M 20 PERSONAL COMPUTER
BASIC Language
Reference Manual

M 20 PERSONAL COMPUTER
BASIC Language
Reference Manual

PREFACE

This is a simple guide to the use
of BASIC on the OLIVETTL M20
System. 1t introduces the reader
to BASIC, with the help of many
figures, tables and examples.
Related statements, commands and
functions are dealt with in the
same chapter.

Previous programming experience is
not strictly required. Only a
basic knowledge of data processing
is assumed.

ALL BASIC STATEMENTS, COMMANDS,
AND FUNCTIONS ARE LISTED 1IN AL-
PHABETICAL ORDER 1IN APPENDIX E,
FOR SPEEDY REFERENCE.

THIS MANUAL MAY BE USED WITH ANY
M20 MODEL

The following are trademarks of Ing. C. Olivetti & C., S.p.A:
OLICOM, GTL, OLITERM, OLIWORD, GLINUM, OLISTAT, OLITUTOR,
OLIENTRY, OLISORT, OLIMASTER.

MULTIPLAN is a registered trademark of MICROSOFT Inc.
MS-DOS is a trademark of MICROSOFT Inc.

CP/M and CP/M-86 are regi d trademarks of Digital R h
Inc.

CBASIC-86 is a trademark of Digital Research Inc.

Capyright © by Olivetti, 1983,
all rights reserved.

Related Publications

L1 M20

PCOS (Professional Computer
ating System), User Guide
Code: 3985280 D (0)
DISTRIBUTION: General (G)
FOURTH EDITION: June 1983

RELEASE : 1.3 onwards

FIRST UPDATE: September 83

PUBLICATION ISSUED BY:

Ing. C. Olivetti & C. S.p.A.
Direzione Documentazione

Oper-

77, Via Jervis-10015 IVREA (Italy)

UPDATING STATUS

LEVEL | DATE UPDATED PAGES PAGES CODE

0 .

Preface, 12-1s:12-7
1 83 09-01 3982434 M

| | 1| H W

©9

*
Pages marked = must be removed

Title: PASIC LANGUAGE .
itle: pererence manua

Newsletter Code: 3982434 M
Date: 83-09-01
Publication Code: 3982430 P (3)
Previous Newsletters: NONE

This Newsletter provides updated pages for the subject publication.

The last level completed on the attached form, Updating Status, indicates the pages
to be added, removed or replaced, the number of pages included, and the Newsletter
Code. Pages marked with an asterisk should be removed from the publication. The form
should be filed at the back of the publication as a permanent record of amended pages.

Each amended page is identified by the Newsletter Code shown above.
Amended pages remain valid unless otherwise noted in a subsequent Newsletter.

Modifications to text, figures or tables are indicated by a vertical bar in the outside
margin next to the change.

Summary of Amendments:

This newsletter documents the "Examine" mode of opening a random
file. This feature is available in BASIC with release 4.0 of PCO0S.

Ing. C. Olivetti & C., S.p.A. — Direzione Documentazione — Via Jervis 77 10015 IVREA (TO) Italy
Gopyright £ 1983, by Olivetti - All rights reserved Printed in Italy

CONTENTS

1.

WHAT 1S BASIC?

THE BASIC LANGUAGE

PCOS AND BASIC
ENVIRONMENTS .

USING THE KEYBOARD

ENTERING CHARACTERS
CONTROL CHARACTERS
CORRECTING TYPING ERRORS

USING THE M20
AS A CALCULATOR

A SAMPLE PROGRAM
KEYWORDS

CONSTANTS

VARTABLES

FUNCTIONS
EXPRESSIONS

THE USE OF BLANKS
COMMENTS

RUNNING OUR PROGRAM

MODES OF OPERATION

COMMAND MODE
EXECUTION MODE
LINE EDIT MODE

BASIC STATEMENTS AND
COMMANDS

1-1

1-1

1-2

1-3

1-4

CHANGING MODE

OR _ENVIRONMENT

. ENTERING, LISTING, AND

EXECUTING A PROGRAM

NOTATION CONVENTION

DOCUMENTING A PROGRAM
CJ

REM/COMMENT FIELDS
(PROGRAM)

ENTERING A PROGRAM

AUTO (IMMEDIATE)
NEW (PROGRAM/IMMEDIATE)

LISTING A PROGRAM

LIST/LLIST (IMMEDIATE)

PROGRAM AND DATA FILES

FILE AND VOLUME
1DENTIFIERS

PASSWORDS

VOLUME PASSWORD

FILE PASSWORD

WRITE PROTECTION

SAVING A PROGRAM

SAVE (PROGRAM/IMMEDIATE)

LOADING A PROGRAM

LOAD (PROGRAM/IMMEDIATE)

EXECUTING A PROGRAM

RUN (PROGRAM/IMMEDIATE)

2-1

2-2

2-4

2-5

2-7

2-8

2-20

2-24

2-24

iii

3.

iv

UPDATING AND MODIFYING
A PROGRAM

DELETING LINES

DELETE (IMMEDIATE)

REPLACING LINES

INSERTING LINES

RENUMBERING LINES

RENUMBERING AND CROSS-
REFERENCES

RENUM (IMMEDIATE)

CHANGING LINES WITH THE

LINE EDITOR

EDIT (IMMEDIATE)
LINE EDIT MODE COMMANDS

EXAMINING CURRENT

VARIABLE VALUES

RENAMING A FILE

NAME (PROGRAM/IMMEDIATE)
DELETING A FILE

KILL (PROGRAM/IMMEDIATE)

MERGING PROGRAMS

MERGE (PROGRAM/IMMEDIATE)

LISTING THE NAMES OF

SAVED FILES

FILES (PROGRAM/IMMEDIATE}

3-1

3-3

3-4

3-4

4. DATA

CONSTANTS AND VARIABLES

CONSTANTS

VARTABLES

HOW BASIC NAMES VARIABLES

REPRESENTATION OF NUMBERS

BINARY REPRESENTATION

HEXADECIMAL AND OCTAL
REPRESENTATIONS

HOW BASIC CLASSIFIES

CONSTANTS

NUMERIC DATA

STRING DATA

NORMAL TYPING CRITERIA
TO CLASSIFY CONSTANTS

TYPE DECLARATION TAGS

HOW BASIC CLASSIFIES

VARIABLES

DEFINT/DEFSNG/

DEFDBL /DEFSTR
(PROGRAM/TMMEDIATE)
TYPE DECLARATION TAGS

NUMERIC CONVERSIONS

SINGLE OR DOUBLE
PRECISION TO INTEGER

INTEGER TO SINGLE OR
DOUBLE PRECISION

4-1

4-1

4-1

4-2

4-5

4-6

4-6

a-6

4-7

4-8

4-9

BASIC LANGUAGE - REFERENCE MANUAL

CONTENTS

SINGLE TO DOUBLE
PRECISION

DOUBLE TO SINGLE
PRECISION

ILLEGAL CONVERSIONS

SUBSCRIPTED VARIABLES
AND ARRAYS

ONE DIMENSIONAL ARRAYS
MULTI DIMENSIONAL ARRAYS
DIM (PROGRAM/IMMEDIATE)
ERASE (PROGRAM/IMMEDIATE)

OPT1ON BASE
(PROGRAM/IMMEDIATE)

5. HOW BASIC INPUTS DATA

ASSIGNMENT STATEMENTS

CLEAR (PROGRAM/IMMEDIATE)
LET (PROGRAM/IMMEDIATE)
SWAP (PROGRAM/IMMEDIATE)

THE INTERNAL DATA FILE

DATA/READ/RESTORE
(PROGRAM)

INPUT STATEMENTS

INPUT (PROGRAM)

LINE INPUT (PROGRAM)
6. EXPRESSIONS

NUMERIC EXPRESSIONS

4-15

4-16

4-16

4-17

4-18

4-19

4-22

4-23

5-12

6-1

STRING EXPRESSIONS

RELATIONAL EXPRESSIONS

LOGICAL EXPRESSIONS

OPERATOR PRIORITY

. HOW BASIC OUTPUTS DATA

SETTING THE NUMBER OF
NULLS AND THE WIDTH

NULL (PROGRAM/IMMEDIATE)
WIDTH (PROGRAM/IMMEDIATE)
STANDARD FORMAT

LPRINT/PRINT
(PROGRAM/IMMEDTATE)

WRITE (PROGRAM/IMMEDIATE)

USER DEFINED FORMAT

LPRINT USING/PRINT USING
(PROGRAM/IMMEDIATE)

. CONTROL STATEMENTS

UNCONDITIONAL BRANCHES

GOTO (PROGRAM/IMMEDIATE)

ON...GOTO
(PROGRAM/1MMEDIATE)

CONDITIONAL BRANCHES

1F...GOTO...ELSE/
1F...THEN...ELSE
(PROGRAM/IMMEDIATE)

LOOPS

7-1

7-3

7-4

7-10

7-11

7-12

8-9

9.

vi

FOR/NEXT
(PROGRAM/IMMEDIATE)

WHILE/WEND
(PROGRAM/IMMED1ATE)

FUNCTIONS

INTRODUCTION

USER DEFINED FUNCTIONS

DEF FN (PROGRAM)

