
nonexistent lines remain un6hanged.

Hffi5! IH

iä±DiAfEF

Changes the line numbers of the current program.

Figure 3-2 RENUM Command

Where

---iffiE-Nt-.----lT-_
„

new line number

MEANING
-r_-_=

DEFAULT VALUES
!

`1`

the first new line
number

old line number {

interval

Examples

TH
1F you enter...

RENUM m

RENUM 1oo m

RENUM 15¢„2¢ D

3-6

the f irst old line
number

the new interval
tween line numbers

10

the first line number
of the program

THEN. . .

the entire program is renumbered. The first new
line (new line number) is 1¢ and a line interval
of 1¢ is assumed (default value)

the entire prograrri is renui,ibered. The first new
line is 100 and a line interval of 1¢ (default
value) is assumed

' the entire program is renumbered. The first new

i' 1ine is 15¢ and a line interval of 2¢ is=E::i
BASIC LANGUA6E ~ REFERENCE MANUAL

CHAN6IN6 LINES WITH Tl+E LINE EDITOR

1n Edit Mode it is possible to change portions of a line without re-
typing the entire line.

M20 enters Edit Mode if :

- you enter an EDIT command

-a syntax error is detected.

Upon entering Edit Mode, M20 displays the number of the line to be ed-
ited, then a space and waits for an Edit Mode command.

The Edit Mode commands do not appear on the screen when you enter them.

1n Edit Mode, M20 takes characters as soon as they are entered in - you
do not need to press m.

The EDIT command enters Edit Mode at the specified line.

Figure 3-3 EDIT Command

Examples

IF you enter... THEN M20 displays. . .

EDIT . m nn...n (entering Edit Mode at the current line).
Here nn...n means the current line number

EDIT 3¢¢ m 300 (entering Edit Mode at the specified line)

LINE EDIT MODE COMMANDS

The table below summarizes Line Edit Mode commands. They are also grouped
in classes.

COMMAND MEANING

1lu (List,(1
11 |causes the current

state of the line to be
displayed. The current
1ine number is display-
ed again at the begin-
ning of a new line

D (Cancel and Start ! restores the original
Again) 1 i line without displaying

11

!it. The current line

number is displayed
again at the beginning
of a new line

+-L111 displays the next n
characters and moves
the cursor one position
to the right-ln erases. the last char-

Fckspace,;1
acter appearing on the
line and moves the
cursor one position to
the left

|| n (1nsert)1

i

enters lnsert State at
the current cursor po-
sition. You may insert
a string of characters.
The inserted characters
are displayed. To exit
Insert State, press-Im

n (Extended Line) causes the remainder of
the line to be display-
ed, .moves the cursor to
end of line and enters
Insert State

to start editing a
line

to move the cursor

to insert characters

3-8 BASIC LANGUASE ~ REFERENCE mNUAL
•H

:-y,`;

ÜPDATING ND MOD.IFYING A PROGRAM

-Im exits lnsert State butremainsinEditMode.1fyoupressmyouexitbothlnsertStateandEditMode

to delete characters D (Delete one deletes the next char-
character) acter which is dis-playedbetweenback-slashes(\)andthecursorispositionedtotheright

|I |q (Delete n deletes the next n
characters) characters. Deletedcharactersaredis-playedbetweenback-slashes(\)andthecursorispositionedtotherightofthelastcharacterdeleted.lftherearefewerthanncharacterstotherightofthecursor,|I|qdeletestheremainderoftheline

ID (Hack) deletes the remainderofthelineandenters1nsertState

to search characters D I (Search for searches for the first
the lst occurrence occurrence of "x" in
ofx) the line (where "x" isanyprintableAScllcharacter)andposi-tionsthecursorbeforeit.Thecharacteratthecurrentcursorpos-itionisnotincludedinthesearch.1fthecharacterisnotfoundintheline,thecursorwillstopattheendof

the line. All char-
actersingtdisplay

11 D I (Search is simj
for the nth occur- except
rence of x) ! 1 for the

|l || (Delete until
...ilsSlm]

the lst occurrence !{ except
ofx) charactinthe1eted.positioandthactersbacksla1

1111 I (Delete
1: is simi

until the nth occur-,renceofx)
i

' except,forthe

to replace characters , (, D | (Change one
character)

d D m ln. . .
ID (Change n char-

to exit Edit Mode '1 D

passed over dur-
he search are

to 11 11
that it searches
nth occurrence

lEI 11ilar to
that all the

ers passed over
search are de-

The cursor is
ned before "x"

deleted char-
are enclosed in
shes (\)

to 11 11
that it searches
nth occurrence

changes the next char-
acter to "x"

changes the next n
characters to the spec-

);! ified string (k
after .-). When
have keyed a strin
n characters, Ch
State is exited and
will return to
Mode

causes BASIC to dis
the new modified
and to return to
mand Mode

xit) has the same effect
m, but the remai
of the line is
displayed

eyed

you
gof
ange

you
Edit-

--L---_ - __ F

BASIC LANGUAGE - REFERENCE MANUAL

STEP If you enter. . . THEN M20 displays. . .

1 11 lu 11 11 - 5¢¢

_lD m u D
2 D 5¢ß FOR 1=1 T015 STEP 2

5¢¢

3 - (6 times) 5¢¢ FOR 1=_

LJ 1111 5¢¢ FOR 1=2_

5 - (5 times) 5¢¢ FOR 1=2 T01_

6J_ D11 50ß FOR 1=2 T016_

7 D 500 FOR 1=2 T016` STEP 2I

•J_ u 11 11 ID - 510

11 ID m m
2 11 510 LET A(l)=1*SIN(X)

51¢

3 - (11 times) 51¢ LET A(l)=1*_

4 11 D 11 m EI 51¢ LET A(1)=1*COS_

5 D I 11 11 D ID 11 510 LET A(1)=l*COS(X):PRINT A(1).- D 11 ID 11 m I

11 lil EH 1 m1 l',,HIEl

2 "\DII
3 (iii[1y:tlll (11 times)

4)l(lDD

1, 51 ¢

510 \LET \

510 \LET \ A(1)=1*COS(

in -- ,|,51¢ \LET \ A(I)=1*COS(y+_

rT'l - (9Ti:lmes) -----ii 151¢ \LET \ A(l)=l*COS(Y+X) :PRl'hT_

6 i\!TDD[DRD ||E:N}L::x\AtiJ=i*costv+xJ:

llmlll-EHllm,,rAtl>=l*Costy+X>:PR,NTt,X;

EXAMININ6 CURRENT VARIABLE VALUES

EDITing a program line automatically clears all variable values and
closes open data files. If BASIC encounters a syntax error during program
execution, it will automatically put you in the Edit Mode. Before editing
the line, you may want to examine current variable values. 1n this case,

you must press m as your first Edit Mode command. This will return you
to the Command Mode, where you may examine variable values. Any other
Edit Mode command (pressing H, m etc) will clear out all variables.

RENAMIN6 A FILE

You may change the name of a program or data file residing on a disk with
the NAME command, provided there is no write protection. The old filename
must exist and the new filename must not exist on the selected volume.
After a NAME command is executed, the file exists on the same disk, in
the same area of disk space, with the new name. File and volume passwords
(if any) are not changed. You must specify the file password and the
volume must be enabled (or you must specify the volume password).

3-1 BASIC LAN6UA6E - REFERENCE MANUAL

Changes the name of a disk file.

Figure 3-4 NAME Command

SYNTAX ELEMENT MEANING

file identifier is either a string constant or a string variable
which specifies the program or data file whose
name is to be changed

file name is either a string constant or a string variable
which specifies the new name of the file

Examples

Neither the volume nor the file has write protection. The volume is
presumed to be enabled.

1F you enter... THEN . . .

NAME ul :FRin AS HFR2n m •FRl is changed into FR2.1t resides

on the diskette inserted in drive
1. FRl has no password

NAME UVOL1 :ACC7PACCU AS UACCIU m ACC is changed into ACC1.1t re-

sides on the disk VOLl which may be
inserted in either of the two
drives. The file password remains
PACC

` ,, ,`,;,:

I)ELETING A FILE

Program or data files stored on a disk can easily be deleted by use of
the KILL command, provided the disk is not write protected. After a f ile
has been deleted, its name can be used again in saving a new file.

You must specify the file password (if any) and the volume must be en-
abled (or you must specify the volume password).

•'`-c,K|LL (PR06RAM/IMMEDIATE)

Deletes a program or a data file stored on a disk.

Figure 3-5 KILL Command

Where

File identif ier is either a string constant or a string variable which
specifies the file to be deleted

Examples

The volume is not write protected and is enabled.

lF you enter. ..

KiLL "Business.B" m

THEN. . .

file ausiness.B is deleted. The search is
limited to the last se|ected drive.
The file has no password

KILL "1:Business.B" m |1' file Business.B is deleted. The search is
!: 1imited to the diskette inserted in drive 1,

i, The f ile has no password

BASIC LANGUAGE - REFERENCE MÄNUAL

MER6ING PROGRAMS

The MERGE command allows you to include a specified program file saved
(in ASC11 format) on a disk, with the program in memory. MERGE is similar
to LOAD, except that the program in memory is pp± erased before the disk
program is loaded. 1nstead, the disk program is merged into the resident
program. That is, program lines in the disk program will simply be
inserted into the resident program in sequential order. 1f a line of the
disk program and a line of the resident program have the same line
number, the line of the disk program replaces that in memory. The MERGE
command must specify the file password (if the disk program has a

password) and the volume must be enabled (or you must specify the volume
password) .

Merging programs may, for instance, be useful to add (standard) sub-
routines to a program.

1t is good programming practice to merge subroutines with line
numbers greater than the highest line number of the program. This will
improve the MERGE operation speed and allow room to extend the main

Program.

MER6E (PR06RAM/1MMEDIATE)

Merges the current program with a specif ied program file (which must have
been saved in AScll format).

Figure 3-6 MERGE Command

Where

The file identifier is either a string constant or a string variable
which specifies an ASCIl format program file, i.e. a program saved with
the A option.

Examples

MERGE nv¢01yvpoo1 :F¢017P¢¢1H m the program FO¢1 with the password
P¢gl is merged with the program in
memory.

Note: The volume V¢¢1 is enabled by
tiTruse of the password Vpogl in
the MERGE command

Remark

MERGE closes any open data file and clears variables.

LISTING THE NAMES OF SAVED FILES

1f you do not remember the names of program and/or data files residing on
a disk, you can use the FILES command to get a listing of them.

The FILES command may be used either with a volume or a file identifier.

When the volume identifier is specified, all the files in the volume are
listed (whether they have a password or not).

BASIC LANGUAGE - REFERENCE MANUAL
`

UPDATING AND M0I)IFYING A PROGRAM

To execute a FILES command you do not need to know the disk's password,
nor does the disk have to be enabled.

When a file identifier is specified, only this file is listed and you
need not specify the file password (if any).

Similarly the same functions may be carried out in PCOS with the VOUICK
command .

Note: The FILES command does not list passwords.

The information displayed includes:

- the drive on which the disk is currently active

- the name of the disk (if any)

- the amount of file space left on the disk in sectors (a sector is 256
bytes) .

- the name of each file on the disk or the name of the specified file, or
the name of the selected file(s) if you use the wild card characters
"?" or ''*" within the file identifier clause. ("?" matches any

character, ''*" matches any name).

rffi±6Ri"iriDtAT|E|
Lists files in the directory of the specified disk.

Figure 3-7 FILES Command

3-17

Where

Examples

1F you enter. .. THEN. . .

FILES m
1

the name of each file on the disk (inserted
in the last selected drive) is displayed

_FILES "¢:" m -
the name of each file on the diskette
inserted in drive 0 is displayed

FILES U1¢:ll m the name of each file on the hard disk -is
displayed

FILES MMyvoL:M m
11

the name of each file on the disk MYVOL is
displayed. It may be inserted in either of
the two drives

FILES "MWOL/MYPASS:" mHl the name of each file on the disk MYVOL
which has the password MYPASS is displayed.
It may be inserted in either of the two
drives. The specification of the volume
password does not affect the execution of
this command

FILES WMyFILEM m

3_18

the name of the file MYFILE (which resides
on the disk inserted in the last selected
drive) is displayed

BASIC LANGUA6E - REFERENCE MANUAL

FILEs "1 :*.cmd" m

F|LES Ü¢:V777" m

a list of all the files with the extension
'.cmd' residing on the diskette inserted in

drive 1 is displayed

a list of all the files resident on the
diskette inserted in drive 0 with a four
letter name beginning with 'v' is displayed.

3-1q

4. DATA

ABOUT THIS CHAPTER

In this chapter we shall consider how BASIC handles data. We shall 1ook
at constants and variables, number representation, numeric conversions
and arrays.

CONTENTS

CONSTANTS AND VARIABLES

CONSTANTS

VARIABLES

4-1 TYPE DECLARAT10N TAGS 4-11

4-1 NUMERIC CONVERS10NS 4-12

4-1 SINGLE 0R DOUBLE PRECIS10N 4-12

T0 1NTEGER

HOW BASIC NAMES VARIABLES 4-1

REPRESENTAT10N OF NUMBERS

BINARY REPRESENTATI0N

HEXADECIMAL AND 0CTAL

REPRESENTATI0NS

HOW BASIC CLASSIFIES

CONSTANTS

NUMERIC DATA

STRING DATA

NORMAL TYPING CRITERIA

T0 CLASSIFY CONSTANTS

TYPE DECLARATI0N TAGS

HOW BASIC CLASSIFIES

VARIABLES

lNTEGER T0 SINGLE 0R 4~13

4-2 DOUBLE PRECISION

4-2 SINGLE TO DOUBLE PRECISI0N 4-14

4-5 DOUBLE TO SINGLE PRECISION 4-15

4-6

DEFINT/DEFSNG/DEFDBL/DEFSTR 4-10

(PROGRAM/1MMEDIATE)

1LLEGAL CONVERSIONS 4-16

SUBSCRIPTED VARIABLES AND 4-16

ARRAYS

ONE DIMENSIONAL ARRAYS

MULTI DIMENS10NAL ARRAYS

DIM (PROGRAM/"MEDIATE)

ERASE (PROGRAM/IMMEDIATE)

oPT10N BASE

(PROGRAM/1MMEDIATE)

4-17

4-18

4-19

4-22

4-23

CONSTANTS AND VARIABLES

Each data item may appear in a BASIC program as either a constant or a
variable.

CONSTANTS

Specific numbers such as 15, -2, 3.41 or specific strings such as
"AAA.bl", "Cursor*"" are referred to as constants. This means that their

values remain the same throughout program execution.

VARIABLES

Variables are named data items whose values may change during program
execution.

For example, the formula for computing the area of a circle:

3 .141592*R ^ 2

uses variable R. That is R represents any radius and reserves a location
in memory for the assignment of a radial value.

Note: The symbol ^ is an operator which indicates that R is raised to the
Fä=r specified (2 in this case).

HOW BASIC NAMES VARIABLES

The identifier (or name) of a variable may not be longer than 40
characters. The characters allowed in a variable name are letters and
numbers. The period (.) is also allowed. The first character must be a
letter. The last character may be a letter, a number, a period, or a type
declaration tag (°~o, !, #, S). The meaning of type declaration tags is
illustrated later in this chapter.

Lower case letters in a variable identif ier are considered equivalent to
their corresponding upper case letters and are converted to their
corresponding upper case letters when listing the program.

Examples of variable names are:

STUDENT AI CC¢1.CLASS ACCOUNT# AS STRING

4-1

Reserved Words

A reserved word (a keyword, a command or a function name), cannot be used
as a variable identif ier but BASIC permits embedded reserved words within
a variable identifier. For example:

10 PERFORMANCE = 105.3

2¢ SINGLE = 1371.2

are valid program lines, even though PERFORMANCE contains the keyword FOR
and SINGLE begins with the name of the built-in function SIN.

REPRESENTAT10N 0F NUMBERS

Numbers are concepts to humans. Most humans are trained to think in base
10. 1n a computer, numbers are electronic patterns of ones and zeros. The
computer performs many of its operations in base 2 (referred to as
Binary).

This paragraph gives a review of the concepts of base 2 and of
alternative base representation (hexadecimal and octal).

BINARY REPRESENTAT10N

Before looking at base 2, 1et us take a look at base 10. The number two
hundred and five is represented as:

205

Base 10 uses digits 0, 1, 2 ,... 9.The digits have a place value
corresponding to powers of ten. The representation above really means:

(2 x i¢2) + (¢ x ißT) + (5 x i¢¢)

The concept of place value also exists in base 2. The difference being
that powers of two are represented instead of powers of ten. The number
two hundred and five is represented as:

11001101

Base 2 uses only the digits "1" and "0". Therefore, the binary represen-
tation shown above means:

4-2 BASIC LANGÜAGE - REFERENCE MANUAL

I)ATA

(i x 27)+(i x 26)+(¢ x 25)+(¢ x 24)+(| x 23)+(i x 22)+(¢ x 2')+(i x 2¢)

This is the same as:

128 + 64 + 8 + 4 + 1 = 2¢5

A "binary digit" is referred to as a ''bit". A bit may be either 1 or 0.

Bytes

The grouping of s bits together is in such common usage that it has been
given a special name - a byte. The term byte refers to s bits processed
as a unit.

The bits of a byte are numbered from ¢ (right most, least significant) to
7 (1eft most, most significant). By doing this, the bit number and the

power of two it represents are the same. The following table shows the
bit position in a byte and their corresponding values.

BIT POSIT10N BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BITO

Meaning 27 26 25 24 23 22 2' 20

Value 128 64 32 16 8 4 2 1

BASE 10 BASE 2

¢ ¢
12 11„
27 11011

149 100101 ¢1

255 11111111

Table 4-2 Conversion Examples

Words

ln the M20 data is handled 16 bits (2 bytes) at a time. This quantity is
called a "word". The number of bits in a word is machine dependent. The
bits in a word are numbered from ¢ (right most, least significant) to 15
/1eft most, most significant).

4-3

Another characteristic of a word in the M20 is that two's complement
representation is used. Two's complement representation is a method of
storing either positive or negative numbers in a word. It works like
this:

To find the value of a negative number, you must invert all the bits and
add 1 (this will give you its absolute value).

For example:

1 1 1 1 1 0 ¢ 1 1 0 ¢ 1 1 0 0 0 original value (negative

Inverting all the bits

0 0 0 0 ¢ 110 0110 0111 invertedvalue

Adding 1

ß 0 ql ¢ ¢ 110 011010 0 0 absolutevalue
(inverted + 1)

So the value of the given pattern is:

-164¢

ASIC LANBUAGE - REFERENCE MANUAL

HEXADEciMAL AND oCTAL R`EmESENTATioNs

We have seen that it is possible to represent numbers in decimal (base

10) and binary (base 2). BASIC allows you to represent numbers in octal

(base 8) and hexadecimal (base 16) too.

1t is often convenient to work with binary numbers but they are tedious
to read and write. For this reason we often convert them to octal or
hexadecima l .

-base 8, known as "octal" uses one octal digit for three binary digits

-base 16, known as "hex" (short for hexadecimal), uses one hex digit for

föur binary digits.

The following table shows the decimal (base 10), binary (base' 2), octal
(base 8) and hex (base 16) representations for the numbers 0 to 16.

(DECIMAL
BINARY OCTAL DECIMAL BINARY HEX

¢ ¢¢¢ ¢ ¢ ¢¢¢¢
1 ¢

1 ¢¢1 1 11 ¢¢¢1 1

2 ßllg 2
'2

¢¢1¢ 2
3 ¢11 3 3 0011 3
4 1„ !4 4 0100 4
5 101 5)5 0101 5
6 110 6 6 ¢110 6
7 111 7 7 ¢111 7
8 1¢00 1ß 8 1¢¢0 8
9 10¢1 11 9 1„1 9

1ß 1¢1¢ 12 1¢ 1010 A

11 1011 13 11 1011 8
12 11„ 14 12 11 ßIO C

13 1101 15 13 11¢1 D

14 111¢ 16 14 1110 E

15 1111 17 15! 1111 F

16 10000 2¢ 16 1 ¢¢¢¢ 1¢

Table 4-3

HOW BASIC CLASSIFIES CONSTANTS

The way that BASIC stores a data item determines:

- the amount of memory it will consume

- the speed in which BASIC can process it.

NUMERIC DATA

BASIC can to store all numbers in your program as either:

-Integers (Speed and Efficiency, Limited Range),

-Single precision (General Purpose),or

-Double precision (Maximum Precision, Slowest in Computation).

lNTEGERS SIN6LE PRECISION DOUBLE PRECIS10N

MemorySpace(bytes) 2 4 8

FRange of
• -32768 to 32767 From ±i¢-38 From ±i¢-308

values

1

To .±1¢38 To ±.i¢308

' SignificantDigits1
Up to 5 Up to 7 Up to 16

1(Displayed Up to 5 Up to 6 Up to 15

l:::i::/LP„NT,

(with rounding) (with rounding)

Table 4-4

Note: Non significant zeros will not be displayed. For example the value
5:iT¢O¢¢ in single precision will be displayed as 3.41.

STRING DATA

Strings (sequences of AScll characters) are useful for storing non
numeric information, such as names, addresses, codes, etc.

4-6 BASIC LANGUA6E - REFERENCE MANUAL

For example, the constant:

"FORD ,RENAULT"

is a quoted string constant of 13 characters. Each character in the
string (including blank) is stored as an ASCIl code, requiring one byte
nf storage. BASIC would store the above string constänt internally as:

ASCI1Character F O R D , R E N A U L T

HexCode 46 4F 52 44 20 2C 52 45 4E 41 55 4C 54

Table 4-5

A string can be up to 255 characters long. A string with length zero is
called a "null" string and is represented by a pair of double quotes
(""). BASIC allocates strings dynamically, i.e., the memory space re-
served for a string may vary during program execution from 0 to 255 bytes.

NULL STRING STRING 0F n CHAR. STRING 0F MAX. LENGTH

Memory space(b,/tes)
¢ n 255

Range ofvalues - Any string of p rintable ASCIl characters
including blanks

Table 4-6

NORMAL TYPIN6 CRITERIA TO CLASSIFY CONSTANTS

1F. . . THEN . . . EXAMPLES

the value is enclosed it is a string „NO„

in double quotes „YES„„Circle""(null string)

the value is not in
quotes

it is a number.

11, #: An exception
rule is during

521
-15

3 . 7345E-2
43.#

aata lnput ana ln LIAIA
111'

1

(!

! statements, where un- iquotedstringsareal-

1 1 1Owed

a number is whole and ! it is an integer 1
! 1¢24721

in the range -32768 constant:
to 32767 , 1

1

-32768

the value has the pre-
fix &H and is composed
of the numerals 0-9
and the letters A-F
(in the range ¢ to
FFFF)

the value has the pre-
f ix &0 or & and is
composed of the nume.r-
als 0-7 (in the range
0 to 177777)

it is a hexadecimal
constant

Note: A hexadecimal
=tant may be con-
sidered an alternative
representation of the
corresponding integer
constant

it is an octal
constant

Note: An octal constant
may be considered an
alternative representa-
tion of the correspond-
ing integer constant

a number is not an it is single precision

&H2¢F¢

&HF1

&H35

&HFE98

&HFFFF

&H¢

integer and contains 7 '
or fewer digits

11

a number contains more it is double precision 11
than 7 digits

52174593
-54 . 397124

8 . 799999999

TYPE I)ECLARAT10N TA6S

You can override BASIC's normal typing criteria by adding the following
"tags" to the end of a numeric constant.

4-8 BASIC LANGUAGE - REFERENCE MANUAL

TAG MEANING EXAMPLES

' makes the number 5.7211P333! the con-
single precision stant is classified assingleprecisionandshortenedto7digits(i.e.,5.7211¢3)

E single precision 7.31E4 means

floating point. The Eindicatestheconstantistobemultipliedbyaspecifiedpowerof10 7.3|x|04 i.e. 73100

makes the number 4#
double precision 5.21#

D double precision 7.2D-3 means
floating point. The D 7.2 x i¢-3 i.e.
indicates the constantistobemultipliedbyaspecifiedpowerof10 ¢ . ¢¢72

HOW BASIC CLASSIFIES VARIABLES

When BASIC encounters a variable identifier in a program, it classifies
it as either a string, integer, single or double precision number.

BASIC classifies all variable names as single precision initially. For
example, if this is the first line of your program:

1¢ X1 = 3.5

BASIC classifies Xl as a single precision variable.

However, you may assign different type attributes to variables using
either definition statements (DEFtype statements) or a type declaration
tag at the end of the variable identifier.

Four DEFtype statements are provided to assign different types to vari-
ables.

A DEFtype statement declares that the variable names beginning with the
letter(s) specified will be that type variable.

DEFtype statements are usually placed at the beginning of your program,
and must precede the use of the defined variables.

Figure 4-1 DEFtype Statements

Default Values

Unless~otherwise specified all program variables are assumed to be single

precision.

Examples

IF you enter. . . THEN . . .

10 DEFINT A-Z m all program variables will be integer

10 DEFDBL D m all program variables beginning with the letter
D will be double pr:ecision

MANÜAL

DATA

1¢ DEFSTR S,U-W m all program variables beginning with the letters
S, U, V and W will be string variables

TYPE DECLARATloN TA6S

As with constants, you can always override the type of a variable name by
adding a type declaration tag at the end. There are four type declaration
tags for variables:

' 11'!single precision

1

11

'!1

double precision)!1

are all integer vari-
ables, regardless of
what attributes häve
been assigned to the
letters A, S and 1

SPEED !

SPACE !

TIME !

are all single preci-
sion varia.bles, regard-
1ess of what attributes
have been assigned to
the letters S and T

TOTAL#

SUBTOTAL#

X1#

are all double preci-

|sion variables, regard-
1ess of which attrib-
utes have been assigned
to the letters T, S and
X

4-11

t

A;
81;
NAME . CLASSS

are all string vari-
ables, regardless of
which attributes have
been assigned to the
letters A, 8 and N

NUMERIC C0lwERS10NS

Often a program or immediate line might ask BASIC to assign one type of
constant to a different type of variable. For example, if you enter:

|9za=5.31 D

9ASIC will first round the single precision constant 5.31 to the nearest
integer to assign it to the integer variable l'<o. Thus the value of 1%
wjll be 5.

You may also want to convert one type of variable to a different type of
variable^ such as:

SCALE!=8% m
SECONDS!=C1# D
BOX#=W9io D

The coriversion procedures are illustrated in the examples on the
following pages.

SINGLE 0R DOUBLE F'RECISION TO INTE6ER

BASIC converts the original value to an integer by rounding the f rac-
tional part.

Note: The rounded value must be greater than or equal to -32768 and less
:fi== 32767, otherwise an Overflow error occurs.

RENCE mNUAL

Examples

DISPLAY COMMENTS

C9o=-15.1 !Ok?C%-15Ok

11

-15 is assigned to Cr+oE

C9io=4.1E2Ok?C®,o41¢Ok 410 is assigned to C%

C%=47 . 8Ok?C%48Ok
1

! 48 is assigned to C%1

C%=7 . 21473D -3Ok?C96¢Ok

1

¢ is assigned to C%

C%=-32768 . 5OverflowOk an Overflow-error occurs

1NTEGER T0 SINGLE OR l)OUBLE PRECIS10N

No error is introduced. The converted value looks like the original value
with zeros to the right of the decimal point.

4-13

DISPLAY COMMENTS

S ! =326 326 is stored in S! as 326.¢¢¢¢ but
Ok it is displayed as 326
?S!

326

Ok

D#= 326 326 is stored in D# as
Ok 326.Oggoogggggggßl but it is dis-
?D# played as 326
326

Ok

SIN6`LE T0 DOUBLE PRECISI0N

BASIC adds trailing zeros to the single precision number.

1f the original value:

-has an exact binary representation, no error will be introduced

-does not have an exact binary representation, an arithmetic error is
introduced when converting the value.

Examples

DISPLAY COMMENTS

8#=1 . 5 when entering 8#=1.5, you store
Ok 1.5gß¢¢gg¢¢¢¢O¢¢¢, in 8# but 1.5 is
?8# displayed.
1.5

Note: 1.5 has an exact binary re-Ok

presentation

C#=1 . 3 When entering C#=1.3 you store
Ok 1.299999952316280 in C# but it is
?C# displayed as 1.29999995231628.
1. 29999995231628

Ok Note: 1.3 does not have an exact
binary representation

REFERENCE MANUAL
*ü
i.

DATA

Remarks

To avoid losing accuracy you should keep single to double precision
conversions out of your programs. For example, whenever you assign a
constant va|ue to a double-precision variable, you can force the constant
to be double-precision.

8#= 1.3# B#= 1.3D

Both store 1.3 in 8#.

When the single-precision value is stored in a variable, convert the
single-precision variable to a string with STRS function (see Chapter 9),
then convert the resultant string back into a number with VAL (see
Chapter 9).

DISPLAY COMMENTS

LIST iThis program displays the value of 8# 1osing
1¢ 8!=1.3208#8!3¢PRINT 8#OkRUN1.29999995231628Ok

1

|accuracy.L1

LIST This program displays the value of B#without
1¢ 8!=1.32¢B#VAL(STRS(B!))30PRINT8#OkRUN1.3 losing accuracy.

DOUBLE T0 SINGLE PRECIS10N

This involves converting a number with up to 16 significant digits into a
number with no more than 7.

Only the first seven digits, rounded of the converted value, will be
va l i d .

Before displaying or printing such a number BASIC rounds it to six dig-
its.

4-15

Note: If the double precision value is outside the range of single preci-
;I5F values an overf low error occurs.

Example

DISPLAY COMMENTS

P ! =2 . ¢3999996 2.¢400ßO is stored in P! but is is
Ok displayed as 2.¢4
?P!

2.04
Ok

lLLEGAL CONVERsloNS

You cannot convert numeric values to string or vice versa by an assign-
ment statement. For example:

C;=321. 7

is illegal. (Use STRS and VAL functions to accomplish such conversions.
See Chapter 9).

SUBSCRIPTED VARIABLES AND ARRAYS

As mentioned before (see Chapter 1) a variable may be a ±jpp±± variable
or a subscripted variable. Subscripted variables are elements of an
"array".

An array is a collection of variables of the same type under one name.
You can distinguish them by the value(s) of one or more subscripts
appearing in parentheses after the array name. For example, if A is a one
dimensional array, A(O) is the first element, A(1) the second element,
and so on (supposing that the subscript lower bound is ¢).

A subscript value must be a positive integer number, but any numeric
expression whose value is positive m6y be entered as a subscript. 1f its
value is not an integer, it is rounded to an integer.

4-16

:=_-
` _" `,,

BASIC LANGUAGE - REFERENCE MANUAL

DATA

An array may have any number of dimensions. A one dimensional array might
be thought of as a list of items. There may be many rows but only one
column. A two dimensi===i array is like a table of values. There may be
several rows and several columns of items.

To define an array you must:

- give it a name (any valid variable name may be assumed)

- establish the upper and lower subscript bounds.

To do that you have to use a DIM statement, and optionally an OPT10N BASE
statement.

1f you specify in a program:

10 0PT10N BASE I

The lower bound of all arrays is 1.

1f you omit the OPT10N BASE statement, or if you specify OPT10N BASE 0,
the lower bound of all arrays is ¢ (the default lower bound).

1t is also possible to re-def ine an array, by writing an ERASE statement
before a DIM statement (see below).

ONE DIMENSI0NAL ARRAYS

Suppose we have the following list of numbers:

17, -9, 32, 105, -48

If you define a one dimensional numeric array V, you can store all the
values in the list introducing only one array variable and you can access
each array element by specifying the appropriate subscript.

4-17

Array V

Element Contents
V(g) 17

V(1) -9

V(2) 32

V(3) 105

V(4) -48

Each element in Array V is specified by its
subscript. For example V(1) is -9 and V(3) is 105.
The subscript identifies the location of the
element in the array.

MULTI DIMENSI0NAL ARRAYS

We may use a two dimensional array to s!ore the values of a table. Sup-

pose we have the following table:

NAME CODE COUNTRY SEX

Anna 21 SAA Great Britain F

John 35ECK USA M

Richard 7¢WST Sweden M

Table 4-7

This table contains 3 rows and 4 columns for a total of 12 string values.

1f you define a string array AS you can store all the values in the table
introducing only one array variable and you can access any array element
by specifying the appropriate subscripts.

SUBSCRIPT ¢ 1 2 3

¢ Anna 21 SAA Great Britain F

1 John 35ECFt USA M

2 Richard 7gwsT Sweden M

Table 4-8 Array AS

Each element in array AS is specif ied by its location in the array with
two subscripts, separated by a comma and enclosed within parentheses. The
first subscript designates the "row" in the array; the second subscript
designates the "column''. For example:

REFERENCE MANUAl

I)ATA

AS(g,1) is the string 21SAA
AS(2,3) is the character M

You may define arrays with even more dimensions, but they are rarely
us ed .

i---OT"-;Pi=RAA;]ri~D-riri=-.

Specifies the array name, the number of dimensions and the subscript
upper bound per dimension. The DIM statement may specify one or more
arrays.

Figure 4-2 DIM Statement

Where

SYNTAX ELEMENT

4_19

upper bound

Example

is any positive nu-
meric constant or
variable. If it is
not an integer, it
is rounded to the
nearest integer

1F you enter. ..

if no D" is specifed,
an upper bound of 10 is
assumed for each dimen-
sion and the number of
dimensions are set when

you refer to an array
element in your program

THEN . . .

1¢ DIM At5l, Bst2¢,3¢] m you set up a one dimensional array A with
subscripts from ¢ to 5, and a two dimen-
sional string array BS with subscripts f rom
ß'¢ to 2¢, 30.

Note: A is numeric, unless differently
:t==ed by a DEFSTR statement

Number of Dimensions

With BASIC, you may have as many dimensions in your array as you like,
depending on the available memory. One and two dimensional arrays are the
most frequently used.

1f no DIM is specified, the first reference to an array element in the
program will create the array with the specified number of dimensions.
For example, if a program statement refers to:

AR1 (3 , 5 ,10)

Then ARl is created with 3 dimensions and a default upper bound of 10 for
each dimension.

BASIC LANCUAGE - REfERENCE MANUAL
• . _`_``

Number of Elements per Dinension

To Def ine an Array

YOU MUST. . . AN0 EITHER. . .

establish the sub-
script lower bound

assign a name to the
array

establish the number
of dimensions

establish the sub-
script upper bound per
dimension

use an OPT10N BASE I

statement

use a DIM statement

adopt the default
OPTION BASE 0

refer an array el.ement
within the program

Note: 1n this case a
=cript upper bound
of 10 for each dimen-
sion is assumed.

4-21

Remarks

- the DIM statement sets all the elements of the specif ied arrays to an
initial value of zero

- a D" statement cannot be preceded by an array reference

-a DIM statement does not set the subscript upper bound per dimension,

in case it is jumped over. For example:

DISPLAY COMMENTS

LIST The M20 will display:
1¢ 1=1

Subscript out of range in 5920 GOTO 4¢

30 DIM A(5¢)

when statement 50 is executed, as40 A(1ß)=3

50 A(11)=45 statement 3¢ is jumped over and an
Ok upper b,ound of 10 is assumed by
RUN default
Subscript out of range in 50
Ok

Releases space and variable names previously reserved for arrays. The
data is lost and the array(s) no longer exist.

Figure 4-3 ERASE Statement

L.

Example

DISPLAY COMMENTS

10 DIM A(15,15),B(10,2g)100ERASEA,B upon execution of statement 100,
arrays A and 8 are deleted and the
corresponding memory space is made
free. You may define other arrays

110 DIM A (100),8(2,2,2) (see state.ment 11ß) with the same
names but different numbers of
dimensions and upper bounds

Remarks

lt is not normally good programming practice to reuse an identifier. This
may generate errors or reduce the program readability. You may, however,
find it useful to redeclare an erased array; for example, when an array
name is known by a subroutine and you want to pass arrays with different
number of dimensions or subscript upper bqjnds to this subroutine.

GF-i=f.ixs*ml.U

ION BASE (PROGRAM/1MMEDIATE)_

Declares the lower bound for array subscripts.

Figure 4-4 0PTI0N BASE Statement

Default Value

OPTI0N BASE ¢ is assumed by default (i.e. if you do not write any OPTI0N
BASE statement in your program.)

Example

IF you enter. .. THEN . . .

1¢ OPTION BASE 1 m the lower bound of all arrays is 1
OR

OPTION BASE I D
(in immediate mode)

Remarks

You will find the OPTI0N BASE 1 useful when converting programs from
other machines to your M20. Many older BASICs number all arrays from 1.

The OPTION BASE statement cannot be preceded by a DIM statement or by an
array reference.

4-24 BASIC LANCUAGE - REFERENCE MANUAL

5. HOW BASIC INPUTS DATA

AB0UT THIS CHAPTER

This chapter will describe some ways to supply data to the computer via

your program.

We shall examine:

-the CLEAR, LET and SWAP statements

- the INPUT and LINE INPUT statement

-the DATA, READ and RESTORE statements.

Other ways to supply data, using external files, will be examined later,
(see Chapter 12).

CONTENTS

ASSIGNMENT STATEMENTS

CLEAR (PROGRAM/IMMEDIATE)

LET (PROGRAM/IMMEDIATE)

SWAP (PROGRAM/IMMEDIATE)

THE INTERNAL DATA FILE

5-1

5-1

5-3

5-4

5-5

DATA/READ/RESTORE (PROGRAM) 5-5

1NPUT STATEMENTS 5-8

INPUT (PROGRAM) 5-9

LINE INPUT (PROGRAM) 5-12

ASSIGNMENT STATEMENTS

There are three assignment statements in BASIC:

- the CLEAR statement, which allows you to set all numeric variables to

zero and äll string variables to null-

- the LET statement, which allows you to assign the value of an expres-
sion to a variable. The variable and the expression must be either both
numeric or both string

- the SWAP statement, which allows you to exchange the values of two

variables, provided they are the same type (integer, single-precision,
double-precision, string).

LET and SWAP are often used as immediate statements for quick computa-
tions.

cLEAR (pRo6I"/Ir-El)1ATE)

Sets all numeric variables to zero, all string variables to null, closes
all open data files and windows (see Chapter 14) and clears the screen.

CLEAP` optionally sets the amount of user memory available for BASIC

programs and the amount of stack space.

Figure 5-1 CLEAR Statement

command SBASIC. If omitted,its value is either
that established by the SBASIC command, or 370¢¢
(as a second alternative).

stack sets aside stack space for BASIC. The default
value is 512 bytes or one-eighth of the
available memory whichever is smaller. The stack

iis a part of memory available for BASIC used to

Examples

DISPLAY COMMENTS

CLEAR clears variables, closes data files and windows,
and clears the screen. The memory is either that
established by the SBASIC command, or 37¢00
bytes. The stack is assumed by default.