BUILT IN NUMERIC
FUNCTIONS

ABS (PROGRAM/IMMEDIATE)
ATN (PROGRAM/1MMEDIATE)
CDBL (PROGRAM/IMMEDIATE)
CINT (PROGRAM/IMMEDIATE)
C0S (PROGRAM/IMMEDIATE)
CSNG (PROGRAM/IMMEDIATE)
EXP (PROGRAM/IMMEDIATE)
FIX (PROGRAM/IMMEDIATE)
FRE (PROGRAM/IMMEDIATE)
INT (PROGRAM/IMMEDIATE)
LOG (PROGRAM/IMMEDIATE)
RND (PROGRAM/IMMEDIATE)

RANDOMIZE
(PROGRAM/IMMEDIATE)

SGN (PROGRAM/IMMEDIATE)

SIN (PROGRAM/IMMEDIATE)

8-11

8-20

9-1

9-3

9-5

9-6

9-6

SQR (PROGRAM/IMMEDIATEi

TAN (PROGRAM/IMMEDIATE)

BUILT-IN STRING
FUNCTIONS

ASC (PROGRAM/IMMEDIATE)
CHRS (PROGRAM/IMMEDIATE)
HEXS (PROGRAM/IMMEDIATE)

INKEYS
(PROGRAM/IMMEDIATE)

INPUTS
(PROGRAM/TMMEDIATE)

INSTR
(PROGRAM/1MMEDIATE)

LEFTS
(PROGRAM/IMMEDTATE)

LEN
(PROGRAM/TMMEDIATE)

M1D$
(PROGRAM/IMMEDIATE}

M1D$ (PROGRAM/IMMEDIATE)
0CT$ (PROGRAM/IMMEDIATE)

RIGHTS
(PROGRAM/1MMEDIATE)

SPACES
(PROGRAM/TMMEDIATE)

STRS (PROGRAM/IMMEDIATE)

STRINGS
(PROGRAM/IMMEDTATE)

VAL (PROGRAM/IMMEDIATE)

BASIC LANGUAGE - REFERENCE

9-19

9-20

9-21

9-22

9-23

9-24

9-25

9-27

MANUAL

CONTENTS

INPUT/OUTPUT AND SPECIAL 9-36 CALL (PROGRAM/IMMEDIATE) 10-9
BUILT-IN FUNCTIONS

EXEC (PROGRAM/IMMEDIATE) 10-11

DATES/TIMES 9-37

(PROGRAM/IMMEDIATE) SYSTEM 10-13
(PROGRAM/IMMEDIATE)

CVD (PROGRAM/IMMEDIATE) 9-38
PROGRAMMABLE KEYS 10-13

CVI (PROGRAM/IMMEDIATE) 9-38
BASIC VERBS KEYBOARDS 10-13

CVS (PROGRAM/IMMEDIATE) 9-38
DEVICE RE-ROUTING FROM 10-14
EOF (PROGRAM) 9-38 BASIC

ERL (PROGRAM/IMMEDIATE) 9-38 11. PROGRAM SEGMENTATION

ERR (PROGRAM/IMMEDIATE) 9-38 WHEN USING PROGRAM 11-1

SEGMENTATION
LOC (PROGRAM/IMMEDIATE) 9-39

PASSING DATA 11-1
LPOS (PROGRAM/IMMEDIATE) 9-39

PROGRAM CHAINING 11-2
MKD$ (PROGRAM/IMMEDIATE) 9-39

CHAIN (PROGRAM) 11-3
MK1$ (PROGRAM/IMMEDIATE) 9-40

COMMON (PROGRAM) 11-6

MKS$ (PROGRAM/IMMEDIATE) 9-40
12. DISK FILE HANDLING
SPC (PROGRAM/IMMEDIATE) 9-40
SEQUENTIAL AND RANDOM 12-1

TAB (PROGRAM/IMMEDIATE) 9-41 FILES
VARPTR 9-42 SEQUENTIAL FILES 12-2
(PROGRAM/IMMEDIATE)

RANDOM FILES 12-3

10. SUBPROGRAMS

OPENING AND CLOSING 12-3
BASIC SUBROUTINES 10-1 FILES
GOSUB/RETURN (PROGRAM) 10-3 OPEN (PROGRAM/IMMEDIATE) 12-4
ON...GOSUB/RETURN 10-7 CLOSE 12-7
(PROGRAM) (PROGRAM/IMMEDIATE)
PCOS COMMANDS CALLED 10-8 WRITING A SEQUENTIAL 12-9
FROM BASIC AND ASSEMBLY FILE

LANGUAGE SUBPROGRAMS

vii

PRINT #
(PROGRAM/IMMEDIATE)

PRINT#USING (PROGRAM/
IMMEDIATE)

WRITE #
(PROGRAM/IMMEDIATE)

LoC

READING A SEQUENTIAL
FILE

INPUT #
(PROGRAM/IMMEDIATE)

LINE INPUT #
(PROGRAM/TMMEDIATE)

EOF

UPDATING A SEQUENTIAL
FILE

DEFINING A RECORD LAYOUT

FIELD (PROGRAM/IMMEDIATE)

WRITING RECORDS TO A
RANDOM FILE

LSET/RSET
(PROGRAM/IMMEDIATE)

MKIS$/MKSS/MKDS
(PROGRAM/IMMEDIATE)

PUT-File
(PROGRAM/IMMED1ATE)

Loc
(PROGRAM/IMMEDIATE)

READING RECORDS FROM A
RANDOM FILE

viii

12-10

12-16

12-17

12-18

12-19

12-20

12-23

12-26

12-27

12-27

12-28

12-30

12-31

12-33

12-35

12-37

12-38

13.

14.

GET-File
(PROGRAM/IMMEDIATE)

CVI/CVS/CVD
(PROGRAM/IMMEDIATE)

UPDATING RECORDS OF A

RANDOM FILE

DEBUGGING AND ERROR
RECOVERY

TYPES OF ERRORS

TRACING PROGRAM
EXECUTION

TRON/TROFF
(PROGRAM/IMMEDIATE)

INTERRUPTING PROGRAM
EXECUTION

END (PROGRAM)
STOP (PROGRAM)
CONT (IMMEDIATE)

ERROR TESTING

AND RECOVERY

ERROR
(PROGRAM/1MMEDTATE)

ON ERROR GOTO
(PROGRAM)

ERL/ERR
(PROGRAM/IMMEDIATE)

RESUME (PROGRAM)

GRAPHICS

INTRODUCTION

12-39

12-41

12-42

13-1

13-2

13-3

13-4

13-4

13-5

13-11

13-13

BASIC LANGUAGE - REFERENCE MANUAL

CONTENTS

WINDOWS

WINDOW - TO OPEN A
WINDOW
(PROGRAM/IMMEDIATE)

WINDOW - TO SET WINDOW
SPACING
(PROGRAM/IMMEDIATE)

WINDOW TO SELECT A
WINDOW
(PROGRAM/TMMEDIATE)

CLOSE WINDOW
(PROGRAM/IMMEDIATE

USING COLOURS

COLOR - GLOBAL COLOR
SET SELECTION
(PROGRAM/IMMEDTATE)
COLOR - TO SELECT
FOREGROUND AND BACK
GROUND COLOURS
(PROGRAM/IMMEDIATE)

CLS (PROGRAM/IMMEDIATE)

CO-ORDINATE SYSTEMS

SCALE
(PROGRAM/IMMEDIATE)

SCALEX
(PROGRAM/IMMEDIATE)

SCALEY
(PROGRAM/IMMEDIATE)

DISPLAYING POINTS

PSET
(PROGRAM/TMMEDIATE)

PRESET .
(PROGRAM/IMMEDIATE)

14-2

14-3

14-8

14-9

14-10

14-11

14-14

14-15

14-16

14-17

14-18

14-21

14-22

14-22

14-22

14-23

POINT .
(PROGRAM/TMMEDIATE)

DISPLAYING CURSORS

CURSOR
(PROGRAM/TMMEDIATE)

POS (PROGRAM/IMMEDIATE)

DRAWING LINES,

RECTANGLES, AND CIRCLES

LINE
(PROGRAM/TMMEDIATE)

CIRCLE
(PROGRAM/IMMEDTATE)

DRAW (PROGRAM/IMMEDIATE)

PAINT
(PROGRAM/IMMED1ATE)

HOW TO STORE AND

DISPLAY WINDOWS AND

RECTANGLES

GET-Graphics
(PROGRAM /IMMEDIATE)

PUT-Graphics
(PROGRAM/IMMEDIATE)

GRAPHICS FACILITIES

PROVIDED BY PCOS

ASC11 CODES

ASCIT CHARACTER
EQUIVALENCES

BASIC AND PCOS ERRORS

DIFFERENCES BETWEEN PCOS
RELEASES

GETCONV.BAS UTILITY

14-24

14-25

14-26

14-29

14-29

14-30

14-33

14-35

14-40

14-44

14-44

14-46

14-50

ix

E. BASIC STATEMENTS, E-1
COMMANDS AND FUNCTIONS

BASIC LANGUAGE - REFERENCE MANUAL

1. WHAT IS BASIC?

ABOUT THIS CHAPTER

This chapter introduces you to the Model 20 (M20) BASIC language. It
illustrates the PCOS (Professional Computer Operating System) and BASIC
environments, and the use of the Keyboard. Moreover, it tells the user
how to use the machine as a calculator, how to enter and run a program,
and the modes of operation in BASIC.

CONTENTS

THE BASIC LANGUAGE 1-1 RUNNING OUR PROGRAM 1-13
PCOS AND BASIC ENVIRONMENTS 1-1 MODES OF OPERATION 1-15
USING THE KEYBOARD 1-2 COMMAND MODE 1-15
ENTERING CHARACTERS 1-3 EXECUTION MODE 1-17
CONTROL CHARACTERS 1-4 LINE EDIT MODE 1-17
CORRECTING TYPING ERRORS 1-5 BASIC STATEMENTS AND 1-18

COMMANDS
USING THE M20 AS A CALCULATOR 1-5

CHANGING MODE OR ENVIRONMENT 1-19

A SAMPLE PROGRAM 1-7
KEYWORDS 1-8
CONSTANTS 1-9
VARIABLES 1-9
FUNCTIONS 1-9
EXPRESSIONS 1-10
THE USE OF BLANKS 1-12

COMMENTS 1-13

WHAT 1S BASIC?

THE BASIC LANGUAGE

BASIC (Beginner's All-purpose Symbolic Instruction Code) is a general
purpose high-level programming language.

YOU CAN USE BASIC TO SOLVE BOTH BUSINESS AND SCIENTIFIC PROBLEMS.

BASIC IS EASY TO LEARN AND USE, AS IT CONSISTS OF SELF-EXPLANATORY STATE-
MENTS AND COMMANDS.

Different BASIC versions are available on different computers. The first
was developed at Dartmouth College by John G. Kemeny and Thomas E. Kurts.
From now on, when we speak of BASIC we refer to the version used on the
Model 20 (M20).

THE M20 BASIC IS A MICROSOFT BASIC VERSION, EXTENDED WITH GRAPHICS AND
1IEEE 488 STANDARD INTERFACE PACKAGES.

PCOS AND BASIC ENVIRONMENTS

The M20 System may be simply defined as a computer and a set of programs
supplied by Olivetti. These "System Programs'' are resident on a 5 1/4 in.
floppy disk (system disk). Theymay be loaded onto the hard disk in an M20
hard disk system.

The System Programs, which include PCOS and BASIC, permit you to instruct
the computer in a manner similar to human language. They work by
converting your instructions into a machine-language understood by the
computer itself. You interact with the computer using PCOS and BASIC
commands and sets of statements referred to as BASIC programs.

Note: From now on we shall use:

- diskette instead of 5 1/4 in. floppy disk, for brevity;
- disk instead of either a diskette or the hard disk.

SYSTEM PROGRAMS

Initialize a disk Enter a program
Name a disk PCOS BASIC List a program
Copy a disk Save a program
List the directory Execute a program
Assign a password Debug a program
Create a file Modify a program
Write — protect a file Use the M20 as a calculator
SRS i s e aacone) | _Draw pictures
H

Figure 1-1 System Programs

USING THE KEYBOARD

The keyboard allows entry of all the standard text and control charac-
ters.

Alphanumeric Section

Numeric Section

Figure 1-2 The Keyboard (USA-ASCII Version)
Note: All the characters shown in this manual refer to the USA-ASCII

Keyboard. Appendix B shows the national equivalents for those ASCII
characters which will appear on the display screen or printer.

=2 RASTC | ANGUAGE - REFERENCE MANUAL

WHAT IS BASIC?

When we want to specify the keys the user must press to perform a certain
action, we shall show the exact sequence of keys in reverse (white on
black): the keys illustrated in reverse in figure 1-2 are also included
in this sequence; for example:

(LRI RSHTHCR]

By convention, we use to indicate any of the three carriage
return/line-feed keys (I, B, and) to indicate the
space bar, and to indicate either of the two shift keys. (Only
USA ASCIT and USA-ASCII with BASIC verbs keyboards have SHIFT written on
the keys). ‘

When we want to remind the user to press to send a line to the
system, we shall show at the end of the line. For example:

DELETE 1¢¢ - 2¢¢
ENTERING CHARACTERS

IFaies THEN .=«

you press a key (or the character it represents is immediately shown

a combination of keys) ' on the screen. When characters are being
entered, the blinking cursor () indicates the
position the next character will occupy

you want to enter a just press the key, e.g. M for a

lower case character

or the lower symbol on

those keys containing

two symbols

you want to enter
upper case characters
or the upper symbol
on these keys con-
taining two symbols

you want to enter a
number

hold down one of the two EEIMAM keys and press
the corresponding key, e.g. AN M for A.

YOU MAY ENABLE OR DISABLE SHIFT LOCK FOR LETTERS

(A-Z) BY PRESSING LR (see Control

Characters below)

use either the top row of the alpnanumeric

section, or the numerfic section

1-3

you hold down a key
for more than a
moment

you want to send a
line to the system (a
BASIC line, a PCOS
command, or data in
response to an INPUT/
LINE INPUT statement)

you want to move the
cursor to a new line
before reaching the
margin

CONTROL CHARACTERS

the corresponding character is entered repeat-
edly, until you release the. key

press M, which positions the cursor at the
beginning of the next line on the screen.

you must press X4 the requisite number of
times

Control characters are entered when pressing either [N or KSR
and another key together. The table below summarises all the M20 control

characters.

IF you press...

CTRL
(Break)

CTRL

CTRL
(Backspace)

CTRL W RESET

(Logical Reset)

1-4

THEN. ..

you interrupt program execution. M20 returns to
BASIC Command Mode and displays Ok (if you are
in BASIC) or to PCOS and displays > (if you are
in PCO0S). See also '"Correcting Typing Errors"
below

the cursor changes its shape and blink rate and
the display of entered characters is suppressed
(Hide State).

TO RETURN TO NORMAL DISPLAY STATE YOU MUST PRESS
AGAIN, OR

the last character typed is deleted and the
cursor is moved one position to the left

the memory is cleared and PCOS is loaded again
from disk

BASIC LANGUAGE - REFERENCE MANUAL

WHAT IS BASIC?

CTRL screen output is suspended

THE SUSPENDED OUTPUT 1S RESUMED BY TYPING ANY

KEY
HOME Insert State is exited, while remaining in Line
(Escape) Edit Mode (see Chapter 3)
COMMAND enables Shift Lock for letters (A-Z).

TO DISABLE SHIFT LOCK, PRESS [SRIIIYD]
AGAIN

CORRECTING TYPING ERRORS

You can correct typing errors either before or after you have sent a line
to the system.

IF you notice an error THEN. .. OR...

before you have com- delete the last move the cursor to the

pleted a line (i.e. character(s) by next line by

before pressing GH) N and and retype the line

retype it/them

after you have com- enter the line enter Line Edit Mode

pleted a line (i.e. correctly with the and use Line Edit Mode

after pressing IEGH), same line number Commands (see Chapter
AND IF THE NEW LINE WILL 3)

the line is a program REPLACE THE OLD ONE

lire

USING THE M20 AS A CALCULATOR

You may use the M20 as a calculator for quick computation, and debugging
purposes.

You are in BASIC. The special prompt Ok is on the screen.

You may enter IEN ECH [N | (or simply), followed by an ex-
pression and J8M. The expression is evaluated and its value displayed.
You may also enter followed by a variable name (a string of
characters whose first character is a letter), followed by an assignment
operator (=), then by an expression, and [HSGMll. The expression is
evaluated and its value assigned to the variable. You may use the
variable to represent that value in successive computations.

The following table gives some examples.

DISPLAY COMMENTS
PRINT 3 the constant 3 is displayed (a constant may be
3 considered a simple expression)
Ok
PRINT 2+3 the expression 2+3 is evaluated, and its value
5 (5) is displayed
Ok
LET A=15.21 the constant 15.21 is assigned to the variable
Ok A. You may use A in successive computations to
represent this value
241 the expression A-1 is evaluated, and its value
14.21 (14.21) is displayed.
Ok
Note: ? is equivalent to PRINT
B=2.3 the constant 2.3 is assigned to the variable 8.
Ok The keyword LET is optional, you may begin with
a variable name
?A*B the expression A*B is evaluated. The symbol *
34.983 means '"multiplied by'". Its value (34.983) is
Ok displayed
?7A*B-40 the expression A*B-4@ is evaluated, and 1its
-5.917 value (-5.¢17) is displayed.
Ok

Note: If a value is negative, the minus sign is
displayed, if a value is positive, no sign is
displayed

1-6 BASIC LANGUAGE - REFERENCE MANUAL

WHAT IS BASIC?

A SAMPLE PROGRAM
You may also use the M20 to enter and run BASIC programs.

By writing and running a program you may solve problems that could not be
solved using the M20 as a calculator.

A BASIC program consists of a series of statements. A statement is a
complete instruction in BASIC, telling the M20 to perform specific op-
erations.

You may enter either one or several statements per line. In the latter
case, each statement must be separated by a colon (:).

Each line in a BASIC program begins with a line number: an integer
greater than or equal to @ and less than or equal to 65529 and ends when

you press [HGH.

You are in BASIC. The special prompt Ok is on the screen. A sample prog-
ram may be constructed by entering the following statements:

1¢ REM RECTANGLE1

2¢ INPUT "Length";L

3¢ IF L<=@ THEN 2¢

4@ INPUT "Width";w

5¢ IF W<=@ THEN 4¢

60 LET AREA=L*W

7¢ PRINT "Area='";AREA;" L=";L;" W=";W
8¢ GOTO 2¢

9¢ END

These statements form a complete program that solves a very simple prob-
lem.