CLEAR ,32768 as in the example above, but memory is set to
32768 bytes.

CLEAR „2¢¢¢ as in the first example, but stack is set to
2¢¢¢ bytes.

CLEAR ,32768,2¢¢0 as in the first example, but memory is set to
32768 bytes and stack to 2¢¢¢ bytes.

Remarks

BASIC automatically sets all numeric variables to zero and all string
variables to null at the beginning of the execution of a program (except
variables defined in the COMMON area, if the program is CHAINed to
another, see Chapter 11).

BASIC allocates string space dynamically. An "Out of string space" error
occurs only if there is no free memory left for BASIC to use.

5-2 BASIC LAN6UAGE - REFERENCE MANUAL

ET (PR06RAM/-

Assigns a value to a variable.

Figure 5-2 LET Statement

Examples

IF you enter ...

LET K = 1.5 m

LET X = K + 2 m

THEN. . .

|:::±a:::U; 1.5 is assigned to the numeric
the value of the numeric expression K + 2 is

Hassigned to the numeric variable x`-__--_::__:_:AS(l) = "ABC" m llthe value of the string constant "ABC" is as-
signed to the subscripted string variable AS(I).

;|±: The keyword LET is optionai

Numeric Assignments

lf the data-type of the value resulting f rom the evaluation of the
numeric expression is different f rom the type of the r.eceiving variable,
BASIC converts the type of the expression value to the type of the
receiving variable, following the rules we have just seen (see NUMERIC
CONVERS10NS paragraph in Chapter 4).

Rounding or overflow may occur, if the receiving variable is not able to
contain the computed value.

String As.signment

String assignment is performed by moving the string expression value
character by character into the receiving variable. The operation ends
when all the characters have been moved.

Remarks

Simultaneous assignments are not allowed. 1f you enter for instance:

|¢¢ LET 80,. = CO,. = ¢ m

BASIC WOULD INTERPRET THE SECOND EQUAL SIGN AS A RELATloNAL 0PERATOR and

set 8°/. equal to -1 (i.e. true) if C% equalled ¢, and ¢ (i.e. false) if C%
is different from zero (for a fuller explanation of relational expres-
.sions see Chapter 6).

Allows you to exchange the values of two simple variables. Any type of
variable may be SWAPped (integer, single-precision, double-precision,
string) but the two variables must be of the same type or a "Type
mismatch" error occurs. They must also be initialized, or an "Illegal
function call" error occurs.

s,'.l= -:-:= : ' .=-:: :_

Figure 5-3 . SWAP Statemcnt

Example

THE INTERNAL l)ATA FILE

Many problems require that a large number of constants be entered in`co
the computer. To do this, you could use many LET, 1NPUT, or LINE INPUT

statements .

lt is clear, though, that this would be arduous, if you had a long list
of data to be entered. A much more convenient and effective way to enter
such constants is by using the DATA, READ, and RESTORE statements. DATA

statements create an "internal" file, i.e. a sequence of data belongs to
the program, which must be transferred into the program variables by one
or more READ statements. The RESTORE statement allows you to reposition

the pointer at the beginninq of the file or to a specified line number.

DATA/READ/RESTORE (PR.06Rffii'

DATA creates an internal data file.

READ reads data f rom one or more DATA statements into the specif ied
va r i a bl e s .

RESTORE moves the pointer either to the beginning of an internal data
file (created by one or more DATA statements) or to a specified line
number.

Liiiiiiiiiiiiiiiri ++

Figure 5-4 DATA Statement

Figure 5-5 READ Statement

Figure 5-6 RESTORE Statement

Examples

RESTOF`E

DISPLAY COMMENTS

LIST the values 1 to 1¢ are assigned to
10 READ A,B,C,D,E,F,G,H,l,J ten variables
2¢ DATA 1,2,3,4,5,6,7,8,9,10

3¢ PFUNT A;B;C;D;E;F;C;H;I;JOk

FUN

1 2 3 4 5 6 7 8 9 10

Ok

BASIC LANGUAGE - REFERENCE MANUAL • ffiffi

HOW BASIC INPUTS ßATA

LIST

10 DATA 1,2,3,4

2¢ READ A,B,C,D,E,F,G,H,I,J

3¢ D.ATA 5,6,7

40 DATA 8,9,10

5¢ PRINT A;B;C;D;E;F;G;H;

Ok

1111111-

statements 10, 20, 30, and 40 have
the same effect as statements 10
and 2¢ in the previous example.

Note: A DATA statement in a program
1

need not correspond to a specif ic
READ statement. This is because
before program execution, a data

1 2 3 4 5 6 7 8 9 10 '
` file (the "internal file" as it is

Ok often called) is created. 1t con-
tains all the values of all the
DATA statements in the program in
1ine number seqiience. When the

program is executed, READ takes its
values from this file

LIST statement 1¢ assigns the values.
10 READ A,B,C 1,2, and 3 to A,B,and C; statement
20 DATA 1,2,3,4,5,6,7,8,9,10 40 assigns the values 4,5,6 and 7
30 PRINT A;B;C to D,E,F and G respectively.
40 READ D,E,F,G

Note: When you access a data file5¢ 'PRINT D;E;F;G

RUN you do not have to read all the
123 values stored in it
4567

Ok

LIST M20 displays an error iTiessage:
1¢ READ A:B,C,D,E

Out of data2¢ DATA 1,2,3,4

Ok

and returns to Command Mode, be-Rurl

Out of data cause there are fewer data items
Ok than variables

LIST statement 1¢ causes the variable A
10 READ A,B,C to be assigned the value 15, 8 the
2¢ DATA 15,25,35,5,6,12 value 25, and C the value 35. The
30 PRINT A;B;C RESTORE statement at line 4ßl will
4¢ RESTORE cause values to be assigned start-
50 READ X,Y,Z ing from the beginning of the file
60 PRINT X;Y;Z again. Hence, statement 6ß causes
Ok the very same values assigned to
RUN A,B, and C, (15,25,35) to be

15 25 35 assigned, respectively, to X, Y,

5-7

1>

15 25 35

0k

LIST

10 READ XIS, YIS, Z1

20 DATA "DENVER,", COLORADO, 80211

30 PRINT XIS;YIS;Z1

0k
RUN

DENVER,COLORADO S0211

0k

and Z. 1f RESTORE were not present,
X would be assigned the value 5, Y
the value 6, and Z the value 12

statement 1¢ causes XIS to be
assigned the.value DENVER, (in-
cluding the .final comma), YIS the
value COLORADO, and Zl the value

8¢2, , .

Note: READ statements may contain
55IF numeric and string variables,
DATA statements may contain both
numeric and striiig data.

The data-type of an entry in the
data sequence must correspond to
the type of the variable to which
it is to be assigned; i.e., numeric
variables require numeric constants
as data (conversicm f rom one num-
eric type to another is allowed,
for example you may have a single

|precision floating point constant
associated with an integer vari-
able) and string variables require
quoted or unquoted strings as data.
A quoted string is required if the
string contains commas (e.g.
DENVER,) or initial or final blanks
(e.g. the blank preceeding COLORAD0
in statement 2ß is skipped as
COLORAD0 is not a quoted string)

lNPUT STATEMENTS

Trie DATA statement uses constants to assign values to variables. You must
know, when you are entering your program, what values you want to assign.
Furthermore the values contained in the internal data file are saved
whenever your program is saved. Hence, these values are relatively

permanent; they can be changed only by changing one or more DATA
statements in the program.

5-8 C LÄNGUA6E - REFERENCE MANUAL

HOW BASIC INPÜTS DATA

The INPUT and a LINE INPUT statements, offer you more flexibility. Using
them you enter values only when the program is executed. Whcn one of
these statements is encountered, program execution is suspended and M20
waits for you to enter data from the keyboard.

As a consequence, after you have saved a program, you can run it at any
time, and supply values to the computer -on the spot, without changing the
program itself. This flexibility allows you to write a general program`to
solve a particular problem before you know the specific values the
program will use. However, if you have a lot of data to enter, it is
better to use an internal file (permanent data) on one or more external
files (see Chapter 12).

The lNPUT statement allows you to enter one or more numeric o`r string
data-items (separated by a comma). They will be assigned to the vari-
able(s) specified in the statement. The LINE INPUT statement allows you
to enter an entire input line and assign it to a string variable.

You may insert a prompt message in both lNPUT and LINE INPUT statements.
This will be displayed on the screen when the statement is executed to
remind you what to enter.

r__ _____ ___
1NPUT (PR06RAM)

Reads data-item(s) from the keyboard and assigns it/them to one or more
specified variables.

Figure 5-7 INPUT Statement

A Question Mark

A question mark (followed by a blank) is automatically displayed as a
standard prompt when executing an lNPUT statement, even though the
statement does not include a prompt-string.

DISPLAY COMMENTS

LIST When executing statement 10 the standard
10 lNPUT X prompt (?) is displayed, indicating that
20 PRINT X '.SQUARED IS" X^2 the program is waiting for data.
3¢ ENDOkRUN

No prompt string is used in the INPUT
statement in this case (see statement 10)

?5

5 SQUARED IS 25

Ok

Self Prompting

By inserting a prompt-string in an lNPUT statement, you may prompt for
each value required.

DISPLAY COMMENTS

LIST

1¢ PI = 3.1415

20 lNPUT "Radius";R

30 A=PI*R^2
40 PRINT "Area";A

5¢ GOTO 2¢

Ok

RUN

Radius? 7.4
Area 172.¢29
Radius?
etc.

the user prompt (Radius) is displayed before the
standard prompt (?), when statement 20 is
encountered

To Suppress the Standard Prompt

You may suppress the standard prompt (?) by writing a comma (,) after

your prompt.

BASIC LANGUA£E - REFERENCE MANUAL

HOW BASIC INpllTS DATA

DISPLAY |\ [\

LIST

10 INPUT "Date ", DS

COMMENTS

the standard prompt (?) is suppressed because a
comma (,) -instead of a semicolon (;) -follows

:{ PRINT DS ||!| the user prompt in statement l¢

:::e 3Mct/69 ||i

:yoct,69 1, ,

To Suppress the Echo of m

You may suppress the echo of m on the screen, by writing a semicolon
(;) after lNPUT.

DISPLAY

10 lNPUT; "Date";D$

2¢ PRINT " J.C."

Ok

RUN

Date? 3g/Oct/69 J.C.

COMMENTS

|||'i::e_efcehe°d°£::::prsecsrseeednb°yf£:::r:::;£:9::::::::!
„ (;) immediately after INPUT (see statement 1¢)

The next PRINT/1NPUT operation will be executed
f rom the next screen position (see statement 20)

To Enter a List of Data

An lNPUT statement allows you to enter one or more numeric or string data
f rom the keyboard.

DISPLAY

`= l 'h,_

1

LIST

1¢ 1NPUT A,BS,C(3)

2¢ PRINT A;BS;C(3)

30 GOT01¢

Ok

RUN

? 1.2,ABC,4

1.2 ABC 4

(!11

COMMENTS

when statement 19 is executed, you must enter
three data-items.

||:::tn:fr(SAtBcrs(:ndbene::m:::Cto(';:):urtrhoeun:::°:;

|::::::b:e:::,sm,sa..rgknse'd,ttohevatrhirbdle`s4'A,nuBmser::ä:::(

5-11

? ABD,1.3,5

?Redo from start
? 1.3,ABD,5

1.3 ABD 5

?^C
Break in 10
0k

When statement 1¢ is executed for the second
time, suppose that you enter a datum of the
wrong type, (ABD) i.e. a string instead of a
number. The system displays:

? Redo from start

and you must re-enter the value.

To interrupt program execution press 1.1:1- m
To resume execution press |1 ln ln m m.

Note: The data-type of a keyboard entry must
:5FFespond to the type of the variable to which
it is to be assigned; i.e. numeric variables
require numeric constants as data (conversion
from one numeric type to another is allowed, for
example you may enter a double precision
floating point constant to initialize an integer
variable) and string variables require quoted or
unquoted strings as data. A quoted string is
required if the string contains commas or
initial or final blanks. Numeric items may be
input into string variables. If you input a
number into a string and then you wish to
re-obtain it; numeric value use the VAL function
(see Chapter 9), to prevent type mismatch errors

?Redo from Start

Responding to lNPUT with too many or too few items, or with the wrong
type of value (string instead of numeric) causes the message "?Redo from
start" to be displayed . No assignment of input values is made until an
acceptable response is given.

lmuT tpB

1nputs an entire line up to a carriage return/1ine feed and assigns it to
a string variable, without the use of delimiters (255 characters is the
maximum length of a line).

BASIC LÄNGUÄ6E

Figure 5-8 LINE. INPUT Statement

A Question Mark within the Prompt

The standard prompt (?) does not appear when executing a LINE INPUT
statement. You can close your own prompt with a question mark if you
wish.

DISPLAY COMMENTS

LIST the prompt string (Name?) is
1¢ LINE INPUT "Name? ";NS displayed before input is accepted.
20 PRINT "JONES"

A11 input from the end of theOk

RUN pr.ompt to m is assigned to the
Name? LINDA string-variable (NS)
JONES

Ok

To Suppress the Echo of m

You may suppress the echo of m on the screen, by writing a semicolon
(;) after LINE INPUT.

DISPLAY COMMENTS

LIST m does not echo a carriage
1¢ LINE INPUT;"Name? ";NS return/1ine-feed as LINE INPUT

20 PRINT " JONES" (see statement 10) is followed by a
Ok semicolon (;).
RUN

The next PRINT/1 NPUT operation (seerjame? LINDA JONES

Ok statement 2¢) will be executed from
the next screen position

6. EXPRESSIONS

AB0UT THIS CHAPTER

This chapter classifies BASIC expressions as numeric, string, relational
or logical. 1t gives the rules the user must respect in forming expres-
sions as well as the priority rules BASIC assumes in evaluating them.

CONTENTS

NUMERIC EXPRESS10NS

STRING EXPRESS10NS

RELAT10NAL EXPRESSI0NS

LOGICAL EXPRESSI0NS

OPERATOR PR10RITY

6-1

6-8

6-9

6-12

6-15

NUMERIC EXPRESS10NS

Most of the prggrams you write will involve some numeric calculations.

As you may have noticed in our examples, only variables appear to the
left of the equal sign in LET statements.

Both variables and constants, however, can appear to the right of the
equal sign. They can, in fact, be connected by means of special symbols,
called operators, to indicate numeric operations. Some examples follow:

7¢ LET L=ACCOUNT

60 LET Y = 16+1.7+12

2¢0 M = 83-44+37/N
•20 LET X = X+1

The last statement is particularly interesting. Most LET statements look
like algebraic equations; this last one does not. The equation X = X+1
makes no sense algebraically. The LET statement assigns a value to a
variable: it does not imply that the values to the left and right of the
equal sign are mathematically equal. This last statement, which is valid
and meaningful, can be interpreted as follows: add 1 to the value repre-
sented by variable X, and assign this n`ew value to X. This new value of X
will replace the old one. Thus the equal sign is itself an operator.

That part of the LET statement to the right of the equal sign is called
an expression. The expression specifies the value to be assigned to the
variable to its left. (The evaluation of an expression yields a single
numeric value.) A numeric expression can be `composed of a single number
or a single numeric variable as well as some combination of numbers,
numeric variables, and operators. Remember, however, that a numeric
variable must be assigned a value before it is used in an expression. 1f
it is not, the variable automatically assumes the value 0.

Some examples of numeric expressions are shown below:

X

X+Y+SPEED

6.4 ^ 2
-J+^lc;XNR

Numeric Operators

As mentioned before, BASIC uses operators to indicate numeric operations.
There are eight numeric operations, each with its own symbol.

6-1

SYMB0L OPERATION | EXAMPLES

+ addition „11' X = 3.2

Ok

?X+1 .1

4.3Ok

subtraction ?X-1.3

1.9

Ok

\ 111111 integer division.Theoperandsare rounded | ?10\4
(2

'Ok

to the nearest integers ? 25.68\6.99
(which must be in the , 3
range - 32768 to 32767) •Ok

before the division is
performed, and the quo-
tient is truncated to

\| an integer

MOD

|m?dulusarithmetic. `
?1¢.4 MOD 4

2
1t gives the integer Ok

1(1

" value which is the re-

(1¢/4 = 2 with remainder 2)mainder of an integör
division

?25.68 MOD 6.99

5
Ok

(26/7 = 3 with remainder 5)

* mul ti pl i cati on ?X*3 . 92

1 2 . 544

Ok

/ Division ?3/6.05
0 . 495868

Ok

negation ?-X
1t changes the sign of the -3.2

i, operand1 Ok

6_2 BASIC LANGUAGE - REFERENCE MANUAL

EXPRE§SloNS

Remarks

Be sure to include the * when specifying multiplication. ln mathematics,
6X is valid; in BASIC, 6*X must be written to express 6 times X.

For your convenience, all the numeric operators used in BASIC have been

placed on the M20 Keyboard both in the numeric and alphanumeric section
(except the exponentiation symbol, which appears in the alphanumeric
section on.ly and MOD which must be entered typing its three characters).

Numeric Operator Priority

When two or more operators are used in an expression, it often seems
ambiguous. For example, does the expression:

3*L - 6*W

mean

(3*L) - (6*W)

Or

3* (L - 6*W)?

BASIC has built-in priorities for performing different numeric opera-
tions.

Numeric operations and priority rules are as follows (in order of des-
cending priority).

PR10RITY OPERATION COMMENTS

HIGHEST exponentiation

negation

6-3

Renarks

Referring to the preceding example, we may now say that 3*L -6*W means
(3*L) -(6*W).

For operators with the same priority (e.g./and *) , operations are
carried out f rom left to right. Thus, 9/3*3 is the equivalent of (9/3)*3
yielding a result of 9.

Using Parentheses to Change Priority

There are times when you will want to change the normal priority of
operations. To do this you use pairs of parentheses, exactly as you would
in mathematics. When parentheses are used, the operations within the
innermost pair of parentheses are performed first, followed by operations
within the second innermost pair, and so forth. Within a given pair of
parentheses, the normal priority of operations apply.

A simple example of the use of parentheses follows.

Suppose you want to compute (5X)2. 1f you enter this expression in BASIC
as 5*X^2, first X is squared, then the result is multiplied by 5 because
exponentiation has a higher priority than multiplication. To change this,
simply enter the expression as (5*X)^2. 1n this case; first X is
multiplied by 5, then the result is squared.

The more complicated a numeric expression is, the more complicated its
BASIC equivalent will be. 1n the following examples, numeric expressions
are shown with their BASIC equivalents. The examples should help you get
a better feel for the rules of priority:

BASIC LANGUAGE -

Examples

NUMERIC EXPRESS10N BASIC EQUIVALENT INTERPRETATI0N

X+y+Z (X+N +1) 1 2 1. Add X, Y and Z
2 2. Divide the sum by 2

x+¥ X+ (Y +1) / 2 1 . Add Y to Z2.Dividethe sum by 23.AddXtotheresult

2x+5 2*X+5 1. Multiply X by 22.Add5totheresult

2(x + 4) 2* (X+4) 1. Add 4 to X2.Multiplythe sum by2

x2+3
X^2+3 1. Square X2.Add3to the result

(x + 3)2
(X+3)^2 1. Add 3 to X2.Squarethe result

(x + 3)24
(X+3)^2/4 1 . Add 3 to X2.Squarethe sum3.Dividetheresult by4

2Ä,.-
(X^2/6) + ((X+Y) /2)) 1. Square X and divide

62 by62.Add X to Y anddivideby23.Multiplythetworesultsbyeachother

Remarks

lt is good programming practice to use.parentheses whenever you doubt the
clarity of an expression, even when they are not strictly necessary.

The expressions used in your program can get very complex. 1f you save a

program and do not run it often, you can easily forget exactly what
computations are being performed. For this reason, you may find it useful
to put descriptive remarks.in a program as you write it. BASIC provides
the REM statement and the comment fields specifically for this purpose.

Type of Expression

The type of a numeric expression, i.e. the data-type of the result of the
evaluation of an expression (before assigning it to a variable) depends
on the type of its operands.

There are four different situations depending on the type of the two
operands involved. lf the expression involves more than two operands, it
can be considered as a series of calculations involving two operands.

The table .below summarises the four possible situationo.

lF . . . THEN . . . DISPLAY

both operands are of the result is also A#= 3.29745219

the same numeric type Of that type Ok

(integer, single-preci- 8# = 4.5729719D-1

sion or double-preci- Ok

sion ?A# +8#3.75474938Ok

one operand is inte- the result is 1% = 25

ger and the other single-precision Ok

is single-precision C! = 4.2975Ok?1%-C!20.7025Ok

one operarid is inte- the result is ?1%*A#

ger and the other is double-precision 82 . 4363¢475
double-precision Ok

one operand is single- the result is ?C!/B#

precision and the double-precision 9 . 39760887993736
other is double-precision Ok

6-6 BASIC LANGUAGE - REFERENCE MANUAL

EXPRESSI0NS

Rounding, Overflow and Underflow

Floating point types are forms of approximation to the real numbers of
math emat i cs .

lF. . . THEN. . .

one or more operands calculations are approximate and accuracy can be
in a numeric expres- lost. 1f this happens the less significant
sion are floating digits are lost and the last digit maintained is
point 'b rounded off

the value of the ex- an "Overflow" error message is displayed,
pression is bigger machine infinity* with the algebraically correct
than the maximum sign is supplied as the result, and execution
length allowed forthatdata-type continues

a division by zero is the "Division by zero" error message is display-
encountered ed, machine infinity* with the sign of the

numerator is supplied as the result of the
division, and execution continues

the evaluation of an the "Division by zero" error mesiage is display-
exponentiation results ed, positive machine infinity* is supplied as
in zero being raised the result of the exponentiation, and execution
to a negative power continues

the value of the ex- the v,alue becomes zero (Underflow) and execution

pression is smallerthanthesmallestre-presentablevalue continues

in a numeric assign- the expression is automatically converted to the
ment, the type of theexpressionisdiffer-entfromthetypeofthereceivingvariable type of the receiving variable

Note: Machine infinity is displayed as 3.40282E+38.

Undefined Values

lf a numeric variable in a numeric expression has not yet been set, it is
set to zero.

Undetermined Forms

The evaluation of a numeric expression may result in an undetermined
form, such as:

0/0: the message "Division by zero" is displayed and the value
3.4¢282E+38 (machine infinity) is supplied

¢^¢: the value is assumed to be 1.

STRING EXPRESsloNS

BASIC permits the use of string expressions, similar in many ways to the
numeric expressions we have just looked at. A string expression can be
either a string constant, a single string variable, a string array
element, a string function, or a mixture of them linked by plus signs
(+).

By using the plus sign, strings can be joined - "concatenated" is the
technical term. These are some examples of string expressions in LET
statements :

5¢ LET AS = "Chicago,"
9¢ BS = "lL.,"

10¢ NS = AS+BS+"USA"

The concatenation in statement 1¢¢ would-result in NS being
assigned the string:

Chicago ,1L . , USA

When two or more strings are concatenated, the length of the resulting
string is .the sum of the individual strings. The expression evaluation
proceeds from left to right.

Be careful not to assign more than 255 characters to a string variable.
In this case, the system issues an error message:

String too long

Remark

A string operanq appearing in a string expression may be the null string
("'). The null string will also be the default value of a non-initialized
string variable.

RELATIONAL EXPRESSI0NS

Relational expressions compare either two numeric or two string expres-
sions by means of a relational operator.

Relational 0perators

The relational operators are:

equals (the equals sign is also used to assign a value to a
variable, see LET statement)

> greater than

< 1ess than

>= or => greater than or equal to

<= or =< less than or equal to

< >or > < not equal to

lt is illegal to compare a numeric expression with a string expression
and vice versa. For example:

A+ B>C is valid
C + D>= E + F is valid
AS = BS is valid
BS>Cl is wrong if Cl is a numeric variable.

Comparison of numbers has an obvious meaning. Character strings, may elso
be compared, with the outcome dependent on the numeric value of the
character's representation. (This is taken to be the decimal AScll value
of each character within the string). String scanning is performed from
left to right, character by character and ends when the first pair of
different characters is encountered. The result of the comparison is made
on the basis of the first pair of different characters.

Numeric or string expressions are performed first, then relational opera-
tors are applied to the result of such expressions.

For example, to write

A>B + C

and

A>(B + C)

is equivalent.

The result of a relational expression is numeric. It is displayed as
either -1 (if the relation is true) or 0 (if it is false).

Exaniples

Let us look at some examples using relational expressions. First let us
assign values to the variables X and Y.

6-10 BASIC LANGUÄGE - RE E MANUAL i:;?``..;. . S

EXPRESSI0NS

BASIC displays -1 (i.e. true) as TOKYO is great-
er than FRANKFURT (i.e. it comes after FRANKFURT
in alphabetical order)

BASIC displays 0 (i.e. false) as TOKY0 is less
than TOKY01. Where two strings are of unequal
length and the shorter string exactly matches
the first part of the larger string then the
1onger string is considered greater than the
shorter one

Using Relational Expressions

The result of a relational expression may be used to make a decision
regarding prog[am flow. You can use relational expressions in the fol-
1owing control statements:

-1F... GOTO... ELSE, or

-IF... THEN... ELSE, or

- WHILE

where a condition is tested to determine later opera`tions in the program
(see Chapter 8).

The condition may be a numeric, relational or logical expression. BASIC
determines whether the condition (after IF or WtilLE) is true or false by
testing the result of the expression for non-zero and zero respectively.
A non-zero result is assumed to be true, and a zero result is false.

For example, the following statement:

100 IF AS>BS THEN 50

will transfer control of execution to statement 5¢ if the condition
(AS>BS) is true, (i.e. AS greater than BS).1f the condition is false
(i.e. AS not greater than BS) the next statement will be executed.

6-11

LOGICAL EXPRESS10NS

Hä-

A logical expression consists of one operand preceded by the logical
operator NOT, two operands separated by another logical operator (AND,
OR, XOR, EOV and lMP), or two operands separated by a logical operator
and NOT.

The operands in a logical expression may be numeric or relational expres-
sions. Both have numeric values.

The result of a logical expression is also numeric: it is an integer
value with any combination of bits in the ran.ge -32768 to 32767.

Examples of logical expressions are:

NOT X is valid

X AND Y is valid

A>B 0R C>D is valid
1% AND AS<BS is valid
AS XOR BS is not valid (as the operands are string)

Logical Operators

Logical operators work by converting their operands to sixteen bit,
signed, two's complement integers in the range -32768 to +32767. (lf the
operands are not in this range, an error occurs.) The given operation is
perfomed on these integers, each bit of the result being determined by
the corresponding bits in the two operands.

The logical operators are li>ted below in a table called the "truth
table... It describes graphically the results of the logical operations on
a bit...- by-bit basis. Every possible combination of bits is given. (Notice
that the two operators XOR and EOV are exact opposites.)

A NOTA ALL A AND B A 0R 8! A XOR 8 A EOV 8 A IMP 8

1
' ¢

111 1 1 1¢

1 1

1

¢ 1 1 ¢ ¢
'U;

1„11
¢

ß 1 ¢ 1

¢ ¢ 1¢

11

Table 6-1 The Truth Table

6-12
RtiHffiä LE[EEi . .
q i.i`" ..i.IIl 1 1

BASIC LANGUAGE - REFERENCE MANUAL

EXPRESSI0NS

Logical Operator Priority

ln an expression, logical operations are performed after numeric and
relational operations.

The table below lists logical operators in the order BASIC evaluates
them.

OPERATORSNOT PRI0RITY

HIGHESTLOWEST

AND

OR

XOR

1MP

EQV

Table 6-2 Logical 0perator Priority

Examples

Let us look at some examples. First let us assign values to the variables
X, Y, AND Z.

DISPLAY COMMENTS

X%=¢OkY9o:o=3OkZ.z.=5Ok BASIC executes the specified assignments

?X%<Y9:o AND Z9o:o=3 the result is false (0), as X%<Y% is true
¢Ok (-1) but Z9®to=3 is false (¢)

?X°<o OR X%<Z% the result is true (-1), as X% is false (¢)
-1Ok but X%<Z% is true (-1)

6-13

?63 AND 16 the result is 16, as
16Ok

63 = binary 111111

16 = binary ¢1¢¢¢¢

¢1 ¢¢¢¢

?4 0R 2
the result is 6, as

6Ok 4 = binary lgß
2 = binary 4U

110

?-1 0R-2 the result is -1, as
-1

-1 = binary 11.11111111111111Ok
~2 = binary 111111111111111¢

1111111111111111

?0<2 AND 4=4 the result is true (-1), as
-1

¢<2 is true (-1), andOk

4=4 is true (-1)

?0 XOR V°/o=3 the result is true (-1), as
-1

¢ is false (¢), andOk

Y9io:3 is true (-1)

?Z%>Y% AND NOT "A">"B"I
0k

the result is true (-1), as

Z%>Y% is true (-1), and
"A">"B" is false (¢)

Note: It is possible to write two consecutive
logical operators only if the second one is
the NOT operator

Using Logical Expressions

You can use logical expressions:

-to test a condition in the following control statements:

Ö-14 BASIC LANGUA€ ERENCE mNUAL

-: -__ `

fflü

Hä.`

EXPRESSI0NS

1F... GOTO... ELSE,

1F... THEN... ELSE,

WHILE

For example:

50 lF AS>BS and B<=C THEN 30¢

will transfer control of execution to statement 300 if the condition
(AS>BS AND B<=C) is true (i.e. AS greater than BS and 8 less than or
equal to C). If the condition is false (i.e. AS less than BS or 8

9reater than C) the next statement will be executed.

-to test words (16 bits) for a particular bit pattern. For example the
AND operator may be used to "mask" all but one of the bits of a status
word at a machine 1/0 port. The OR operator may be used to "merge" two
words to create a particular binary value.

For example:

-1 AND s is s

and:
_1 oR s is' -1

as
-1 = binary 1111111111111111

8 = binary ¢¢¢¢¢¢¢¢¢¢¢¢1¢¢¢

OPERATOR PRI0IUTY

The table below lists all operators (numeric, string, relational, and
logical) in the order BASIC evaluates them.

OPERATORS PRI0RITY

^ (exponentiation) HIGHEST1

(negation)

* / (multiplication and division)

\ (integer division)

| MOD (modulus arithmetic)1

6-15

}

Table 6-3 0perator Priority

Remarks

- operators shown on the same liiie have equal preceden6e

- all relational operators have equal precedence

- evaluation order of expressions can be overridden by the use of paren-
theses. For example the evaluation order of :

NOT A>B AND C>D 0R E>F

is different from the evaluation order of :

NOT (A>B AND (C>D 0R E>F))

if, for instance, A>B is true, C>D is false and E > F is true, the
first expression is true, whereas the second is false.

- the result of any expression can also be an operand, thus you can form
very complex expressions, for instance chaining two or more logical
expressions by a logical operator (as in the examples above). However
it is not good programming practice to write.too complex expressions,

6-16 BASIC LAN6UAGE - REFERENCE MANUAL

7. HOW BASIC OUTPUTS DATA

AB0UT THIS CHAPTER

You have now seen how to input data to the M20 and how to process it.

1n this chapter you will see how to set the screen or printer line width
(WIDTH command) and how to get results from the computer. We shall ex-
amine the LPRINT, PRINT, LPRINT Usli.JG and PRINT USING statements. They

allow you to output data either in a standard or in a user-defined
fo rma t .

CONTENTS

SETTING THE NUMBER 0F NULLS 7-1

AND THE WIDTH

NULL (PROGRAM/lMMEDIATE) 7-1

WIDTH (PROGRAM/1MMEDIATE) 7-2

STANDARD FORMAT 7-3

LPRINT/PRINT 7-4

(PROGRAM/ IMMED I ATE)

WRITE (PROGRAM/lMMEDIATE) 7-10

USER DEFINED FORMAT 7-11

LPRINT USING/PRINT USING 7-12

(PROGRAM/ "MED IATE)

S DATA

SETTIN6 TllE NUMBER OF llüLLS AND THE WIDTIJ

The NULL command (which may also be used in a program) allows you to set
the number of nulls printed after each line.

The WIDTH command (which may also be used in a program) allows you to set
the screen or printer line width.

ri/1ri_j
Sets the number of nulls to be printed at the end of each line and hence
delays the printing of the next line.

numeric
expression

Figure 7-1 NULL Command

Example

1F you enter... THEN . . .

NULL 2 m 2 nulls will be printed after each lin_e.

Note: The numeric expression is rounded to the
F:äFest integer (if necessary,.

For 1¢-character-per-second tape punches the
numeric expression value should be >= 3. This
also identifies lines on the tape. When tapes
are not being punched, this value should be 0 or
1 for teletypes and teletype-compatible CRTs.
This value should be.2 or 3 for 30 cps hard copy

printers

7-1

Sets screen or printer line width, when a PRINT, WRITE, LPRINT, PRINT
USING, LPRINT USING statement is executed or an error message is issued.

numeric
expression

Figure 7-2 WIDTH Command

Default Values

lf you do not use a WIDTH command a screen width of 64 characters is
assumed.

1f you do not use a WIDTH LPRINT command a printer line width of 132
characters is assumed.

Examples

1¢ PRINT "ABCOEFGHIJKLMNOPQRSTUVWXYZ"

RUN

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Ok

WIDTH 18

0k
RUN

ABCDEFGHIJKLMNOPOR

STUVWXYZ

0k

Characteristics

1F. . . THEN. . .

the LPRINT option isomitted the line width is set for the screen only ,

7-2 BASIC LANGÜA6E - REFERENCE MANUAL

HOW BASIC 0UTPUTS DATA

LPRINT is included

the numeric expression
value is not an integer

the line width is set for the line printer.

For example:

lll!„::I:,L:::#B:20 LPRINT "AAAABBBBCC"

RUN

j

it is rounded to the nearest integer and must
have a value in the range 15 to 255.

If the rounded value is 255, the line width is
"infinite", that is, BASIC never inserts a

carriage return. However, the position of the
cursor or the print head, as given by the POS or
LPOS function, returns to zero after position
255.

1f the rounded value is greater than 255 an
error is issued. (111egal function call.)

STANDARD FORMAT

You may output your results in standard format by the PRINT, WRITE and
LPRINT statements. They can be used as immediate statements too. They
allow you to have the results of calculations either printed (LPRINT) or
displayed (PRINT and WRITE).

If you wish to output the results of two or more expressions on one line,
separate your expressions with commas (WRITE) and with comr.ias or
semicolons (PRINT, LPRINT).

With the WRITE statement each item displayed will be separated f rom the
last by a comma (and strings will be delimited by quotation marks). With
the PRINT and LPRINT statements, if you use commas, the results will be
separated, whereas semicolons will cause the results to be packed
together and the strings will not be delimited by quotation marks.

?-3

/Gm]rT (PRocRAM/IMrED1^TE)

LPRINT prints a list of data in a standard format.

PRINT displays a list of data in a standard format. A question mark (?)
may be used instead of PRINT.

Figure 7-3 LPRINT Statement

Figure 7-4 PRINT Statement

7-4 BASIC LANGUAGE - REFERENCE MANUAL

Characteristics

IF. . . THEN. . .

an LPRINT (or a PRINT) a new line of output is printed (or displayed)
statement does not endwithacommaorsemi-colon 1 when the statement is executed.

For example:

LIST

10 PRINT 1

2¢ PRINT 2"Ok

This form of LPRINT (or PRINT) is useful for

producing spaces between output lines

expressions in the
output list are sep-
arated by commas

each value is printed (or displayed) left justi-
fied in one of the "print zones" in which each
line is divided. (Each zone has 14 positions).

For example:

LIST

1¢ AS = "For June..."

20 X = .353

3¢ PRINT "Results", AS, XOk

RUNResults For June... .353

OkNote: Each positive value (in this case .353) is

preceded by a space (see below).

The number of print zones on each line depends
on the maximum number of characters each can
contain. This may be specified by the WIDTH
command or assumed by default.

String values displayed (or printed with LPRINT)
are not delimited by quotation marks

the list of expres-sionshasmanyen-tries two or more lines of output may be produced.

For example:

WIDTH 31

Ok

PRINT 1,1+2, 2+3, 7, 9, "ABCD"

13

57
9 ABCD

Ok

Note: Each positive value is preceded by a space
(see below)

One Or more numeric - each value printed or displayed is always

expressions appear inanLPRINT(oraPRINT)statement followed by a space

- each positive value is preceded by a space

- each negative value is preceded by a minus

sign_

HOW BASIC 0UTPUTS DATA

- each single-precision value that can be rep-
resented with 6 or fewer digits in the fixed
point.format as accurately.as it can be
represented in the f loating point (or "ex-
ponential") format, is output using the fixed
point format

- each double-precision value that can be rep-
resented with 15 or fewer digits in the fixed
point format as accurately as it can be
represented in the f loating point (or "ex-
ponential") format, is output using the fixed
point format:

For example:

PRINT 10^-6

. ¢ß¢¢¢1
0k
PRINT 10 ^-7

1E-07

0k
PFUNT ID-15, 1D-16

. ¢¢¢¢¢¢¢¢¢¢¢¢¢¢1 1 D-16

0k

Note: The secrond value is displayed left].usti-
===a in the third print zone (as the first value
overf lows into the second print zone)

:h:°T::tf::::::s£on | || {::atne:ts , Cht::ac;::st°rch:£r::ter£SSoureddtag:t°U£tnpu:
in the list subsequent PRINT or lNPUT or LPRINT operation)

is printed or displayed on the same line (at the
beginning of the next print zone) if sufficient
space is available (otherwise on a new line).

}

For example:

LIST

1¢ AS = "For July..."

2¢ X = .491

30 PRINT "Results", AS,

a semicolon follows
the last expression
in the list

the next character or digit issued as output
(that is, the first character or digit in a
subsequent PRINT, or INPUT or LPRINT operation)
is printed or displayed on the same line (at the
cursor position) - if suff icient space is
available, otherwise on a new line.

For example:

LIST

10 lNPUT X

20 PRINT X "SOUARED IS" X^2 "AND";

30 PRINT X "CUBE01S" X^3

4¢ PRINT

50 GOT0 10

0k

RUN

?9

9 SQUARED IS 81 AND 9 CUBED IS 729

?21

21 SQUARED IS 441 AND 21 CUBED IS 9261

?

commas are used
consecutively

the effect of each comma is to position the
print head (or the cursor) at the start of the
next zone.

The use of commas in this way lets you display
(or print) data widely spaced.