The problem is to find the area of a rectangle by entering the values of
length and width via the keyboard. It has been selected both for its
simplicity and to illustrate a variety of BASIC features. Other more
concise solutions exist (as we shall see in Chapter 3).

You have entered one statement per line. You could also enter more than
one statement per line, using the colon (:) as statement separator and
reducing the number of lines. For example:

1¢ REM RECTANGLE1

2¢ INPUT "Length";L:IF L <=@ THEN 2@
3¢ INPUT "Width";W:IF W<=@ THEN 3@
4@ LET AREA=L*W

5¢ PRINT "Area='";AREA;" L=";L;" W=";W
6@ GOTO 2@:END

You may enter up to 255 characters per (logical) line, including the line
number. A logical line may appear on the screen on several physical
lines. For example:

2@ INPUT "Length";L:IF L<=f
THEN 2

is one logical line divided into two physical lines. To change lines
before reaching the margin press the Y43 key the requisite number of
times.

KEYWORDS

Each statement begins with a keyword (or reserved word). The keyword is a
mnemonic of an English word. 1t must be preceded and followed by at least
one blank.

Note: You may not use a keyword as a variable name.

The keyword defines the type of statement to be carried out. One or more
operands (constants or variables) or expressions follow the keyword. Some
statements have more than one keyword e.g. IF... THEN. The statements of
our program contain the keywords REM, INPUT, IF... THEN, LET, PRINT, GOTO
and END. BASIC keywords may be entered in lower case or upper case
letters. They are converted to upper case letters when listing the prog-
ram (see Chapter 2). Besides keywords, other reserved words are BASIC
command names (e.g. RUN, LIST etc..) and function names (e.g. SIN, COS,
etc.). See Appendices C,D, and E for a complete list.

1-8 BASIC LANGUAGE - REFERENCE MANUAL

WHAT IS BASIC?

CONSTANTS

Specific numbers (such as @, 15@, - 31.7) are called "numeric constants"
and specific strings (such as 'Length", "Width", '"Area =", " L=" and
" W=") are called "string constants'. This means that their values remain
the same throughout program execution. For example when the constant 15@
is used in a-program, it remains fixed at that value throughout program
execution. Numeric costants may be integer (e.g. 15@) or non integer
(real) e.g. - 31.7. String constants are always quoted (i.e. included in
a pair of quotation marks), unless differently specified. Unquoted
strings may be used for instance within DATA statements and answering to
an INPUT or LINE INPUT statement. For further information see Chapter 4.

VARIABLES

A variable is a named data item whose value may change during program
execution. The length of the name of a variable may be maximum of 40
characters. The first character must be a letter. Examples of variables
in our program are:

L , W , AREA
Like keywords, variable names may be entered either in lower or upper

case letters. They are converted to upper case letters when listing the
program.

A variable may be a simple variable (e.g. L,W,AREA mentioned above) or a
subscripted variable.

A subscripted variable is an array element, i.e. an element of a
collection of variables under one name. You can distinguish different
elements by the value(s) of one or more subscripts appearing in
parentheses after the array name. For example, if A 1is a one dimensional
array, A(@) is the first element, A(1) the second element, and so on.

An array may have any number of dimensions. A one dimensional array might
be thought of as a list of items. A two dimensional array is like a table
of values. In this case the first subscript designates the '"row" in the
array and the second subscript designates the 'column', for example

B(1,2) is the element belonging to second row and the third column.

For further information see Chapter 4.

FUNCTIONS

We can classify functions as either built-in or user-defined functions.

1-9

We shall speak briefly of built-in functions here, whilst user-defined
functions will be described later (see Chapter 9, where you can also find
detailed information on all BASIC functions).

Built-in functions provide a set of commonly used numeric operations (as
square root, sine and natural logarithm etc...) and string operations (as
extracting group of characters - a substring - from a larger string
etc.). The user can invoke them within any BASIC program, writing the
name of the function (e.g. SIN followed in parentheses by the value(s) of
one or more arguments (e.g. SIN (1.5).

A function call may be an operand within an expression (e.g. 1 +
2*C0S(.4)) and the arguments may also be expressions (e.g. L0G(45/7)).

For example:
SIN(1.5) is .997495 (SIN returns the sine of the argument)

1 + 2*C0S(.4) is 2.84212 (COS returns the cosine of the argument)

LOG(45/7) is 1.86@75 (LOG returns the natural logarithm of the
argument)

SQR(1¢) is 3.16228 (SQR returns the square root of the argument)

EXPRESSIONS

We can classify expressions as numeric, string, relational or logical.

Let us define briefly what we mean for numeric, string and relational
expressions.

Logical expressions will be defined later (see Chapter 6, where we shall
also describe all the types of expressions in detail).

Numeric Expressions
A numeric expression can be either a numeric constant, a simple numeric
variable, a numeric array element, a numeric function, or a mixture of

them linked by means of special symbols, called numeric operators.

The numeric operators are:

=10 BASIC LANGUAGE - REFERENCE MANUAL

WHAT IS BASIC?

+ addition (e.g. A+B+C)
- subtraction (e.g. A-B)
\ integer division (the operands are rounded to the nearest integers
before the division is performed, and the quotient is truncated to
an integer, e.g. 25.68\6.99 is 3)
MOD modulus arithmetic (it gives the 1integer value which 1is the
remainder of an integer division, e.g. 25.68 MOD 6.99 is 5, as 26/7
is 3 with remainder 5)
* multiplication (e.g. A*B)

/ division (e.g. A/B)

- (negation it changes the sign of the operand, e.g. -A is 35 if the
value of A is -35)

A exponentiation (e.g. AAB)

String Expressions
A string expression can be either a string constant, a simple string
variable, a string array element, a string function, or a mixture of them

linked by plus signs (+).

By using the plus sign, strings can be joined - '"concatenated'" is the
technical term.

For example:

1¢ AS = "Chicago,"
20 BS = "IL.,"
3¢ C$ = AS+BS+"USA"

The comcatenation in statement 3@ would result in C$ being assigned the
string:

Chicago, IL.,USA
Relational Expressions
Relational expressions compare either two numeric or two string

expressions by means of a relational operator.

1-11

The relational operators are:

= equals

> greater than

< less than

>= oF => greater than or equal to
<= or =< less than or equal to
<> or >< not equal to

The result of a relational expression expression may be true or false and
may be used to make a decision regarding program flow, For example we
used a relational expression in the statement:

3¢ 1F L<=@ THEN 2¢

1t returns control to statement 2@ if L is negative or zero.

THE USE OF BLANKS

Blank spaces may be inserted in the statements to make them more read-
able. The use of blanks is almost always optional in BASIC with the
following exceptions:

- at least one blank must precede and follow a keyword

- blanks are significant within string constants

- blanks are forbidden within numeric constants (including line numbers),
keywords, variable names, and function names.

For example:

2¢ INPUT '"Length"; L

and

2¢ INPUT ‘"Length"; L
are equivalent, but

20 INPUT "L eng t h"; L

is not equivalent, as it contains a longer string constant.

112 BASIC LANGUAGE - REFERENCE MANUAL

WHAT IS BASIC?

COMMENTS

You may document your program by the REM (Remark) statement. After REM
you may enter any string of printable ASCII characters. For example:

1¢ REM RECTANGLE1

Another way of documenting your program is the through use of comment
fields (a string of printable ASCII characters preceded by an apostrophe
and ended by GH).

For example:
19@ GOTO 1¢9¢ 'Loops for ever

Both REM and comment fields may be inserted anywhere in your program as
they are not executable statements but they appear on the program listing
and increase the readability of your program. For further information see
Chapter 2.

RUNNING OUR PROGRAM

Let us run our sample program. If you have already entered it via
Keyboard (and have not switched the M20 off in the interim) it will be in

memory. Enter [N W IEHM Bl KELW; the listing will appear on the
screen. At the end of the listing when Ok appears on the screen, enter

[R | [N CR B

DISPLAY COMMENTS
LIST M20 begins executing statements
1¢ REM RECTANGLE1 sequentially. Because statement
2¢ INPUT 'Length';L 19 is a REM(ark) it 1is not
3¢ 1IF L<=@ THEN 29 executed; execution in this case
4@ INPUT "Width';W starts with statement 2.
5¢ 1F W<=@ THEN 4¢
6@ LET AREA=L*W When an INPUT statement is
7@ PRINT "Area='';AREA;" L=";L;" W=";W encountered (see statements 20
8¢ GOTO 2¢ and 4@) program execution is
9¢ END suspended and M20 prompts a
0k message indicating that you
RUN should enter a value. You could
Length? 3.5 enter for example 3.5 for the
Width? 4.2 length and 4.2 for the width.

Areca= 14.7 L= 3.5 W= 4.2

1-13

Length? -7.3

Length? 7.3

Width? 1.3Q

?Redo from start

Width? 1.32

Area= 9.636 L= 7.3 W= 1.32
Length? AC

Break in 2¢

Ok

Statement 6@ calculates the
value of AREA. Statement 70
displays the values of AREA, L
and W. Statement 8@ returns
control to statement 2.

If you enter a negative value
(e.g. -7.3), for L, statement 2¢
is executed again, as statement
3¢ returns control to statement
20 if L is negative or zero.