}

For example:

PRINT "M"„"N"
M

0k

semicolons or blanks
are used instead
of commas to sepa-
rate expressions in
the list

you mix semicolons
and commas in the same
LPRINT (or PRINT)

statement

output values are spaced more closely. The exact
spacing depends on the number of digits or
characters in each -value. The use of semicolons
in this way allows you to print (or display)
more values on each line.

Having more than one space or semicolon between
expressions has the same effect as one space or
semicolon .

For example:

LIST

1¢ A1 = 1¢¢¢

2¢ A2 = 2¢¢¢
3¢ A3 = 3¢¢¢

4¢ A4 = 4¢¢¢
50 A5 = 5¢00

6¢ A6 = 6¢¢¢
7¢ A:J -_ -,¢m
sß PRINT A1 ;A2;A3;A4; ;A5 A6 A7

0k
RUN

1¢¢¢ 2¢¢¢ 3¢¢¢ 4¢¢¢ 5¢¢¢ 6¢¢¢ -7¢¢¢

The spaces between the numbers appear because
the system adds one space after printing (or
displaying) each number and eliminates the im-
plied plus sign before each positive value

you get a simple method of labelling each of
your results and of gaining wide spaces within a
lineo

t

For example:

LIST

INPUT "Length and Width"; L,W

PRINT "Area =";L*W,"Length =";L,"Width =":W
10

Ok

RUN

Length and Width? 1.2, 3
Area=3.6 Length=1.2 Width=3
Length and Width? ^C
Break in 10
0k

you use the special

;#];]n+nc:];nH
you use the special 1
built-in function
SPC

(pmcw"EDi

you name the precise print (or cursor) position,
in a line, at which you want your next data item
to begin.

For example:

PRINT 1; TAB(6); 2

12

0k

you insert a specif ied number of blanks on the
line. (In calculating the number of blanks you
want, remember that numeric data is always
output with one blank after it).

For example:

PRINT 1; SPC(6); 2

12

0k

Displays a list of data. Each item displayed will be separated from the
last by a comma. Strings will be delimited by quotation marks("). After
the last item is displayed, BASIC inserts a carriage return/1ine feed.

7-10 BASIC LANGUAGE - REFERENCE MANUAL

Figure 7-5 WRITE Statement

Where

Expression may be a numeric, relational, logical, or string expression.
1f no expression is indicated a blank line is output.

Example

DISPLAY COMMENTS

1¢ A=8¢ : 8=9¢
"' when a WRITE statement is executed, each item is

2¢ CS="THAT'S ALL" ' separated from the last by a comma, and strings

3¢ WRITE A,B,CSRUN are delimited by quotation marks.

80, 90, "THAT'S ALL"

Ok

Note: Numeric values are displayed using the
same format as the PRINT statement but they are
not followed by blanks

USER DEFINED FORMAT

You have seen that the use of commas, semicolons, quoted strings, and the
SPC and TAB functions provides limited control of the format of displayed
or printed information. Two statements, LPRINT USING and PRINT USING,

provide the capability of generating prihted or displayed output with
complete control of the format.

They are usually used in a program, but they can be used as immediate
statements too.

riüsTN-6-;;riiriläiHipriri;iri
LPRINT USING prints a list of data in a user-defined format.

PRINT USING displays a list of data in a user-defined format.

The expressions appearing in an LPRINT (or PRINT) USING statement must be
separated by commas (,) or semicolons (;), it makes no difference which

punctuation mark is used. Values will be output (printed or displayed) in
a format specified by.the string expression appearing after USING. This
expression is a string literal or variable that is composed of special
formatting characters. These formatting characters (see below) determine
the fields and the format of the output strings or numbers.

Figure 7-6 LPRINT USING Statement

Figure 7-7 PRINT USING Statement

7-12 BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC 0UTpllTS DATA

;::*#

To Output Strings

One of three formatting characters may be used:

F;ri]NG CHARACT=" MEANING

specifies that only the first character in the
given string is to be output.

For example:

LIST

10 AS="WATCH"

20 Bi=„OUT„

30 PRINT USING "!";AS;BS

" \ n spaces \ " specifies that 2+n characters f rom the string
are to be output. 1f the backslashes are entered
with no spaces, two characters will be output.
With one space, three characters will be output,
and so on. 1f the string is longer than the
field, the extra characters are ignored. If the
field is longer than the string, the string will
be left.-justified in the field and padded with
spaces to the right.

}

7-13

For example:

LIST

1¢ A;="L00K"

2¢ B;="OUT"

30 PRINT USING "\ \";AS;B$

4¢ PRINT USIN6 "\ \';AS;B$
Ok

RUN

L00KOUT

L00K 0UT

specifies a variable length string field. When
the field is specified with "&", the string is
output exactly as input.

Example:

LIST

1¢ AS:"L00K":BS="OUT"

2¢ PRINT USING "!";AS;

30 PRINT USING "&";8$

Ok

RUN

LOUT

To Output Numbers

The following formatting characters may be used:

FORMATTING CHARACTERS MEANING

#
[a number sign

is used to represent each digit
position. Digit positions are always filled. 1f
the number to be output has fewer digits than
positions specified, the number will be right-
justified (preceded by spaces) in the field.

7-14
•ii,:,'<`z,,t,ii_`_'`',_:-

BASIC LAN6UA€E - REFERENCE MANUAL

For example:

PRINT USING U####U;99 m
99

0k

a decimal point may be i:iserted at any position
in the field. 1f the format string specifies
that a digit is to precede the decimal point,
the digit will be output only if it is different
from zero. Numbers are rounded when necessary.

For example:

PRINT USING n###.##n; .78 m
.78

0k

PRINT USING "###.##";987.654.`ü
987 . 65

0k

PRINT USING H##.## M;10.,5.3,66.789,.234m
1¢.00 5.30 66.79 .23

0k

ln the last example, three spaces were inserted
at the end of the forriiat string to separate the
displayed values on the line.

a plus sign at the beginning or end of the
format string will cause the number sign (plus
or minus) to be output before or after the
number .

For example:

PRINT USING "+##.## ";-68.95,2.4,55.6,-.9 E
-68.95 +2.4¢ +55.6¢ -.9¢

Ok

Note: If you only want the minus sign (not the

;IL= sign) to precede the number, you shou]d
start the format string with an extra number
sign (#). D)

For example:

PRINT USING M###.##l';_68.95,68.95 m
-68.95 68.95

a minus sign at the end of the format field will
cause negative numbers to be output with a
trailing minus sign.

For example:

PRINT USING U##.##-M;_68.95,22.449,-7.01m
68.95- 22.45 7.01-

Ok

** a double asterisk at the beginning of the format
string causes leading spaces in the numeric
field to be filled with asterisks. The ** also
specifies positions for two more digits.

For example:

pRiNT usiNG n**#.# M;12.39,-O.9,765.1 m
*12.4 **-.9 765.1

Ok

;i a double dollar sign causes a dollar sign to be
output to the immediate left cif the formatted
number. The SS specifies two more digit posi-
tions, one of which is the dollar sign. The
exponential format (^^^^) cannot be used with
SS. Negative numbers cannot be used unless the
format string ends with a minus or a plus sign.
1n the former case negative numbers appear i.iith
the negative sign on the right,in the latter
case both positive and negative numbers appear
with the appropriate sign on the right.

For example:

PR|NT US|NG HSS###.## _W;-456.78 m
i456 . 78-

Ok

**; the **S at the beginning. of a format string
combines the effects of the two symbols describ-
ed above. Leading spaces will be asterisk-filled

BASIC LANGUA6E - REFERENCE MANUAL

and a dollar sign will be inserted before the
number. **S specifies three more, digit posi-
tions, one of which is the dollar .sign.

For example:

PRINT USING U**S##.##U;2.34 m'
***i2 . 34

0k

A comma to the left of the decimal point in a
formatting string causes a comma to be output to
the left of every third digit to the left of the
decimal point. A comma at the end of the format
string is output as part of the string. A comma
spccifies another digit position. A comma has no
effect if used with the exponential (^^^^)
format.

For example:

PRINT USING W####, .##U;1234.5 ni
1, 234 . 5¢

Ok

pRINT uslNG H####.##,n;1234.5 m
234 . 50 '

Ok

^^^^ four carats (or up-arrows) may be placed after
the digit position characters to specify expo-
nential format. The four carats allow space for
E+xx to be output. Any decimal point position
may be specified. The significant digits are
left-jus.cified, and the exponent is adjusted.
Unless a leading + or trailing + or - is
specified, one digit position will be used to.
the left of the decimal point to output a space
or a minus sign.

For example:

PRINT USING n##. ##^^^^n;234.56 m
2 . 35E+¢2

0k

PRINT USING n.###^^^^n;888888 -m
.8889E+¢6

Ok

PRINT USING "+.####^J
+.`123¢E+03

Ok

an underscore in the
next character to be c
ter (i.e. as it appear

For example:

PRINT USING " !##.##

! 12 . 34 !

Ok

The literal character
scorebyplacing" '

•. if the number to be
specifieci numeric fi
output in front of
causes the number,to e
sign will be output
number.

For example:

PRINT USING "##.##";
9T.| | 1 . 22

Ok

PRINT USING ".##'';.99

%1 . 00

Ok

If the number of digit
"Illegal function call

7-18

^^^";123m

forr,iat string causes the
as a literal charac-

in the format string)

!";12.34DI

r itself may be an under-
' in the format string

output is larger than the
a percent sign is

the number. 1f rounding
the field, a percent

in f ront of the rounded

ill .22 D

ts specified exceeds 24, an
" error will result

BASIC IANGUAGE - REFERENCE MANUAL

HOW BASIC OÜTPUTS DATA

Renrks

lf the same format string is to be used several times in a program, you
may find it convenient to assign the formatting characters to a string
variable and then specify the variable name instead of the format string.
This technique is shown below:

1¢ AS--"##.##"
20 PRINT USING AS; 8.49

1¢0 PRINT USING AS;A,B,C

15¢ PRINT USING AS;A1,81

RUN

8.49
0.oo o.oo ¢.¢¢
0.00 0.0¢

Ok

=____'-

?_19

8. CONTROL STATEMENTS

ABOUT THIS CHAPTER

Normally the statements in a BASIC program are executed sequentially in
the same order as they appear, following the line numbers of the
statements. Sometimes, however, it is necessary to "branch" to`some other

part of the program, thus changing the normal sequence of execution.

Branches and loops are two methods of altering the normal flow of prograiTi
execution. 1n this chapter we shall examine conditional and unconditional
branches as well as loops.

CONTENTS

UNCONDIT10NAL BRANCHES 8-1

GOTO (PROGRAM/1MMEDIATE) 8-1

0N...GOTO (PROGRAM/IMMEDIATE) 8-3

CONDIT10NAL BRANCHES 8-4

IF...GOTO...ELSE/ 8-4

1F . . .THEN. . .ELSE

(PROGRAM/ IMMED IATE)

L00PS 8-9

FOR/NEXT (PROGRAM/1MMEDIATE) 8-11

WHILE/WEND

(PROGRAM/ IMMED IA TE)

8_20

UNCONDIT10NAL BRANCHES

Branches may be conditional or unconditional. The GOT0 statement causes
an unconditional transfer of control. In the statement, you simply
indicate the line number to which control is to be transferred. The
sample program, RECTANGLE1 (see Chapter 1 and 2) contains the following
GOT0 statement:

80 GOTO 20

This statement tells the M20 to execute statement 20 next, rather than
the statement with the next higher line number.

There is one more form of unconditional branching; the ON...GOT0 or
computed 60T0 statement. This enables you to transfer control to .one of
perhaps several statements, depending on the value of a numeric
expression. For example:

1¢0 0N A GOT015, 3¢, 500

This statement says; if A=1, go to statement 15, if A=2 go to
statement 3¢, if A=3 go to statement 5¢¢ but if A< 1 or A >3, BASIC
continues with the next executable statement.

60TO (PROCRAM/"NEDIATE)

Transfers control to a specified program line.

Figure 8-1 GOTO Statement

5HHH5H

DISPLAY

Examples

LIST

1¢ READ R

2¢ PRINT "R =";R,

30 A = 3.14*R^2

4¢ PRINT "AREA =";A

50 GOT01¢

60 DATA 5,7,12

0k
RUN

R = 5 AREA= 78.5

R = 7 AREA = 153.86

R = 12 AREA = 452.16

0ut of data in 10
0k

Characteristics

you enter
GOTO 5¢¢ m
when you are in Command Mode

AND

-1 COMMENT

statement 5¢ transfers control
unconditionally to statement 10

THEN. . .iiiimilli---+ -
` 60T0 is used as an alternative to

l l RUN.

„[!!g±±: GOT0 line number used in
Command Mode causes execution to
begin at the specif ied line number
without an automatic CLEAR. This
lets you pass values to program

' variables while in Command Mode.

This technique may be used in

(i (i debugging your program

5¢0 is a statement of your current
Program

the statement specified by line
number is non executable (e.g.
a REM statement)

8-2

control is passed to the first
subsequent executable statement

BASIC IANGllACE - REFERENCE MANUAL

CONTROL STATEMENTS

Tß (PR06RAM/1NNED1^

Transfers control to one of several specified lines, according to the
value of a specified expression.

Figure 8-2 0N...GOT0 Statement

Characteristics

THEN. . .

you have a program so structured:

20 lNPUT A

30 ON A GOT0100,290,30¢

4¢

the value of A determines which
(1ine number in the list wii.1 be
used for bran.ching. For example, if
the value is 3, the third line
number in the list. will be the
destination of the branch. (1f the
value of A is a non-integer, the
f ractional portion is rounded)

8-3

CONDITI0NAL BRANCHES

1n many situations you will want to branch to different portions of a
program depending on conditions that arise within it. To test these
conditions and make a decision as to what to do next, you can use an
lF...GOTO...ELSE, or an IF..THEN...ELSE statement.

¥=üF. . .60TO. . .ELSE/lF . . .THEN. . .ELSE (PR06RAM/lMMEI)IATE)

Both these statements transfer control, conditionally, to a specified
statement.

1F...THEN...ELSE is more powerful (as you can see by the syntax); it
allows a series of statements to be entered both after THEN and ELSE.

Figure 8-3 1F...GOTO...ELSE Statement

8-4 BAslc LANGUAGE - REFERENCE mNUAL

CONTROL STATEMENTS

Figure 8-4 1F...THEN...ELSE Statement

Where

SYNTAX ELEMENT MEANING

condition may be:

- a numeric expression

- a relational expression

-a logical expression.

Note: BASIC determines whether thc condition is
:FL; or false by testing the resuit of the
expression for non zero and zero respectively. ^
non zero result is true and a zero resLilt is
false. Because of this, you can test whether the
value of a variable is non zero or zero by
merely specifying the name of the variable as
"conditi on" .

A comma is allowed before THEN

8-5

Characteristics

IF . . . THEN. . .

the condition is true control is
EITHER

passed to the statement whose line number is
specified after GOTO (or THEN)

OR

to the first statement specified after THEN

the condition is false control is passed to the next executable state-
AND IF ment following the lF...GOT0 or lF...THEN state-

the ELSE clause isomitted' ment

the condition is false ! control is
AND IF EITHER

the ELSE clause is passed to the statement whose line number is
present specified after ELSE

OR

to the first statement specified after ELSE.

Note: After executing'the statement(s) following
ELSE, control is passed to the next executable
statement

Examples

DISPLAY COMMENTS

LIST
10 REM IF GOT0 test program
20 INPUT X%

30 lF X96>=1¢ GOTO 60

4¢ PRINT "1F GOT0 failed the test"
5¢ GOTO 99

60 PRINT "1F GOT0 passed the test"
99 GOTO 20

0k
RUN

?1¢

IF GOT0 passed the test

if you enter 10 the condition
(X°<>=i¢) in statement 3¢ is true
and control is transferred to
statement 6¢. If you enter 2 the
condition is false and control is
.transferred to statement 4¢

E,.

BA51C LANGÜAGE - REFERENCE MANUAL

?2

1F GOTO failed the test
?.^C
Break in 20
Ok

LIST if you enter 1, the condition
10 INPUT X (X=INT(X)) in statement 20 is true
2¢ 1F X=1NT(X) and control is transferred to the

THEN PRINT X; "is an integer" PRINT statement after THEN. 1f you
ELSE PRINT X; "is not an integer" enter 1.5 the condition is false

3g lF X=9999 `THEN END ELSE 1¢ and control is transferred to the
Ok PRINT statement after ELSE
RUN

Note: Statement 2¢ is one 1ogical?1

1 is an integer Ii== divided into three physical
?1.5 1ines.
1.5 is not an integer

?.^C
Break in 1¢
Ok

50 IF I THEN A=1gßg the value 1¢¢¢ is assigned to
variable A if 1 is not zero

7¢ IF (1<30) AND (1>5) THEN

A=B+C:GOTO 350

8¢ PRINT "OUT 0F RANGE"

a test determines if 1 is greater
than 5 and less than 3¢. If 1 is
in this range, A is calculated and
execution branches to line 35ß. If
1 is not in this range execution
continues with line sO

Nesting of lF Statements

IF...GOTO...[LSE or IF...THEN...ELSE statements may be nested. Nesting is
limited only by the length of the line. For example:

lF. . . THEN. . .

you enter: you have entered a legal statement
IF X>Y THEN PRINT "GREATER" (it is one logical line divided
ELSE IF Y>X THEN PRINT "LESS THAN" into three physical 1ines)
ELSE PRINT MEQUALU m

Lr,

the statement does not contain the
same number of ELSE and THEN

clauses

each ELSE is matched with the most
recent unmatched THEN. For example:

1¢¢ 1F A=B THEN IF B=C THEN

PRINT "A=C"

ELSE PRINT UA< >CU m

¢. . .

Will display A=C when A=B and
B=C; will display A<>C when A=B

but 8 is different from C. If A is
different f rom 8 control is trans-
ferred to the statement 11¢.

To Test Equality for a Floating Point Value

1F. . . THEN. . .

you use an lF...GOTO...ELSE or an the test should be against the
1F. . .THEN. . .ELSE statement to test range over which the accuracy of
equality for a value that is the the value may vary (as the interval
result of a floating point representation of the value may not
computation be exact).

For example, to test a computed
variable A against the value 1.¢
use:

IF ABS(A-1.O) 1.¢E-6 GOTO...

Or

1F ABS(A-1.¢) 1.¢E-6 THEN...

This test returns true if the value
of A is 1.¢ with a relative error
of less than 1.OE-6

CONTROL STATEMENTS

LO0PS

Repeatedly executing a series of statements is known as looping.

You may create loops by:

-the FOR and NEXT statements; they are used to enclose a series of

statements, enabling you to repeat those statements a specified number
of times

-the WHILE and WEND statements; they are used to enclose a series of

statements, enabling you to repeat those statements as long as a given
condition is true.

Ho. a Loop can Simplify Your Task

Suppose you wanted to display a listing of each number from 1 to 25, to-

gether w.ith its square root.

You could do it, using the following statements, but this is a very
primitive solution to the problem:

1¢ PRINT 1,SQR(1)

20 PRINT 2,SQR(2)

3¢ PRINT 3,SOR(3)

and so on, ending with:

240 PRINT 24,SQR(24)

25¢ PRINT 25,SQR(25)

26¢ END

using an IF...THEN statement instead would be far more efficient:

1¢ LET A=1

20 PRINT A,SQR(A)

30 LET A=A+1

4ß IF A<26 THEN 20
5¢ END

A further simplification would be to use a FOR/NEXT loop:

10 FOR A=1 TO 25

2ß PRINT A,SOR(A)

3¢ NEXT A

40 END

At the moment, this simplification may not seem very dramatic, but the
uses to which you can put a FOR/NEXT loop are surprising. We will now
explore some of these possibilities.

Starting the Loop - the FOR Statedient

The FOR statement identifies the start of a loop; the NEXT statement
identifies the end of one. FOR specifies how many times the loop (i.e.
the statement or sequence of statements between the FOR and the NEXT
statement) is to be execut.ed.

In the preceding example, FOR specifies that the PRINT statement is to be
executed for successive values of A from 1 through 25 (an increment of 1
is added to A for each execution of PRINT). When the value of A exceeds
25, execution of the loop stops, and control is passed to the statement
following the NEXT statement. 1n this case, the statement that follows is
END, denoting the end of the program.

The specif ication A=1 TO 25 defines the set of values over which the loop
will be executed. 1n this context, A is called a control variable;
controlling the number of times the loop is to be executed. The control
variable will always increase by 1 if the FOR statement contains no
instructions to the contrary. You can, however, increment the control
variable by some value other than 1 if you want to. This is done by
adding a STEP clause, for example:

10 FOR A=1 TO 25 STEP 2

This statement indicates an increment (or step) of 2. Thus, the loop will
be executed once for every odd value of A from 1 to 25 (that is,
1,3,5 ,... 25). When the value of A exceeds 25 (when it reaches 27), exe-
cution of the loop will end. The value of A will be 27 before the
statement that follows the NEXT statement is executed.

1f you wanted to execute the loop once for every even value of A from 1
to 25, you could specify:

10 FOR A=2 TO 25 STEP 2

A9:in, when the value of A exceeds 25 (when it reaches 26), execution of
the loop will end.

You could explicitly specify a step value of 1, as in the example below:

80 FOR X=1 TO 40 STEP 1

8-10 BASIC IANGUAGE - REFERENCE MANUAL

CONTROL STATEHENTS

but it is unnecessary.

As with the expressions in LET and PRINT statements, specifications in
FOR statements can be quite complicated. For example, all of the
following FOR statements are valid:

7¢ FOR A=B T0 C

SO FOR X=8/M+N T0 A^2

5¢ FOR l=SQR(A) T01550 STEP B*C+6

If the value of an increment is negative, the FOR/NEXT loop is executed
until the value of control variable is less than the final va{ue (i.e.
the value expressed after TO).

For example:

LIST

1¢ FOR K%=1 TO -1¢ STEP -1

20 PRINT Ko~o;

30 NEXT K%

Ok

RUN

1 ¢ -1 -2 -3 -4 -5 -6 -7 -8 -9 -1¢

With this example the loop is repeated 12 times.

Closing the Loop - the NEXT Statelent

Just as the loop always begins with a FOR statement, it always ends with
a NEXT statement. Remember that the loop comprises all the statements
included between the FOR and NEXT statements.

The NEXT statement consists of the keyword NEXT, optionally followed by a
list of control variables. Each control variable must be the same as the
control variable that appears in the corresponding FOR statement.. More
than one FOR statement may be associated with only one NEXT statement
(see Nested Loops below).

FOR and NEXT statements allow a series of statements to be performed in
loop a given number of times.

Figure si5 FOR Statement

Figure 8-6 NEXT Statement

Where

ELEMENT

variable

MEANING

is a simple numeric
variable (def ined as
an integer or a single-
precision variable).
The name of the con-
trol variable speci-
f ied in the NEXT state-
ment must be the same
as that specif ied in

he FOR statement .but
he NEXT statement may

pecify a list of con-
rol variables (see
ested Loops below)
r even none

DEFAULT VALUES

if a NEXT statement
specif ies no control
variable the NEXT
statement will match
the most recent FOR
statement

BASIC LANGUAGE - REFERENCE MANUAL
•i';_,_j,_,_

äüllm

CONTROL STATEMENTS

initial value is a numeric expres-sionspecifyingthefirstvalueassignedtothecontrolvari-ablewhentheFORstatementisexecuted

final value is a numeric expres-sionspecifyingthe1imitofthecontrolvariable.Thisvalueiscomparedwiththecontrolvariableeachtimetheloopisabouttoberepeated

increment is a numeric expres- if the STEP option is
sion specifying the not specified an incre-
value to be added (wititsalgebraicsign)tothecontrolvariablewhentheNEXTstate-mentisencountered ment of +1 is assumed

8-13

11ow FOR/NEXT Statements` Work

•:....-...-

(*) Unless the initial and final value' are equal. In this case the first
statement after next is executed

Figure 8-7 FOR/NEXT Statements

TATEMENTS

Remarks

We shall say that a FOR/NEXT loop is "pending" if it has not yet been
completed when a break is encountered. Any modification to the resident
program (deleting, editing lines, and so on) will prohibit the loop from
resuming execution.

Value of lncreient Positive

THEN. . .

the value of increment is positive the FOR/NEXT loop is executed
until the value of the control
variable is not greater than the
final value.

For example:

LIST

1¢ K =1¢

20 FOR 1=1 TO 10 STEP 2

3¢ PRINT 1;

4¢ K=K+10 `

5¢ PluNT K
6¢ NEXT

0k
RUN

Here the loop executes five times

the value of increinent is positive
AN0 1F

the initial value exceeds the f inal
value

the loop does not execute.

For example:

LIST

Value of lncrement Negative

1=1 T0 J

PRINT I

NEXT I

PRINT "Exit of the loop"
Ok

RUN

Exit of the loop
Ok

THEN. . .

the value of increment is negative

8-16

the FOR/NEXT loop is executed until
the value of the control variable
is less than the f inal value.

For example:

LIST

1¢ FOR 1%=1 TO -1¢ STEP -3

2¢ PRINT 1.+o;

30 NEXT 1%

4¢ PRINT

50 PRINT "Exit ":
"CONTR.OL VARIABLE="; 1%

Ok

RUN

1 -2 -5 -8
Exit CONTROL VAFilABLE±-11

i|which is displayed by statement 5¢

t*

BASIC LANGUAGE - REFERENCE MANUAL

CONTROL STATEMEN\TS

Value of lncrement Zero

THEN. . .

the value of the increment is zero the loop is executed indef initely
(unless the initial and final
values are equal; in this case the
loop will not be executed at all).

For example:

LIST

1¢0 FOR A®<=1 TO 30 STEP 0

11¢ PRINT A%;

120 NEXT A?o

Ok

RUN

1 1 1...

You have to press I.kll |D to
interrupt execution

Nested Loops

FOR/NEXT loops may be nested one within the other as long as the internal
FOR/NEXT loop is entirely within the outer FOR/NEXT loop. For example,
the following nesting is valid:

8-17

50 FOR I = 1 T0 10

1¢0 FOR J = 2 TO 20

20¢ NEXT J

30¢ NEXT I

while the following is not:

E
50 FOR 1 = 1 TO 10

10¢ FOR J = 2 TO 2¢

150 NEXT I

La; i;Ext j

Nested FOR/NEXT loops cannot use the same control variable.

Each FOR statement specified must have a corresponding NEXT statement.

lf nested loops have the same end point, a single NEXT statement may be
used for all of them (with a list of control variables).

When a nested loop is encountered it is executed, when it is exited the
first statement following the associated NEXT statement will be executed.

Loops may be nested to any depth.

The number of simultaneously active loops is only limited by the amount
of memory available.

For example:

50 FOR I = 1 T010

100 FOR J = 2 TO 20

2ßO NEXT J,1

Nested loops provide a very useful programming technique for solving a
wide range of problems. An example of a nested loop is shown below.

8_18 BASIC LANGUA6E - REFERENCE MANUAL

CONTROL STATEMENTS

Example

DISPLAY COMMENTS

10 REM PRIME NUMBERS

201NPUT "Enter limits N,M";N,M

30 PRINT "Primes from";N;"TO";M

40 PRINT

50 PRINT

6¢ FOR 1=N T0 M

70 LET K=SQR(1)

80 FOR J=2 T0 K

90 LET E=1/J-INT(l/J)
1001F E=g THEN 130

11¢ NEXT J

12¢ PRINT 1;

13ß NEXT 1

140 PRINT

150 PRINT

160 PRINT "End of List"

RUN

Enter limits N,M? 1,15
Primes from 1 T015

1 2 3 5 7 11 13

End of List
Ok

you will display all the prime
numbers within a given range of
numbers. One FOR/NEXT loop speci-
fies the range of the numbers to be
used. Nested within that loop is a
second loop, one that contains an
algorithm to determine if any
number in the specified range is a
prime number.

To explain the algorithm: numbers
assigned to a variable (1) are
divided by an integer (J) whose
value ranges f rom 2 to the square
root of 1. 1f the remainder of the
division is ¢ then 1 is not a prime
number, so the number 1+1 is

generated and the process repeated.
The choice of the final value
square root is made because if
there are any integer factors of
the number 1 they will always lie
between 2 and the square root of 1

Note: Statement 1¢¢ allows you to
€*iF the inner loop even if J is
not greater than K. You can always
exit a loop by an IF...THEN or GOT0

statement, however you cannot enter
the loop in any statement other
than the initial FOR

Remarks

- if a NEXT statement is encountered before its corresponding FOR state-

ment' a

NEXT without FOR

error message is issued and execution is t.erminated.

8-19

For example:

1200 IF A>5 THEN 2¢1¢

2000 FOR J=1 TO 7

2¢1¢ PRINT "HELLO";

2020 NEXT J

When executing statement 2¢2¢ following a jump from 1200, BASIC
displays the above mentioned error message and enters Command Mode

- the final value is always set before the initial value is set.

For example, if you write:

1¢ 1=5

2¢ FOR 1=1 TO 1+5

statement 20 will assign the value 10 to the final value. However, for
program readability, we do not advise you to use the control variable
to define the f inal value

- if possible use an integer variable for the control variable and
integer constants (or integer variables) for the initial and final
value and the increment. This will improve the speed of execution.

~-`JJwltLE/W:lo (mocnm/1l-E"

Executes a series of statements in a loop as long as a given condition is
true.

-,..-,- = c-3-:=

Figure 8-8 WHILE Statement

8-20 BASIC LANGUA6E - REFERENCE MANUAL

Figure 8-9 WEND Statement

Where

SYNTAX ELEMENT MEANING

condition may be:

- a numeric expression

- a relational expression

- a logical expression

Note: BASIC determines whether the condition is
IFLä or false by testing the resu,t of the
expression for non zero and zero respectively. A
non zero result is true and a zero result is
false.

Because of this, you can test whether the value
of a variable is non zero or zero by merely
specifying the name of the variable as a
condition

How WHILE/WEND Statements Work

Figure 8-1¢ WHILE/WEND Statements

Regarks

We shall say that a WHILE/WEND loop is "pending" if it has not yet been
completed when a break is encountered. Any modification to the resident
program (deleting or editing 1ines, and so on...) will prohibit the
loop from resuming execution.

Example

DISPLAY COMMENT

LI

9¢ 'BUBBLE SORT ARRAY A$

100 FLIPS=1 'FORCE 0NE PASS THRU L00P

110 WHILE FLIPS

115 FLIPS=0

12¢ FOR 1=1 T0 J-1

13¢ 1F AS(1)>AS(1+1) THEN

SWAP AS(1) ,AS (1+1) :FLIPS=1

140 NEXT I

15¢ WEND

Ok

RUN

Ok

you sort the elements of ai.ray
AS in ascending value order
(f rom subscript 1 to subscript
J)

Note: the condition (in this
:=== the v@1ue of variable
FLIPS) may be changed during the
loop (see line 13¢)

8-22 BASIC LANGUA6E - REFERENCE MANUAL

CONTRÜL STAT

Remarks

WHILE/WEND loops may be nested to any level. Each WEND will match the
most recent WHILE. An unmatched WHILE statement causes a "WHILE without
WEND" error, and an unmatched WEND statement causes a "WEND without
WHILE'' error.

You can exit a WHILE/WEND loop either when the condition af,ter WHILE is
false or by an IF...THEN or GOT0 statement, but you cannot enter the loop
in any statement other than the initial WHILE.

8-23

9. FUNCTIONS

AB0UT TllIS CHAPTER

This chapter describes the intrinsic (built-in) functions, which may be
called by any program without further def inition and user-defined
functions which once set up can be used in exactly the same way but only
within the program containing the definition.

CONTENTS

INTRODUCTI0N

USER DEFINED FUNCTI0NS

DEF FN (PROGRAM)

BUILT-IN NUMERIC FUNCTI0NS

ABS (PROGRAM/I"EDIATE)

ATN (PROGRAM/1"EDIATE)

CDBL (PROGRAM/1"EDIATE)

CINT (PROGRAM/1"EDIATE)

COS (PROGRAM/1"EDIATE)

CSNG (PROGRAM/1"EDIATE)

EXP (PROGRAM/IMMEDIATE)

FIX (PROGRAM/lMMEDIATE)

FRE (PROGRAM/IMMEDIATE)

1NT (PROGRAM/1MMEDIATE)

LOG (PROGRAM/IMMEDIATE)

9-ii

9-1 RND (PROGRAM/1MMEDIATE) 9-14

9-2 RANDOMIZE

(PROG RAM/ 1 MMED IATE)

9-3
SGN (PROGRAM/1MMEDIATE)

9-5
SIN (PROGRAM/1"EDIATE)

9-6
SQR (PROGRAM/IMMEDIATE)

9-6
TAN (PROGRAM/1MMEDIATE)

9-7
BUILT-1N STRING FUNCTIONS

9-8

9-8

9-9

9-10

9-10

9-11

9-12

9-13

9-15

9-16

9-17

9-17

9-18

9-19

ASC (PROGRAM/lMME0IATE) 9-19

CHRS (PROGRAM/1"EDIATE) 9-20

HEXS (PROGRAM/1MMEDIATE) 9-21

INKEYS (PROGRAM/IMMEDIATE) 9-22

INPUTS (PROGRAM/1"EDIATE) 9-23

1NSTR (PROGRAM/I"EDIATE) 9-24

LEFTS (PROGRAM/IMMEDIATE) 9-25

LEN (PROGRAM/I"EDIATE)

MIDS (PROGRAM/1"EDIATE)

MIDS (PROGRAM/1MMEDIATE)

OCTS (PROGRAM/1MMEDIATE)

RIGHTS (PROGRAM/1"EDIATE)

SPACES (PROGRAM/IMMEDIATE)

STRS (PROGRAM/1"EDIATE)

STRINGS (PROGRAM/I"EDIATE)

VAL (PROGRAM/I"EDIATE)

INPUT/OUTPUT AND SPECIAL

BUILT-lN FUNCTI0NS

DATES/TIMES

(PROGRAM/IMMEDIATE)

CVD (PROGRAM/IMMEDIATE)

CVI (PROGRAM/I"EDIATE)

CVS (PROGRAM/lMMEDIATE)

EOF (PROGRAM)

ERL (PROGRAM/1"EDIATE)

ERR (PROGRAM/1"EDIATE)

LOC (PROGRAM/1"EDIATE)

LPOS (PROGRAM/IMMEDIATE)

MKDS (PROGRAM/I"EDIATE)

MKIS (PROGRAM/1MME01ATE)

MKSS (PROCRAM/I"EDIATE)

SPC (PROGRAM/1"EDIATE)

9-26 TAB (PROGRAM/I"EDIATE) 9-41

9-27 VARPTR (PR06RAM/I"EDIATE) 9-42

9-28

9-30

9-31

9-32

9-33

9-34

9-35

9-36

9-37

9-38

9-38

9-38

9-38

9-38

9-38

9-39

9-39

9-39

9-40

9-40

9-40

9-iii

1NTRODUCT10N

There are occasions when identical expressions are required a number of
times in the same program.

To avoid writing these expressions more than once and to save storage,
functions can be written and then activated from many places in a BASIC
Program.

Each function can be called simply by stating its name followed, in
parentheses, by one or more "arguments" representing the values the
function parameters are to assume. Each argument is associated with a
parameter in the function definition.

Arguments are separated by commas. An argument may be a constant, a
variable, or an expression.

Parameters are separated by commas too. A parameter may only be a
variable.

The number of arguments must be the same as the number of parameters in
the function definition and their types (numeric or string) must match.
The association between arguments and parameters is positional, i.e. the
first argument will be associated with the first parameter etc We can
pass one or several arguments to a function, or no argument at all.

Numeric conversions are valid from one numeric argument to the corre-
sponding parameter, if it is a different numeric type. 1f for instance, a
floating point value is supplied where an integer is required, BASIC will
round the fractional portion and use the resulting integer.

A function returns a single value, which may be a numeric or a string
value, depending on the type of the expression used to define the
function.

We can classify BASIC functions into two main categories:

- 1ntrinsic (or built-in) functions

Built-in functions are an intrinsic part of BASIC. They provide a set
of commonly used numeric and string operations. The user can invoke
them without an explicit definition within any prog.ram. A complete list
and a detailed description of built-in functions will be given below.

- User defined functions

The user can define an arbitrary number of functions in a BASIC

program, by the statement DEF FN. The name of a user defined function
begins with FN and may be any valid variable name.

9-1

Each function definition must precede any function call in the program.

Examples

DISPLAY

1¢ A=X*SIN(X)+LOG(X)

LIS
1¢ DEF FNH(X,Y)=SQR(X*X+Y*Y)

201NPUT "SIDES";X1,Y1

3¢ PRINT "H=";FNH(X1,Y1) ;
" X1=";X1;" Y1=";Y1

4¢ GOTO 2¢

Ok

RUN

SIDES? 3.5,1.2

H= 3.7 X1= 3.5 Y1= 1.2

SIDES? 1.7,4

H= 4.34626 X1= 1.7 Y1= 4

SIDES? ^ C

Break in 2¢
Ok

here SIN and LOG are built-in
numeric functions

FNH is a user-defined function. A
DEF FN statement def ines it (see
statement 1¢). lt calculates the
square root of the sum of the
squares of the parameters X and Y
(by using the built-in function
SQR) .

Statement 3¢ calls the user-defined
function and p'asses two arguments
to the corresponding parameters.

Note: The names of the arguments
F€€ä not be the same as the names
of the corresponding parameters

USER DEFINED FUNCTI0NS

1f a numeric or string equation is to be used several times, it is more
convenient to define the equation as a function. Once defined, the func-
tion can be called in exactly the same way as a built-in function. The
only limitation is that the definition is program dependent and must
therefore be redefined in each program that needs to use it (unless the
second program is CHAINed to the first, with the MERGE option).

CE MANUAL

DEF FN (PROGRAM)

DEF FN defines a numeric or string function.

A DEF FN statement must be executed before the function it defines can be
called.

A DEF FN statment is not permitted in immediate mode.

Figure 9-1 DEF FN Statement

Figure 9-2 Function Call

SYNTAX ELEMENT MEANING

function name 1

a legal variable name beginning with FN. No
blanks may be inserted between FN and the
remainder of the name and the first character
after FN must be a letter.

lf a type is specified in the function name, the
value of the expression is forced to that type
before it is returned to the calling statement P

parameter a "dummy" variable that is to be replaced by the
corresponding argument value when the fijnction
is called. The association between arguments and

parameters is positional (i.e. the first argu-
ment is associated to the first parameter etc.)

argument the actual value to be passed to the correspond-
ing parameter. Each argument may be a constant,
a variable, or an expression

expression

Characteristics

an expression that performs the operation of the
function .