If you enter 2 negative value
for W, statement 4@ is executed
again, as statement 5@ returns
control to statement 48, if W is
negative or zero.

If you enter a string value for
L or W (e.g. 1.3Q for W) the M20
displays an error message:

?Redo from start

and you must re-enter the value.
This program continues to run
until you press to
stop execution. The M20 displays
a break message and enters
Command Mode. To resume execu-

tion, enter [O W N L (R

BASIC LANGUAGE - REFERENCE MANUAL

WHAT IS BASIC?

MODES OF OPERATION

BASIC has three modes of operation.

MODES OF OPERATION

COMMAND EXECUTION IE-B\:'?’
MODE MODE MODE

g

to type in to execute 10 edit
programs and programs and program
immediate immediate lines
lines lines

Figure 1-3 Modes of Operation

COMMAND MODE
Whenever the M20 enters Command Mode, it displays a special prompt:

Ok

In Command Mode, BASIC does not accept your input until you complete the

line by pressing M.

Program and Immediate Lines

BASIC always ignores leading spaces in a line - it jumps ahead to the
first non-space character. If this character is not a digit, BASIC treats
the line as an immediate line. If it is a digit, BASIC treats the line as

a program line (see below).

IF...n

you enter a program
line, i.e. a line num-
ber (@ to 65529), one
or more BASIC state-
ments or commands
(separated by colons)

and

you enter an immediate
(direct) line, i.e.
one or more BASIC
statements or commands
(separated by colons)

and

you enter a sequence
of program lines

Submodes

THEN. ..

the line is stored in memory, when you press

ILW. The line is not executed until you enter
[R | [N J CR B

For example:

1@ PRINT "The LOG of 5 is'';LOG(5)

is a program line. When you press BASIC
stores it in memory. To execute 1it, press
iR | N |

the line is executed as soon as you press [GH.
For example:

PRINT "The LOG of 5 is";LOG(5)

is an immediate line. When you press BASIC
executes it

the lines are stored in memory to form a BASIC
program.

They are stored 1in line number sequence,
irrespective of the order they were entered.

The program is not executed until you enter

(R B UNNNCR]

Command Mode includes the following Submodes:

- Immediate (or Direct), when you enter an immediate line

- Program, when you enter a program line.

BASIC LANGUAGE - REFERENCE MANUAL

WHAT IS BASIC?

EXECUTION MODE

The M20 executes both BASIC immediate and program 1lines in BASIC
Execution Mode and PCOS commands in PCOS Execution Mode. A BASIC program
is executed in ascending line number sequence, unless a control statement
(GOTG, ON...GOTO, 1F...THEN...ELSE, IF...GOTO...ELSE, FOR/NEXT,
WHILE/WEND) dictates otherwise.

LINE EDIT MODE

BASIC includes a Line Editor for correcting program lines. This is useful
for correcting long and complicated lines without having to re-enter them
completely.

IF you wish to edit THEN you must enter... BASIC displays
the current line EDIT | SPACE N . | Al

(line-number 11...1)

a specified line EDLT l SPACE fn B n R n | nn...n

(line-number nn...n)

Note: The current line is the last line entered or edited. If while
running a program an error is encountered the line containing the error
becomes the current line. (See '"Syntax Errors' below).

1f M20 enters Edit Mode, you can begin editing on the line (deleting,
inserting, and replacing characters) by use of Edit Mode subcommands (see
Chapter 3).

In Edit Mode BASIC takes your input as soon as you enter a character,
without waiting for you to press M. By pressing BASIC exits Edit
Mode.

Syntax Errors

1f, during execution of a program line, a syntax error is detected, M20
displays:

Syntax error in nn...n
Ok
NMN...N

and automatically enters the Line Edit Mode.

Here nn...n stands for the line number where the error occurred.

Edit States

Line Edit Mode provides the following states:
- Delete

- Change

- Insert

To enter these states or to exit from them, you must use the appropriate
Edit Commands (see Chapter 3).

BASIC STATEMENTS AND COMMANDS

It is sometimes difficult to distinguish a BASIC statement from a BASIC
command, as both may be used in a program or an immediate line, but:

- BASIC statements are generally used in program lines and entered in
sequence to form a program (with the exception of PRINT, LPRINT, LET
and SWAP, which are also often used in immediate lines, when using the
M20 as a calculator or for debugging purposes)

- BASIC commands are used to manipulate programs and for utility pur-
poses, such as listing programs or clearing the memory. They are gen-
erally used in immediate lines (with the exception of KILL, LOAD, RUN,
SYSTEM, TROFF, TRON and WIDTH which are also often used in a program).

Later in the manual, when introducing a BASIC statement, command or
function we will write:

- (IMMEDIATE), if it may be used only in an immediate line
- (PROGRAM), if it may be used only in a program line

- (PROGRAM/IMMEDIATE), if it may be used both in a program and an
immediate line.

. BASIC LANGUAGE - REFERENCE MANUAL

WHAT IS BASIC?

CHANGING MODE OR ENVIRONMENT

The operation mode

(Command, Edit, or Execution Mode) or environment

(PCOS or BASIC) may be changed by entering certain commands or control
characters, or if certain conditions occur.

The table below summarizes how you can change mode or environment.

IF M20 is in...

BASIC
Execution Mode

BASIC Command Mode

AND IF...
you press:

CTRL

when M20 is executing
a BASIC program or an
immediate line

you press:

RESET

a Syntax error
is detected

the execution of a
BASIC program or
command is completed
OR
an error other than
a syntax error is
detected)
OR
a STOP (or END)
statement is
encountered

you enter an immediate
line

THEN. ..

execution 1is interrup-
ted and M20 enters
BASIC Command Mode

memory 1is cleared and
PCOS is reloaded

M20 enters BASIC Line
Edit Mode at the line
that caused the error

M20 enters BASIC Com-
mand Mode

M20 enters BASIC Execu-
tion Mode, executes the
line and returns to
BASIC Command Mode

BASIC Line Edit Mode

you enter:

(SEYASRETHRERNM

Note: SYSTEM may also
be used in a BASIC
program

you enter:

you press:
CTRL RESET
you press:

you press:

B3 (Exit)

you press:

W (Quit Editing)

you press:

CTRL W RESET

M20 enters PCOS. Both
the BASIC interpreter
and the user memory are
cleared.

M20 enters BASIC Line
Edit Mode

memory 1is cleared and
PCOS is reloaded

M20 enters BASIC Com-

mand Mode. (The newly
modified line is dis-
played). All program

variables are cleared

M20 enters BASIC Com-
mand Mode. The remain-
der of the newly modi-
fied line 1is not dis-
played and all program
variables are cleared

M20 enters BASIC Com-
mand Mode and cancels
all the changes 'that
were made to the line.
No program variable is
cleared

memory 1is cleared and
PCOS is reloaded

BASIC LANGUAGE - REFERENCE MANUAL

WHAT 1S BASIC?

PCOS

you enter:

(B) AN CR|

you enter any other
PCOS command

you press:

CTRL W RESET

you enter a file
identifier that has
the BAS extension
(e.g. FILEA.BAS).
OR

you enter the BASIC
command followed by
a file identifier
(e.g. BA FILEB)

BASIC is loaded and M20
enters BASIC Command
Mode

M20 enters PCOS Execu-
tion Mode

memory 1is cleared and
PCOS is reloaded

M20 enters BASIC Execu-
tion Mode and the spec-
ified program is exe-
cuted

1-21

2. ENTERING, LISTING, AND
EXECUTING A PROGRAM

ABOUT THIS CHAPTER

This chapter illustrates notation convention, how to document a program,
and the most useful BASIC commands. These allow you to enter, list, save,

load and execute programs.

CONTENTS

NOTATION CONVENTION

DOCUMENTING A PROGRAM

REM/COMMENT FIELDS (PROGRAM)

ENTERING A PROGRAM

AUTO (IMMEDIATE)
NEW (PROGRAM/IMMEDIATE)

LISTING A PROGRAM

LIST/LLIST (IMMEDIATE)

PROGRAM AND DATA FILES

FILE AND VOLUME IDENTIFIERS
PASSWORDS

VOLUME PASSWORD

FILE PASSWORD

WRITE PROTECTION

2-1

2-2

2-9

2-11

2-12

SAVING A PROGRAM

SAVE (PROGRAM/IMMEDIATE)

LOADING A PROGRAM

LOAD (PROGRAM/IMMEDIATE)

EXECUTING A PROGRAM

RUN (PROGRAM/IMMEDIATE)

2-26

2-26

ENTERING. LISTING. AND EXECUTING A PROGRAM

NOTATION CONVENTION

The syntax of BASIC is described by means of syntax diagrams.

A syntax diagram is a flow-chart with one entry and one exit. Each path
through the diagram defines an allowable sequence of symbols. The follow-
ing table summarizes the rules the user must follow to draw a syntax
diagram.

NO. RULE EXAMPLE

1 all items enclosed by a
rounded envelope (ovals or
circles) must be entered
exactly as shown.

Items enclosed in a rec- (run) m

tangular box are names of %
parameters used in a m O—®
statement, a command, or

a function.