The type of expression must agree with the type
(numeric or string) of the function.

The expression normally includes only parameters
as variables, but it may also include program
variables defined outside the function defini-
tion (global variables).

Parameter names that appear in the expression
serve only to define the function, they do not
affect program variables that have the same
name. However, for program readab;.1ity, we do
not advise you to use the same names

9-4 BASIC LANGUAGE - REF.ERENCE MANUAL

FUNCTI0NS

a user-defined func-
tion is called by an-
other user-defined
function

the called function must be def ined in the same
program and preceed the call.

For example:

10 DEF FNA(X)=(SIN(X/5)*3.1)/18g

20 DEF FNB(X)=(FNA(X)+SIN(X))*.5

a program CHAINs an-
other program with the
option MERGE

function def initions must be placed in the
CHAINing program before the CHAIN statement.
Otherwise, the user-defined functions will be
undefined when the merge is complete. (For more
details see Chapter 11).

For example:

1¢ DEF FNA(X)=(X+X*(X+1))

100 CHAIN MERGE "V1 :PROG1"

Remark

The syntax of the Function Call is val-id both for user-ciefined and
built-in functions.

BUILT-lN NUMERIC FUNCTIONS

BASIC provides a number of pre-written routines, that save you the effort
of writing groups of statements to calculate such mathematical functions
as square root, sine and natural logarithm. With the exception of CDBL,
which returns a double precision result, only integer and single
precision results are returned by built-in numeric functions.

All the built-in numeric functions are listed in alphabetical order,
below®

Note: 1n this list we also include the RANDOMIZE statement, as it is
ärä;eiy reiated to the RND function.

(PROCRAN^MEO1^TB-

Returns the absolute value of a numeric expression.

Figure 9-3 ABS Function

Example

PRINT ABS(7*(-5))

35
0k

(PROG"/"NED"

Returns the arctangent of the argument.

The value returned is expressed in radians and falls in the range -JJ/2
to fJ/2 (where * is 3.1415...).

numeric
expression

Figure 9-4 ATN Function

9-6 BASIC LANGUACE - REFERENCE MANUAL

FU«CTI0NS

Example

1¢ 1NPUT X

20 PRINT ATN(X)

Ok

RUN

?3
1 . 249¢5

0k

Remark

The evaluation of ATN is performed in single precision.

CDIL (PR06R^Il/1MMEDIATE)

CDBL converts any numeric type to a double precision (8 bytes) argument.

numeric
expres§ion

Figure 9-5 CDBL Function

1¢ A = 454.67

20 PRINT A;CDBL(A)

FUN

454.67 454.670013427734
0k

___H
9-7

Converts any numeric type argument to an integer by rounding the f rac-
tional part (if the fraction is > = .5 the integer part is rounded up,
otherwise a truncation occurs).

numel''C
expre§sion

Figure 9-6 CINT Function

Example

PRINT CINT(45.67)

46
0k

Remarks

lf the argument is a value outside the range -32768 and 32767, an
"Overflow" error occurs.

See also FIX and INT, which also return integer values.

Returns the cosine of the argument.

Figure 9-7 COS Function

9-8 8ASIC LANGUAGE - REFERENCE MANUAL

_ _ `H#

Example

1¢ X = 2*COS(.4)

2¢ PRINT X

RUN

1 . 84212

0k

Remarks

The argument passed to the function is assumed to be the value of an
angle measured in radians.

The evaluation of COS is performed in single precision.

Converts any numeric type argument to a single precision number (4
bytes) . -
Figure 9-8 CSNG Function

Example

10 A# = 975.3421#
20 PRINT A# CSNG(A#)

RUN

975.3421 975.342
0K

numeric
expression

Reimrks

See also CINT and CDBL functions for converting numbers to the integer
and double precision data types.

9-9

Raises the constant "e" (e = 2.71828) to the power of the argument.

numer'c
expression

Figure 9-9 EXP Function

Exapple

1¢ X = 5

20 PRINT EXP(X-1)

RUN

54 . 5981

0k

ReDarks

The argument value must be < =88.7228. Otherwise the overflow error
message is displayed, machine infinity with the appropriate sign is
supplied as the result and execution continues.

The evaluation of EXP is performed in single precision.

_____ _ _____ _ 1

::,{ Flx (pRoeRArl/1MMEo1^TE)

Returns the integer part of the argument (truncation).

numeric
expression

Figure 9-10 FIX Function

9-10 BA51C LANCUAGE - REFERENCE MANUAL

Examples

PRINT FIX(58.75)

58
0k

PRINT FIX(-58.75)
-58
0k

Remarks

FIX(X) is equivalent to SCN(X)*1NT(ABS(X)). Unlike INT, FIX does not
return the next lower number for negative arguments (see the second
example above).

RE (PRo6RAM/"rEDIATE}

Returns the number of bytes in memory not being used by BASIC.

dummy
argument

Figure 9-11 FRE Function

Where

SYNTAX ELEMENT MEANING

dummy argument is any numeric or string expression. The value
returned is not affected by the argument value

Examples

PRINT FRE(¢)

14542
0k

9-11

11-
PRINT FRE(XS)

14542
0k

Remarks

FRE("") forces a garbage collection before returning the number of free
bytes. Moreover, BASIC will perform a garbage collection if all memory
has been used up.

1NT (PR06RAH/lMMEDIATE) |

Returns the largest integer less than or equal to the argument.

numeric
expression

Figure 9-12 1NT Function

Exa.ples

PRINT INT(99.89)

99
0k

PRINT INT(-12.11)
-13

0k

Remarks

Notice the difference between lNT and FIX. With negative values, the
returned value for lNT is always smaller than or equal to the argument,
whilst for FIX it is always greater than or equal to the argument.

BÄSIC LANGUAGE - REFERENCE MANUAL

FUNCTI0NS

Returns the natural 1ogarithm of a positive argument.

Figure 9-13 LOG Function

SYNTAX ELEMENT MEANING

numeric expression must be positive. Otherwise an "I11egal function
call" error occurs

Example

PRINT LOG(45/7)

1.86075
0k

F`emarks

Since logax =i::::the common logarithm (or any other base) can easily

be evaluated by use of the LOG function.

1f you need this function f requently in a program, it should be specif ied
as a user-defined function.

For example, you may write at the beginning of your program:

1¢ DEF FNLOGIO(X)=LOG(X)/LOG(10)

and call FNLOGIO, passing the correspondi-ng argument, anywhere you need.

The evaluation of LOG is performed in single precision.

111.

HEi.II
9-13

Returns a random number between ¢ and 1. The same sequence of random
numbers is generated each time the program is RUN, unless the random
number generator is reseeded (see RANDOMIZE statement).

Figure 9-14 RND Function

Where

Example

FOR 1=1 TO 5

PRINT INT(RND*10ß);

Remarks

Although it is called Random, the number is actually taken from a fixed
cycle of numbers, about one million iii all. Since the cycle starts for
each run, the same program gives the same result every ti-me it is run. 1f
all the numbers are usedg the cycle begins again.

9-14 BASIC LANGUAGE - REFERENCE MANUAL

To change the random nur,iber sequence every time the program is RUN, place
a RANDOMIZE statement at the beginning of the program and change the
argument with each RUN (see RANDOMIZE).

Reseeds the random number generator.

Figure 9-15 RANDOMIZE Statement

Where

SYNTAX ELEMENT MEANING

numeric expression must be in the range of integers (-32768 to
32767).1f it is not an integer it is rounded to
the nearest integer. This number is used to set
the starting point (seed) of a new random number
sequence. 1f it is omitted, BASIC suspends

program execution and asks for a value by
d isplay ing :

Random Number Seed (-32768 to 32767)?

before executing RAN00MIZE

Remarks

lf the random number generator is not reseeded, the RND function returns
the same sequence of random niimbers each time the program is RUN. To
change the sequence of random numbers every time the program is RUN:

place a RANDOMIZE statement at the beginning of the program and change
the argument w=:.th each RUN.

You are not limited to random numbers between 0 and 1. To generate the
sequence between A and 8, use the formula:

FIX ((B+1 -A)*RND+A)

Examples

RANDOMIZE

FOR 1=1 TO 5

PRINT RND;

RUN

Random Number Seed (-32768 TO 32767)? 3 (user enters 3 m)
.88598 .484668 .586328 .119426 .709225

0K

RUN

Random Number Seed (-32768 to 32767)? 4 (user enters 4 m)
.8¢3506 .162462 .929364 .292443 .322921

0k
RUN

Random Number Seed (-32768 to 32767)? 3 (same sequence as first RUN)
.88598 .484668 .586328 .119426 .709225

0k

eN (moc"/1NNEol^TE)

Returns 1 if the argument is positive, ¢ if the argument is zero and -1
if the argument is negati`.e.

numeric
expression

Figure 9-16 SGN Function

Exa,I,Ple

ON SGN(X)+2 GOT01¢¢,2gß,3gg

9-1 BAslc LANGÜÄGE - REFERENCE mNUAL

FIINCTI0NS

branches to:

-10¢ if X< 0

- 2¢, if X = `

- 3¢0 if X > 0

;++ x'!ä£

SIN (PROGRAM/1NMED1^TE)

numeric
expression

Returns the sine of the argument.

Figure 9-17 SIN Function

ExaDple

PRINT SIN(1.5)

. 997495
0k

Redmrks

The argument passed to the function is assumed to be the value of an
angle measured in radians.

SIN is evaluated as single precision.

Returns the square root of the argument.

9-17

numeric
expres§ion

Figure 9-18 SOR Function

Example

10 FOR X = 10 TO 25 STEP 5

20 PRINT X, SOR(X)

3¢ NEXT

RUN

10 3.16228

15 3.87298

20 4.47214
255

0k

Remrks

An "Illegal function call" error results if the argument is negative.

SOR is evaluated in single precision.

Returns the tangent to the argument.

Figure 9-19 TAN Function

Example

10 Y = 0*TAN(X)/2

LANGUAG FERENCE MANL»L

numeric
expression

Remarks

The value of the argument is assumed to be measured in radians.

If TAN overflows, an "Overflow" error message is displayed, machine
infinity with the appropriate sign is supplied as the result and execu-
tion continues.

TAN is evaluated in single precision.

BUILT-IN STRING FUNCT10NS

They are intrinsic functions which return a string or numeric value and
permit one or more than one numeric and/or string arguments.

They simplify such string operations as extracting group of characters- a
substring-f rom a larger string.

A11 the built-in string functions are listed in alphabetical order,
below.

Note: In this list we also include the MIDS statement, as it is closely
FI15ted to the Mlos function.

»C (PROCRAX/1MMEDIATE)

Returns a numerical value that is the ASC11 code of the first character
of a given string.

Figure 9-20 ASC Function

Exanple

1¢ XS = "TEST"

2¢ PRINT ASC(XS)

RUN

84
0k

Reinarks

lf the string expression argument is the null string ("'), an "111egal
function call" error occurs.

See the CHRS function for ASCI1-to-string conversion.

(PROGRAM/"MEDIATE)

Returns a one-character string whose ASCIl code is the value of the argu-
ment.

numeric
expression

Figure 9-21 CHRS Function

SYNTAX ELEMENT MEANINC

numeric expression is evaluated and rounded to the nearest integer.
It is interpreted as an ASC11 code and must be
in the range 0 to 255. Otherwise an "11legal
function call" error occurs

Example

PRINT CHRS(66)

8
0k

9-20 BASIC LANGUAGE - REFERENCE MANUAL

FllNCTI0NS

Reinarks

CHRS is commonly used to send a special character to the terminal. For
instance, the character could be sent (CHRS(7)) as a preface to an error
message, or a form feed could be sent (CHRS(12)) to clear a CRT screen
and return the cursor to the home position.

See the ASC function for ASCII-to-numeric conversion.

(Pm"l

Converts a decimal number to the corresponding hexadecimal string.

numeric .
expression

arest integer before HEXS is

Figure 9-22 HEXS Function

SYNTAX ELEMENT

numeric expression is rounded to the ne
evaluated

Example

10 lNPUT X

20 AS = HEXS(X)

30 PRINT X "DECIMAL IS " AS " HEXADECIMAL"

RUN

?32

32 DECIMAL IS 20 HEXADECIMAL

0k

9-21

Remark

See the OCTS function for octal conversion.

Returns either a one character string containing a character read f rom
the keyboard or a null string if no character is pending at the keyboard
No characters will be echoed and all characters are passed through to the
program except for |-il!I-H which interrupts program execution.

Figure 9-23 1NKEYS Function

Exanples

DISPLAY COMMENTS

1000 'Timed lnput Subroutine
1010 RESPONSES="'

1¢2¢ FOR 1%:=1 T0 TIMELIMIT'~®

1¢3¢ AS=1NKEYS:1F LEN(AS)=¢ THEN 1¢6¢

104¢ IF ASC(AS)=13 THEN TIMEOUT%=g:RETURN

1¢5¢ RESPONSES=RESPONSES+A$

106¢ NEXT 1'~o

107¢ TIMEOUT%=1 :RETURN

9-22

This subroutine returns two
values:

-RESPONSES which contains

the string entered f rom
keyboard

- TIMEOUT9Jo which equals 0 if

the user enters a string of
characters from keyboard
before a specif ied number
of loops (TIMELIMIT%)

otherwise equals 1

Note: the LEN function is
ää;Eribed later in this
chapter

BASIC LANGUAGE - REFERENCE MANUAL

FUNCTI0NS

1NpÜTS (pRo6R^ll/1MrED1^TE)

Returns a string of a specified length, read from the keyboard or from a
disk file. No characters will be echoed and all control characters are
passed through except |.li]-m which is used to interrupt the execution
of the lNPUTS function.

Figure 9-24 INPUTS Function

i''==_= ii

Examples

DISPLAY

10 0PEN"1",1,"DATA"

201F EOF(1) THEN 5¢

3Ü PRINT HEXS(ASC(INPUTS(1,#1))) ;

4© GOTO 2¢

5¢ PRINT

6¢ END

110 XS=INPUTS(1)

12¢ 1F XS="S" THEN END

COMMENTS

this program lisl:s the contents
of a sequential file in hexa-
decimal

rJote: EOF. equals Ll when the end

:flile is reached (see Chapter
12)

enter S to end the program, or
any other character to continue.

9-23

DISPLAY COMMENTS

1¢ XS = "ABCDEB" Note that the position at which the
2¢ Y; = "8„ match is found is always evaluated
3¢ PRINT INSTR(XS,YS);1NSTR(4,XS,YS) from the beginning of the original
RUN string, even if a start position is
26 specified

Ok

Special Values

start positi-on >LEN(string)

start position falls outside the
range 1 to 255

string is empty (null string)

substring cannot be found

substring is empty and start posi-
tion is specif ied

substring is empty and start posi-
tion is omitted

THEN. . .

the returned value is ¢

an error message is issued (I11egal
function call)

the returned value is ¢

the returned value is ¢

the returned value equals the start
position value

the returned value is 1

Returns a substring comprised of the leftmost string chara.cters of a
given length.

Figure 9-26 LEFTS Function

SYNTAX ELEMENT MEANING

string 1 is a string expression whose value is the
string from which the substring is to be re-
turned

##a;!a x~X oz t> T<>>*i . <Si8<Om>XO>C<~ > ~ t.XS~i: y zS „ Ty-,Zj „{ ZXS*€{ >

FllNCTI0NS

10 XS = "PORTLAND., OREGON"

2¢ PRINT LEN(XS)

RUN

16

0k

Remarks

All characters, printable and non printable and blanks are counted oy the
LEN function.

Returns a substring from a specified string, starting f rom a specif ied
character position. The length of the returned substring can be speci-
fied, or all the characters to the end of the string are returned.

Figure 9-28 MIDS Function

Where

AX ELEMENT MEANING

„is a sti'ing expression `'|string from which the sub

'rurned

9-27

-,,:,.,`.z,`'3e,

1ength is a numeric expression rounded to the nearest
integer, whose value (from ¢ to 255) represents
the length of the returned substring. If length
is omitted all the characters from start posi-
tion to the end of the string are returned. 1f
length = 0 the null string is returned

Example

LIST

1¢ A;=,'G00D "

20 BS="MORNING EVENING AFTERN00N"

30 PRINT AS;MIDS(BS,9,7)

Ok

RUN

G00D EVENING

0k

Remarks

IF. . . THEN . . .

start position>LEN(string) MIDS returns a null string

start position=g the error message "11legal function
call" will be displayed

length is omitted all the characters from start
OR position to the end of the string

there are fewer characters are returned
1eft than length specifies

iilDS (PRo6RAri/"NEDIATE)'.'_.r * F:F"

Replaces a portion of a string with another string

9-28
ffi¥ EEEiiiEEiDIEEEE-[..= §ä±Hä=

BASIC IANGUA6E - REFERENCE MANUA

FllNCTIO«S

iiiii:::;i;:li:l ;i:i;;ii±:L:i;i:ii:li:L;:;L::::i::i`

Figure 9-29 MIOS Statement

SYNTAX ELEMENT MEANING

string is a string variable whose value is the string
from which a substring is to be replaced

start position is a numeric expression rounded to the nearest
integer, whose value (>= 1 and<= the length of
string) specifies the character position where
the replacement has to begin.

1ength is a numeric expression rounded to the nearest
integer, whose value (from ¢ to 255) represents
the length of the returned string. If length is
omitted all the characters from start position
to the end of the replacing string. are replaced.
However, regardless of whether length is omitted
or included, the replacement of characters never
goes beyond the original 1enght of string. 1f
length = 0 the null string is returned. `

replacing string is a string expression which replaces the
characters in the original string. beginning at
start position.

9-29

Exa,]ple

1¢ AS="KANSAS CITY, MO"

2¢ MIDS(AS,14)="KS''

30 PRINT AS

RUN

KANSAS CITY, KS

Renrks

lF. . . THEN. . .

start positior`>LEN(string) MIDS returns a null string

start position=O the error message "111egal function
call" will be displayed

1ength is omitted all the characters froi`:i start
position to the end of the replac-• ing string will be replaced

1ength=¢ the null string is returned

an attempt is made the replacement of characters ends
to replace characters at the last character of the
beyond the original original string
length of the st,ring

OCTS (PROCRAM/IMHEOI^TE)

Returns string which represents the octal value of a decimal argument.

Figure 9-30 0CTS Function

9-30 BASIC LANGUA6E - REFERENCE MANUAL

FUNCTIÜNS

ä ``` `xffiffiffiffi#

_fflT

Example

PRINT 0CTS(2.4)

3¢
Ok

Remark

See the HEXS function for hexadecimal conversion.

Returns a substring from a specified string, extracting its rightmost
characters .

Figure 9-31 RIGHTS Functi.on

9-31

SYNTAX ELEMENT MEANING

string is a string expression whose value is the origi-
nal string from which a substring is to be
returned

length is a numeric expression rounded to the nearest
integer, whose value (from ß to 255) represents
the length of the returned substring

1¢ AS="DISK BASIC"

20 PRINT R16HTS(AS,5)

RUN

BASIC

0k

Remarks

lF. . . THEN. . .

1ength=g the null string (length zero) is returned

l ength > =LEN (str ing) the entire original string is returned

Returns a string of a. specified number of spaces.

numeric
expression

Figure 9-32 SPACES Function

BASIC LANGUAGE - REFERENCE MANUAL

FUNCTI"S

Where

SYNTAX ELEMENT

numeric expression |t

____ _ __Ö

Example

10 FOR 1=1 TO 5

2¢ XS=SPACES(1)

3¢ PRINT X;;I

40 NEXT I

RUN

1

2

3

4
5

0k

MEANING

'' is rounded to the nearest integer and must be in

||:::::rsa,n:ireo:r):.:e2i5:5"(:h:eocafivf°:]hed:'i]e:t:u:r::;U:{:::;::

Remark

Also see the SPC function in the next paragraph.

Converts a numeric expression to a string.

Figure 9-33 STRS Function

9-33

DISPLAY

Examples

5 REM ARITHMETIC FOR KIDS

1¢ INPUT "TYPE A NUMBER";N

20 0N LEN (STRS(N)) GOSUB 30,1¢¢,

2¢¢., 3¢¢ , 4¢0 , 5¢¢

LIST

10 AS=STRS(7¢)

20 PRINT A$

Ok

RUN

7¢
Ok

LIST

1¢ A!=1.3

20 A#=VAL(STRS(A!))

30 PRINT A#

Ok

RUN

1.3

0k _=

COMMENTS

The entered. number` N is converted
lto a string by the STRS function

70 (the argument of STRS is a

|:::b::;r:::e:h:t::::e:::s:fv:iu:St:
70)

The conversion in line 20 causes
the välue in A! to be stored
accurately in double-precision
variable A#

Remark

VAL performs the opposite function (see VAL).

sTRIN6S (pROGRAM/IrM=l)1ATE}|

Returns a string of specified length, whose characters are all the same
specified AScll code value, or are all the first character of a specified
string.

9-34 BASIC LANCUÄ6E - REFERENCE MANUAL

FllNCTI0NS

numeric
expression

Figure 9-34 STRINGS Function

Where

SYNTAX ELEMENT

1ength

numeric expression

string expression

MEANING

is a numeric expression rounded to the nearest
integer. 1t specifies the length (from 0 to 255)
of the resulting string

is rounded to the nearest integer.1t.specifies
the ASC11 decimal code (from 0 to 255) whose
corresponding character is used to form the
resulting string

is evaluated. 1ts first character is used to
form the resulting string

1¢ XS=STRINGS(1¢,45)

2¢ PRINT XS"MONTHLY REPORT"XS

RUN

---------- MONTHLY REPORT ----------

Ok

tpROGRAwl_l

Converts the string representation of a number to its numeric value.

9-35

++

Figure 9-35 VAL Function

Where

SYNTAX ELEMENT

*es:nl

GL

MEANING

is evaluated. Leading and trailing blanks, tabs,
and linefeeds (if any) are stripped away. The
remaining string is converted to a nufliber (if it
is a valid numeric representation value, other-
wise VAL returns 0). For example:

VAL(" -3") is 3

VAL("ABC") is o

10 READ NAMES,CITYS,STATES,ZIP$

20 lF VAL(ZIPS)<9000g OR VAL(ZIPS)>96699 THEN

PRINT NAMES TAB(25) "OUT 0F STATE"

301F VAL(ZIPS)>=9gsol AND VAL(ZIPS)<=90815 THEN

PRINT NAMES TAB(25) "LONG BEACH"

Remarl(

The STRS function performs the opposite task (see STRS).

lNPUT/OUTPUT AND SPECIAL BUILT-lN FUNCTIONS

These functions perform the various tasks to do with input/output, value
conversions, error handling, carriage positions, memory locations, etc.

They are listed in alphabetic order below.

9-36
BASIC LANGUAGE - REFERENCE MANUAL

Note: This section also includes the reserved string words DATES and
FlfiES (which may be used as functions or as variables depending on
whether they appear in an expression or to the left side of the equal
sign in an assignment statement).

DATES^lMES (PR06RAM/lMMEDIATE)

Are PCOS elements that are readable or changeable in BASIC by referencing
these reserved strings.

Example

±vüiiEBBEgftF

Converts an 8-character string to a double precision number.

See Chapter 12.

CVI (PR06RAM/IIIED1^TE)

Converts a 2-character string to an integer.

See Chapter 12.

VS (moeR^.I/1t.EDl^TE)

Converts a 4-characters string to a single precision number.

See Chapter 12.

=iFRri_ü,,I
1

_ ____ _J

Returns true(-1) if the end of a sequential file has been reached.

See Chapter 12.

ERL (PR06R^M/1MNEDIATE)

Returns the line number of the line in which an error was detected.

See Chapter 13.

RR (PR06RAtl/1MNEDI^TE)

Returns the error code number.

See Chapter 13.

9-38 BASIC LANGUAGE - REFERENCE MANUAL

.P (PR06RAM/IMMED1

Returns the record number just read or written (random files), or the
number of sectors read or written stnce the file was OPENed (sequenti.al
files) .

See Chapter 12.

LPOS (PROGRAM/1MMEt)1ATE)

Returns the current position of the connected line printer print head
within the line printer buffer.

dummy
argument G+

Figure 9-37 LPOS Function

Where

SYNTAX ELEMENT

dummy argument

MEANING

is any numeric or string expression. The
returned value is not affected .by the value of
the argument

Example

100 IF LPOS(X)>60 THEN LPRINT CHRS(13)

Converts a double precision value to an 8-character string.

See Chapter 12.

(PR06R"/"MEDIAT[)

Converts an integer to a 2-character string.

See Chapter 12.

..MKSS (PR06RAM/"rEDIATE)

Converts a single precision value to a 4-character string.

See Chapter 12.

(pRo6"^HHm

1nserts spaces in PRINT or LPRINT statements.

numeric
expression GL

Figure 9-38 SPC Function

Where

SYNTAX ELEMENT

nunßric expression

MEANING

is rounded to the nearest integer. It specifies
the number of spaces to be inserted .in the
output image either between two oiitput items or
at the beginning or the end of the image.

It must be in the range 0 to 255 (to avoid an
"Illegal function call" error)

BAS[C LAN6UA6E - REF

Example

PRINT "OVER" SPC(15) "THERE"

OVER THERE

Ok

Remarks

Either a semicolon (;) or a blank follows SPC in a PRINT or LPRINT
statement.

See also the SPACES function.

TAB t-PR06ri;lNMEDIÄTE-l

Tabs the cursor or the print head to a specified position, in PRINT or
LPRINT statements.

numeric
expression

Figure 9-39 TAB Function

Where

SYNTAX ELEMENT

numeric expression

MEANING

is rounded to the nearest integer. The expres-
sion must be in the range 1 to 255 (to avoid
"I11egal function call" error).

1 is the left hand limit, width minus one is the
righthand limit. It specif ies the precise cursor
(or print head) position in ti line

9_41

Examples

10 PRINT "NAME" TAB(25) "AMOUNT":PRINT

2¢ READ AS,B$

30 PRINT AS TAB(25) 8$

40 DATA "G.T.JONES","$25.00"

RUN

NAME AMOUNT

G.T.JONES $25.00

0k

Remark

lf the current cursor or print head position is beyond the value of the
argument, TAB goes to that position on the next line.

m" (PR06RAN/"rEDfriE)

Format 1 (below). Returns the address in memory of the first byte of data
associated with the specified variable.

Format 2. For sequential files, returns the starting address of the disk
1/0 buffer associated with the file. For random files, returns the
address of the FIELD buffer associated with the file.

Figure 9-4 VARPTR Function

9-42 BASIC LANGÜAGE - REFERENCE MANUAL

FllNCTI0NS

Where

SYNTAX ELEMENT

variable name

file number

Example

i ¢¢ X°<i=VARPTR (A (¢))

MEANING

any type of variable (numeric string or array).
The address returned will be an integer in the
range -32768 to 32767.

Note: lf a negative address is returned, add
33gi6 to obtain the actual address

the number of the buffer associated with the

Remarks

A value must be assigned to the variable prior to execution of VARPTR, if
it is a simple variable. Otherwise an "I11egal function call". error
results.

VARPTR is usually used to obtain the address of a variable or array so it
may be passed to an assembly language subprogram. A function call of the
form VARPTR(A(O)) is usually specified when passing an array, so that the
lowest-addressed element of the array is returned.

9-43

10. SUBPROGRAMS

AB0UT THIS CHAPTER

Often, the same sequence of statements must be executed more than once
within a program. In this case you need not reproduce that seciuence
several times. You may parcel it up as a subprogram and simply call that
subprogram f rom various places in your program. At the end of each
execution of the subprogram control goes back to the statement following
the call.

The M20 provides you with two kinds of subprogram which may be called by
a BASIC program:

-subprograms written in BASIC (we shall call them "BASIC Subroutines")

-subprograms written in the M20 ASSEMBLER i.e., PCOS commands or other

assembler subprograms.

This chapter will illustrate these two kinds of subprograms and how to
call them when you are in BASIC.

CONTENTS

BASIC SUBROUTINES 10-1

GOSUB/RETURN (PROGRAM) 10-3

0N...GOSUB/RETURN (PROGRAM) 10-7

PCOS COMMANDS CALLED FROM

BASIC AND ASSEMBLY LANGUAGE

SUBPROGRAMS

CALL (PROGRAM/1"EDIATE)

EXEC (PROGRAM/1MMEDIATE)

SYSTEM (PROGRAM/1"EDIATE)

PROGRAMMABLE KEYS

BASIC KEYBOARDS

DEVICE RE-ROUTING FROM

BASIC

10-8

10-9

10-11

10-1 3

10-13

10-13

10-14

BASIC SUBROUTINES

A BASIC subroutine is formed by a sequence of BASIC statements and it is
an integral part of the program. Usually (but not necessarily) a BASIC
subroutine begins with a REM statement and ends with a RETURN statement.
It is good programming practice always to insert subroutines one after
the other at the end of the program and write an END, GOTO, or STOP
statement before the first statement of the first subroutine (to avoid
•'falling" into the subroutine block).

A subroutine is called by a GOSUB or an ON...GOSUB statement. At the end
of the execution of a subroutine, control is returned to the first
statement following the most recent GOSUB (or ON...GOSUB) that has been
executed.

We shall call a BASIC subroutine "pending" if it has not yet been
completed when a break is encountered. Any modification to the resident

program (deleting, or editing lines, and so on), will prevent the
subroutine from resuming execution.

The following example illustrates the call mechanism (statements GOSUB
and RETURN).

DISPLAY COMMENTS

10 REM Main Program

5
6

2

2

GOSUB 25¢

40 GOTO 5¢0

5ßI REM Subl

26ß Z=SOR(T)

when statement 50 is encountered (GOSUB), con-
trol is passed to statement number 250 (which is
the first statement of the subroutine). The
subroutine is then executed and when statement
290 (the RETURN statement) is encountered,
control is transferred back to statement 60, the
first statement after GOSUB.

The statement 240 (GOTO) prevents falling into
the subroutine by directing control of execution
around it

1f a program refers to the same subroutine more than once, control is
always returned f rom the subroutine to the statement following the most
recent GOSUB (or ON..,GOSUB) executed. For example, consider a program

that contains the following statements:

DISPLAY

10 REM Main Program

GOSUB 25¢

PRINT X

14¢ GOSUB 25¢

150 lF X>32 THEN 30

240 GOTO 500

250 REM Subl

260 Z=SQR(T)

29¢ RETURN

5¢¢ END

COMMENTS

when the subroutine is referred to by
statement 50 (60SUB), control is returned,
after execution of the subroutine, to state-
ment 6¢. When the subroutine is referred to
by statement 140 (GOSUB), control is returned
to statement 15¢

L
A subroutine may also be called by another subroutine. 1n this case we
say that the called subroutine is "nested" within the calling one. The
process may be repeated to any depth; the number of nestied active
subroutines is only limited by the amount of memory available. (An active
subroutine is a subroutine where RETURN has not yet been executed). Each
GOSUB, whether in the main program or in a subroutine, is always
associated with a RETURN statement.

This RETURN statement causes.control to be transferred to the first
statement following GOSUB. This kind of association is made dynamically
(i.e., at run-time), the first RETURN executed is associated with the
most recent GOSUB executed, the second RETURN with the next most recent
GOSUB and so on.

10-2 BASIC LANGUA6E - REFERENCE MANUAl

DISPLAY

10 REM Main Program

COMMENTS

800 GOSUB 15¢0 shifts control to the subroutine
Subl

1500 REM Subl marks the entry point of the
subroutine Subl

1900 GOSUB 25¢ßl shifts control from Subl to Sub2

(nested subroutine)

2509 REM Sub2 marks the entry point of the
subroutine Sub2

3000 RETURN shifts control to the statement
föllowing the most recent 60SUB that has been
executed (i.e., to the statement 1910). 2490
RETURN shifts control to the statement following
the next most recent GOSUB that has been
executed (i.e., to the statement 810)

GOSUB calls a BASIC subroutine by branching to the specified line number.

RETURN transfers control to the statement following the most recent 60SUB
(or ON. ..GOSUB) executed.

Figure 10-1 GOSUB Statement

Figure 10-2 RETURN Statement

Where

==iiiiiEIF=:___=_:_±MEANING

line number

Characteristics

is the first line of a BASIC subroutine

A SUBROUTINE MAY. . .

--_TT

begin with any statement other than
NEXT or WEND

finish with a RETURN statement

10-4

COMMENTS

for example a subroutine might
begin with REM, LET, FOR ,... etc.

1t is good programming practice to
begin a subroutine with a REM
statement (or a statement with a
comment field)

it is good programming practice to
f inish a subroutine with a RETURN
statement. 1n any case RETURN must
be the last statement executed in a
subroutine, as RETURN is the only
statement that allows control to be
returned to the main program.

A subroutine may also contain more
than one RETURN statement (for
instance, if a subroutine has
several branches, any of which
require a return to be made to the
main program)

BASIC LAN6UAGE - REFERENCE MANUAL

be called anywhere and any number
of times in a program

access any program variable

DISPLAY

if a program calls the same sub-
routine more than once, control is
returned, after execution of the
subroutine, to the statement fol-
1owing the GOSUB (or ON...GOSUB)

that was last executed

however it is good programming

practice to write subroutines one
after the other at the end of the
program. To avoid "falling" into a
subroutine write an END, or GOTO, or
STOP statement before the first
statement of a subroutine

the number of nested active sub-
routines is only limited by the
amount of memory available

all variables defined in the "main"
program ("global variables") are
available to the subroutines.
Therefore subroutines may wörk on

program variables without restric-
tion (even modifying their values
if need be)

COMMENTS

10 DEFINT A-Z 'defines all integers
20 INPUT "Enter 3 integers";A,B,C
30 LET X=A

4¢ LET Y=B

50 GOSUB 110

6ß LET X=G

70 LET Y=C

SO GOSUB 110

90 PRINT "The GCD of";A;B;C;"is";G

100 GOT019¢

110 LET Q=1NT (X/Y) 'routi,ne GCD

on the left is a complete program
illustrating a subroutine. The
subroutine uses Euclid's Algorithm
to f ind the greätest common divisor
(GCO) of three integers. The user
enters three integer numbers f rom
the keyboard. The first two numbers
entered (A and 8) are assigned to X
and Y respectively (see statements
3¢ and 40) and their GCD is deter-
mined in the subroutine (statements
11¢ to 18¢). The GCD just found js

12¢ LET R=X-Q*Y

130 lF R=O THEN 170

140 LET X=Y

15¢ LET Y=R

160 GOT011¢

170 LET G=Y

180 RETURN

190 END

0k
RUN

Enter 3 integers? 1377,2916,405
The GCD of 1377 2916 4¢5 is 81

0k
RUN

Enter 3 integers? 4,3333,67
The GCD of 4 3333 67 is 1

0k

assigned to X in statement 60 and
the third number (C) is assigned to
Y in statement 7¢. The subroutine
is called again f rom statement so
to f ind the GCD of these two
numbers. This result is the GCD of
the three integers entered. These
three numbers, with their GCD, are
displayed by statement 90.

Note: Statement 10 defines all
;=FTables as integer variables as
the program works on integer num-
bers only

LIS

10 INPUT "Enter N>O";N%

201F N%<=g THEN 10

3¢ GOSUB 5¢

4¢ END

50 REM SUB1(Sum of lntegers)

6¢ S%=(N%*(N%+1))/2

70 PRINT "Sum of lntegers
from 1 to .`;N96;"=";S°zü

8¢ INPUT "Sum of Squares (Y/N)";X$
90 IF XS="Y" THEN GOSUB 110

100 RETURN

110 REM SU82(Sum of Squares)

12¢ S2%=(N%*(N%+1)*(2*N%+1))/6

130 PRINT "Sum of Squares
from 1 to ";N9io;"='';S2.~o

14¢ RETURN

0k
RUN

Enter N>g? 5

Sum of lntegers from 1 to 5 = 15
Sum of Squares(Y/N)? Y

Sum of Squares f rom 1 to 5 = 55
0k

this program calculates the sum of
integer numbers f rom 1 t6 N (where
N is entered from keyboard) and
optionally the sum of the square of
these numbers. The program has two
subroutines; SUBl and SU82. written
at the end of the program (state-
ments fro`m 50 to 1¢¢ and from 110
to ,40).

First of all statements 10, 20 and
30 are executed. Statement 3¢
(GOSUB) calls the subroutine SUBl
and its statements are executed in
sequence up to statement 90. This
statement executes a test:

- if XS (entered from keyboard) i.s

different from "Y", control
passes to the statement lßg
(RETURN). and -then to statement 4¢
(END)

-if XS equals "Y", control passes
to SU82 ("nested. subroutine").
When statement 140 (RETU" of
SU82) is reached, control passes
to statement 10¢ (RETURN of
SUB1), then to sta-tement 40 (END)

- REFERENCE MANUAL

SÜBPR0fiRAMS

ON...GOSUB calls one of several specified subroutines, depending on the
value of a given expression.

RETURN transfers control to the statement following the most recent
ON...GOSUB (or GOSUB) that has been executed.

Figure 10-3 0N...GOSUB .Statement

Figure 10-4 RETURN Stateme-nt

Where

SYNTAX ELEMENT MEANING

numeric expression its value determines which line number in the
list will be used for branching. A value of 1
causes the subroutine at the first line.number
in the list to be called; a value of 2 causes
the subroutine at the second line number in the
list to be called and so on. 1f the value is a
non integer, it is rounded to the nearest
integer.

|:::::m:a::et::::::::u:r::::rt:::no:h:q:::b::„

10-7

line number

255), BASIC continues with the next executable
statement. 1f the value is negative or greater
than 255, an "Illegal function call" error
occurs

each line number in the list must be the first
line number of a subroutine

DISPLAY

INPUT "Enter 1,2,or3";K9io

N K% GOSUB 4¢,50,6¢

PRINT "SUB1":RETURN

PRINT "SU82":RETURN

PRINT "SU83":RETURN

COMMENTS

if you enter 1, 2, or 3 the program
will display SUB1, SU82 or SU83
respectively. 1n every case a
RETURN statement transfers control
to the END.

1f you enter an integer between ¢
and 255, other than 1, 2, or 3, the

program will display nothing

PCOS COMMANDS CALLED FROM BASIC AND ASSEMBLY LANGUAGE SUBPROGRAMS

CALL and EXEC allow you to Call PCOS commands or Assembly language
subprograms, when you are in BASIC.

Both CALL and EXEC statements perform the same function but:

- EXEC is used when the arguments to be passed to the corresponding

parameters are constants;

- CALL is used when the arguments to be passed to the corresponding

parameters are either constants or program variables or both.

10-8 BASIC LANGUAGE - REFERENCE MANUAL

SllBPROGRAMS

CALL and EXEC may be used either in a BASIC program or in immediate mode
but they are more often used in a program. At the end of the execution of
an Assembly language subprogram or a PCOS command, control returns either
to the statement following the call (if CALL or EXEC were used in a pro-

gram), or to BASIC Command Mode (if CALL or EXEC were used in lmmediate
Mode) .

CALL and EXEC allow a BASIC program to communicate with the PCOS oper-
ating system, for example to set system global variables to desired
values before other BASIC programs and PCOS commands are executed. At the
end of the execution of such a program you may remain in BASIC or go to
PCOS (by the SYSTEM Command).

Usually a 6ystem initialization program is called lNIT.BAS. This is a
reserved file name. The M20 system just after loading PCOS and BASIC,
searches for that file on both drives. If the file is found, the M20
enters BASIC and lNIT.BAS is run.

Remarks

At the end of execution of a CALL or EXEC statement activating a SBASIC
PCOS command, the newly set values will not be taken into account in the
current program (otherwise the current program could be destroyed).The
newly set values will become operative in subsequent programs, thus an
EXEC "ba file identifier" often follows an EXEC "sb..." statement.

The EXEC statement only (not the CALL statement) allows you to execute a
device re-routing command while in BASIC (for further details see
"Professional Computer Operating System (PCOS) -User Guide").

irit-PR06-ri;1-riED-irii->

Calls a PCOS command or an Assembly language subprogram, passing either

program variables or constant arguments to the subprogram.

Figure 10-5 CALL Statement

10-9

Where

SYNTAX ELEMENT

subprogram name

argument

Exanples

DISPLAY

1¢ DEFINT A-C

30 FILES="VOL1 :FILEOO1"

4¢ SIZE9oio=1¢

50 CALL "fn"(FILES,SIZE%)

90 CS="LIST"

1¢¢ CALL "pk"(&41,CS)

10-10

MEANING

may either be the name of a PCOS command or the
name of an Assembly language subprogram. It must
be either a string constant or a string variable

may be a constant or a simple variable or an
expression whose value is passed to the corre-
sponding parameter (in the same way as an
argument is passed to the corresponding para-
meter in a functiom call, See Chapter 9).

lf it is an output argument (i.e. a program
variable into which a value is returned), the
argument name must be preceded by an "at" sign
(@).

A variable argument (both an input and an output
argument) must be initialized before executing
the CALL statement.

1f the argument is numeric it must be an
integer.

COMMENTS

statement 50 calls PCOS command
FNEW, passing the file identifier
by the sti-ing variable FILES and
the file size by the numeric
variable SIZE%. Statement 1¢¢ calls
the pkey PCOS command, specifying
the key by the hexadecimal constant
&41 (i.e. A, see Appendix A) and

the corresponding string by the
variable CS. Statement 250 calls
the Assembly language subprogram *

BASIC LANCUAGE - REFERENCE MANUAL

22¢ A=10

230 8=20
240 C=2¢O

250 CALL "SU8121"(A,B,

SU8121 specifying two input argu-
ments (A and 8) and one output
argument (@C). Note that A, 8 and
C have been initialized before.

Renrks

The PCOS command LTERM (Line Terminator) is normally called from BASIC by

the CALL statement.1t returns an integer (0,1, 2) corresponding to the
respective carriage return (| , m, |H) last entered.

The PCOS command C1 (Communication lnterface) is normally called from
BASIC to send and receive characters to and from a communication RS-232-C

port. Other PCOS commands (LABEL, SPRINT, BVOLUME, etc.) are normally
called from BASIC.

For more information see ''Professional Computer Operating System (PCOS)
User Guide" and for Cl command see "1/0 with External Peripherals User
Guide". .

EXEC (PR06RAN/1MMEDIATE)

Calls a PCOS command or an Assembly language subprogram passing constant
values to the subprogram.

Figure 10-6 EXEC Statement

SYNTAX ELEMENT

string expression

MEANING

its value is interpreted as a subprogram name
followed by a list of constant arguments

Remrks

lf EXEC calls a PCOS command, the contents of the striiig expression
following EXEC must agree with the command as it would be entered if you
were in PCOS.

1f EXEC calls an Assembly language subprogram, the contents of the string
expression following EXEC is a list of parameters separated by commas.
The first of them specifies the subprogram name and the following
parameters specify the arguments to be passed to the subprogram.

Note: The arguments are not enclosed in parentheses and may only be
=tant arguments.

Examples

1¢0 EXEC "pk ' ', 'RUN V1:CASHFLOW".

15¢ EXEC "fp 1 :MY.FILE/SECRET"

18¢ AS="fn 1 :FILEA,15"

23¢ EXEC AS

10-12

COMMENTS

statement 10¢ allows you to call
the PKEY PCOS command. Note that
the strings:

-#
-RUN V1 :CASHFLOW

must be surrounded by a pair of
single quotes (') as if you were in
PCOS.

Statement 15¢ allows you to call
the FPASS PCOS command.

Statement 23¢ allows you to call
the FNEW PCOS command, specifying

the command as the contents of the
string variable initialized in
statement 180.

SIC LAN6UAGE - REFERENCE MANUAL

SÜBPROGRAMS

Returns to PCOS and closes all data files.

Figure 10-7 SYSTEM Command

sVSTEN (PRo6R^r./)MMEDl^TE

Remrks

SYSTEM allows you to exit BASIC and return to PCOS. 1t may be used both
in a program and an immediate line. SYSTEM is often used at the end of an
initialization program which executes a series of PCOS commands and/or
Assembly language subprograms using CALL and EXEC statements.

PROCRAMMABLE KEYS

By using the mlHl and lllmlllwlln keys, in conjunction with other
non-shift keys, you may assign a special meaning to each key.

This may be a BASIC or PCOS command, an expression, a constant, or any

group of characters that you may find useful to have on the keyboard.
Assignment can be made either in a BASIC program via the CALL "pk" (or
EXEC "pk...") statement, or in PCOS via the PKEY command.

Depending on your needs, assignment of a specific function to a key can
be "permanent", automatically made every time you initialize the system,
or "temporary", to last until the next system initialization. For more
details see "Professional Computer Operating System (PCOS) User Guide".

BASIC KEYBOARDS

To define keys to enter BASIC statements inscribed into keys with USA
ASCIl or GREAT BRITAIN keyboards a program (called BKEYB0ARD.BAS) is

available.

10-13

This program is a sequence of PKEY statements which define the
corresponding keys to enter BASIC statements when pressed together with
ll,,I,Iri,I,,I.

This program is normally distributed on every system diskette. You can
run this program, entering:

bkm
in PCOS environment, or

RUN MBKEyBOARD.BASW m

in BASIC.

Running this program the key definitions will be valid until the next
system initialization. 1f you want the definitions to be loaded into
memory at every initialization, you must use a customised PCOS made by
the PSAVE command. For further information see "PCOS - User Guide".

DEVICE RE-ROUTING FROM BASIC

You may execute a PCOS command from BASIC by an EXEC or CALL statement,
also specifying a device re-routing parameter. The device selection
remain valid until you either execute another PCOS command which changes
it or you exit from BASIC, but if the EXEC or CALL statement makes a

permanent device selection, this continues to be valid also when you
return to PCOS.

Examples

lf you enter . ..

bam

EXEC UVL 1 : ,+D1 :OUTM m

EXEC M-D1 :OUTH m

10-14

THEN ...

the system loads BASIC and enters BASIC

(Command mode). The first EXEC statnient
displays the directory of the diskette
inserted in drive 1 and also stores what
appears on the video into OUT file.

This OUT file will be created if it does
not exist on the specified diskette. If it
exists, it will be overwritten. ,

BASIC LANGUAGE - REFERENCE MANUAL

SUBPROGRAMS

bam

11111-

The second EXEC statement disables this OUT
file as output unit.

EXEC "V11:,+dprt:" m

SysTEM m

bam

EXEC "+Prt" m

SysTEM m

the system enters BASIC.

The EXEC statement displays the directory
of the diskette inserted in drive 1 both on
the video and the printer.

The SYSTEM command returns to PCOS and the

|| printer is disabled as output unit.

The system enters BASIC.

The EXEC statement displays wliat appears on
the video (permanent selection).

The SYSTEM command returns to PCOS but does
not disable the printer, as the EXEC made a

permanent selection.

10-15

11. PFtoGRAM SEGMENTATION

AB0UT THIS CHAPTER

In this chapter we shall look at the techinque of Program Segmentation
and how to pass data from one program to another. We shall illustrate
CHAIN (and its several options) and common statements. Moreover, we shall
look again at the use of RUN and LOAD with the R option.

CONTENTS

WHEN USING PROGRAM SEGMEN-

TATI0N

PASSING DATA

PROGRAM CHAINING

CHAIN (PROGRAM)

COMMON (PROGRAM)

il=l

mm

11-2

11-3

11-6

PROGRAM SEGMENTATlm

WHEN USIN6 PR06RAM SEGMENTATI0N

Program segmentation means splitting a large program into two or more
smaller programs ("segments") which may be executed in sequence to solve
the same problem. Using this technique you may execute programs which
could be 1.arger than the available memory, but Program Segmentation is
useful in many other situations too (some of these situations are
illustrated in the following table).

1F . . . THEN. . .

a program is larger than the avail- you need to split it into several
able memory i small programs to be executed one

| after the other
a program has sections which are
rarely executed

a program has a section which must
always be resident, whereas other
sections may be transient (and/or
used by other programs)

you could code these sections as
separate programs and load them
into memory when necessary

you could code these sections as
separate programs. The resident
segment (root) will 1oad the first
transient segment (overlay) this
(or the root) will 1oad the second,
and so on

Each overlay (or a part of it) may
be deleted before a new overlay is
loaded

you could code these sections as
separate programs to reduce the
cost of programming

PASSING DATA

Program segmentation can imply the need to pass data f rom one segment to
another.

This may be done in several ways as shown in the following table.

1t-1

1F you use...

CHAIN in conjunction

with one or more COMMON

statements

CHAIN with ALL

CHAIN and the current

program accesses one
or more data files

RUN or LOA0 with the

option R, and the cur-
rent program accesses
one or rriore data
f i l es

THEN. . .

BASIC creates a "common area" which is not
deleted when the CHAINed program is loaded
(whereas the current program is deleted).

The common area is passed to the CHAINed program
and contains all the variables specif ied in the
COMMON statement(s)

all the variables defined in the current program
are passed to the CHAINed program

you may pass data to the CHAINed program via
data files.

The CHAIN statement does not close data files.

Passing data via data files is compatible with:

- CHAIN and COMMON statement

- CHAIN with ALL

- CHAIN with MERGE (and possibly DELETE - see

the DELETE option explanation later in this
Chapter)

you pass data to the specified program via data
files,

N and LOAD with R do not close data files

PROGRAM CHAINING

As we have already seen program segmentation may be performed by the use
of:

- CHAIN and COMMON statements

-RUN and LOAD commands.

11_2 BASIC LANGUAGE - REFERENCE MANUAL

PROGRAM SEGMENTATI0N

The CHAIN statement, with its several options, 9ives you a powerful tool
for segmenting a program.

CHAIN may be used either:

- in conjunction with COMMON statements to pass common variables to the

CHAINed program, or

- with the MERGE option to merge the CHAINed program with the current one

(DELETE is often used in conjunction with MERGE to delete a section of
the program, allowing overlays to be loaded in sequence) or

- with the option ALL to pass all the variables to the CHAINed program.

•:)„.t," (mo6RAü ' `.

Chains a specified program to the program in memory and allows you to

pass variables.

CHAIN leaves the files open and preserves the current OPTI0N BASE set-
ting.

Figure 11-1 CHAIN Statement

Where

SYNTAX ELEMENT MEANING

|specifies that the CHAINed program is MERGed
! with the program in memory. The CHAINed program

lmust be an ASC11 file.
1

1

iE=

file identifier

line number expression

11-4

1F MERGE is omitted, the program in memory is
deleted (except the common area) after the
CHAINed program has been loaded.

It is often used with line number expression and
DELETE to load overlays (see Examples).

Note: MERGE option preserves variable types for
==rby the CHAINed program. When using the
MERGE option, user-defined functions will be un-
defined after the merge is complete

is a string expression which specifies the
program file to be CHAINed

is either a line number or an expression that
evaluates to a line number in the CHAINed pro-

gram.

lt is the starting point for execution of the
CHAINed program.

1t is often used with MERGE and DELETE to load
overlays.

1f it is omitted, execution begins at the first
line,

Note: Line nuniber expression is not affected by
a RENUM command

specifies that all the variables of the prograh
in .memory are to be passed to the CHAINed

program. (It preserves variable types).

1f it is omitted, information is passed either
by the use of a common area or by the use of
data files

spec±f±es tby a. range of]±ne numbers, tTF=_t ä
ection of the current program has to be

deleted.

BASIC LANGUAGE - REFERENCE MANUAL

PROGRAM SEGMENTATI0N

Examples

EH55555H5H

The DELETE operation comes before the CHAINed

program has been loaded.

DELETE is often used with MERGE and line number
expression, to load overlays.

Note: The line numbers used after DELETE are
=Ff=:cted by a RENUM command

DISPLAY COMMENTS

10 REM PROG1 program .PROGl chains PROG2 and
2¢ COMMON A1,81,C1 S10¢CHAIN"PROG2" passes the values of A1,B1, and

CIS to it (by use of a common
area) .

PROG2 resides on the last sele-11¢ END

cted drive.

10 REM PROG2 program PROG2 chains PROG3 and
20 COMMON A2S,82S80CHAIN''PROG3",200 passes the values of A2S and 82S

to it (by use.of a common area).

The starting point for execution
9¢ END of PROG3 is line 2¢¢.

PROG3 resides on the last selected
drive

10 REM PROGIO5¢CHAIN"1:PR0611",1¢¢, ALL program pROGll chains PR0G11 anä

passes all the program variables
to it.

i The starting point for execution
60 END 11

of PROG11 is line 1¢0.

11-5

}

10 REM R00T

1¢0 CHAIN MERGE "V1:OVERLAY1",1000

11¢ END

1000 REM 0VERLAY1

15¢¢ CHAIN MERGE "V1:OVERLAY2",

10¢0, DELETE 1¢¢0-15¢¢

1510 END

PROG11 resides on the diskette
inserted in drive 1

:R00T chains OVERLAYl with the'option MERGE. OVERLAYl must be an

ASCIl format f ile residing on the
disk named V1.1t will be executed
starting from line 100¢

OVERLAYl chains OVERLAY2 with the

option MERGE. OVERLAY2 must be an

ASCIl format file residing on the
disk named V1. Before it is loaded,
lines 100¢ to 1500 will be deleted
in memory.

OVERLAY2 will be executed starting
from line 1000

Def ines a common area which is not erased by the CHAINed program and
allows you to pass variables from one program to another.

Figure 11-2 COMMON Statement

11_6 BASIC LANGUAGE - REFERENCE MANUAL

Examples

DISPLAY

10 REM PG1

COMMENTS

MMON statements are used in conjunction with a
2¢ COMMON A1,B1,C1,DIS (!CHAIN statement.

CHAIN "VOL2:PG2"

REM PG2

PRINT A1,81,C1,D1 S

\(!:enptrs°.gram may have One or more COMM0N state_

Variables specified in these statements are
allocated in the common area starting from the
beginning and in the order in which they appear
in the program.

CHAINed program need not specify, through
the use of COMMON statements, the common
variables specified by the CHAINing program.

The CHAINed program will use these variables
with the same names specified in the CHAINing

Program.

1n our example the values of the variables A1,
81, Cl and DIS in the program PGl are passed to
the CHAINed program PG2, which may display them

(see statement 2¢).

11-7

10 REM PROGRAM1

2¢ COMMON AS,BS,C$

3¢ COMMON AS,A1

10¢ END

10 REM PG1

2¢ DIM A1(15,20)

30 COMMON A1(),B1,C1

10¢ CHAIN "VOL2:PG2"

110 END

1¢ REM PG2

50 PRINT A1(1,1)

90 ENO

10 REM modl

2¢ A=1 : 8=2

3¢ COMMON A,B

4¢ GOTO 6¢

50 COMMON C

6¢ CHAIN "mod3"

10 REM mod2

20 A=1 : 8=2

3¢ COMMON A

4¢ GOTO 6¢
5¢ COMMON 8

60 CHAIN "mod3"

10 REM mod3

2¢ PRINT A;B

it is not good programming practice to repeat a
same variable name (in this case AS) either in
different COMMON statements of the same program,
or in the same COMMON statement. In any case
multiple definitions are equivalent to a single
defini tion .

a COMMON statement can also specify array names.
Such specifications are followed by a pair of
pa rentheses .

Each use of common array must be explicitly
described by a DIM statement in the CHAINing

program (but not in the CHAINed one, otherwise a
"Duplicate Definition" error occurs).

The DIM statement must be written before the
associated COMMON statement.

The COMMON statement is a declarative statement,
thus it allocates a common area even if control
of execution does not pass through it.

For example, when executing program "modl" an
"Illegal function call in 50" is issued, as

variable C has not been initialized. When
executing program "mod2" instead, program "mod3"
is CHAINed: it displays both A and 8 variables,
even if statement 50 of "mod2" is jumped over.

Remark

Co.mmon variables must always be initialized within the CHAINing program.

BASIC LANGUAGE - REFERENCE MANUAL

12. DISK FILE HANDLING

AB0UT THIS CHAPTER

This chapter describes the two types of external data files available;
sequential and random files. We shall see how each is created, opened and
closed and how to get data in and out of them.

CONTENTS

SEQUENTIAL AND RANDOM FILES

SEQUENTIAL FILES

RANDOM FILES

0PENING AND CLOSING FILES

OPEN (PROGRAM/I"EDIATE)

CLOSE (PROGRAM/1"EDIATE)

WRITING A SEOUENTIAL FILE

PR INT # (PROGRAM/1"EDIAT E)

PRINT#USING (PROGRAM/

1MMEDIATE

WRI TE # (PROGRAM/1"ED IAT E)

LOC (PROGRAM/1"EDIATE)

READING A SEQUENTIAL FILE

1NPUT # (PROGRAM/lMMEDIATE)

12-1 UPDATING A SEQUENTIAL FILE 12-27

12-2 DEFINING A RECORD LAYOUT 12-27

12-3 FIELD (PROGRAM/1"EDIATE) 12-28

12-3 WRITING RECORDS T0 A RANDOM 12-30

FILE

12-4

LSET/RSET 12-31

12-7 (PROGRAM/IMMEDIATE)

12-9 MKIS/MKSS/MKDS

(PROGRAM/I"EDIATE}
12-10

12-16

12-17

12-18

12-19

12-20

LINE INPUT# (PROGRAM/ 12-23

1MMEDIATE)

EOF (PROGRAM) 12-26

12-33

PUT-File (PROGRAM/IMMEDIATE) 12-35

LOC (PROGRAM/1"EDIATE) 12-37

READING RECORDS FROM A 12-38

RANDOM FILE

GET-File (PROGRAM/1MMEDIATE) 12-39

CNl | C:NS / C;ND

(PROGRAM/IMMEDIATE)

UPDATING RECORDS 0F A

RANDOM. FILE

12-41

12-42

SEQUENTIAL AND RANDOM FILES

A data file is created (i.e. made known to the system) either by:

- the PCOS command FNEW which gives a name to a new file and specif ies

its initial size

~ the OPEN statement which allows a BASIC program to access the file.

OPEN gives a name to a file (which has not yet been created by FNEW or
another OPEN). Moreover it associates a data buffer with the file (to be
used for any lnput/Output operation) and specifies an access mode.

lf you must create a very large data file and you know the final file
size fairly accurately, then create the file by FNEW instead of by an
OPEN statement. FNEW will allocate a sequence of contiguous disk sectors
to the file thus making lnput/Output operations more efficient. Moreover
FNEW will assure you that there is enough room for the file on the disk.

A11 files are "byte stream" only, and thus have no intrinsic data format
or data interpretation upon 1/0. There are five possible modes to open a
file in, however. These modes control only the type of access that will
be allowed, and do not add any interpretation of the data flow.

The access mode may be changed for a file each time it is re-OPENed.

The table below summarizes the main features of a data f ile and
classifies files into two categories (sequential and random) depending on
the access mode used.

FILE TypE m CHARACTERISTICS

Sequential (or Stream-1 ; a sequential file is
or iented)

ACCESS MODE

considered as a
sequence of ASC11 char-
acters without any
grouping criterion.

The number of data
items read or written
by each lnput/OLitput
statement can vary and
is usually determined
by the list of vari-
ables specified in the

1nput: sequential input
(one item after an-
other) from the begin-
ning of the file

Output: sequential out-
put f rom the beginning
of the file. Data on
the file (if any) is
lost

Random (or Record-
oriented)

a random file is
considered as a se-
quence of data grouped
in records.

Each lnput/Output
statement iTiay read or
write one record at a
time,

The records of a ran-
dom f ile all have the

1ength and struc-

SEQUENTIAL FILES

Sequential files are the simplest way to
storing f ree-form data (which may not be
that is written to a sequential file is
(sequentially), in the order it is sent
order.

Append: sequential out-

put f rom the end of the
file. Data on the file
is not lost

Random: direct access
lnput/Output to the
specified record

Examine: direct acess
lnput from the specifi-
ed record.

store data. They are ideal for
grouped in records). The data

stored, one item after another
and is read back in the same

There are several points to bear in mind:

-if you open a sequential file in Output, you start writing at the
beginning of the file and the file's previous contents are lost

-if you open a sequential file in Append, you start writing after the
last data item on the file

-to update a sequential file, open the file in lnput, read the file and
write the updated data to a new file which must have been opened in
Output

-data written on a sequential file usually includes delimiters to signi-
fy whei e each data item begins and ends

12-2 BASIC LANGUA6E - REFERENCE MANUAL

DISK FILE HANBL"G

- to read a sequential file, you must open it in lnput and you must know
the format of the data; whether for example, the file consists of
numbers separated by blanks, or of numbers and strings separated by
commas

-a data item on the file is always written as a string of characters

(one byte for each character of data). For example, the number:

351. 27

requires 6 bytes of disk storage, excluding the delimiters (which may
be blanks or commas).

RANDOM FILES

These are ideal for storing data which may be grouped in records. The
records of a random file must all be of the same length.

Accessing random files requires more program steps than sequential files
but there are advantages when using random files:

- instead of having to start reading or writing at the beginning of a
file, you can read or write any record you specify

-to update a file, you do not have to read the entire file, update the
data and write it again. You can rewrite or add to any record you
choose, without accessing all the preceeding records

-opening a random file allows you to read and write from the file via

the same buffer.

-opening a random file in Examine, you can read any record you specify

OPENIN6 AND CLOSIN6 FILES

To access a file with a BASIC program, you must open it with an OPEN
statement. This specifies the file identifier, the access mode, the file
number and if the file is a random file, the record length.

The maximum number of concurrent files (i.e., OPENed at the same time may
be set by the PCOS command SBASIC or assumed by default (the default
value is 3). The maximum number cannot exceed 15.

12-3

Whenever you open a file, a file (or buffer) number is associated with
the file. Each buffer is given a number from 1 to 15. You will use this
number to specify the file in any 1/0 statement of your program. You can
think of a buffer as a waiting area that data must pass through on the
way to and f rom the disk file.

For random files, the user must define the structure of the buffer (i.e.,
of the records in the file) by fixing the length (in characters) of each
data item within the buffer by a FIELD statement.

When you access a file by an lnput/Output statement, you must specify the
file by its file number instead of its identifier.

When you CLOSE a file you delete the connection between the file and its
buffer and that file may no longer be accessed, until you re-OPEN it. If

you re-OPEN it, you may associate either the same or another buffer with
the file.

-¥:-`:-`' ` `+'~OPE.N (p"RwiMrEDi^TE)

Opens a disk file allowing lnput/Output operations on the file.

1f the specified file is not found it will be created (unless access
mode is "1" or "E" -See Remark below).

Figure 12-1 0PEN Statement

Where

SYNTAX ELEMENT

access mode

12-4

MEANING

is either a string constant or a st.ring variable
containing one of the following characters:

BASIC LANGUAGE - REFERENCE MANUAL

I)ISK FILE HANDLING

file number

file identifier

record length

-"A" (Append): sequential output after the last
data item on a sequential file. Data on
the file (if any) is not lost, new data
will be added at the end

-"E" (Examine): Input access to the records of

a random file

-"1" (1nput): sequential input starting from
the beginning of a sequential file

-"0" (Output): sequential output starting from
the beginning of a sequential file. Data
on the file (if any) is lost

-"R" (Random): Input/Output access to the

records of a random file

Note: 1f a sequential file is empty (i.e. does
F5Tcontain data), "o" and "A" are equivalent

is a numeric expression whose value, rounded to
the nearest integer, must be in the range 1 to
15. The specified file number remains associated
with the file as long as it is open and will be
used to specify the file in any 1/0 statement in
the program

is either a string constant or a string variable
and may specify:

-a new file (i.e. unknown to the system); in

this case the file is created (except for
access mode "1" or "E")

-an existing file; in this case the file is
only OPENed

is a numeric expression (rounded to the nearest
integer) which, if included, sets the record
length of a random file.

This parameter may only be set for random files.
1ts default value is 256 bytes.

1ts maximum value is that of the record size
parameter set by the PCOS command SBASIC. SBASIC
can set the record size parameter f rom 1 to
4096 (with a default value of 256)

;!..-

Examples

DISPLAY

50 0PEN "A",1,"V1 :EXAMPLE"

160 OPEN ''0",2,"V1 :TEST"

27¢ OPEN "R",3,"V2:F1",8¢

28¢ OPEN `.R",4,''V2:F2'',2¢

49¢ CLOSF 2

50ß OPEN "1",5,"V1 :TEST"

60¢ OPEN "R",2,FILES,RN

7¢0 OPEN "E",6,"1:ARCHIVE",6¢

_lT___
J_, L________

COMMENTS

Statement 5¢ opens the sequential
file EXAMPLE, which is resident on
the disk named V1. The access mode
is Append and f ile number 1 is
associated with the file.

Statement 160 opens the sequential
file TEST, which is resident on the
disk named V1. The access mode is
Output and file number 2 is asso-
ciated with the file.

Statement 270 opens the random file
F1, which is resident on the disk
named V2. The file number 3 is
associated with the f ile and a
record length of sß bytes is set.

Statement 28¢ opens the random f ile
F2, which is resident on the disk
named V2. The file number 4 is
associated with the file and a
record length of 2¢ bytes is set.

: Statement 49¢ closes the file TEST.

Statement 500 re-opens the file
TEST in lnput mode and associates
the file number 5 with it.

Statement 600 opens a random file,
whose identif ier is the contents of

i the string variable FILES. The

record length is the contents of
! the numeric variable RN. The as-

sociated file number is 2. 1t has
been made available by statement
4%

BASIC LANGUAGE - REFERENCE 'MANUAL

I)ISK FILE HANI)LING

Statement 7¢¢ opens the random file
ARCHIVE which is resident on the
diskette in drive 1. The access
mode is Examine, file number 6 is
associated with the file and a
record length of 60 is set

Remark

You cannot create a file by an OPEN statement if you specify "1" or "E"
as access mode. If you try to, a "File not found" error occurs.

.'-L CLoSE (PROGRAM/IMMEDIATE)

Closes disk files.

Figure 12-2 CLOSE Statement

mere

SYNTAX ELEMENT

file number

MEANING

is a numeric expression whose rounded value
specif ies the number of the buffer associated
with the file. This number must be f rom 1 to 15.
A CLOSE with no parameters closes all open data
files

12-7

Examples

170 CLOSE#2

250 A=6

290 CLOSE 3,5,A

1200 CLOSE

Characteristics

COMMENTS

Statement 170 closes the file whose
file number is 2.

Statement 290 closes the files
whose file numbers are 3,5 and 6
(if A equals 6).

Statement 12¢¢ closes all the
files

a CLOSE is executed

THEN . . .

the association between a f ile and
its buffer is deleted; that buffer
may now be reused to OPEN any file.

A CLOSEd file may be re-OPENed by

another OPEN statement (within the
same or another program) and any
f ree buffer may be associated with
the file

an END statement or a SYSTEM com- ' all 0PENed data files are CLOSEd
mand is executed

a |iH|Em is issued :! all OPENed data files are CLOSEd,
and any data still in tbuffers, and

IE!M
any modif ication is made to the
current program (1ine insertion,
line editing and so on...)

either a CHAIN statement or a LOAD

(RUN) command with the option R is
executed

12-8

yet written to disk will be

all OPENed data files are CLOSEd

no OPENed data files are CLOSEd

8ASIC LANGUAGE - REFERENCE MANÜAL

Reinark

lt is good programming practice to always CLOSE a file when you have
finished with it, unless you want to chain another program (by CHAIN or
RUN with the R option or LOAD with the R option) working on the same
files and with the same acces mode. A LOAD or RUN without the R option,
or a SAVE command close all open files.

mlTING A sEQUENTIAL FILE

To write a sequential file you must OPEN it in Output ("0") or Append
(.,A") .

Output statements are PRINT#, PRINT# USING and WRITE#.

PRINT# and WRITE# output standard format data, whereas PRINT #USING
outputs data in a user defined format.

The difference between PRINT# and WRITE# is that:

- PRINT# writes data to a disk in the same format used by the PRINT
statement

- WRITE# writes data to a disk in the same format used by the WRITE
statement, i.e. inserting commas between data and quoting string values.

Note: LOC function may be used to know the number of sectors (256 byte
5T6;ks) written to or read from the a file since it was OPENed, to avoid
a "Disk full" error message.

The following steps are required to write data to a sequential file.

12_9

iiiiiiiiiiiiiiiiiiiiiiiEllE

7p. ~ `PRINT # (PR06RAM/"MEDIATE)

Writes data to a sequential file, in the same way as the PRINT statement.

12-1ü BASIC LANGUAGE - REFERENCE MANUAL

Figure 12-3 PRINT# Statement.

Remark

An image of the data is written to the disk, just as it would be dis-
played on the screen with a PRINT statement. For this reason, care
should be taken to delimit the data on the disk, so that it will be input
correctly from the disk.

Characteristics

1F. . . THEN . . .

a PRINT# statement is executed data is output sequentially to the
specified file

1 2_11

>

the file is OPENed for Output ("0") the file pointer is set to the
beginning of the file, therefore
your f irst PRINT# places data at
the beginning of the file.

For each PRINT# operation. the

pointer advances, so the values are
written in sequence

the file is OPENed for Append ("A") the f ile pointer is set to the end
of the file, therefore, your first
PRINT# places data after the last
data item on the file. For each
PRINT# operation the pointer ad-
vances, so the values are written
in sequence

you want to set up your PRINT# list
correctly for access by one or more
lNPUT# statements

remember that a PRINT# statement
creates a disk image similar to
that which a PRINT creates on the
screen .

PRINT# writes an AScll coded image
of the data. The punctuation in the
PRINT# 1ist is very important.

Unquoted commas and semicolons have
the same effect as they do in PRINT
statements

you have to output numeric values
(resulting from the evaluation of a
numeric, relational or logical ex-
pression)

12-12

you may use both commas or semi-
colons to separate the expressions.

Generally you would not want to
waste disk space, so you should use
semicolons instead of commas.

For example: ,

BASIC LANGUAGE - REFERENCE MANUAL

LIST

10 OPEN "0",#1,"DATA1"

2¢ A=1 :B=2:C=3

3¢ PRINT#1,A;B;C

40 CLOSE#1

50 OPEN "I",#1,"DATA1"

60 INPUT#1,A1,81,C1

7¢ PRINT A1 ;81 ;C1

80 CLOSEffl

%END
0k
RUN

123

0k
30 PRINT#1,A,B,C

RUN

123

0k

lf you separate the variables A,B
and C in statement 3ß with commas
instead of semicolons the program
displays the same results but you
waste disk space.

With semicolons the disk image will
be:

123

With commas it will be:

23

you have to output string values you have to insert explicit de-
limiters, if you want to INPUT#
them as distinct strings

you have to output string values
which do not contain commas, semi-
colons, significant leading or
trailing blanks, carriage returns
or line feeds

use a comma as a string constant
(",") to separate string expres-
sions in the PRINT# statement. Thus
data items will be separated on the
disk by a comma and will be read
back as different strings by an
lNPUT#statement.

D

example:

10 OPEN "0",#1,"DATA1"

2¢ AS="CAMERA"

111:;

BS=..936¢5-2"

PRINT#1, AS ; BS

50 CLOSE#1

6¢ OPEN "1",#1,"DATA1"

701NPUT#1,A1$

8¢ PRINT A1$

90 CLOSEffl

100

Ok

RUN

CAMERA936¢5-2

1:; PRINT#1, AS ; " , " ; BS

936ß5-2

1f you separate AS and BS by a
semicolon in statement 40, the disk
image will be:

CAMERA936¢5-2

;lBecause there are no delimiters

n::: :::,r::S.beTO£ncpourtre:: ::: ;::::
1em, insert an explicit delimiter
(",") into statement 40 and modify
statements 7¢ and 8¢ too. The disk
image will be:

||CAMERA,936¢5-2

This can be read back into two
string variables (see the new run)

12-14 BASIC IANGUAGE - REFERENCE MÄNUAL

you have to output string values
containing commas, semicolons,
significant leading or trailing
blanks, carriage returns or line
feeds

write them to disk and surround
them by explicit quotation marks,
CHRi (34) .

For example:

1¢ OPEN "0'.,#1,'.DATA1"

2¢ AS="CAMERA, AUTOMATIC"

3¢ BS=" 936¢5-2"
4¢ PRINT#1,AS;B$

50 CLOSEffl

60 0PEN ''1'',#1,"DATA1"

70 INPUT#1,AS,B$

8¢ PRINT AS;B$

90 CLOSE#1

100

Ok

RUN

CAMERAAUTOMATIC 93605-2

0k

4¢ PRINl#1,CHRS(34) ;AS;CHRS(34) ;

cHRS(34); BS;cms(34)
RUN

CAMERA, AUTOMATIC 93605-2

0k

Statement 40 writes the following
image to disk: `

CAMERA, AUTOMATIC 93605-2

and statement 79 inputs

CAMERA

to A; and

AUTOMATIC 93605-2

to BS, as you can check by state-
ment so, when you run the program
for the first time. 1f you change
statement 4¢ gs indicated, you
write the following image to disk: D

"CAMERA, AUTOMATIC" 93605-2"

and statement 7¢ inputs

"CAMERA, AUTOMATIC" to AS and

" 936¢5-2" to BS, as you can

check by statement 8¢, when you run
the program for the second time

Writes data to a sequential f ile in a user def ined format in the same way
as PRINT USING statement displays data on the screen.

Figure 12-4 PRINT# USING Statement

Where

BASIC LANG

Remarks

Care should be taken to delimit data items on the disk, so that they will
be input correctly by an INPUT# statement.

For example, the statement:

PR I NT#1 , U S I NG ' ###. ##, ' ' ; A , 8 , C , D

could be used to write numeric data to disk without explicit delimiters.
The comma at the end of the format string serves to separate the items in
the disk file.

See Chapter 7 for full details of the facilities offered by the PRINT
USING statement.

Writes data to a sequential file, in the same way as the WRITE statement
displays data on the screen. Each data item will be separated from the
preceding one by a comma. Strings will be delimited by quotation marks
("). After the last item in the list is written to disk, BASIC inserts a
carriage return/1ine feed.

Figure 12-5 WRITE# Statement

Where

}

expression is a numeric, relational, logical or string
expression to be written to the file

Remarks

lt is not necessary to put explicit delimiters in the list of a WRITE
statement

lf you want to write a string to a disk file that contains a quotation
mark ("), you must use a PRINT# instead of a WRITE# statement. A

quotation mark may be inserted by the CHRS(34) in a string value which
does not contain commas, semicolons, significant leading or trailing
blanks, carriage returns or line feeds. A quotation mark may also belong
to a string variable whose value is assigned by use of .tiie READ and DATA
statements, or by an lNPUT (LINE INPUT, INPUT#, LINE INPUT#) statement.

Example

DISPLAY

1¢ OPEN "0'',1,"DATA2"

20 AS="CAMERA"

30 BS="936¢5-2"
40 WRITE 1,AS,B$

50 CLOSE 1

6¢ OPEN "1",1,"DATA2"

70 INPUT 1,AS,B$

8¢ WRITE AS,B$

90 CLOSE 1

LOC (PR06RAN/1MMEDIATE)

COMMENTS

Statement 40 writes the following
image to disk:

"CAMERA`` , "936¢5-2"

Statement 70 inputs "CAMERA" to AS
and "93605-2" to BS, as you can
check by statement sO

With sequential files, LOC returns the number of sectors (256 byte
blocks) read from, or written to the file, since it was OPENed.

12-18 BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLIN6

LOC function may also be used with random files (see below).

Figure 12-6 LOC Function

SYNTAX ELEMENT MEANING

file number is a numeric expression rounded to
the nearest integer. It is the
number of the buffer associated
with the file

Example

20¢ 1F LOC(2)>30 THEN STOP

REAI)1NG A SEQUENTIAL FILE

To read a sequential file, you must open it in lnput mode ("1").

INPUT# and LINE INPUT# statements allow you to read data from a sequen-
tial file. lNPUT# reads one or more data items separated by delimiters
and assigns them to numeric and or string variables. LINE INPUT# reads an
entire line and assigns it to a string variable.

Besides these two statements, BASIC allows you to use the following two
functions, which are very useful in handling sequential files:

- the EOF function which allows you to test whether an end of f ile

condition exists to avoid further read operations which would cause the
following message to appear:

Bää==5BgägBäHffiffiRBgffiEä85Bffi

1nput past end

- the LOC function which tells you the number of sectors (256 byte

blocks) read from or written to the file, since it was OPENed.

The following program steps are required to read data from a sequential
file.

STEP OPERATI0N EXAMPLES

1 1

i:::na:h:c::::im:::Clfying

10 0PEN '`I",#2,"DATA"

2
!

: input a series of numeric

i

5¢ 1NPUT#2,XS,YS,Z

and/or string values from
the file, using an lNPUT#,and/oraLINEINPUT#
and/or string values from
the file, using an lNPUT#

i5UNPUT#2,XS,YS,Zand/or a LINE INPUT#

i

stätement

3 !! repeat step 2 for each ir+

1

1¢¢ INPUT#2,X1,X2,X3,X415¢1NPUT#2,US,WS
put operation (possibly
testing for End Of File)

;1

11

4 Hwhenyouhavefinished
i

i 2¢0 CLOSE#2with the file, close it,(unlessanotherCHAINed
i

1 ' program uses the file

with the same access mode)

1NPUT# (PROGRAM/IIllEDI^TE)

Reads data items from a sequential file and assigns them to program
variables.