A description of each
parameter is given in the
text following the draw-

ing
2 a fork indicates a choice:
you must select one path.
line
For example after RUN you @ number
may either:
file
. e . p—>-
- enter a line number identifier
OR

- a file identifier

3 a branch without a para-
meter indicates that the
alternative is a bypass m
(used to indicate ,R is o o
op=ional)

24

4 a loop indicates a repe-

tition. For example vari-
able may be repeated n iy yariabie
times in a READ statement,
and each variable is sep-
arated from the next one
by a comma

5 this manual shows BASIC REM
reserved words in upper INPUT
case letters, even though IF...THEN
you may enter them in LET
lower case letters. Some PRINT
examnples of reserved words GOTO
are shown on your right. END

They are the keywords of
our sample program
(RECTANGLE1)

6 PCOS command names are
mnemonic. For example:

file
identifier

BASIC - go to BASIC
VCOPY - volume copy

and so on.

They may be entered either
in lower case or in upper
case letters. They are nor-
mally entered in lower ca-
se letters and in their
short form (the first two
letters) as shown in the
syntax diagrams

DOCUMENTING A PROGRAM

Often you may want to insert comments in order to make your program logic
easier to follow. This can be done by using:

2-2 BASIC LANGUAGE - REFERENCE MANUAL

ENTERING. LISTING, AND EXECUTING A PROGRAM

- the REM statement, or

- comment fields.

REM/COMMENT FIELDS (PROGRAM)

The REM (Remark) statement is one way to document your program. You can
write any message you want following the keyword REM.

Another way to document your progrem is to write a comment field, i.e. a
string of characters preceded by an apostrophe (') and ended by H&GM.

@ string of
characters

Figure 2-1 REM Statement

string of |
| ——
characters

Figure 2-2 Comment Field

Examples
IF you enter... THEN. ..

1@ REM RECTANGLE1 a REM statement titles your prog-
ram. It is good programming prac-
tice to title pregrams

1¢@ REM SUBROUTINE1 a REM statement marks the beginning

of a subroutine (see Chapter 1f).
1t is good programming practice to
title subroutines.

2-3

1@ 'RECTANGLE1 a comment field titles your pro-
gram.

Note: 1In this case the apostrophe
works like REM, as the comment

occupies a line

15¢ LET A=(A1+A2)/2 'Average a comment field ends a statement

Remarks

A REM statement may not be followed by other statements on the same line.
It can however be the last statement on a multi statement line.

A comment field may:

- occupy a line (in which case the apostrophe has the same function as
REM)

- end a statement.

Both REM and comment fields can appear anywhere in a program. They are
not executable statements, but they appear in the listing.

ENTERING A PROGRAM

The Ok prompt is on the screen. BASIC is waiting for you to start. You
might start immediately by entering the first statement, beginning by
entering the line number 1@. There is, however, a preliminary step that
can make your task a little easier. You can request the system to number
your lines for you. You do this with the AUTO command, which is described
below.

On the other hand, if you have already entered a program and you want to
enter a new one, you must first enter a NEW command. This causes the’
program in memory to be deleted allowing you to enter a new program (see
below). The program in memory is also deleted when LOADing a new program
from disk, or when entering a SYSTEM command (to return to PC0S), or when
turning off the machine.

In these cases it would be wise to save your program first (unless you
already have a copy).

Let us enter our sample program (RECTANGLE1), by pressing the following
keys:

2-4 BASIC LANGUAGE - REFERENCE MANUAL

ENTERING, LISTING. AND EXECUTING A PROGRAM

[N | SPACE
This will clear the memory.

Then enter:

1¢ REM RECTANGLE1

2¢ INPUT "Length";L

3¢ IF L<=@ THEN 2¢

4¢ INPUT "Width"; W

50 1IF W< =@ THEN 4¢

6@ LET AREA = L*W

7¢ PRINT "Area="; AREA; " L=";L;" W=";W
8¢ GOTO 2¢

9¢ END

It is conventional to use an interval of 1§ between each line number.
This allows you to modify a program simply by inserting statements bet-
ween existing lines.

Although program lines can be entered in any order they are ordered in
memory in ascending line number sequence.

For example, we may enter the statement whose line number is 5@, then the
statement whose line number is 1@ etc... and obtain the same listing
(i.e. the same program).

You may enter keywords and variable names in upper case or lower case

letters. They will be converted into the corresponding upper case letters
when listing the program.

AUTO (IMMEDIATE)

Starts automatic line numbering.

line

| interval |
number)

AUTO

Figure 2-3 AUTO Command

2-5

Where

SYNTAX ELEMENT

line number

interval

Examples

IF you enter...

AUTO

AUTO .,30
AUTO 199
AUTO 158,

AUTO 209,20

AUTO, 3

2-6

MEANING

the first line number
generated

the first line number
generated is the num-
ber of the current
line

is the interval bet-
ween line numbers

THEN line numbering begins...

at line 1@ (default
value)

at the current line
at line 100

at line 150

at line 2¢¢

at line ¢

DEFAULT VALUES

14 (if the interval is
omitted, otherwise @)

19

AND line interval is...

1¢ (default value)

3¢

1¢ (default value)

the last interval spec-
ified by a preceding
AUTO command or, if
none were preceding, 19
(the default value)

2¢

3

BASIC LANGUAGE - REFERENCE MANUAL

ENTERING. LISTING, AND EXECUTING A PROGRAM

An Asterisk after Line Number

IF; v

AUTO generates a lire
number that already
exists

THEN. ..

an asterisk is displayed after the line number
to warn the user that any input will replace an
existing line. However, typing immediately
after the asterisk will save the existing line
and generate the next line number.

Note: This will happen only if you enter AUTO
when a program already exists

To Terminate Line Humbering

IF vou press...

CTRL

THEN...

M20 terminates automatic line numbering and
Command Mode is entered.

Note: The line in which [N is pressed is
not saved

NEW (PROGRAM/IMMEDIATE)

Deletes the current program and variables allowing you to enter a new

program.

NEW switches off the trace flag in the same way as TROFF (see Chapter 13)
and closes all data files (see Chapter 12).

Figure 2-4 NEW Command

—) —

2-7

Examples

IF you enter... THEN. ..
NEW the prograr currently in memory is celeted
16 REM RECTANGLE? you enter a new program from keyboard.

2§ INPUT "Length";L

Note: It is not necessary to enter NEW before
loading a program from disk, by issuing a
LOAD or a RUN command (as they automatically
clear memory)

LISTING A PROGRAM

Once a program is in main memory it can be listed. To list your program,
enter either the LIST command (the listing will appear on the screen) or
the LLIST command (the listing will appear on the printer).

You cannot list a protected program (SAVEd with the P option, see below).
The LIST and LLIST commands edit your programs by converting to upper
case letters any reserved word (keyword, variable names, and function
names) and to PRINT any question mark (?) used instead of PRINT. Moreover
statements are ordered in ascending line numbei sequence, even though you
may have entered them in a different order. '

To list our sample program on the screen enter H. You
will see the following.

2-8 BASIC LANGUAGE - REFERENCE MANUAL

ENTERING, LISTING. AND EXECUTING A PROGRAM

LIST

1§ REM RECTANGLE1
2@ INPUT "Length';L
3¢ IF L<=@ THEN 2¢
4@ INPUT "Width";W
5¢ IF W<=@ THEN 4¢
6@ LET AREA=L*W

7@ PRINT "Area=";AREA;" L=";L;" W=";W
8¢ GOTO 2¢

9¢ END

Ok

At the end of a listing the M20 enters Command Mode and displays Ok.
LIST/LLIST (IMMEDIATE)

LIST lists program lines on the screen, LLIST lists program lines on the
printer.

line line
HAT number o number

Figure 2-5 LIST Command

LLIST

line | line
number number

Figure 2-6 LLIST Command

Examples

IF you enter...
LIST
LIST 150
LIST 5
LIST 2¢@-

LIST -1¢9¢
LIST 198-19¢
LIST .-5¢¢

THEN. ..
the entire program is listed
line 15@ is listed
the current line is listed

line 2@@ and all higher-numbered lines are
listed

all lines from the beginning to 10@@ are listed
all lines from 1@@ to 190 are listed

all lines from the current line to 5@f are
listed

BASIC LANGUAGE - REFERENCE MANUAL

ENTERING. LISTING. AND EXECUTING A PROGRAM

Suspending a Listing

TESes
you press:

CTRL

you press:

CTRL

the end of the program

is reached

THEN. ..

listing is suspended, without entering Command
Mode.

You may continue the suspended listing by typing
any key

M20 enters Command Mode and abandons the listing

listing is terminated and Command Mode is en-
tered

PROGRAM AND DATA FILES

A file is a sequence of statements (program file) or data (data file)
which may be stored on a disk.

The table below sumarizes the main characteristics of program and data

files.

FILE TYPE

program files

MEANING

a program file is a sequence of program lines.
They are stored in memory in line number se-
quence, irrespective of the order in which they
were entered. A program file is stored in memory
in a packed binary format, and saved on a disk-
either in this format or in ASCI1 format (if you
use the A option to save it). ASCII format files
are sequences of ASCI1 characters; effectively
they contain the source listing of your program.
Wnen loaded into memory (by a LOAD or RUN com-
wand) they are always converted into packed
binary format

2-11

data files a data file is a sequence of numeric and/or
string data, which is stored on a disk.

A data file is created by a BASIC program. First
of all it must be opened by an OPEN statement
which specifies the access mode, a file number
and the name of the file. The value of the file
number must be in the range 1 to 15.

Each following Input/Output statement in the
program will specify the file by the file
number.

When you have finished with the file, it is good
programming practice to 'close" it using the
CLOSE statement. In any case all data files will
be closed when an END statement is encountered.

Note: When closing a data file, the program
cannot access it unless -a new OPEN statement is
executed. This may specify a new file number and
a new access mode. Only the file name must
remain the same

FILE AND VOLUME IDENTIFIERS

A disk may contain one or more program and/or data files. A single file
may not be fragmented over more than one disk.

A group of files stored on the same disk forms a 'volume'. Each file and
each volume has an identifier. Each file name must be unique on any one
volume. Saving a program file which already exists on a volume causes the
original file to be overwritten.

You may assign an identifier to a file either by an OPEN statement (data
files), or by a SAVE command (program files), or by a FNEW PCOS command.
You may assign an identifier to a volume by a VFORMAT, a VNEW, or a
VRENAME PCOS command.

The system recognizes a volume identifier and can find any of its files
only if the corresponding diskette is mounted in a drive. This restric-
tion will not be applied to the hard disk, as this unit is always on
line.

2-12 BASIC LANGUAGE - REFERENCE MANUAL

ENTERING, LISTING. AND EXECUTING A PROGRAM

Volume Identifier
| volume volume
name password

drive
number

P
o

J ; volume l; file | file ll
identifier name password

Figure 2-7 File and Volume Identifier

Where

SYNTAX ELEMENT

volume name

drive number

MEANING

string of up to 14 printable ASCII characters
(for illegal characters see below).

To select a volume in a PCOS or BASIC command or
in an OPEN statement you must specify a volume
name or a drive number. The volume name (or the
drive number) may be followed by a volume
password. At the end of a volume identifier a
colon must be entered. For example:

SAVE "VOL1:FILE1"

Here VOL1 is a volume name, FILE1 is a file name
and VOL1:FILE1 is a file identifier. You save
the program file FILE1 on the disk named VOL1
(for more details see the SAVE command below)

Note: When specifying a file or volume identi-
fier in a BASIC statement or command you must
either include the identifier in a pair of
quotation marks, or write a string variable or a
string expression whose value is the identifier.

When specifying a file or volume by name in a
PCOS command you must not include the identifier
in a pair of quotation marks. For example:

vn VOL1:

Note: 1In BASIC a volume identifier may be
EEEZified only if included in a file identifier.
The only exception is with the FILES command
when you want to list all the files of a volume.
For example:

FILES "VOL2:"

the drive number may be either @ (indicating the
drive on the right), or 1 (indicating the drive
on the left) or 1¢ (indicating the hard disk
drive). With a.hard disk system drive @ is on
the 1left and drive 1 does not exist. For
example: '

BASIC LANGUAGE - REFERENCE MANUAL

ENTERING, LISTING, AND EXECUTING A PROGRAM

file password
OR
volume password

file name

LOAD "1:FILE@g2"

Here 1: indicates that file FILE@@2 resides on
the diskette inserted in drive 1. The command
loads the file into memory (for more details see
LOAD command below)

string of up to 14 printable ASCII characters
(for illegal characters see below).

Passwords give the user protection at volume or
file level (see below). They may be entered
after a volume name, a drive number, or a file
name and are preceded by a slash. For example:

RUN "@:RECTANGLE1/R1"

Here you load file RECTANGLE1 which has the
password R1 and run it. RECTANGLE1 resides on
the diskette inserted in drive @ (for more
details see the RUN command below)

string of up to 14 printable ASCII characters
(for illegal characters see below).

To select a file in a PCOS or BASIC command or
in an OPEN statement you must specify a file
name. The file name may be preceded by a volume
identifier and followed by an extension and/or
by a (file) password. Far example: "

SAVE "1:PRIMENUMBERS/PN"

Here you save the BASIC program PRIMENUMBERS on

the diskette inserted in drive 1 and give it the
password PN.

Note: If you do not specify any volume identi-
fier before the file name,the search is limited
to the last selected drive.

Note: The file name may include an extension
EEEZ, i.e. a string of up to 12 printable ASCII
characters, preceded by a period (.). For
illegal characters see below.

2-15

Note: filename.extension cannot exceed 14 char-
acters in total (including only one period).
For example:

LOAD "FILEA.CHAR"

will load FILEA which has the extension CHAR. It
resides on the last selected drive.

Note: Some extensions have special meanings: BAS
(BASIC programs); CMD (PCOS transient commands);
SAV (PCOS transient commands which become
resident the first time they are executed). For

more details see '"Professional Computer Oper-
ating System (PCOS) User Guide'.

I1legal Characters

comma (,) hyphen (-) slash (/)
plus (+) hash (#) colon (:)
asterisk (%) equals (=) space
double quote (") semicolon (;)

or any control character

backslash (\)
single quote (')
question mark (?)

PASSWORDS

Passwords give the user protection at volume or file-level as desired.

1f a password has been assigned to a volume it must be specified to
enable the volume. By convention a volume is said to be enabled either if
it has no password or if the password has been specified in a BASIC or

PCOS command.

The user must enter the corresponding password correctly on all occasions

when using volume and file identifiers.

Note: 1f you have forgotten a password for a file or volume you will not
be allowed access to that file or volume by BASIC or PCOS.

2-16 BASIC LANGUAGE - REFERENCE MANUAL

ENTERING. LISTING. AND EXECUTING A PROGRAM

VOLUME PASSWORD

IF you want to...

assign a password to
a volume

access a volume that
has a password (or a
file saved on a volume
that has a password)

remove a volume
password

hide a volume
password

THEN. ..

issue a VPASS command, specifying the password.
For example:

vp MYVOL:,MYPASS

1F
the volume already has a password this must be
specified by the VPASS command, which, in this
case, will change the password. For example:

vp VOL1/0LDPASS: ,NEWPASS

enable that volume specifying the volume pass-
word after the volume. name or the drive number,
in a BASIC or PCOS command or in an OPEN
statement.

Note: Once a diskette password has been specifi-
ed, it need not be specified again until the
diskette has been removed and another diskette
has been referenced in the drive unit in which
the diskette was inserted. For the hard disk,
once the password has been specified, it need
not be specified again until PCOS is rebooted.

issue a VDEPASS command.

Note: You must know the password to use a
VDEPASS command

press GG EE.

The cursor will change its shape and blink rate
and the display of entered characters is
suppressed, (Hide State).

To return to normal Display State you must press

CTRL again, or

2-17

FILE PASSWORD

IF you want to...

assign a password to
a file

assing a password

to a program file
(that has none)

access a file that
has a password

remove a file
password

hide a file
password

THEN. ..

issue an FPASS command, specifying the password
IF

the file already has a password, this must be

specified by the FPASS command which, in this

case, will change the password

and FPASS can be issued, or else the password
can be specified in a SAVE command. For example:
SAVE "FILEABC/PASSABC"

specify that password after the filename. For

‘example:

LOAD "FILEZ1/PASSZ1"

If the volume also has a password, you must
specify it too (unless the volume has already
been enabled)

issue a FDEPASS command.

Note: You need to know the file password to
remove or change it

press MW KEH.

The cursor will change its shape and blink rate
and the display of entered characters is
suppressed, (Hide State).

To return to normal Display State you must press

again, or

BASIC LANGUAGE - REFERENCE MANUAL

ENTERING, LISTING., AND EXECUTING A PROGRAM

WRITE PROTECTION

Write protection can be applied by the user at volume or file level.

IF you want to... THEN. ..
write protect a cover the write protect notch with an aluminized
volume (i.e. to pre- label

Note: It is not possible to write protect the
hard disk, but it is possible to write protect

vent any writing
to that diskette)

its files

unprotect a volume remove the aluminized label

write protect a file issue a FWPROT command, specifying the file
identifier

unprotect a file issue a FUNPROT command, specifying the file
identifier

SAVING A PROGRAM

A program is kept in memory only as long as the M20 is switched on. As
soon as you turn off the machine, your program is lost. If you want to
retain your newly written program for future use, then you must issue a
SAVE command to store it on a disk.

You can save the current program on other occasions too. The table below
summarizes them. In any case the disk must be enabled otherwise you must
specify the volume password in the SAVE command. Moreover, if you want to
save the program on a diskette, this must not be write protected.

IF you want to... THEN. ..

turn off the machine save the current program (unless you already
have a copy)

enter another program save the current program (unless you already
from keyboard have a copy)

load another program save the current program (unless you already
from disk (by entering | have a copy)
a LOAD or RUN command) e

go to PCOS (by save the current program (unless you already
entering a SYSTEM have a copy)
command)
replace the old save the current program, specifying the same
version of your name as the old version
program AND
the same password if the old version already has
a password
save the current specify the A option in the SAVE command
program in ASCI1
format
protect the current specify the P option in the SAVE command

program against any
attempt to list,
edit, or save it
again

Note: During a saving operation the disk-unit red light comes on. When it
goes off, your program has bcen saved, and Ok appears on the screen.

SAVE (PROGRAM/IMMEDIATE)

Saves the current program on a disk, gives it a name, and optionally a
password.

ifcijlzntifier o o
)

Figure 2-8 SAVE Command

2-20 BASIC LANGUAGE - REFERENCE MANUAL

ENTERING, LISTING, AND EXECUTING A PROGRAM

Where

SYNTAX ELEMENT

file identifier

Examples

In each of the following
write protected.