12-20 BASIC LANGUAGE - REFERENCE mNUAL

nlsK FILE HANDLING

Figure 12-7 1NPUT# Statement

SYNTAX ELEMENT MEANING

file number is a numeric expression whose rounded value
specifies the number of the buffer associated
with the file

variable is the name of a variable which will receive a
data item from the file

Remark

Unlike lNPUT, the lNPUT#statement does not display a prompt (?) when it
is executed.

Characteristics

1F. . . THEN. . .

an lNPUT# statement is executed data is input sequentially from the
specified file. That is, when the
file is first opened, a pointer is
set to the beginning of the file.
Each time a data item is input, the
pointer moves to the next data
item. To restart reading from the
beginning of the file, close the
file and re-open it

}

you want to input data successfully

BASIC is inputting to a numeric
variable

BASIC is inputting to a string
variable

you need to know the type (numeric
or string) of each successive data
item on the file. Data items must
be separated by delimiters (see
below)

Note: Numeric items may be input
I==: string variables. If you input
a number into a string, use the VAL
function to get the numeric value,
to prevent mismatched type errors.

1eading spaces, carriage returns
and line feeds are ignored. The
first character encountered that is
not a space, carriage return or
line feed is assumed to be the
start of a number. The number
terminates on a space, carriage
return, line feed or comma.

Note: Numeric conversions are val-
iäTThat is a numeric constant may
be assigned to a numeric variable
of different type, as with a LET,
an lNPUT or a READ statement (see
Chapter 5)

leading spaces, carriage returns
and line feeds are also ignored.
The first character encountered
that is not a space, carriage
return, or line feed is assumed to
be the start of a string item

the first character is a quota- the string item will consist of all
tion mark (") characters read between the first

quotation mark and the second. The
quotation marks themselves do not
become a part of the string. (Thus,
a quoted string may not contain a
quotation mark as a character)

12-22 BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDL"G

tion mark
string is an unquoted string

and will terminate with a comma, or
carriage return, or line feed (or
after 255 characters have been
read) .

For example, if the data on disk
is:

SUBROUTINES,SUBPROGRAMS "HOW T0

CALL THEM?"

the statement:

INPUT#1 , RS , S S , TS

will assign values as follows:

RS = SUBROUTINES

SS = SUBPROGRAM "HOW T0 CALL THEM?"

TS = null string

lf you insert a comma on the disk
f ile before the first quotation
mark, i.e.

SUBROUTINES,SUBPROGRAMS, "HOW T0

CALL THEM?"

the same lNPUT# statement will
assign:

RS = SUBROUTINES

SS = SUBPROGRAM

TS = "HOW T0 CALL THEM?"

Reads an entire line (up to a carriage return) from a sequential file and
assigns it to a string variable.

12-23

Figure 12-8 LINE INPUT# Statement

SYNTAX ELEMENT MEANING

file number is a numeric expression whose rounded value
specifies the number of the buffer associated
with the file

string variable is the variable name to which the line will be
assigned

Characteristics

1F. . . THEN. . .

a LINE INPUT# statement is executed a line of string data is read into
the specified string variable.

LINE INPUT# reads all characters in
the file up to:

- a carrlage return, or

- a carriage return/line feed, or

-the end of file, or

- the 255th data character (this
255 character is included in the
string)

REFERENCE MANUAL

leading characters or other delim- they are included in the string
iters are encountered - quotation
marks, commas, blanks, and so on..

you want to read in data without use LINE INPUT# statements
following the usual restrictions
regarding leading characters and
terminators

you want to read an ASC11 - format use LINE INPUT# statements. (You
BASIC program file as data can write programs that edit other

ASC11 programs; renumber them,
change LPRINTs to PRINTs, etc.)

Remarks

LINE INPUT# reads all characters in the sequential file up to a carriage
return. lt then skips over the carriage return/1ine feed sequence and the
next LINE INPUT# reads all characters up to the next carriage return (1f
a line feed/carriage return sequence is encountered, it is preserved).

Example

DISPLAY COMMENTS

LIST this program counts the number of
10 INPUT "PROGRAM IDENTIFIER";PS 1ines in an AScll format program
2¢ OPEN "I„,1,PS file. Each line ends with a car-
3¢ K96=O riage return/line feed, thus the
4¢ 1F EOF(1) THEN 8¢ LINE INPUT# in line 6¢ reads one
5¢ K%=K%+1 entire line at a time, into the
6¢ LINE INPUT#1,AS dummy variable AS. Variable K%
70 GOTO 40 counts the lines of the program }
80 PRINT PS " ls" K°6 "LINES LONG"
90 CLOSE

1¢0 GOT010

11¢ END

Ok

RUN

12-25

PROGRAM IDENTIFIER? V1 :PI

V1:P11S 350 LINES LONG

PROGRAM IDENTIFIER? V1 :P2

V1:P21S 152¢ LINES LONG

PR06RAM IDENTIFIER?^ C

Break in 1¢
Ok

EOF (PROGRAM)

Returns -1 (true) if the end of a sequential file has been reached.

Use EOF to test for end of file while INPUTting, to avoid "1nput past
end" errors.

Figure 12-9 EOF Function

SYNTAX ELEMENT MEANING

file number is a numeric expression rounded to the nearest
integer. 1t is the number of the buffer
associated with the file

Example

10 DIM A(5¢)

2¢ OPEN "1",1,"DATA1"

30 FOR K%=g TO 50

12-26 BASIC LANGUAGE - REFERENCE MANUAL

401F EOF(1) THEN 100

50 1NPul.jffl ,A(l{%)

6¢ NEXT 1(%

UPI)ATING A SEQUENTIAL FILE

To update a sequential file, read in the file and write out the updated
data to a new output file, as indicated by the following table.

STEP OPERATloN

1 Open the sequential file to be updated for lnput

2 Open another new sequential file for Output

3 lnput a list of data and update them as necessary

4 Output the updated data to the new file

5 Repeat steps 3 and 4 until all data has been read, updated and
output to the new file; then go to step 6

6 Close both files (unless you want to chain a program working on
the same files with the same access mode)

DEFININ6 A RECORD LAYOUT

After opening a random f ile you have to def ine the record layout by a
FIELD statement. FIELD organizes the random file buffer so that you can
pass data from the program to disk and vice versa. The record can be
divided up into any number of fields by a FIELD statement, but the total
number of bytes allocated in a FIELD statement must not exceed the record
length that was specified when the file was OPENed. Otherwise, a "Field
overflow" error occurs. (The default record length is 256).

The FIELD statement sets up the size of each of these fields and allows
string variable names to point to each field. These field names, unlike
ordinary strings which point to an area in memory called "string space",
point to the buffer area associated with the file.

A11 data, both strings and numbers, must be placed into the buffer in
string form. There are three pairs of functions (MKIS/CV1, MKSS/CVS,
MKDS/CVD) for converting numbers to strings and vice versa.

Note: Do not use a field name in an lNPUT statement, or on the left side
äTa LET statement. That name wiii no ionger point to the buffer fieid
(but to the string space); therefore, you will not be able to access that
field using the previously assigned field name.

`¥IELD (PR06RAM/1MMEDIATE)

Defines fields in a random file buffer.

Figure 12-10 FIELD Statement

SYNTAX ELEMENT MEANING

file number is a numeric expression whose rounded value
specifies the number of the buffer associated
with the file

field width is the number of bytes to be allocated to the
field. One byte corresponds to one characters of
data

field name s the string name to be assigned to the f ield
ef ined by the immediately preceeciing f ield
idth

BASIC LAN6 EFERENCE MANUAL

DISK FILE HANßLING

Examples

DISPLAY COMMENTS

20 FIELDffl ,15 AS NAMES,2ß AS CS,

1ß AS Pi

80 NAMES=BS (Wrong)

100 LSET NAMES=BS (Right)

Statement 2¢ allocates the first 15
positions (bytes) of the random
file buffer#1 to the name NAMES,
the next 20 to CS and the (last) 10
to Pi.

After executing statement sO NAMES
becomes an ordinary string variable
name. You will not be able to
access the first f ield of the
buffer any more.

Use statement 100 instead (see
LSET,/RSET statements below)

30 FIELD#2,128 AS NIS,128 AS N2S

100 FIELD#2,128 AS N3S,100 AS N4S,

28 AS N5S

You may use FIELD any number of

times to "re-organize" a f ile
buffer .

Re-organizing a buffer by a FIELD
statement does not clear the con-
tents of the tiuffer; only the
means of accessing the buffer
(the field names) are changed.
Thus two or more f ield names can
reference the same area of thel)uffer

50 FIELD#3,16 AS KS(1),112 AS LS(1)

90 FIELD#3,128 AS DUMMYS,

16 AS KS(2),112 AS LS(2)

You may use a duminy variable in a
FIELD statement to "pass over" a

portion of the buffer and start
f ielding it somewhere in the
middle.

1n the second FIELD statement,
DU"YS serves to move the starting
position of KS(2) to position 129

Remarks

lt is good programming practice that the sum of all the f ield widths
equals the record length specified by the OPEN statement. 1n any case

12-29

this sum must not be greater than the record lenght, otherwise a "Field
overflow" error occurs.

WRITING RECORDS T0 A RANDOM FllE

To write records to a random file, you must open it, specifying "R" as
access mode.

The PUT-File statement allows you to write a record to a random file. The
contents of the record must have been prepared within the random buffer
before executing the PUT-File statement by LSET or RSET statements. LSET
and RSET move data from memory to the random file buffer by allocating
string expressions to the field names previously defined.

If the string expression uses less bytes than you had allocated in the
FIELD statement the extra space allocated is padded with blanks. These
blanks can be set to be on the left or the right of the string expression
value. Left justification (see the LSET statement) starts at the first
position of the field. Right justif ication (see the RSET statement)
finishes at the last position of the f ield. When you have to transfer
numeric values into the buffer you must convert them to strings by the
MKIS, MKSS and MKDS functions.

Note: The LOC function either returns the record number written from a
FÜF=File statement or gets the record number just read from a GET-File
statement.

The following program steps are required to write records to a random
file.

iT OPERATI0N EXAMPLE

1 open the file, specifying 1¢ OPEN "R",#1,"1:DIR",22
1

1

i"R" as access mode and
1i

'(optionally) the record

length

2 field the buffer 2¢ FIELD#,15 AS AS,5 AS BS,

2 AS C;

12-30 BASIC LANGUASE - REFERENCE MANUAL

DISK FILE HANDLING

11

lffi,L
LSET stores a string value in a random buffer field left justified, or

left justifies a string value in a string variable

RSET stores a string value in a random buffer field right justified, or
right justifies a string value in a string variable.

Figure 12-11 LSET/RSET Statements

12-31

SYNTAX ELEMENT MEANING

field name isa string variable name which specifies the
name of a fi eld of a random buffer

string variable the name of an ordinary string variable

MKIS/MKSS/MKDS the 'make' function which converts an integer
(MKIS), or a single (MKSS), or a double (MKDS)

precision value to a string value

string expression the string to be left or right justified in a
given field

numeric expression the numeric value to be converted to a string
and left or right justified in a given field

DISPLAY COMMENTS

10 0PEN "R",#1,"1 :MYFILE/MYPASS",20 Statements 30 and 40 put the data
20 FIELDffl,lg AS NIS,10 AS N2S in the buffer #1 as follows:
30 LSET NIS="CHARLES"

NliFTN2i[AMEslStatements 10¢ and 11¢ put the data4¢ LSET N2S="JAMES"10¢RSETNIS="CHARLES"

11¢ RSET N2S="JAMES"200LSETNIS="CHARLES THOMSON"

in the buffer as follows:

NIS

| CHARLE

EFEHENCE mNUAL

DISK FILE H

N2;

l JAMEslStatement 200 put the data in the

buffer as follows:

Nli[HARLES TH|

Note: 1f a string is too long to
fit in the specified buffer field,
it is truncated on the right,
irrespective of whether LSET or
RSET was specified.

11¢ AS=SPACES(2¢) LSET and RSET can also be used with
12¢ RSET AS=NS a non field variable to left

justify or right justify a string
in a given field. This can be a
useful formatting technique when

printing output.

1n the example on your left RSET
right justifies the string NS in a
20-character field

MKIsms/m;

These functions change a number to a string.

MKIS converts an integer to a 2-character string

DISK FILE HANDLIN6

MKSS converts a single precision value to a 4-character string

MKDS converts a double precision value to an 8-character string

- o E==
Fiaure 12-12 MKIS Function

- o EE=
Figure 12-13 MKSS Function

0 0 .1 -.-... 1 c

Figure 12-14 MKDS Function

Examples

DISPLAY

3¢ LSET DS=MKIS(1%)

12-34

COMMENTS

Field name DS would now contain a
two byte representation of the
integer 1%

BASIC IANGUAGE - REFERENCE MANUAL

SYNTAX ELEMENT MEANING

file number is a numeric expression which specifies the
number of the buffer associated with the file

record number 1 is a numeric expression which specifies the
record number in the file, The smallest record
number is 1 the largest 32767. 1f this
parameter is omitted, the current record nui7iber
is assumed.

il`ote: The current record is the record whose
=:=aer is one higher than that of the last
record accessed. The first time you access a
random file the current record number is set
equal to 1

Example

DISPLAY

LIST

1¢ OPEN "r",1,"1 :RAND",48

2¢ FIELD 1,2¢ AS R1S,2¢ AS R2S,8 AS R3$

30 FOR L=1 TO 4

40 lNPUT "name";N$

5¢ 1NPUT "address";M$

60 lNPUT "phone";P#
7¢ LSET RIS=N$

80 LSET R2S=M$

90 LSET R3S=MKSS(P#)

10¢ PUT 1,L

110 NEXT L

12¢ CLOSE 1

RU

name? super I11an

address? USA

phone? 11234621
name? robin hood
address? England

phone? 234621¢1

COMMENTS

Statement 1¢ opens the random
file RAND, with a record length
of 48 on the diskette mounted in
drive 1. The file number is 1.
Statement 2¢ divides the buf fer

#e::R:A:NdD:,¢¢::Lt:estaherec:::o::
inumber being set by the control
||variable of the FOR/NEXT loop

12-36 BASIC LANGUAGE - REFERENCE MANUAL

i3

DISK FILE HANDLING

With random files, the LOC function either gets the record number just
read from a GET-File statement, or returns the record number just written
from a PUT-File statement.

Figure 12-16 LOC Function

SYNTAX ELEMENT MEANING

-.- is a numeric expression rounded to
the nearest integer. 1t is the
number of the buffer associated
with the file

Example

DISPLAY COMMENTS

1¢ OPEN "R",2,"TOWNS",8¢ here FIS is a field name. 1f FIS
20 FIELD 2,2¢ AS FIS,2¢ AS F2S, matches AS, the record number in

20 AS F3S, 2¢ AS F4S which it was found is displayed t
30 Y=11¢¢AS="MILAN "

11¢ CET 2,Y

120 Y=Y+1

1301F FIS=AS THEN PRINT

"FOUND IN RECORD";LOC(2):

CLOSE:END

140 GOT011¢

Remark

lf the file is open, but no disk 1/0 has been performed yet, LOC returns
the value 0.

READIN6 RECORDS FROM A RANDOM FILE

To read records from a random file you must open it, specifying "R" as
access mode. The GET-File ;tatement allows you to read a record f rom a
random file. GET-File specifies both the file number and the number of
the record to be read. When executing a 6ET-File, the contents of the
specified record is transferred into the file buffer.

To access a single data item stored in the buffer (field name) you may
use either:

-a LET statement (if you want to assign it to a program variable), or

-a PRINT, PRINT USING, LPRINT, or LPRINT USING statement (if you want to

display or print it)

Note: If you have to assign, display or print a field name to be con-
7EFFed to a number you must convert it using a Cvi, or CVS or CVD
function.

Note: The LOC function returns the number of the record just read by a
6EF=File or written by a PUT~File statement.

The following program steps are required to read data from a random file.

12-38
BASIC LAN6UAGE - REFERENCE MANUAL

DISK FILE HANDLIN€

_s-Tffl
T_oiiffiN_ EXAMPLES

1 open the file, specifying 10 0PEN ''R",#2,"1:DIR",22
"R" as access mode and

(optionally) the record
1ength

2 Structure the buffer by a

)

20 FIELDi#,15 AS AS,5 AS BS,2 AS CS

FIELD statement

3 Read a record from the 10¢ GET#2,A

file (variable A contains
the record number).

4 extract data from the
1

1¢0 AIS=AS

buffer by either a LET or 12¢ PRINT BS

a PRINT (PRINT USING) 13¢ 19Jo=CV1(CS)

statement. Numeric values
(stored in string format
within the buffer) must be
converted to numbers using
the "convert" functions:
CV1, CVS and CVD

5 to read another record,

I

continue at s.tep 3. Other-
wise, go to step 6

6 close the file (unless you
!

50¢ CLOSE#
want to chain a program
working on the same file)

Note: 1n a program that performs both input and output on the same random
file, you can often use just one OPEN statement and one FIELD statement.

Reads a record from a random file.

12-39

Figure 12-17 GET-File Statement

SYNTAX ELEMENT

I

MEANING

file number is a numeric expression, whose rounded value
specifies the number of the buffer associated
with the file

record number is a numeric expression whose rounded value
specifies the number of the record to be read
(i.e. transferred to the buffer). 1f omitted,
the current record is read.

The smallest record numbeT is 1, the largest
32767

Note: The current record is the record whose
fi:F5:er is one higher than that of the last
record accessed. The first time you access a
random file (without specifying a record number)
the current record number is set equal to 1

Examples

DISPLAY COMMENTS

LIST

1¢ OPEN "r",1,"1:RAND",48

2¢ FIELD 1,20 AS RIS,2¢ AS R2S,8 AS R3

30 FOR L=1 TO 4

40 GET 1,L

5¢ PRINT RIS,R2S,CVD(R3S)

6¢ NEXT

This program retrieves informa-
tion stored in the specified
file. The data read into the
buffer may be accessed by the
program. This is done here by a
PRINT statement (see statement\
50).

BASIC LANGUAGE - REFERENCE MANUAL

HANDL I NG

7¢ CLOSE 1

80 END

0k
RUN

Super man
robin hood

USA 11234621

England 23462101

These data items were written to
the f ile by the P,UT-File state-
ment.

Convert string values to numeric values.
Cvl converts a 2-character string to an integer
CVS converts a 4-character string to a single precision number
CVD converts a 8-character string to a double precision number

Figure 12-18 CVI Function

GL

Figure 12-19 CVS Function

1Z-41

Figure 12-20 CVD Function

Examples

10 X#CVD(NS)

20 Y!=CVS(RIS)

UPDATIN6 RECORDS OF A RAI\lDOM FILE

To update a random file, read in each record to be updated and rewrite
it, as indicated by the following table.

insert new values into the buffer f ields

write the updated record

to update another record, continue at step 3. Otherwise, go to
step 8

close the f ile (unless you want to chain a program working on
the same file)

BASIC LANGUAGE - REFERENCE MANUAL

DISPLAY

LIS

1¢ OPEN "r",1,"1:filetext",128
2¢ FIELD 1,128 AS A$

301NPUT "record number ";RNUM

4¢ GET 1,RNUM

5¢'PRINT Ai

6¢ 1NPUT "give me data ";PP$
70 LSET AS="new data --"+PP$
80 PUT 1,RNUM

90 INPUT "CONTINUE (y/n) ";R$

1¢¢ lF RS="y" THEN 3¢

11¢ CLOSE

0k
RUN

record number ? 1
new datapoloo

give me data ? gio
CONTINUE (y/n) ? y

record number ? 1
new data --gio
give me data ? pol
CONTINUE (y/n) ? n

Ok

COMMENTS

Statement 10 opens a random file,
called filetext and residing on the
diskette mounted in drive 1.

Statement 20 specif ies only one
f ield name in this case .

Statement 4¢ reads the record to be
updated, whose number is entered
via keyboard by statement 30.

Statement 5¢ displays data from the
buffer .

Statement 7¢ inserts new values
into the buffer field, chaining the
string variable PPS to the string
constant "new data ".

Statement 8¢ writes the updated
record.

Statements 90 and 10¢ allow you to
continue or to stop.

Statement 110 closes the file

13. DEBUGGING AND ERROR RECOVEFtY

AB0UT THIS CHAPTER

This chapter describes the stateT,ents, and some of the techniques, used
for diagnosing and correcting errors (bugs).

CONTENTS

TYPES 0F ERRORS

TRACING PROGRAM EXECUTI0N

TRON/TROFF

(PROGRAM/IMMED IATE)

INTERRUPTING PROGRAM

EXECUT10N

END (PROGRAM)

STOP (PROGRAM)

coNT (1r.1MEDIATE)

ERROR TESTING AND RECOVERY 13-7

ERROR (PROGRAM/IMMEDIATE) 13-8

0N ERROR GOTO (PROGRAM) 13-9

ERL/ERR (PROGRAM/1"EDIATE) 13-11

RESUME (PROG+.:AM) 13-13

ßEBÜ6GING AND ERROR RECWERY

TYPES 0F ERRORS

Even accomplished programmers can rarely write an error-free program at
the first attempt. There are, in general, two types of errors that can be
made (excluding errors made when entering a line which have already been
described in Chapter 1):

- run-time errors, which halt execution and cause an error message

-logic errors, which permit complete execution, but cause incorrect or
unexpected results.

The process of finding the cause of an error (often called a "bug") is
termed "debugging". The M20 provides a number of features that reduce the
cost and f rustration of debugging.

TYPES 0F ERRORS

Run-time errors (i.e.
errors detected by the
M20 when executing a

program or an immedi-
ate line)

Logic errors (i.e.
errors that permit
complete execution,
but cause incorrect
or unexpected results)=

COMMENTS

They may be Syntax errors (when a line contains
some incorrect sequence of characters) or other
types of run-time errors (NEXT without FOR,
RETURN without GOSUB, etc...).

You can also simulate the occurrence of a BASIC
error, or generate a user defined error type (to
be handled by an error trap routine). See ERROR
and ON ERROR GOT0 statements below.

1 These errors are the most difficult to find. To
give a simple example, assume you have written a
program that is supposed to print the results of
15 calculations. When the program is run, only
11 results are printed. Obviously something is
wrong, but if the program is long and complex,
with many branches, loops and subroutines,
finding the error is not a simple task. Perhaps
you have transferred control to a statement you
did not intend to and some calculation is not
being performed. You could have gone wrong in
many ways. 1n such cases, the ability to trace
exactly which statements are being executed -
and when -would be very useful.

13-1

TRACIN6 PROGRAl'l EXECUT10N

A convenient method of debugging logic errors is to trace the order of
statement execution in all or part of a program. The M20 provides the
following two tracing commands (they may also be used as program state-
ments) :

(PROCRAN/1NHEDIATE}

TRON (TRACE 0N) causes the line number of each statement executed to be
listed.

TROFF (TRACE 0FF) stops the line number listing initiated by TRON.-
Figure 13-1 TRON Command

Figure 13-2 TROFF Command

13-2 BASIC LANGUAGE - REFERENCE MANUAL

+

DEBllGGI«G AND ERROR RECOVERY

Example

DISPLAY COMMENTS

TRON TRON sets the trace flag that
Ok displays each 1ine number of the
LIST program as it is executed. The
1¢ K=1g numbers appear enclosed in square
20 FOR J=1 TO 2 brackets .
30 L=K+10

The numbers whi ch are not enclosed40 PRINT J;K;L

5¢ K=K+1g in square brackets (in the example)
6¢ NEXT are the output of the statement
7¢ ENDOk

40 PRINT J;K;L

RUN

[1¢] [2¢] [3¢] [4¢] 1 1¢ 2¢ The trace flag is set to off with
[5¢] [6¢] [3¢] [4¢] 2 2¢ 3¢ TROFF (or when a NEW command is

[50] [6¢] [7ffl executed) .
Ok

TROFF

Ok

1NTERRUPTIN6 PROGRAII EXECUT10N

A program is interrupted if :

- you press [|kll D, or

-a STOP or END statement is executed, or

-an error message is displayed.

1n any of the above mentioned cases, the M20 enters Command Mode,(excep\
in the case of a Syntax error when M20 enters Edit Mode). If you are i,
Command Mode, you may display program variables (by immediate PRIN.T oi
PRINT USING statements) or change their values (by immediate LET or SWAP
statements. You can continue execution by entering a CONT command

(except when an error is encountered, or if you modify the program).

`.£. =äHä=`=F"

Interrupts program execution, closes all data files and returns to Com-
mand Mode. -
Figure 13-3 END Statement

ReiDarks

Although it is not essential for a program to f inish with an END state-
ment, it is useful in that it closes all open files, and it enhances
readability. The END statement is also useful in enabling the program to
be terminated at the end of a branch. For example:

25¢ 1F Z>1g¢¢ THEN END

END statements may be placed anywhere in the program to terminate exe-
cution.

Unlike the STOP statement, END does not cause a BREAK message to be
displayed. The execution of an END statement always causes a return to
Command Mode. You may display the values of program variables by an
immediate PRINT (or PRINT USING) statement, and you may resume. execution
by a CONT command (but take care as all files have been closed).

STOP (PR06RAM)

1nterrupts program execution and returns to Command Mode.-
Figure 13-4 STOP Statement

BASIC LANGUASE - REFERENCE MANUAL ffi*ä H..§ffi"H
uHta

Remarks

Like END, a STOP statement can be used anywhere in a program. When a STOP
is encountered, the following message is displayed:

Break in line nnnnn

Unlike the END statement, the STOP statement does not close files.

BASIC always returns to Command Mode after a STOP is executed. Execution
is resumed by issuing a CONT command (see below).

Example

DISPLAY COMMENTS

LIST Statement 3¢ allows you to check and observe the
10 lNPUT A,B,C first value of X before the second is calculated
2ßI X=A*B3¢STOP4/ßyEXIC and displayed.

Although in such a simple case the STOP state-
5¢ PRINT X ment does not appear very useful, it can be very
6¢ END ' useful in larger programs: by entering a STOP at

Ok the end of a branch, for example, the program
RUN will only stop if the branch is used. It also
? 4,3,6 enables you to change some variables before the
Break in 30OkPRINTX program is CONTinued: a useful diagnostic test.

When the program has been sufficiently tested,
12 you have `to delete all the STOPs inserted' for

CONT (1MD

Continues program execution after either a ± n has been entered,
or a STOP or an END statement encountered.

Execution resumes at the point where. the break occurred.

Figure 13-5 CONT Command

Characteristics

1F. . . THEN. . .

you press execution continues with the reprinting of the- D after a prompt (? followed by a blank, or prompt
prompt from an lNPUTstatement string) .

either a STOP is en- intermediate values may be examined and changed
countered or and END using immediate statements (PRINT, PRINT USING,
statement LET, SWAP).

Execution may be resumed with CONT or an immedi-
ate GOTO, which resumes execution at a specified
line number. (Entering RUN line number instead
of GOT0 line number will clear all program
variables .)
For example:

101NPUT A,B,C

2¢ K=A^ 2*5.3:L=B^ 3/.26
3¢ STOP

40 M=C*K+1¢O:PRINT M

RUN

? 1,2,3

Break in 30
0k
PRINT L

3¢ . 7692
0k
CONT

115.9

0k

BASIC LANGUAGE - REFERENCE MANUAL

DEBUGGING AND ERROR RECOVERY

the program has been |,CONT is invalid
edited during the
break

OR

an error is issued
--_-_---- _-__=__ ----- __ _J ,=____________ _ _

ERROR TESTING AND RECOVERY

Normally, when an error is encountered, BASIC handles the error by halt-
ing execution and displaying an appropriate message. 1n the case of a
syntax error, the M20 goes into Edit Mode. ln all other cases the M20
goes into Command Mode.

Often the user wants the handling of a particular error to be different
from this. This is accomplished by writing his own error-handling
routine®

Through use of the ON ERROR GOTO statement, error handling routines can
be entered so that execution continues with the specif ied line after an
error occurs. Only one error handling routine may be active at any given
time ,

Execution of an ON ERROR GOT0 0 outside an error handling routine
disables error trapping.

Execution of an ON ERROR GOTO ¢ inside an error handling routine
specifies normal error-handling for any error which the routine does not
handle.

When an error occurs and the error trapping has been enabled, execution
is transferred to the specified line. Then the ERR and ERL functions
could be tested and error recovery procedures could be executed. The ERR
function contains the error code, the ERL function contains the line
number of the line in which the error was detected.

A user-error handling routine should check for all the particular errors
the user wishes to recover from, and indicate what - to do in each case.
This usually involves correcting the error, and resuming execution at the
statement where the error occurred, rather than returning to Command
Mode ,

13-7

Simulates the occurrence of a BASIC error, or generates a user defined
error.

numeric
expression

Figure 13-6 ERROR Statement

SYNTAX ELEMENT MEANING

numeric expression the value of the numeric expression represents
an error code.
1t must be greater than ¢ and less than or equal
to 255. lf it is not an integer, it is rounded
to the nearest integer.
Note: BA,SIC does not use all the error codes
available. The initialised error codes display
the message 'Unprintable error'

Characteristics

1F. . - THEN. . .

the value of the the ERROR statement will simulate the occurrence
numeric expression of that error, and the corresponding error
equals an error codealreadyinusebyBASIC(seeAppendix F) message will be displayed.

For example:

I LIST

1¢ S=1¢

" 2¢ T=5

DEBUGGIN6 AND ERROR RECOVERY

4¢ END

0k

String too long in line 3¢

Ör, in immediate mode:

ERROR 15

String too long
Ok

the value of the
numeric expression
is greater than any
used by BASIC error
codes

an ERROR statement
specif ies a code for
which no error mes-
sage has been defined

lll ERROR G0

l(Note"

l:::o::R:i±:tautseemre_ndtefwt£n`e`dgeernreorrat:o:eu::;-::::n::
ihandled in the error handling routine (see ON
iERROR GOT0 below).

define your own error, use a value that

)(i,i:t9::atperref::::]:ntou::::¥eB::::e::r::a:::::;
lvalues, so compatibility may be maintained if
'1 more error codes are added to BASIC).

BASIC responds with the message:

Unprintable error

Enables error handling and specifies the first line of the error handling
routine. (Each BASIC program may only have one active error handling rou-
tine at any given time.)

ON EFIROR GOTO

Figure 13-7 0N ERROR GOT0 Statement

SYNTAX ELEMENT MEANING

1ine number is the first line of the error handling routine.
1t must be greater than ¢ and less than or equal
to 65529.

Note: The statement ON ERROR GOTO ¢ does not

enable error trapping at a routine whose first
line is zero, but, rather it disables error
trapping. Thus, if ON ERROR GOTO ¢ is within the
error handling routine and that statement is
reached with an error still pending, then the
standard error message is displayed and Command
Mode is entered.

DISPLAY COMMENTS

11¢ ON ERROR GOTO 4 ¢¢

1f you enter a value of8greaterthan5¢¢0,themessage:HOUSELIMITIS$5000isdisplayedandexe-cutionresumesat12¢.1fanyothererrorisencounteredstatement

12¢ 1NPUT "WHAT IS YOUR BET";B

13¢ 1F 8 > 5¢¢¢ THE40¢1FERR=210THEN N ERROR 210PRINT"HOUSE LIMIT IS $5¢0¢"

41¢ 1F ERL=130 THEN RESUME 120 42¢ causes the standard
42¢ ON ERROR GOTO ¢ error message to bedisplayed.

BASIC LANGUA€E - BgFERENCE MANUAL

5E-
DEBUGGING AND ERROR RECOVERY

` > 3ä¢<y

Characteristics

1F. . .

Error trapping has
been enabled

Line number does not
exist

ai ON ERROR GOTO ¢ is

executed

an ON ERROR GOTO ¢ is

executed within an
error trap routine

THEN. . .

all errors detected, including immediate mode
errors, will cause a jump to the specified error
handling routine.

an "Undefined line" message is displayed.

error trapping is disabled. Subsequent errors
will display a standard error message and halt
execution.

BASIC displays the standard error message for
the error which caused the trap and stops.

Note: 1t is recommended that all error handling
Fäü{nes execute an oN ERROR GOTo 0, tf an error
is encountered for which there is no recovery
action.

an error occurs during the BASIC error message is displayed and.
execution of an error execution terminates. Error trapping cannot be
handling routine activated within an error handling routine.

Reurk

"Overflow" and "division by zero" errors cannot be trapped.

ERL/ERR (PR06RAM/IMMED1^TE)

When an error occurs the ERL function returns the line number of the line
in which the error was detected, and the ERR function returns the error
co de .

13-11

Figure 13-8 ERL Function

®

Figure 13-9 ERR Function

Characteristics

The ERL and ERR functions are usually used in IF...THEN...ELSE or IF...
GOTO...ELSE statements to direct program flow in the error handling
ro ut i ne ,

1F. . . THEN. . .

the statement that ERL will contain 65535.
caused the error was To test if an error occurred in an immediate
an immediate state-ment statement, use:

1F 65535=ERL THEN. . .

Otherwise, use:

IF ERR = error code THEN.. .

1F ERL = line number THEN. . .

the line number isnotontherightsideoftherelationaloperator it cannot be renumbered by RENUM.

DEBllGGING AND ERROR RECOVERY

Exanple

DISPLAY

LIST

1¢ REM RECTANGLE2

2¢ ON ERROR GOTO 7¢

3¢ INPUT "Length and Width";L,W

4¢ IF (L<¢) OR (W<@) THEN ERROR 20¢

5¢ PRINT "Area=";L*W;.. L=";L;" W='';W

6¢ GOTO 3¢

7¢ IF (ERR=2go) AND (ERL=40)

THEN PRINT "L or W<O":RESUME 30

80 0N ERROR GOTO ¢

9¢ END

Ok

RUN

Length and Width? -2,5
L or W<¢
Length and Width? 2,5
Area= 1¢ L= 2 W= 5

Length and Width?^C
Break in 3¢
Ok

COMMENTS

lf you enter a negative
value for L or W, the
error handling routine
is activated and the
system displays:

L or W<¢

Execution is resumed at
statement 3¢ (see RE-
SUME statement below).
Note the use of ERF` and
ERL functions in the
error handling routine.

Reurks

These functions can also be used as regular BASIC functions.

For e`xample:

PRINT ERR

PRINT "Too big'`, ERL

|9ro = ERR

RESUME (PR06RAM)

Resumes execution after the error handling routine has been entered.

13-13

Figure 13-10 RESUME Statement

SYNTAX ELEMENT MEANING

¢ Execution will resume at the statement which
caused the error.
Note: RESUME 0 and RESUME are equivalent

NEXT Execution will resume at the first statement
after the one causing the error

line number Execution will resume at the specified line
number

Reqlark

A RESUME statement that is not within an error handling routine causes a
"RESUME without error" message to be displayed.

DISPLAY COMMENTS

LIST 1f you enter a negative
10 RErl RECTANGLE3 value for L or W, the
20 ON ERROR GOTO 70 error handling routine
30 lNPUT "Length and Width";L,W is activated. 1n this
40 IF (L<g) OR (W<O) THEN ERROR 200 case the routine re-
5¢ PRINT "Area=";L*W;" L=";L;" W=";W sumes execution at the
6¢ GOTO 3¢ statement which caused
70 lF (ERR=20g) AND (ERL=4g) THEN RESUME the error, thus an

80 ON ERROR GOT0 0 endless loop is en-

9¢ END tered .

Ok To stop execution

RUN Press:
Length and Width? -2,5 -D^C
Ok

70 1F (ERR=2¢O) AND (ERL=4g) THEN RESUME NEXT Correcting line 7¢ in
RUN this way, the error is
Length and Width? -2,5

I

•'ignored„ .

Area=-1¢ L=-2 W= 5

Length and Width? ^C
Break in 3ß
Ok

70 1F (ERP.=2ßß) AND (ERL=40) THEN RESUME 3¢ Correcting line 7¢ in

RUN this way, the error

Length and Width? -2,5 handling routine re-

Length and Width? 2,5 sumes executi on at

Area= 1¢ L= 2 W= 5 statement 30.
Length and Width? ^C
Break in 30
Ok

AB0UT THIS CHAPTER

This chapter provides an introduction to the graphics facilities avail-
able with BASIC on the M20. On a computer, '9raphics' is the way informa-
tion is conveyed in 'picture' form. This chapter explains how to execute

graphics operations on the M20; the term 'graphics' covers any combina-
tion of text and geometric forms.

CONTENTS

INTRODUCT10N

WINDOWS

WINDOW - T0 0PEN A

WINDOW (PROGRAM/1"EDIATE)

WINDOW - TO SET WINDOW

SPACING (PROGRAM/1MMEDIATE)

WINDOW T0 SELECT A

WINDOW (PROGRAM/I"EDIATE)

CLOSE WINDOW

(PROGRAM/1WIEDIATE)

USING COLOURS

COLOR - GL0BAL COLOUR

SET SELECTI0N

(PROGRAM/1MMEDIATE)

14-8

14-9

14-10

14-11

14-14

COLOR -T0 SELECT FOREGROUND 14-15

AND BACKGROUND COLOURS

(PROGRAM/I"EDIATE)

CLS (PROGRAM/I"EDIATE)

CO-ORDINATE SYSTEMS

1 4-i i

SCALE (PROGRAM/IMMEDIATE) 14-18

SCALEX (PROGRAM/"MEDIATE) 14-21

SCALEY (PROGRAM/IMMEDIATE) 14-22

DISPLAYING P01NTS 14-22

PSET (PROGRAM/IMMEDIATE) 14-22

PRESET (PROGRAM/IMMEDIATE) 14-23

POINT (PROGRAM/1MMEDIATE) 14-24

DISPLAYING CURSORS 14-25

CURSOR (PROGRAM/"MEDIATE) 14-26

POS (PROGRAM/1MMEDIATE) 14-29

DRAWING LINES, RECTANGLES, 14-29

AND CIRCLES

LINE (PROGRAM/1MMEDIATE) 14-30

CIRCLE (PROGRAM/1MMEDIATE) 14-33

DRAW (PROGRAM/1MMEDIATE) 14-35

PAINT (PROGRAM/1mEDIATE)

HOW T0 STORE AND DISPLAY

WINDOWS AND RECTANGLES

GET - 6raphics
(PROGRAM /1"EDIATE)

PUT - Graphics

(PROGRAM/I"EDIATE)

GRAPHICS FACILITIES

PROVIDED BY PCOS

14-44

14-46

14-50

1 d-i i i

lNTRODUCTI0N

There are two types of screen available with the M20: one has a black and
white display, the other a colour display. For both displays you can
select either a 512 x 256 or a 480 x 256 pixel screen display (256
scanlines of either 512 or 480 pixels, where the term pixel is a contrac-
tion of "picture element" and scanline is a row of pix:=IEiT

To select the former (256 x 512 pixels) or the latter (480 x 256 pixel;)
display mode you may use either the SSYS PCOS command or the WINDOW (to
set window spacing) statement.

The maximum dimensions of the video image is 225 mm by 140 mm.

39

512'pixels' .

=
:a

8
CV

V,

480 ,pixels, -
£
:i

S
CV

Figure 14-1 Display Modes (512 x 256 or 480 x 256)

Each line of text on the video can contain either 64 or 8¢ characters.
The space between lines can 31so be varied: a screen can display from 16
lines (minimum) to 251ines (maximum).

A colour system may be either a 4-colour or an 8-colour system, depending
on whether 4 or s concurrent colours are permitted.

With the 4-colou+ version of the video, characters and graphics can be
displayed using four colours, selected from the eight colours provided
with the system. With the 8-colour version characters and graphics can
be displayed using all the eight colours simultaneously. The eight
colours are: black, green, blue, cyan, red, yellow, magenta and white.

With a colour display the background colour is normally black and the
foreground colour (the colour in which characters and graphics are
displayed) is green. For the black and white display the background is

nomally black and the foreground white. You can alter these values to
suit your needs; 1ater on in this chapter there is a description of how
these values can be changed (see the COLOR statement). For black and
wtiite videos your only option is to reverse the normal method of
characters or graphics display (providing black characters/graphics on a
white background).

With both a black and white and a colour display, you can subdivide the
screen into rectangular areas, called "windows".

WINDOWS

A window is a portion of the screen that you can work on as if it were a
screen in its own right.A window can be used to display text, or graphics
or both text and graphics. The operations you perform within a window
have no effect on any other window you may have opened. The dimensions of
the windows you open are under your control by using the WINDOW (to open
a window) statement, which is explained later in this chapter. If an
attempt is made to draw a figure or a label string (by e LABEL PCOS
command) which falls outside the current window boundary (i.e. outside
the window you are working on), only the portion of the figure (or the
label string) which falls inside the window boundary is drawn, and the
remainder is "clipped". 1f you want to use graphics in a window you can
either select your own co-ordinate system or you can use the co-ordinate
system supplied by the system (these options are described later on in
this chapter).

By using the default co-ordinate system, the window is subdivided in 512
units along the x-axis and 256 units along the y-axis and the origin
(0,¢) is placed at the lower left-hand corner of the window.

The default co-ordinate system is then a user co-ordinate system unless
the video has not been split into windows and the 512 x 256 display mode
has been used.

By using a hardware co-ordinate system, it is possible to specify a pixel
by its (x, y) co-ordinates: by using a user co-ordinate system it is only
possible to specify the pixel nearest the (x, y) co-ordinates.

If you want to use a window to display and operate on lines of text, the
origin is placed at the top left-hand corner of the window, at the
position (1,1) where you enter your fir.st character. (The text co-ordin-
ates are always expressed in terms of column and row). The CURSOR state-
ment (described later in this chapter) allows you to move to any charac-
ter position within the window.

14-2 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

Remember that graphics co-ordinates and text co-ordinates are totally
independent. Every window has two cursors, one for graphics, another for
text. The text cursor moves one position to the right as soon as you
enter a character. The graphic cursor does not move automatically when
graphic statements are executed. Both text and graphic cursors may be
positioned by using the CURSOR statement.

When BASIC is initially entered, the default co-ordinate system exists,
and the entire screen is one single window, window number 1. You may
define a new window to be a rectangular portion o.f any existing window.
To do that, you must use the WINDOW (to open a window) statement.

A maximum of sixteen windows can be opened. The SBASIC PCOS command may
be used to preallocate memory space for a specified number of windows.

riNDolj _ TO OPEN --A WINDOW tpR06R^M;1MMED1^TE7

Opens a new window by subdividing the current window (which is called the
"parent" window). The current window is the one you are working within.

When you open a new window, the current window from which it has been

generated is called the "parent window".

This statement opens but does not select a new window. To select a Window
you must use the WINDOW (to select a window) statement.

windownumberva,iaöle
quad,an' posi','on'

Ii__m
)', ver,ica'spacing 01 spacing

Figure 14-2 WINDOW Statement - To open a window

: . `:;

14-3

mere

SYNTAX ELEMENT MEANING

window number va this is an integer variable, to which the system
assigns an integer value which identifies the
window you are opening. This value will be in
the range 2 to 16. The system assigns values in
ascending numeric sequence. The first window is
known to the system as window number 1, the
second 2, etc. Thus, if you are working within
window 4 and decide to open another window, the
system will assign number 5 to the new window,
unless any of the windows 2 or 3 have been
closed (see CLOSE WINDOW statement below), in
which case the new window will be assigned the
smallest available window number. Window 1 can
never be closed. The window being split (in this
example window 4) is called the parent window
because the new window is a subdivision of it.

Note: The complete screen is considered by the
system to be the first window and is therefore
assigned window number 1. If it is split to

generate other windows, it maintains the number
1

quadrant specifies in which part of the parent window a
new window will be opened.

There are four options:

0 top section of the parent window

1 bottom section

2 left-hand section

3 right-hand section

position this parameter defines the position where the
parent window is to be split to open the new
window,

If the value of 'quadrant' is ¢ or 1 then a
horizontal split will be made. The value

14-4

}

.. IE.EIIE

. =+ =lJI
++

GRAPHICS

vertical spacing

horizontal spacing

provided for 'position' is an integer number of
scanlines within the range 1 to 255.

Note: The splitting line (which is not drawn) is
always calculated f rom the top of the parent

1, window.
1_
'' lf the value of 'quadrant' is 2 or 3 a vertical

split will be made. In this case the integer
provided for 'position' will be an integer
number of characters within the following range:

' lower limit = 1

: upper limit = (width of the parent window) - 1

Note: 1f position = -1, then the parent window
:IiT be split in half (vertically or horizontal-
1y depending on the value of the quadrant).

' lf the 'quadrant' value is 2 or 3, the split is

i calculated from the left-hand side of the parent
window.

L __ ___ __

this is an optional parameter which
number of scanlines for each line of
the window being opened. The minimum
•vertical spacing' is 10 scanlines; this pro-

vides 25 lines of text on the whole screen. The

|Tf";mo:Tvtah]eue,v±esrtTt6c'a,pr:;:::::,':n:£:::::r:::::
1' tal spacing parameters are omitted, then the

vertical spacing of the parent window is
assumed. However if the vertical spacing is

i omitted but the horizontal spacing is given and
is dif ferent than that of the parent window,

!' then the resulting vertical spacing will be 16

it if the horizontal spacing is 8, and 1¢ if the
horizontal spacing is 6

i this is an optional parameter which sets thespace between characters in a line of text, for
the window being opened. The 'horizontal spac-
ing' parameter is expressed in terms of 'pixels'
and can have one of two values 6 or 8. The f irst
of these values glves sO characters per full

| screen line and the second 64. 1f this parameter

14-5

is omitted, then the horizontal spacing of the
parent window is assumed

Remrk

When a new window is opened the previous contents of that area on the
screen are cleared and the background and foreground colours of the
parent window are assumed.

Exa.ples

1F you enter..

A=WINDOW(¢,10¢) D split horizontally, the new win-
Wow is opened in the top part of the parent

„:::::äTshceann]efwnews±n:on:w,,::eh:vp:ca,n:e]]gshtg::e:
ii the value of the parent window

A=WINDOW(¢,1¢O,14) m as above, except the vertical 1ine spacing is

t i specified as 14 scanlines

B=WINDOwt2,5oj m

A=WINDOwt¢,10¢7 m
PRINT A m

A=3:D=40:F=15:G=8 m
W=WINDOW(A,D,F,6) D

14-6

the screen is split vertically, the new window
is opened in the left-hand part of the parent
window. The new window will be 5¢ character

positions wide. Line-spacing has the value of
the parent window

the WINDOW statement opens a window which is
identified by the variable A. The operating
system assigns an integer value to this vari-
able. This can be displayed by the PRINT A
statement

the screen is split vertically, the new window
is opened in the right-hand part of the parent
window, the vertical spacing is 15 scanlines
and each full text line may contain 64
characters

BASIC LANGUAGE - REFERENCE MANUAL

E

11111-

GRAPHICS

W2=WINDOW(1,184,16) m these WINDOW statements split the screen into

#:=#:#:##::::) E ': 1 ::V:hewt;od]°]WoS;±nTghef±S9Pui£etst£ng Sequence is shown
W5=WINDOwt3,43,16t ln Ll

1

2

3

4 1

2

Figure 14-3 Sequence Opening Windows

3

-1

2

Rmrk

We have already seen that it is possible to specify the vertical and
horizontal spacing of a window at the time it is opened.

In some cases it may be necessary to vary these spacing values in a
window which has already been opened. You can do this using the WINDOW
statement with the parameters quadrant and position set to zero.

14_7

ET WINDoll SP^CIN6 (PRoem^

This window statement is handled as a special case. A new window is not

gp±. 1nstead the number of the current window is returned. Tft=
statement can be used to vary character spacing and/or line spacing
values for an existing window.

Figure 14-4 WINDOW Statement - To Set Window Spacing

Lhere

SYNTAX ELEMENT 1

window number variable

MEANING

the parameter 'window number variable' is an
integer variable to which the system assigns the
number of the current window

14-8

'vertical spacing' is 10 scanlines; this pro-

vides 251ines of text on the whole screen. The
maximum value is 16, providing 161ines of text.
If both the 'vertical spacing' and the 'hori-
zontal spacing' parameters are omitted, then the
vertical spacing is not changed. However if the
vertical spacing is omitted, but the horizontal
spacinq is given and is different from its

„[current value, then the resulting vertica.1 }

BASIC LANGUA6E - REFERENCE MANUAL

spacing will be 16 if the horizontal spacing is
8, and 1¢ if the horizontal spacing is 6

horizontal spacing this is an optional parameter which sets the
space between characters in a line of text, for
the existing window. The 'horizontal spacing'
parameter is expressed in terms of 'pixels' and
can have one of two values 6 or 8. The first of
these values gives sO characters per full screen
1ine and the second 64. 1f this parameter is
omitted, then the horizontal spacing is not
changed

Relarks

When you switch the system on there is only one window, window number 1,
consisting of the entire screen. The horizontal spacing value is 8, and
the vertical spacing is 16, giving a display mode of 64 characters across
by 16 text lines down (if you initialize the system with a standard
PCOS). You can change the display mode to 8¢ by 25 either by using the
SSYS PCOS command or the WINDOW statement (immediately after entering
BASIC, and specifying the horizontal spacing as 6 pixels and the vertical
spacing as 10 scanlines).

Note that it is only possible to have either 64 or 8¢ columns, but it is
possible to vary the number of rows from 16 to 25 by the above mentioned
WINDOW statement (see vertical spacing parameter).

l\lDOW - TO SELECT A WINDOW (PROCRAll/"MEDIATE)

This statement selects a window. The window selected becomes the 'current
window' .

•.,.--. : :: __:...- :-:=

Figure 14-5 WINDOW Statement - To select a window

14-9

Where

€MTETT- - - 1
window number

expression

Examples

riiiiiiilli
MEANING

selects the window to become the current
window. 1t is a numeric expression whose value
is rounded to the nearest integer to represent
the window number. It has a value between 1 and
16 and it must correspond to an existing window,
otherwise an error occurs

/ou enter. . . T

iTm the system starts
which was assigned
when it was opened.
variable A is L
statement could be

WINDOW %2 qi|

9:.1 m

11

the system starts
to which the operat
1. As you know, t

i the whole screen or

WtN-tmz:-_Roi6+iMLm

to operate within the window
the value of the variable A
lf the value assigned to the

(e.g. 2) then this
entered as follows:

to operate within the window
ing system assigned the value

is the main window (i.e.
what is left of it).

Closes a selected window or all opened windows.

Figure 14-6 CLOSE WINDOW Staternent

1 4-1 0 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

SYNTAX ELEMENT MEANING

window number this is a numeric integer expression represent-
expression ing a window number. 1t identifies the window to

be closed. 1f omitted, all opened windows,
except the main window (i.e. the window number
1) are closed

Characteristics

The CLOSE WINDOW statement with the window number expression parameter
closes the window identified by the parameter. The area of this window is
assigned to the rectangle which was originally split to open it. The area
of the window which has been closed is displayed with the background
colour of the window to which the released space is assigned.

Renrk

The CLOSE WINDOW statement has no effect on the main windov`i. This window

can never be closed.

USIN6 COLOURS

As mentioned above the M20 may have either a 4-colour (which permits you
to display 4 colours at the same time) or an 8-colour display (which

permits you to display s colours at the same time).

ln both cases the video is the same: you pass from a 4-colour to an
8-colour display by adding a memory board and setting some jumpers.

1n a black and white system there exists in memory one Bit Map where each
bit corresponds to a pixel (bit = 0 for black, bit = 1 for white).

ln a 4-colour system there are two superimposed Bit Maps, where each pair
of bits corresponds to a pixel. Thus, four possible colour numbers may be
associated with each pixel as two bits may generate the number ¢,1, 2
and 3. 1n a 4-colour system you can work with 4 colours on the whole
screen. These colours are chosen from a set of s possible colours by the

COLOR (global colour set selection) statement. 1n an 8-colour system
there are three superin!.posed Bit Maps where each three bits corresponds
to a pixel. Thus, eight colour numbers may be associated with each pixel
as three bits may generate the number 0 to 7. In an 8-colour system you
can work with s colours on the whole screen.

Colour Codes

The following table specifies the numeric code for each colour. It is
valid for both 4-colour and 8-colour systems.

COLOUR CODE COLOUR

¢ black
1 green
2 blue
34 Cyan

red
5 yellow
6 magenta
7 white'

Table 14-1

Colour Numbers

ln many graphics statements, an optional parameter is a "colour number".
1n an 8-colour system there is no distinction between colour codes and
colour numbers. 1n a 4-colour system the colour number is an integer from
0 to 3 corresponding to the order position - f rom left to right - of the
four colour codes given in the COLOR (Global Colour Set Selection)
statement.

The COLOR statement described above has no effect either when used on a
black and white system, because the colour numbers are defined as 0 for
black and 1 for white, or when used on an 8-colour system, because there
is no distinction between colour codes and colour numbers.

Default Colours

ln a 4-colour system, if this COLOR statement is not executed, the four
default colours are: black, green, blue and red. Note that this is as
though the statement COLOUR=g,1,2,4 has been executed.

14-12 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

1n an 8-colour system there are no default colours (as all the colours
are present).

Background and Foreground Colours

Each window has a background and a foreground colour.

The foreground is the colour with which characters and figures are
displayed, figures and label strings can also be displayed in a different
colour, if the corresponding graphic statement or LABEL command specifies
that colour.

The background and foreground colours may either be chosen by the user,
or assumed by default.

For both a black and white and a colour system the default value is
colour number ¢ for the background and colour jumber 1 for the foreground
colour. The following colours are associated with these colour numbers:

- black (background) and white (foreground) for a black and white .system;

- black (background) and green (foreground) for an 8-colour system;

- black (background) and green (foreground) for a 4-colour system, unless
a COLOR (global colour set selection) statement specifying differently
has been executed.

1f such a statement is executed the background and foreground colours
are the first and the second colours specified by the statement.

By the COLOR (to select foreground and background colours) statement, you
can specify foreground and background colours different f rom the default
ones. With a black and white system you can only specify a reverse video
i.e. a black foreground on a white background.

The Colour of the Cursor

Each window has a text and a graphic cursor.

For a 4-colour system the colour of the (text and graphic) cursor is
either the last colour explicitly declared by the COLOR (global colour
set selection) statement or red, if this statement has not been executed.

14-13

1n fact, the following COLOR statement:

COLOR = 0,1, 2, 4

is assumed by default.

For an 8-colour system the colour of the (text and graphic) cursor is
always ±.

It is possible to change the shape of both the text and graphic cursor by
the CURSOR statement, but it is not possible to change its colour, except
with a 4-colour system.

1f you want to change the colour of the cursor in a 4-colour system, you
must execute a COLOR (global colour set selection) statement specifying a
different colour code in the fourth position.

?,ä5:*O¥.

OLOR _ GIoriL COIOÜR SET SELECTlri

Selects 4 of the s colours for use on a 4-colour display.

With a black and white or an 8-colour display it may be used, but it has
no ef fect.

Figure 14-7 COLOR - Global Colour Set Selection Statement

Where

SYNTAX ELEMENT

14-14

MEANING

eric expression having an irteger value
in the range 0 to 7. Each of t;iese values
corresponds to a colour as in Table 14-1.

1f the numeric expression value is not integer,
it is rounded to the nearest integer.

£¥1

BASIC LAN6UAGE - REFERENCE MANUAL

-^,,

GRAPHICS

Selects the background and foreground colours for a particular window.

Figure 14-8 COLOR Statement

SYNTAX ELEMENT MEANING

window number specifies the window to be operated on: it is
expression optional and, if omitted, the statement operates

on the current window

foreground colour specifies the foreground colour number of the
window. 1t may be a numeric expression whose
value is rounded to the nearest integer

background colour this is optional and is used to specify the
background colour number. 1t may be a numeric
expression whose value is rounded to the nearest
integer. If omitted, the previously specified
background colour remains.

Characteristics

Both in a black and white and a colour system the default colour numbers
are 0 for the background and 1 for the foreground.

Once the COLOR Statement has been executed, the foreground and background
colours are changed accordingly. You may do one of the following to
realize the change of colour requested.

14-15

1. Execute the CLS statement (described later in this chapter), to supply
the window with a new background colour.

2. Execute the PRESET statement (described later in this chapter), to
colour parts of the window with a new background colour.

3. Display a text to change the foreground and/or background colour for
that part of the window where the new text appears.

ExaDples

IF you enter. ..

COLOR ¢,1 m ;

COLOR O,.A,¢,1 m

THEN. . .

the current window will have a white background
and a black foreground

as above, but the statement operates on the

_ _ _ _1 iiwindow identified by the variable A

Remrks

lf the user enters COLOR 0.1 instead of COLOR 0,1, further character
input from keyboard will be invisible (as ¢.1 is rounded to 0). To
recover, enter CLEAR or the COLOR statement in the correct way.

Clears the contents of either the current window or a specified window.
To clear a window means to fill it with its background colour.

Figure 14-9 CLS Statemnt

LANCUA6E - REFERENCE MANUAL

SYNTAX ELEMENT MEANING

window number this selects the window to be operated on. 1t is
expression a numeric integer expression which represents a

window number.

The use of this parameter is optional. If it is
not specified, the operation is performed on the
current window

CO-ORDINATE SYSTEMS

The SCALE statement allows you to choose a "user co-ordinate system" to
suit your needs; it defines the mapping from the default co-ordinate
system and your own co-ordinate system.

The "default co-ordinate system" is the hardware co-ordinate system (in
pixels) only if the video has not been subdivided into windows and the
512 x 256 display mode has been assumed, or if you are in PCOS. In any
other case the default co-ordinate system is a user co-ordinate system,
as the window is automatically subdivided into 512 units along the x-axis
and into 256 units along the y-axis and the origin is placed at the lower
left-hand corner of the window.

When a hardware co-ordinate system has been assumed, it is possible to
specify a pixel by its (x, y) co-ordinates; when a user co-ordinate
system has been assumed, it is only possible to .specify the pixel nearest
the (x, y) co-ordinates.

The SCALEX and SCALEY functions return the hardware co-ordinate (i.e. in

pixels) of any point of ttie video.

The returned value of SCALEX is the abscisse (in pixels) of the specified
point.

The returned value of SCALEY is the ordinate (in pixels) of the specified

point.
)

The origin of the current window is always its lower left-hand corner.
Using SCALEX and SCALEY functions may be useful in several cases.

For example it is possible, by the SCALE statement and the SCALEX and
SCALEY functions, to specify exactly a single pixel even if a user
co-ordinate system has been set. To do this is is sufficient to execute
the following statement:

SCALE ¢,SCALEX(511),O,SCALEY(255)

as, in this case, any integer value between ¢.and SCALEX(511) specifies
the abscissa of a pixel and any integer value between ¢ and SCALEY(255)
specifies the ordinate of a pixel of the current window.

The SCALEX and SCALEY functions are also useful, for instance, to execute
a LABEL PCOS command. The LABEL command requires the x-pos and y-pos

parameters in hardware co-ordinates, thus, if you are working with a user
co-ordinate system, you must use the SCALEX and SCALEY functions.

E - { P-riocRri7i-rii-fiffl

A11ows you to change to any user co-ordinate system, defining a scale
between the default co-ordinates and the user co-ordinates.

Figure 14-10 SCALE Statement

14-18 BASIC LANGUA6E - REFERENCE MANUAL

GRAPHICS

xO'xl 'y¢,yl window dimensions (user coordinates) :

xO: left-hand side of the window (i.e. x
minimum)

xl: right-hand side of the window (i.e. x
maximum)

yo: bottom o.f the window (i.e. y minimum)

yl: top of the window (i.e. y maximum)

Note: xl -x¢, yl -yo can be either positive or
negative, but must never be equal to zero.

Characteristics

When a SCÄLE statement has been executed, you must express co-ordinate
values that refer to the user co-ordinate system.

The co-ordinate system is the default one if :

- po SCALE statement has been executed, or

-the statement:

SCALE 0, 511, 0, 255 has been executed.

Having defined a user co-ordinate system, using the SCALE statement, it
remains in effect until a new SCALE statenent is executed or you leave
the BASIC environment.

Examples (4-colour display)

IF you enter. .. THEN. . .

COLOR = 3,¢,1,5 m The LINE statement (described la-
CLSm ter) draws a black line on a cyan
LINE(¢,¢)-(511,255) D background from a point specified

by co-ordinates (0,0) to (511,255).

This line is shown in the figure
14-11. }

S-CA[ET1--ööüri-öF¢-,`=i¢¢ö-,1¢öö~Ed
LINE t¢,¢>-t511,255] m

lf no SCALE statement has been
executed previously, the default
co-ordin`ate system is adopted.

-a u-ser co-ordinate system is adop-

ted using a SCALE statement. Thus
the same LINE statement as above
displays a different image. (See
the figure 14-12).

Figure 14-11 LINE Statemnt

14-20 1C LANGUAGE - REFERENCE MANUAL

GRAPHICS

Figure 14-12 SCALE and LINE Statements

`€=- sEriEk tpROCRAr|;t,.EriAtE'`, isä+"

Converts a user co-ordinate into the associated pixel co-ordinate on the
x-axis of the current window.

-, === ---,--,

Figure 14-13 SCALEX Function

Where

SYNTAX ELEMENT

coordinate

MEANING

a user co-ordinate on the x-axis

+++ t+

14-21

EY (moG"/l

Converts a user co-ordinate into the associated pixel co-ordinate on the
y-axis of the current window.

- o E=EE
Figure 14-14 SCALEY Function

DISPLAYIN6 POINTS

The most elementary graphic function is that of illuminating the position
of a single point in a specified colour. This can be done using the PSET
and PRESET statements.

The P0INT function allows you to know the colour number of a specified

pi xe 1.

Colours the pixel either at the specified (x,y) co-ordinates or, if the
window has been scaled, the pixel nearest the (x,y) co-ordinates. 1t
colours this pixel with either a specified or foreground colour.

14-22 BASIC LANGUAGE - REFERENCE MANUAL

SYNTAX ELEMENT MEANING

window number a numeric integer expression, which represents
expression the window in which PSET is to work. It is

optional, the default is the current window

X'y the co-ordinates used by PSET. 1f the x,y
co-ordinates specify a point outside the window,
the point will not be displayed because of the
"cl ippi ng" .

colour defines the colour number for the point dis-
played. This parameter is optional; by default
the foreground colour of the specified window is
used

Remrk

The colour parameter of the PSET statement does not change either the
background or the foreground colour of the specif ied window.

Colours the pixel either at the (x,y) co-ordinates or, if the window has
been scaled, the pixel nearest the (x,y) co-ordinates. It colours this
pixel with the current background colour of either the current or
selected window.

Figure 14-16 PRESET Statement

SYNTAX ELEMENT MEANING

window number a numeric intege.r expression representing the
expression window in which the PRESET statement is to

operate. This is an optional parameter; the
default is the current window

X'y 1

1

co-ordinates on which PRESET works. 1f the x,y
specify a point outside the window, the point
will not be displayed because of the "clipping"

___1

(PR06RAM/"MEDIATE)

Returns the colour number of th pixel either at the specified (x,y)
co-ordinates or, if the window has been scaled, the pixel nearest t,he
(x,y) co-ordinates within the current window.

:.::`- = =--- ?] . . .

Figure 14-17 P0INT Statement

BA51C LANGUAGE - REFERENCE MANUAL

SYNTAX ELEMENT MEANING

colour number variable 1 a variable to which the system assigns an
integer value: 0 or 1 fora black and white
system; in the range (0-3) for a 4-colour
System ; in the range (0-7) for an 8-colour
system. This variable specifies the colour
number of the pixel either at the (x,y)
co-ordinates or, if the window has been scaled,
the pixel nearest the (x,y) co-ordinates

X'y the co-ordinates of the pixel in question

Examples

DISPLAY COMMENTS

10 CIRCLE(50,50),2¢

2¢ PSET(5¢,5¢)

draws a circle on the screen with its centre at
50,5¢ and radius of 2¢.

illuminates the pixel either at (50,50) with the
foreground colour or, if the window has been
scaled, the pixel nearest (50,5¢)

3¢ A9zFPOINT(5¢, 5¢) assigns the colour number (of the pixel either
at the (50,5¢) co-ordinates or, if the window
has been scaled, the pixel nearest the (50,5¢)
co-ordinates to the A% variable

4¢ PRINT A9o.o displays the contents of A°/o

I)lspLAYING CURSORS

Each window has two cursor positions: one for text and one for graphics.
The text cursor position indicates the position where the next alpha-
numeric character will be displayed. This position is expressed in terms
of the text row number and the text column number.

The POS function allows you to know the position of the text cursor in
the current window. .

Another visible cursor may be associated with any position you desire.
This cursor is called the graphic cursor, although it need not be
associated with graphics, nor does it move automatically when graphic
statements are executed.

By using the CURSOR statement described below, you can specify whether

you want to display one of the cursors, whether to ma.ke it blink, and
whether to change its shape from the default shape.

The default shape of the graphic cursor is a rectangle of 2 x 2 pixels.
The default shape of the text cursor is an underbar. If you want to
display one of the cursors, you can only do this in the window where you
are operating; in fact as soon as you select another window, the cursor
in the previous window disappears, but it is stored and appears again
with the same characteristics whenever you return to that window. Bear in
mind that when the text cursor is turned on, the graphic cursor is
automatically disabled and viceversa; thus the two cursors cannot be
displayed at the same time.

CURSOR (PR06RAl./IMMED1^TE)

There are two basic formats for this statement: CURSOR and CURSOR P01NT,
allowing the position and attributes of the text cursor and graphic
cursor, respectively, to be specified.

BÄSIC LANGÜAGE - REFERENCE MANUAL

-=i=__-----==::

Figure 14-18 CURSOR Statenent

SYNTAX ELEMENt MEANING

P0INT this is an optional keyword. 1t is used to
operate on the graphic cursor. lf omitted,
operations are performed on the text cursor

X,y these specify where the cursor is to be placed.
If we are dealing with the text cursor, then x
and y represent the column and row of text res
pectively. lf we are dealing with the graphic
cursor, then x and y represent the co-ordinates
of the iower ieft händ corner of the cursor
bitmap.

on-off specifies whether or not the cursor is to be
di spl ayed :

¢ = not displayed

1 = displayed

rate spe.3ifies whether or not the cursor is to blink:

¢ =noblinking

1-20 = number of blinks per second

shape this is an optional parameter. It alters the
shape of the cursor. 1t is the first element of
a six element integer array. The array must be
defined by the user; its components are the
desired bit-map of .the cursor. Each bit of the
cursor bit-map represents a pixel.

The contents of the cursor bitmap get XORed with
the contents of that part of the screen bit-map
representing the screen area occupied by the
cursor .

For both the text cursor and the graphic cursor
the bit-map is s pixels wide and 12 pixels high

14-27

Examples

lF you enter. ..

CURSOR P01NT(80,3g) :

AS=1NPUTstl] m

CURSOR P01NT(50,5¢)1 :

AS=INPUTstl> m

CURSOR P01NT(50,5g)1,1

AS=INPUTstl> m

THEN. . .

the graphic cursor is positioned at the
point with co-ordinates (80,30).
The statement AS=lNPUTS(1) has been
entered to allow the cursor to remain in
the specif ied position until you enter a
character f rom keyboard

the graphic cursor is positioned at the
point with co-ordinates (5¢,5¢) and is
displayed

CURSOR (32,8)1:AS=1NPUTS(1)

CR

CUFisoR (32,8)1,¢,A9io(|) :

AS=INPUTstl j ` m

the graphic cursor is positioned at the
point with co-ordinates (5¢,50), it is
displayed and blinks at a rate of 1
blink per second

the text cursor is positioned at column
32 of row 8; it is displayed and is not
blinking.

as above but the cursor shape has been
def ined by the user as an up arrow (see
table below)

BIT MAP ELEMENT DECIMAL EXADECIMAL

¢¢¢1 ¢¢¢¢
0011100¢

öTTi-iiöi5
1111111¢

] ¢0111 000
0011 1 ¢0¢

moüö_
¢¢1 1 1 ¢00

¢¢iiiü¢TÜ
¢¢1110¢0

öbiii7¢_¢_
0011 100¢

4152 &H1¢38

31998 &H7CFE

14392 &H3838

]
Table 14-2 Cursor Bit Map

Note: Remember that each element of the integer array is a sixteen bit
repr esentati on .

14-28 BASIC LANGUAGE - REFERENCE MANUAL

Returns the position of the text cursor in the current window.

Figure 14-19 POS Statement

current window (see the co-ordinate attribute
below)

coordinate attribute specifies either the row or column position.1t
is 0 for a column position or any non zero value
for the row position

DRAWING LINES, RECTAN6LES, AND CIRCLES

The M20 BASIC graphics extensions {nclude statements allowing you to draw
straight lines and rectangles (by the LINE statement), circumferences (by
the CIRCLE statement) or any figure (by the DRAW statement) and to paint
closed figures (by the PAINT statement).

tißt< ` 5HHHH

Draws either a line or a rectangle, or a filled rectangle, in a specified
colour, with a specified diagonal.

Figure 14-20 L]NE Statement

Wt'ere

SYNTAX ELEMENT

window number
expression

MEANING

A numeric integer expression specifying the
window on which the LINE statement is to work.
By default the LINE statement operates on the
current window.

optional keyword. This allows the use of rela-
tive co-ordinates. Relative starting co-ordi-

::tetshe(X]1a'sytl)poa£rnetrder]aawtn±V:rt:tnth:hec°:::::::t::
such a point) to the co-ordinates of the bottom
left-hand corner of the window. Relative ending

::-:::±::::S(o(rx2r'eyc2t)anagr)ee) :e}ative to the start---'

LANGUAGE - REFERENCE MANUAL

x, , yl These are the co-ordinates of the starting point
of the line. If omitted, the line specified by
the LINE statement starts from the last point
drawn, or from the bottom left-hand corner of
the window, if no point has yet been drawn.

x2 ' y2 These are the co-ordinates of the end point of
the line.

colour A colour number specifying the colour with which
the line or rectangle will be drawn. The default
value is the foreground colour of the current
window.

8 (Box) An optional parameter which allows you to trace
a rectangle with its sides parallel to the edges
of the window. 1ts diagonal is specified by the
co-ordinates (X,iyi) and (X2.y2).

F (Filled) An optional parameter which can only be used if
8 is also used. 'BF' draws a rectangle and fills
it in with the colour specified by the colour
parameter or with the foreground colour, if the
colour parameter is not given.

action verb This is an optional parameter which can assume
the following values: AND, XOR, OR, NOT, PSET,

PRESET.

The verb PSET indicates that the line, rectangle
or filled rectangle is to be drawn in the speci-
fied colour. The verbs AND, OR, and ,YOR indicate
that the colour of the line, rectangle, or
filled rectangle is the result of a logical
operation between the specified colour and the
existing colour of each pixel on the screen
covered by the figure. The verb NOT indicates
that the colour of the line, rectangle, or
filled rectangle will be the complement of the
existing colour of each pixel covered by the
figure. The verb PRESET indicates that the line,
rectangle, or filled rectangle will be drawn in
the background colour.

The default action verb is PSET.

Example (4-colour display)

DISPLAY

10 COLOR = 4,2,4,5

2¢ CLS

3¢ LINE (206,1¢¢)-(3¢6,1¢¢
4¢ LINE (256,2¢0)

5¢ LINE STEP (-50,-1¢¢)

60 PAINT (256,150)

COMMENTS

This program draws an isosceles tri-
angle and paints it blue (the fore-
ground colour).

The background colour is red (see
figure 14-21)

The PAINT statement is described
below.

Figure 14-21 Drawing a Triangle

Remrk

lf the parameters specif ied for drawing a line or a box are such that a
portion of the line or the box falls outside the window boundary, the
line or box will still be drawn with the portion outside the window
boundary clipped.

14-32 BASIC LAN6UAGE - REFERENCE MANUAL

GRAPHICS

Draws a circumference in a given colour, specifying the x,y co-ordinates
of the centre and the radius.

Figure 14-22 CIRCLE Statement

SYNTAX ELEMENT MEANIN6

window number A numeric integer expression which selects the
expression window in which the CIRCLE statement is to

operate. This is optional and, if omitted, the
current window is selected.

X,y The centre of the circle.

r The radius of the circle.

colour A colour number specifying the colour with which
' the circumference will be drawn. The default is

[the current foreground colour of the selected
window.

aspect ratio
1 Due to the non-uniform physical distribution of

|):::u:ä::]Sth°enatshpeecstcrre::j'ot:::::::a{r::e::::,:
with different monitors.

14-33

The default value of aspect ratio (which must be
a positive real number) is 0.807. This value

prQduces a circle, with the M20 standard
monitor .

action verb An optional parameter which may assume one of
the following values: AND, XOR, OR, NOT, PSET,

PRESET.

Each defines the operation which will be done
for every pixel along the curve.

The verb PSET indicates that the circle is to be
drawn in the specified colour. The verbs AND,
OR, and XOR indicate that the colour of the
circle is the result of a logical operation
between the specified colour and the existing
colour of each pixel covered by the curve. The
verb NOT indicates that the colour of the circle
will be the complement of the existing colour of
each pixel along that curve. The verb PRESET
indicates that the circle will be drawn in the
background colour. The default action verb is
PSET.

Reiarks

When a SCALE statement is used, the aspect ratio parameter is not
affected by the scaling, and the radius.of the circle is determined only
by the horiztrntal scaling of the window in which the circle is to be
drawn.

Example (4-colour display)

DISPLAY

10 COLOR = 2,4,5,0

20 CLS

3¢ CIRCLE (10¢,12¢),90

4¢ CIRCLE (150,130),120

50 CIRCLE (25¢,120),1¢0

6¢ PAINT (180,120)

COMMENTS

The program draws three intersecting
circles.

1lThe background colour is blue, the

i ,(circumferences are red (the foreground
colour) and the area of intersection

'| is also red. See figure 14-23.

BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

14-35

SYNTAX ELEMENT MEANING

window number A numeric integer expression specifying the
expression window in which DRAW is to operate. The default

is the current window.

command string This can be either a string constant or a string
variable. The string, in both cases, consists of
one or more commands shown in the table below
(see Commands), which control the movement of
the virtual pen.

With the exception of the C command, all
commands may be prefixed with the 8 option,
which inhibits drawing, and followed by one of
the following actiön verbs: AND, XOR, OR, NOT,
PSET, PRESET, which define an operation on any

point of- the .line. The action verbs are
specified by their first letter, except PRESET
which .is specified by R.

The verb P (i.e. PSET) indicates that the figure
is to be drawn in the specified colour. The
verbs A (i.e. AND), 0 (i.e. OR), and X (i.e,

XOR) indicate that the colour of the figure is
the result of a logical operation between the
specified colour and the existing screen con-
tents along that figure. The verb N (i.e. NOT)
indicates that the colour of the figure will be
the complement of the screen contents along that
figure. The verb R (i.e. PRESET) indicates that
the figure will be drawn in the background
colour .

The default action verb is P.

Note: Command parameters (dx,dy,x,y and colour) can be expressed as
V=Frables. 1n this case the variable names must be written between equals
signs. See the examples below.

GRAPHICS

Comnds

COMMAND MEANING

M dx'dy Moves the pen from its present position (a,b
say) to the position indicated by (a+dx,b+dy).

Jx'y Moves the pen to the position indicated by
(x'y).

Udy Moves the pen up by dy positions.

Ddy Moves the pen down by dy positions.

Ldx Moves the pen left by dx positions.

Rdx Moves the pen right by dx positions.

C colour Sets the colour to be used to draw. A colour
number must be specified after C.

If no C is specified the last colour used by a
preceding DRAW or the foreground colour of the
current window is assumed.

Examples

DISPLAY COMMENTS

90 PSET(1¢,2¢) Statement 90 colours the point (1¢,20) with the
1¢¢ X=23 current foreground colour.

13¢ DRAW "M=X=,25" Statement 1¢0 sets X=23

Statement 130 draws a line from the current pen
position (10,2¢) to the position (33,45), that
is (1¢+23 ,20+25)

14_37

25¢ AS=''BM IO,2 || Statement 25g sets As to the following command
D 2¢ MR 15,-3" il string:

;! -the M command with the 8 option to move the
1

pen, without drawing from its current
(a,b say) to the position (a+10,b+2)

-the D command to move the pen

positions, i.e. to the point (a+10,b-

- the M command to move the pen from it

position (a+10,b-18) to the point (a+
The R option (PRESET) indicates that
must be drawn in the current b
colour.

260 DRAW AS Statement 260 executes the sequence of
specified by the AS variable.

position

down 20
18)

s current
+25 , b-2,) .

the line
ackground

commands

ReDarks

The sequence of commands in a DRAW statement may be entered either in
lower case or in upper case letters. They may be separated by blanks or
they may be written contiguously.

Example (8-colour display)

DISPLAY

10 CLS

2¢ DRAW "bj¢,¢"

3¢ X=511: Y=255

4¢ K=g
5¢ FOR 1=1 TO 23

60 GOSUB 17¢

7¢ DRAW "u=y=": Y=Y-5

80 GOSUB 170

9¢ DRAW "r=x=": X=X-1¢

100 GOSUB 17¢

11¢ DRAW "d=y=": Y=Y-5

12¢ GOSUB 170

13¢ DRAW "1=x=": X=X-1¢

140 NEXT

COMMENTS

The program draws a rectangular spiral

| || ;:;r{::: sftra°tmem::: Z;;.nt at Cordinates

This point is placed at the lower
left-hand corner of the video, as no
SCALE statement has been used.

The subroutine at lines 170 and 18¢
1

||||::::Wstoy°Ubet°drcahwanng:c:::s,Cn°:°Uar::,:::

hnumber from 1 to 7 -thus excluding
;black which is the background colour).

HThis subroutine is executed by a GoSUB

BASIC LAN6UAG£ - REFERENCE MANUAL

15¢ AS=INPUTS(1)

160 END

17¢ COL=(K MOD 7)+1

18¢ K=K+1 :DRAW"c=col=":RETURN

statement, each time a line has to be
drawn .

The DRAW statement, at line 7¢ draws a
line along the positive y-axis, Y units
long, and the next statement reduces
the value of the variable Y by 5 units.

The DRAW statement, at line 90 draws a
line along the positive x-axis, X units
long, and the next statement reduces
the value of the variable X by 10
un its .

The DRAW statement, at line 110 draws a
line along the negative y-axis, Y units
long, and the next statement reduces
the v,alue of the variable Y by 5 units.

The DRAW statement at line 13¢ draws a
line along the negative x-axis, X units
long, and the next statement reduces
the value of the variable X by 1¢
unitso

The number of lines drawn is controlled
in a loop by the control variable I
which varies from 1 to 23.

This loop allows you to draw a rect-
angualar spiral of 23 x 4 = 92
segments, each of different colour (see
Figure 14-25).

Figure 14-25

... P^1NT (PROCR^ll/1t.EDIATE)

Colours the area inside a closed figure, starting from the pixel either
at the specified (x,y) co-ordinates or, if the window has been scaled,
the pixel nearest the (x,y) co-ordinates.

The area can be the whole or part of the specified window.

window 1-
PAm % :#*|on] (X . Y)

IIIIIIli

colour bcotour
1'

Figure 14-26 PAINT Statement

14-40 BASIC LANGUAGE - REFERENCE MANUAL

SYNTAX ELEMENT MEANING

window number numeric integer expression which represents the
expression window on which the PAINT statement is to work.

This is an optional parameter. By default the
current window is selected

X'y co-ordinates of the pixel from which painting
begins

colour] a colour number specifying the co lour to be used
to paint the window or a closed figure within
it. 1ts default value is the current foreground
colour

bcolour a colour number specifying the colour of the
border of the closed figure to be PAINTed. By
default, the foreground colour of the specified
window is assumed

Reimrks

To PAINT inside a predefined closed figure, ensure that x,y fall within
the border of the figure. If they fall outside the border of the figure,
only the portion of the window which is outside the fiqure will be
coloured.

To use the PAINT statement correctly, the borders of the closed figure
must all be of the same colour: the one specified by the "bcolour"
parameter in the PAINT statement, or the current foreground colour if
this parameter has been omitted. For example, if you want to paint a
circular ring, the two circumferences which include the ring must be of
the same colour.

If this is not true and:

- the colour specified by the "bcolour" parameter is that of the external
circumference, the PAINT statement paints the entire circle which has
this circumference;

the colour specif ied by the "bcolour" parameter is that of the internal
circumference, the PAINT statement paints all the area which is
external to this circumference and is bounded by the window boundaries
(or by a line of the same colour as the internal circumference).

Example (4-colour display)

- -]_ ___-_b_-1S_-P_L_Ay_ ________U : _-_ -= _-i:M-L:-ri-T;: -_ =_=i
1¢ COLOR = 2,5,4,0 ' statement 10 selects four among the
2¢ CLS eight available colours. Statement
3¢ CIRCLE (256,128),130,2 2¢ clears the screen with the
40 PAINT (256,128),1,2 background colour (in this case
50 LINE (251,123)-STEP (1¢,1¢),3,BF blue). Statement 30 draws a red

circumference with a radius of 130
whose centre is (256,128). State-
ment 40 paints the circle yellow.
Statement 50 draws a black filled
in box in the middle of the circle
(see figure 14-27)

igure 14-27 Drawing and Painting a Circle with a black box in the
middle

14-42
BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

Example (8-colour display)

DISPLAY COMMENTS

1¢ CLS This program displays 7 concentric
2¢ FOR 1=1 TO 7 circular rings. The centre is the
3¢ COLOR 1,0 point (256,128) i.e. it co-incides
4¢ CIRCLE (256,128),11¢-1*10 with the center of the screen.
5¢ CIRCLE (256,128),11¢-(1-1)*1¢

The background colour is black (as6¢ PAINT (256-110-(1-.5)*1¢,128)
70 NEXT the second parameter in the COLOR

statement at line 3¢ is ¢) and the
foreground colour changes with the
control variable 1 which varies
from 1 (green) to 7 (white).

The circular rings are coloured by
the PAINT statement (see line 6¢).
The point from which the system
begins to paint is the intersection
between the parallel to the x-axis
passing through the centre and the
average radius of the ring.

The colour to be used to paint and
the colour of the borders of each
ring are not specified by the PAINT
statement; thus they co-incide with
the current foreground colour.

See the figure 14-28.

14-43

+ i, +++

Figure 14-28 Concentric Circular Rings

HOW T0 STORE AND DISPLAY WINl)OWS AND RECTAN6lES

You can store the whole window or any rectangle within a window, in a
one-dimensional integer array using the GET statement, or conversely you
can restore anywhere on the screen a rectangle taken f rom a one-dimen-
sional integer array by a PUT statement.

6ET - 6raphics (PROCR^ll/"MEDIATE)

Stores the whole or any rectangle within a window in a specif ied
one-dimensional integer array.

14-44
BASIC LANGUAGE - REFERENCE MANUAL

Figure 14-29 GET - Graphics Statement

SYNTAX ELEMENT MEANING

window number A numeric integer expression specifying the
expression window in which GET is to operate. The default

is the current window.

x, ' y,
x2 , y2

array element

Define the rectangle to be stored, the rectangle
whose diagonal is specified by the line (x,.y,)
to (x2,y2'.

The first element of the one-dimensional array
which is to contain the information acquired by
the r]ET operation. The system will fill the
array as follows: the first three elements of
the array will contain the width of the
rectangle, the height of the rectangle, and the
colour/monochrome flag, respectively. The re-
mainder of the array will contain the bit image
of each scanline of the rectangle itself . Each
array element contains a string of 16 bits. This
one dimensional array must have been previously
dimensioned by a DIM statement. The following
formula shows how to calculate the number of
elements of the array:

((|#| X height) x DT)+ 3

where :

DT=1 with a black and white display
DT=2 with a 4-colour display
DT=3 with an 8-colour display

1 1means
take integer (always round up)

Displays an image previously stored in a one-dimensional integer array
using a GET statement.

Figure 14-30 PUT - Graphics Statement

Where

SYNTAX ELEMENT

window number

expression

14-46

MEANING

A numeric integer expression ;..pecifying the
window in which PUT is to operate. The default
is the current window.

----,

BASIC LANGUAGE - REFERENCE MANUAL

x, 'yl
x2'y2

array element

action verb

Def ine the position of the rectangle to be
displayed, the rectangle whose diagonal is
defined by the line (X,iyi) t° (X2.y2).

If this rectangle is a different size from the
one in the stored array, the smaller of the two

::ctuasnegd].e[wf±]:2b:nddtys2p,:;:d°::::::ngth:rosmt°:::
top left-hand Corner Xi. yi.

The first element of the one-dimensional array
which contains the information stored by a GET
operation.

An optional parameter which may assume one of
the following values: AND, XOR, OR, NOT, PSET,

or PRESET. Each defines the operation which will
be done for every pixel within the rectangle.

The verb PSET indicates that the rectangle is to

||!:::r:::i{3:{:;::;:::d£:r¥hRethr:ens:u:,:t::o:fa::;:;i:!;

#:::::L::mb:i:::::::::epLax:e:L:;ounratnh:eum:bc::ree;::::::;

1l:::r::f::::ya::::nb:e::s::a:::T:nthescreen.

Example (4-colour display)

DISPLAY

1 COLOR = 2,4,5,¢

5 D" 8%(2¢0¢)
10 CLS:CIRCLE (256,128),8¢,3

2¢ LINE (19¢,6¢)-(350,195)„BF,XOR

3¢ GET (190,60)-(360,128),8%(0)

5¢ CLS:PUT (250,220),B'~o(O)

14-48

COMMENTS

Statement 5 defines the array to
hold the bit image.

m
Line 1¢ clears the screen, (back-

!L ground is blue) and draws a black

i circumference.

!!i§:::fT,:,:]:esde_d::ond.:ah:Sr::a:ci:Tehc:tnadn:;;

i|operation between ¢ (blue), the
ll background colour number, and 1

:1 (red), the foreground colour num-

! :::;u;;e:e:::d)w.itThhien P:::£::c::n:::

|| :;:::;:;:::::::e:;i;W3' aan: Tthe]s X!:

!

Statement 30 saves a section of the
!1 screen in the array 8%.

1

|1 Line 5¢ clears the screen and

| restores the saved section of the
1 screen (see figure 14-32).

BASIC LANGUA6E - REFERENCE MANUAL

Ü

_,

=+

GRAPHICS

Figure 14-31 Image on the Screen Resulting from Statements 1¢ an'd 2¢

14-49

Figure 14-32 1mage on the Screen Resulting from Statement 50

GRAPHICS FACILITIES PROVIDED BY PCOS

PCOS allows you to choose the display mode (256 x 512 or 256 x 480

pixels) by the SSYS command and to allocate memory space for a specified
number of hindows by the SBASIC command (But PCOS does not allow you to
open, close and select windows: these operations may only be made while
in BASIC or ASSEMBLER).

Other important graphic features are provided by the PCOS commands LABEL,
SPRINT, LSCREEN, RFONT and WFONT, and the special parameters +cc and -cc:

- Using the LABEL command you can display label strings of variable size
and orientation and in a given colour (this command may also be called
from BASIC by an EXEC or CALL statement):

-Using the SPRINT command you can print the image of either the entire

screen or a specified window (this command may also be called from
BASIC by an EXEC or CALL statement);

- Using the LSCREEN command you can print only the text contents of the

entire screen or a specified window (this command may also be called
from BASIC by an EXEC or CALL statement);

- Using the RFONT and WFONT commands (together with the Video File

Editor) you can define a character font of your choice;

- Using the special parameters +cc and -cc, you can display the first 32
characters of the ASCIl table (hedadecimal codes ¢¢ to lF).

\,

For detailed descriptions see the "PCOS (Professional-Computer Operating
System), User Cuide".

B*SIC IAN6üA6E

A. AScll CODES

This table sho`is decimal, hexadecimal, and binary representation of the
ASC11 code.

a01Z, b C00X)000000000001ooooooioOom00'1 d

6,6,6667

b C0I000_oioooaoi0I0000100I00001'0'000\000I000I010'000'10010001'10'0010000I00'00'01001010010010''0100110001001'010100111001001111 d

lz8'29',01,11)21,,',,1„1„1,71,11191„1,11,21,,

b C

'9Z'9,'9,19'

1, C'1000000''00000111000010110000'1

000'0,0, mSOHSTXETX m11,,,, E^8C »,',,,t 10000"1000tm'10®00L01000OOJ1 COClC2C,

6,,,1011121,1,1,

0,0,060708090^0BOC Om0I000"0101000001LO0000011L000010m00001001 EQTENQ^CKBELesHT 6€6,70717Z7,7,7,767,,179 44,,,6,7,,,9 DEFG11[84,,8687üe, i ooo o i oo'0000I0L'000'10100001']1000100lom'00' 1%1,,',,19,Z00201 C,C,C6C7C,C, 00 0 I CK'000101000110000111ao100000100'

0000101000001011ooooiioo l.FVTFF ^,b« JKL Müec LOOO 1010LO00101110m1100 „220,20, C^CeCCCDCECF 00 '010001011001'0000II01001110001111

ODOEOF 0000 ' 1010"11100000'111 CRSOSI D,E,F NN0 8DOE®F LO0011011000111010001111 20,206207

161,t,1,ZO11 10„1213'4L,'617',191^8 0001 0000000\000' DLEm' 80,t828',+,,8607888990 „,' 1 0000100011001010011I0'001010110'1010'11110001100111010 PQ 1„1,,1,61,71„1,91„1„1,21',1,, 9091 iooi ooooI00'Om11001mlo1001001110010100'0010'0] ZO®2092'02'12,Z2'j D,DlD2 0 I 00®010001

00010010 DC, 2'',,5, R 929,W,, 0010

000 I 001100010100Om10101 m,mN^K STU D'tw1),tbD7D€D,D^DB 0 ' 00' L0'0'00010'01

2,,t2,2,26 000 ' 0 I I 00001011L00011000000110010001'010 SYNET1)CJ"EJl'SUB 6,7,,,9,^ VVXYZ 9697,,999^ 1001 01 LO100]01L'100110001001100110011010 ZZZZ2,2222

67,9012,

010110010L1'0110®0110010110'0

272®J,„,1 1lclD'E

000' 1'00OaoL1101000L'110

ESCFSC,SRS 91929,9,9, 8t,D,E
11lm111011„1011111

E]'
1,61,71'®1'9 9C9D9E L00l 110010011101100''11010011„' lx:DDDEDF 01 '10001110101'1'001„„

'F 00) 1 ' 1 ' 1 US F - 9F

)2,,,,,,j6,7t,,940,1,,,}~4,46,7 „Zl 00'0000000I00001 §,,Cl1 9697 6061626) 0 1 ' 0 1_\0110000'011000100110001101'0010001100101011001100„001110110'0000110'00'01'0'0'001'0'011 E '60'6116216} ^0^1 1']1 00®000'0010001'0100010101100„11000100'1010'011 22,,2\2262ZT EOEl I0Oa®I00q'

222, 00 I 0 00 1 00010001'

E]

9099 b ^2^,^,^,^6 E2E) 1000101000„

2,2526272,29Z^2D 00 I 0 0 I 0000I0010100100110 S\&(',+/ '00101102 646,66 d' 16416,166

10101010'0'010

2262r,2'0 E,E,E6

0010100110001'101000010010LOIO01011

0010 0111mlo'000CN)10100'mlo10100)10101J 10,10,10,1%m, 6768696^6D

h'L'

167168169170171'7217)'7,17, A7^0^9^^^8 2'12,22,,2,,2,' E,EJE9E^EB

2C,D2E2F 0010 11000010I1010010„'000101111 1081091'0„1 6C 0116D0116E0„6F011 0 1 1 000'1010''1001„1 ^C®^E^F 10'0'0u' lLOO11011110„„ 2M2,7,t,1), ECEDEEEF 0 L 1000'1010„'00„11

4819t®,1,2,,t®,,,6,7,,,®60,10,h' 0,',2',',','6'7t, 00 1 1 00000011000100'1001000'1O)JI0011Olm00''0'010011011000110„100'110® 0'2,,67,9< 11211,'1, 7071,27,7,7,,677,,797^ 0' ' 1 00„01L10001011'0010011'001'011101000'1'01010„'0„001'101110111I0®0]11L00l011110100'„'01'0'111'00011111010111111001„„'1 Pqi 1,61,7178 8081BZ 1010'0 Oom0®100'0

Z,2,2,Z,2,2,2,2,'2

„1,,,,6789" FOF'FZf,F,F,F6F7F8 'OomL00110010

116„7'18119120 lm',t1®2',,'„ 818,86B7B8 '01010101010101010101010 OLOO01010„00„'1000 1 0 ' 0010101101'0'0„1''Om

'9'^ 0011 'ul00'11010 12'122 '0''06 89B^ 10011010 F9F^ „ 1001„'0'0

'BX: 001 ' '01100„''00 12312,12,lz6'27 787C 1,7lu BBBC 101'1100„011„0'1'1 1,Z,Z,2,2,1,,,, FBFC 11 '01'1'1100„110'1'1110'111'1

)D'E 00„ ' 10100111110

>,
7D7E t,,190',' BDBE FDFE

'f 0011 1111 7F DEL Bf Ff

a Decimal

b Hexadecimal

c s bit Binary
Representation

d AScll code

Note: Boxed characters are different on national kcyboards (see Appen-
dix 8).

A_0 BASIC LANGUAGE ~ REFERENCE MNUAL

_ ==-==1::

8. AScll CHARACTER EQUIVALENCES

This table shows the national equivalences for those ASCIl characters
which appear on the video screen or printer in various national guises.

AScll VAIUE NATIONAI EauIVAIEN1

J<=®LL'a

J=®äXu'I

§
=g

uJu=a=L

-
C,

Zä

J<0E9 ¥C<=ZuJ0

ii :0Z

C)Z

I0ZLLIB

0Z

lL'8uJa=®

±

::S=
>!cEC' >€=CLL'® StE:rqLä Sg:a8

äg>

35 23 © £ £ £ # # £ # £ # £ £ £ £ #

36 24 © ; ; ; ; ; ; ; S B S ! S ; P

64 ® ' ä e i § ' ' @ ! i e 5

91 58 (• (
.A. .A.

' Ä E Ä A: a ä (D

92 5C ® 9 9 \ Ö ö ii C ¢ Ö ¢ C C \ 6

93 5D] e !) U
'u'

6 ö Ä Ä Ä ö e] Z

96 60 u §

123 7B t a 6 t ä ä ä aE a e ä ä (d'

124 7C
1

0 u
1

ö ö F' 9 ¢ 0 ' ö 0
1

6

12S 7D) e ö) Ü ü C 0 ä ä u ü) Z

126 7E 1 ß ß 0 e 6 C

* Enci rcled ch.ract.rs ar e us®d for fu nccionsin BASIC .

Bro BA51C LANGUA£E - REFERENCE MANUAl

C. ERROR CODES AND THEIR MEANING

AB0UT THIS APPENDIX

This Appendix lists all the errors returned from BASIC or PCOS.

1f an error occurs in BASIC only the message without the code is
displayed. Viceversa if an error occurs in PCOS only the code without the
message is displayed, unless the EPRINT command is resident (in this case
also the error message is displayed).

CONTENTS

BASIC AND PCOS ERRORS C-1

111egal function call

(BASIC)

A parameter that is out of range
has been passed to a numeric or a
string function.

Such an error may occur when:

a. An array subscript is either
negative or too big.

b. A log function is assigned a
negative or a null argument.

c. The SQR function is assigned a
negative value.

d. A negative number has an expo-
nent which is not an integer.

e. An incorrect argument has been
made in one of the following
functions: MIDS, LEFTS, RIGHTS,

TAB, SPC, STRINGS, SPACESS,

INSTR, or ON...GOTO.

MESSAGE COMMENT

(BAS I C /PCOS)

Overflow The result of a calculation is too
1arge to be represented in BASIC's

(BASIC) number format.

With underflow, the result is
taken as zero, and execution con-
tinues without indication of an
e r ro r .

| 0ut of memory

(BASIC/PCOS)

Undefined line number

(BASIC)

1 Subscript out of range

:' (BASIC)

Duplicate Definition

(BASIC)

:-2_

1n BASIC: a program is too big; or
has too many loops, subroutines,
variables; or has expressions toc
complicated to evaluate

ln PCOS: a PCOS command or an

Assembly language routine is called
which is too big to be allocated in
the available memory

A line reference is to a non-exis-
tent line from a GOTO, GOSUB,

1F..THEN..ELSE or DELETE

An array element has been referred
to either with a subscript that is
outside the dimensions of the array
or with the wrong number of sub-
scripts

Two DIM statements have been given
for the same array, or a DIM
statement has also been applied to
an array after the default dimen-
sion of 10 was previously estab-
1ished for that array

BASIC LANGUAGE - REFERENCE MANUAL

ERROR MESSAGE COMMENT

CODE | (BASIC/PCOS)1

•,!Division by zero A division by zero has been encoun-
tered or the value zero has been

(BASIC) raised to a negative power. In the
former case the result is machine
infinity (with the appropriate
sign) and in the latter case the
result is positive machine infinity

i

| I11egal direct A statement which is invalid in12
1

"•1 (BASIC)

immediate (direct) moc!e has been
entered as an immediate command.

13
•11` Type mismatch 1n BASIC: a string variable name

has been assigned a numeric value;
(BASIC/PCOS) a function that expects a numeric

argument has been given a string
argument

1n PCOS: a string variable is
entered when a .numeric value is
required and vice versa

14
11 I Out of string space

String variables have caused BASIC
to exceed the amount of free user

(BASIC)

u

memory remaining. (BASIC will al-
locate space dynamically until it
runs out of memory)

15 String too long An attempt has been made to create
a string more than 255 characters

1,

(BASIC) 1Ong

'611,String formula too A string expression is too long or
complex too complex to be processed. It

should be broken into smaller

l (BASIC)
expressions

17 Can't continue An attempt has been made to con-
tinue a program that is non-

E (BASIC) continuable; as it is halted due to
an error, was modified during a
break in execution, or does not
exist in user memory

2(' WHILE without WEND

WEND without WHILE

(BASIC)

A WHILE has been encountered with-
out a matching WEND

A WEND has been encountered without
a matching WHILE

BASIC LAN£UAGE - REFERENCE MANUAL

ERROR C0I}ES AND THEIR MEANING

::::R L ,B:!;:;::oS,

33

35

36

37

1EEE: Unprintable error

(BASIC)

1EEE: Board not present

1

l (BASIC)

39

5¢

Window not open

(BASIC/PCOS)

Unable to create window

(BASIC/PCOS)

1nvalid action verb

(BASIC)

Parameter out of range

1, (BASIC)

1,; Too many dimensions
1

1

1 (BASIC)

(i || FIELD overflow

(BASIC)

COMMENT

An error message is not printable
i.e. corresponds to an error with
an undefined error code

An attempt has been made to use
lEEE on a machine which does not
have the optional 1EEE interface

An attempt has been made to use a
window which is not at present open.

1t may also happen in PCOS, when
executing an Assembly language
subprogram

The dimensions of the window to be
created are wrong.

1t may also happen in PCOS, when
{executing an Assembly language
subprogram

An action verb has been incorrectly
spelt or used

One or more parameters have ex-
ceeded the limits set for their

! range

An attempt has been made to use an
array of more than one dimension,
in graphics mode

A FIELD statement has attempted to
allocate more bytes than were
specif ied for the record length of
a random file

MESSAGE

(BASIC/PCOS)

51 lnternal error

(BASIC)

Bad file number

COMMENT

An internal malfunction has oc-
cured. Report the conditions under
which the error occurred to your
Support Organisation

A statement or command refers to a

(BASIC)

111 file (having a file number not
within the range specified at
initialization) or the correspon-
ding file is not open

53 File not found A BASIC or PCOS command or an OPEN

statement refers to a file that
(BASIC/PCOS) does not exist on the current disk

54 Bad file mode In BASIC: an attempt has been made
to use random file operations (GET

(BASIC/PCOS) or PUT) with a sequential file; or
to use LOAD or RUN with a data
file; or to use an illegal access
mode with OPEN, i.e. not A,1,0, or

R.

ln PCOS: it may happen when exe-

cuting an Assembly language sub-

Program

55 File already open 1n BASIC: an OPEN statement has
5€€F155ued for a file that is

(BAS I C /PCOS) already open, or a KILL has been
applied to a file that is open.

1n PCOS: it may happen, when

executing an Assembly language
subprogram

57 Disk 1/0 error An input/output error has occurred
during a disk 1/0 operation. 1t is

(BAS IC /PC OS) a termination error, i.e. PCOS/-
BASIC cannot recover - apply a
RESET

ERROR CODES AND THEIR MEANING

ERROR M=SSAGE

CODE (BASIC/PCOS)

58 File already exists

(BASIC/PCOS)

59 Disk type mismatch

(PCOS)

t ^ ##jBSffi^^ t,¢` ffi

lT'- CoMMENT

60 Disk not initialized

(PCOS)

61 Disk full

(BASIC/PCOS)

62 End of file

' (BASIC/PCOS)

63 1nvalid record number

(BASIC/PCOS)

64 Invalid file name

(BASIC/F'COS)

66 i Direct statement in file
1

(BASIC)

67 Too many files

(BASIC)

11

An attempt has been made to assign
a file a name which is identical to
a filename already in use on the
disk

An operation has been made which
requires two diskettes of equal
capacity with two diskettes of
different capacity

An attempt has been made to access
a not initialized disk

All disk storage space available is
lJ in use

An incorrect End of File has been
issued

The record number exceeds range,
i.e. is less than or equal to ¢ or
greater than 32767

An invalid form of filename has
been used (too long or including
illegal characters)

A direct (immediate) statement has
been encountered when loading an
AScll format file.

The LOAD operation is terminated

An attempt has been made to create
a new file (using SAVE or OPEN)

when the present directory is
already full

__L

C-7

71
'j lnvam volume number

JF' The specified volume number is

|(BASIC/PCOS)

illegal

72 l|Volume not enabled An attempt has been made to access
a volume which has not been enabled

| (BASIC/PCOS)1

73!!ij 1nvalid password The password entered is illegal

; (BASIC/PCOS)

74!! 111egal disk change The disk has been changed since
1ast using the file

(BASIC/PCOS)

!

|An attempt has been made to write75 Write protected file

i (BASIC/PCOS) i

to a write protected file

76
1 Error in parameter

| An attempt has been made to enter
1

1 an illegal parameter

1

(BASIC/PCOS)

77J_ Too many parameters Too many parameters have been

j (BASIC/PCOS)

specified

78 File not OPEN An attempt has been made to access

i

1 (BASIC/PCOS)

a file that is not open

79 1 Printer error A printer error has been referred
indicating that some operator re-

(BASIC/PCOS) sponse is required, such as out of
ribbon

C-8

8¢,111t
11 Copy protected file(PCOS) 1 An attempt has been made to copy a

copy protected file

11(

81 (Paper empty The printer has run out of paper

(BASIC/PCOS)

(821

„ Printer fault The printer has a hardware fault

1

(BASIC/PCOS)

92 Command not found An invalid keyword has been entered

1!

(PCOS)

99 1 Bad load file The program file specified is not
compatible with the PCOS version

(PCOS) being used

1¢1 Error in time or date An invalid time or date has been
entered

(PCOS)

= (Call-user error(PCOS)
An error has been encountered in a
call to an Assembly Language rou-
tine or a PCOS command

110
'1[

Time-out A time-out error has occurred

(PCOS)

111 1nvalid device The specified device name does not
exist

(PCOS)

AB0UT THIS APPENDIX

This Appendix shows the differences between 1.3, 2.x and 3.x PCOS
releases.

CONTENTS

DIFFERENCES BETWEEN PCOS

RELEASES

GETCONV.BAS UTILITY

D-1

D-3

ßIFFERENCES BE"EEN PCOS RELEASES

PCOS RELEASE 1.3

Hard Disk is not supported

The 16¢K byte and 640K byte
diskettes are pp± supported

8-colour video is not supported

The Assembly and PASCAL language
are p± supported

The following PCOS commands are not
supported :

ASM, BVOLUME, CKEY, DCONFIG, LSCREEN,

PDEBUG, PUNLOAD, RFONT, SLANG, TLOC,

WERIFY, WFONT

6reece and Yugoslavia keyboards
are not supported

PCOS RELEASE 2.x ONWARDS

Hard Disk is supported (from
R.2.¢).

The 160K byte diskettes are sup-

ported (from R.2.O) and 64¢K byte
diskette from R.3.g

8-colour video is supported (f rom
R. 2 . O) .

The Assembly language is supported
(from R.2.O) and PASCAL (from

R.3.O)

The following PCOS commands are

supported (from R.2.@):

ASM, BVOLUME, CKEY, DCONFIG,

LSCREEN, PDEBUG, PUNLOAD, RFONT,

SLANG, TLOC, WERIFY, WFONT

The following options are sup-

ported:

%g with the EDIT command (from

R . 2 . ¢)

%h with the FLIST command (from
R.3.x)

%c with the PKEY comma.nd (from

R . 3 . ¢)

disk time with the SSYS command

(from R.3.O)

The FNEW command may create a list
of files (from R.3.¢)

Greece and Yugoslavia keyboards
are supported (from R.2.O)` and
lsrael keyboard (from R.3.0)

D_1

PCOS RELEASE 1.3 PCOS RELEASE 2.x ONWARDS

BASIC command is resident BASIC command is transient (from
R.2.¢)

PCOS and BASIC are booted at Only PCOS is booted at initial-
initialization i ization (from R.2.O)

At initialization the last selected ; At initialization the last select-
drive is drive 0

P ed drive is the one that PCOS is

booted from (from R.2.¢)

The PCOS prompt is The PCOS prompt is

> n>

where n specifies the last select-
ed drive (from R.2.¢)

The default value of the memory The default value of the memory

parameter in the CLEAR statement is parameter in the CLEAR statement
38¢¢¢ is 368¢0 (from R.2.O) and 36¢00

(from R.3.O)

The LABEL PCOS command does not

permit a colour parameter.

The range of values of the "position"
parameter in the WINDOW (To open a
window) statement, if a horizontal
split is to be made, is:

1ower limit = vertical spacing value

The LABEL PCOS command may specify

a colour parameter (from R.2.O)

The range of values of the "posi-
tion" parameter in the WINDOW (To
open a window) statement, if a
horizontal split is to be made,
is:

of the parent window + 1 i
4 iower limit = 1

upper limit = height of the parent
1

upper limit = 255
window -(1ower limit + 1)

(from R.2.O)

The printers PR 1481, PR 2300, The printers PR 1481, PR 2300, PR
PR 430, PR 2835 and PR 320 and the 430 and the electronic typewriters
electronic typewriters ET 121 and ET 121 and ET 231 are supported
ET 231 are not supported (from R.2.¢) and the printers:

PR 2835 and PR 320 are supported
(from R.3.O)

LANGUAGE - REFERENCE MANUAL

DIFFERE«CES BETWEEN PCOS RELEASES

PCOS RELEASE 1.3

1t is ppi possible to display the
first 32 characters of the AScll
table

Two independent lists of error
messages exist: the former is
related to BASIC and the latter to
PCOS

The maximum number of parameters
in a PCOS command is 11

PCOS RELEASE 2.x ONWARDS

lt is possible to display the
f irst 32 characters of the ASCIl
table (from R.3.O) by the special

parameters +cc and -cc

Only one error list exists (from
R . 3 . O)

The maximum number of parameters
in a PCOS command is 20 (f rom

R . 2 . O)

GETCONV. BAS UTILITY

1f (using a release 1.x of PCOS) you store on a file a window (or a
rectangle within a window) and you want to use this file to display the
same image under a more recent release (2.x onwards) you have to convert
this file by the GETCONV.BAS utility.

To convert this file you must follow the procedure here below:

STEP ACT10N

I Load PCOS 2.x (or one of the more recent releases)

2 Enter:

bam
and, when the BASIC prompt (Ok) appears on the video, enter:

RUN "getconv.bas" m

Note: You may also enter, from PCOS:

gem
------ P

D-3

3
-

Enter the file identifier related to the file to be con-
verted, when the corresponding prompt appears on the video.

4 Enter the output file identifier, when the corresponding
prompt appears on the video

5 Enter "s" if the file to be converted is a sequential file,
and "r" if it is a random file

6 Verify what appears on the video, in particular the dimen-
sion of the one-dimensional integer array, stored on the
file. If the dimension displayed is bigger than the one
specified within the BASIC program you will have to change
the DIM statement in the BASIC program too.

7 Wait until the conversion is completed, i.e. until the BASIC
prompt (Ok) appears on the video

E. BASIC STATEMENTS, COMMANDS AND
FUNCTIONS

AB0UT THIS APPENDIX

This Appendix lists all BASIC statements, commands and functions in
alphabetical order and provides a reference to the corresponding page.

1f a statement, a command or a function may be used both in a program and
an immediate line, PROGRAM/1MMEDIATE is specified; if it may only be used
in an immediate line, 1MMEDIATE is specified; if it may only be used in a

program line, PROGRAM is specified.

CONTENTS

BASIC STATEMENTS. COMMANDS E-1

AND FUNCT10NS

AND FUNCTI0NS

ABS

ASC

ATN

AUTO

CALL

CDBL

CHAIN

CHRi

CINT

CIRCLE

CLEAR

CLOSE

CLOSE WINDOW

CLS

COLOR

COLOR - 6lobal Colour
Set Selection

COMMON

CONT

COS

CSNG

CURSOR

(PROGRAM/1WIEDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/I"EDIATE)

(1WIEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM)

(PROGRAM/IMME0IATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/l"EDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/l"EDIATE)

(PR06RAM/1MMEDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/lMMEDIATE)

(PROGRAM)

(I1"EDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/lMMEDIATE)

(PROGRAM/lMMEDIATE)

Page

9-6

9-19

9-6

2-5

10-9

9-7

11-3

9-20

9-8

14-29

5-1

12-7

14-20

14-14

14-13

14-11

11-6

13-5

9-8

9_9

14-21

E-1

(PROGRAM/1MMEDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/lwIEDIATE)

(PROGRAM)

(PROGRAM/1"EDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM)

(PROGRAM/1"EDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/1"EDIATE)

(1MMEDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/1"EDIATE)

(IMMEDIATE)

(PROGRAM)

(PROGRAM)

(PROGRAM/l"EDIATE)

(PROGRAM/l"EDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/1MMEDIATE)

E~2

BASIC STATEMENTS, COMMANDS AND FUNCTI0NS

(PROGRAM/lMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/IWEDIATE)

(PROGRAM/1WEDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM)

(PROGRAM/1"EDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/l"EDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/1"EDIAT E)

(PROGRAM)

(PROGRAM/l"EDIATE)

(PROGRAM/lMMEDIATE)

(PROGRAM/l"EDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/1MMEDIA+E)

(PROGRAM/1MMEDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/1MMEDIATE)

(IMMEDIATE)

(PROGRAM/1WEDIATE)

(PROGRAM)

(PROGRAM/1"EDIATE)

(1MMEDIATE)

(PROGRAM/lMMEDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/I"E01ATE)

(PROGRAM/1"EDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/lwIEDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/1MMEDIATE)

Page

5-3

2_9

14-25

5-12

12-23

2-9

2-24

9-39 ;
12-18;

12-37

9-13

9-39

7-4

7-12

12-31

3-15

9-27

9-28

9-39 ;
12-33

9-40 ;
12-33

9-40 ;
12-33

3-13

FERENCE MANUAL

BASIC STATEHENTS, COMMANDS AND FllNCTI0NS

NEXT

NEW

NULL

0CTi

ON ERROR 60T0

0N. . .GOSUB

0N. . .GOT0

0PEN

0PTI0N BASE

PAINT

P0lNT

POS

PRESET

PRINT

PRINT

PRINT USING

PRINT USING

PSET

PUT - File

PUT - Graphics

RANDOMIZE

READ

FtENUM

(PROGRAM/1MMEDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM)

(PROGRAM)

(PROGRAM/1MMEDIATE)

(PROGRAM/IWIEDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/IMME0IATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/lMMEDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/1WIEDIATE)

(PROGRAM)

(1MMEDIATE)

E-5

E-6

(PROGRAM)

(PROGRAM)

(PROGRAM)

(PROGRAM/l"EDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/1WIEDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/lMMEDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/l"EDIATE)

(PROGRAM/lMMEDIATE)

(PROGRAM)

(PROGRAM/1MMEDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/1MMEDIATE)

BASIC IAN

Page

5-5

13-13

10-3;
10-7

9-31

9-14

12-31

2-26

2-20

14-15

14-21

14-22

9-16

9-17

9-32

9-40

9-17

13-4

9-33

9-34

5-4

10_12

9-41

BASIC STATEMENTS, COMMANDS AND FUNCTI0NS

NEXT

NEW

NULL

0CTS

ON ERROR 60TO

0N. . .GOSUB

0N. . .GOT0

0PEN

OPTloN BASE

PAINT

P0INT

POS

PRESET

PRINT

PRINT

PRINT USING

PRINT USING

PSET

PUT - File

PUT - Graphics

RANDOMIZE

READ

RENUM

(PROGRAM/I"EDIATE)

(PROGRAM/IWIEDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM)

(PROGRAM)

(PROGRAM/1MMEDIATE)

(PROGRAM/lMMEDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/lMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/1"EDIATE)

(pROGRAM/1mEDIATE)

(PROGRAM/I"E01ATE)

(PROGRAM/lMMEDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/l"EDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM)

(1MMEDIATE)

E-5

(PROGRAM)

(PROGRAM)

(PROGRAM)

(PROGRAM/1"EDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/1"EDIATE)

(PR06RAM/lMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/lMMEDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/l"EDIATE)

(PROGRAM/l"EDIATE)

(PROGRAM/l"EDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM)

(PROGRAM/1MMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/1MMEDIATE)

(PROCRAM/IMMEDIATE)

Page

5-5

13-13

10-3;
10-7

9-31

9-14

12-31

2-26

2-20

14-15

14-21

14-22

9-16

9-17

9-32

9-40

9-17

13-4

9-33

9-34

5-4

10_12

9-41

TAN

TIMEi

TROFF

TRON

VAL

VARPTR

WEND

WHILE

WIDTH

WINDOW-To open

a window

WINDOW-To select

a window

WINDOW-To set window

spacing

WRITE

WRITE

(PROGRAM/lMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/1MMEDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/I"EDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMME01ATE)

(PROGRAM/1"EDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/1"EDIATE)

(PROGRAM/I"EDIATE)

NOTICE

lng. C. 01ivetti & C. S.p.A. reserves the right to make improvements in
the product described in this manual at any'time and without notice.

This material was prepared for the benefit of Olivetti customers. 1t is
recommended that the package be test run before actual use.

Anything in the standard form of the Olivetti Sales Contract to the
contrary not withstanding, all software being licensed to Customer is
licensed "as is". THERE ARE N0 WARRANTIES EXPRESS 0R IMPLIED INCLUDING

WITHOUT LIMITATI0N THE li4PLIED WARRANTY 0F FITNESS FOR PURPOSE AND

0LIVETTI SHALL NOT BE LIABLE FOR ANY DIRECT, 1NDIRECT, CONSEQUENTIAL 0R

INCIDENTAL DAMAGES IN CONNECT10N WITH SUCH SOFTWARE.

The enclosed programs are protected by Copyright and may be used only by
the Customer. Copying for use by third parties without the express
written consent of Olivetti is prohibited.

GR Code 3982430 P (3)
Printed in ltaly

olivetti

GR Code 3982430 P (3)
Printed in ltaly

Olivetti