IF you enter...

SAVE "RECTANGLE1"

SAVE "@:RECTANGLE1"

MEANING

may be either a string constant or a string
variable. Specifies the name of the program to
be saved. The file identifier may include a file
password and a volume identifier

specifies that the program must be saved in
ASCI1 format

specifies that the'program must be saved pro-
tected against any attempt to list, edit, or
save it again

cases the volume must be enabled and must not be

THEN. ..

RECTANGLE1 is saved on the disk
inserted in the last selected drive.

RECTANGLE1 has no password

RECTANGLE1 is saved on the diskette insert-
ed in drive @.

4

RECTANGLE1 has no password

SAVE "1@:RECTANGLET" RECTANGLE1 is saved on the hard disk.

RECTANGLE1 has no password

SAVE "VOL1:RECTANGLE1" RECTANGLET is saved on VOL1, which may be

inserted in either of the two drives (as
the volume name is specified).

RECTANGLE1 has no password

2-21

SAVE "VOL1:R1/PASS" R1 is saved on VOL1, which may be inserted
in either of the two drives and assigds it"
a password

Replacing a File

In each case the volume must be enabled and must not be write protected.

IF you enter... AND IF... THEN...
SAVE "FILE1" FILET already exists the current program
on the selected disk, will replace the old
AND version with the same
has no password name
SAVE "FILE1/PASS1" FILE1 already exists the current program
on the selected disk, will replace the old
AND version with the same
has the password name and the same pass-
PASS1 word
FILE1 already exists no replacement takes
on the selected disk, place, and the system
AND displays an error mes-
has a different pass- sage (see Appendix C).
word
FILE1 already exists the current program
on the selected disk, will replace the old
AND version with the same
has no password name and the new ver-

sion will have the
password PASS1

Option A
If you specify the A option, the file is saved in ASCII format.
1f you do not specify the A option (i.e. either no option or the P option

is selected), the file is saved in a packed binary format.

2-22 BASIC LANGUAGE - REFERENCE MANUAL

ENTERING, LISTING, AND EXECUTING A PROGRAM

* ASCI1 format takes more space on the disk than the packed binary format,
but some commands require that files be in ASCII format. For instance the
MERGE command requires an ASCI1 format file.

If you want to save a file using the "A'" option, the maximum number of
characters in a (logical) line is 255.

After BASIC executes a.SAVE command with the "A" option in a program, it
terminates.
IF you enter... THEN. ..
SAVE '"GEOMETRY",A GEOMETRY is saved in ASCI1 format (i.e. a se-
quence of ASCII characters) on the disk inserted

in the last selected drive.

GEOMETRY has no password. The disk is presumed
to be enabled.

Option P

1f you specify the P option the file is not only saved in packed binary
format, but it is also protected against any attempt to:

- list
- edit
- save it again.

Note: P protection cannot be removed.

IF you enter... THEN. ..

SAVE "@:GEODESY",P WOl GEODESY 1is saved protected on the enabled
diskette inserted in drive #.

GEODESY has no password

2-23

LOADING A PROGRAM

1f the program you want to enter into memory resides on a disk, you must
issue a LOAD command.

LOAD deletes all variables and program lines currently residing in mem-
ory, thus before entering a LOAD command you should save the current
program if you want to use it again. You do not have to save the current
program if you already have a copy of it on disk.

To LOAD a program file from a disk, it must be enabled or you must
specify the volume password in the LOAD command. To LOAD a program file
which has a password, you must specify this file password in the LOAD
command.

1If you specify the R option all open data files are kept open, and the
program is RUN after it is LOADed.

LOAD (PROGRAM/IMMEDIATE)

Loads a program file and optionally runs it.

‘ gciil:ntiﬁer o 0

Figure 2-9 LOAD Command

Where
SYNTAX ELEMENT MEANING
file identifier may be either a string constant or a string
variable which specifies the program file to be
loaded into memory from disk
R specifies that all open data files are kept open

and the program is RUN after it is LOADed

2-24 BASIC LANGUAGE - REFERENCE MANUAL

ENTERING, LISTING, AND EXECUTING A PROGRAM

Examples

IF you enter...

LOAD "1@:RECTANGLET"

LOAD "VOL1:RECTANGLE1/P1"

LOAD "V3/P3:FAA"

LOAD BS

Option R

THEN...

RECTANGLET is loaded from the hard
disk.

RECTANGLE1 has no password and its
volume has already been enabled

RECTANGLET is 1loaded from the
volume VOL1 which may reside in
either of the two drives.

RECTANGLE1 has the password P1 and
VOL1 is presumed to be enabled

FAA is loaded from the volume V3
which has the password P3. The
volume V3 may be inserted in either
of the two drives. Its password is
indicated in the LOAD command to
enable the volume.

FAA has no password

the program specified by the con-
tents of the variable B$ is loaded
into memory

If you specify the R option, all open data files are kept :open and the

program is RUN after it is LOADed.

If you do not specify the R option, LOAD closes all open data files.

Note that:

LOAD file identifier,R
and

RUN file identifier,R

have the same effect.

2-25

IF you enter... THEN. ..

LOAD "ACCOUNT",R program ACCOUNT is RUN after it is LOADed, and
all open data files are kept open. ACCOUNT
resides on the disk 1inserted in the last

selected drive.

ACCOUNT has no password and its volume has
already been enabled

EXECUTING A PROGRAM

Once a program is in main memory, it can be executed (or "run", as this
is frequently called). To tell the M20 to execute a program, you issue a
RUN command (or a LOAD with the option R).

The RUN command runs the current program i.e. the program currently in
memory; or loads a program from a disk and runs it. When the RUN command
specifies a file identifier, this must include:

- the file password, if the file has a password

- the volume password, if the volume has a password (and it has not yet
been enabled).

If you specify the R option all open data files are kept open.

Before entering a RUN file identifier (or RUN file identifier,R), save
your current program (unless you already have a copy).

BASIC statements are executed in line number sequence, unless a control
statement (GOTO, ON...GOTO, IF...GOTO...ELSE, IF...THEN.. ELSE, FOR/NEXT,

WHILE/WEND) or a subroutine call statement (GOSUB, ON...GOSUB) dictates
otherwise.

RUN (PROGRAM/IMMEDIATE)

Runs the program currently in memory or loads a program from disk and
runs it.

2-26 BASIC LANGUAGE - REFERENCE MANUAL

ENTERING, LISTING, AND EXECUTING A PROGRAM

Figure 2-10 RUN Command

Where

SYNTAX ELEMENT

line number

file identifier

&

line ‘1
number A
mUigiat
identifier

MEANING

specifies the entry point of the program, i.e.
the current program is run starting from the
specified line number. I1f you do not specify a
line number the current program is run from the
beginning.

Note: RUN line number and GOTO line number have
the same effect, except that RUN also clears
program variables

may be either a string constant or a string
variable which specifies the program file to be
loaded from disk into memory and run

specifies that all open data files are kept
open. If R is omitted all data files are auto-
matically closed

2-27

Examples

In the following cases the volume is presumed to be enabled.

IF you enter...

RUN
RUN 150

RUN "1:Newfile"

RUN ""NewVOL:Newfile"

RUN "1:Newfile/NewPASS"

RUN A$

Option R

THEN. ..
the current program is run

the current program is run starting
from line 15@

program Newfile is loaded into
memory and run. It resides on the
diskette inserted in drive 1, and
has no password

program Newfile 1is loaded into
memory and run. It resides on the
disk named NewVOL which may be
inserted in either of the two
drives. Newfile has no password

program Newfile 1is loaded into
memory and run. It resides on the
diskette inserted in drive 1 and
has the password NewPASS

the program specified by the con-
tents of the variable A$ is loaded
into memory and run

If you specify the R option, all open data files are kept open.

If you do not specify the R option, RUN closes all open data files.

Note that:

RUN file identifier,R
and

LOAD file identifier,R

have the same effect.

2-28

BASIC LANGUAGE - REFERENCE MANUAL

ENTERING. LISTING, AND EXECUTING A PROGRAM

IF you entér...

THEN...

RUN "1@:Newfile'",R MM 'program Newfile is loaded into memory and run,

leaving the opened files open. Newfile resides
on the hard disk.

Newfile has no password and the hard disk is
presumed to be enabled

Suspending Program Execution

[P
you press:
OR

a STOP statement is
encountered

an error is detected
(except Syntax
errors)

a Syntax error is
detected

THEN .-

a program interrupt occurs, the message 'Break
in line nnnnn" is issued and Command Mode is
entered.

No open file is closed. You can display program
variables (by an immediate PRINT) or change
their values (by an immediate LET).

You can resume execution by entering a CONT
command (unless you modify some statements).

a program interrupt occurs, the error message is
issued and Command Mode is entered.

You cannot resume execution.

No open file is closed; you can display program
variables (by an immediate PRINT)

a program interrupt occurs, the "Syntax error"
message is issued, and Edit Mode is entered at
the line that caused the error.

You can modify the line, but you cannot display

program variables (unless you enter Command Mode
by pressing [[[ll). You cannot resume execution.

2-29

an END statement
is encountered

Suspending Screen Output

IFe
you press

CTRL

a program interrupt occurs and Command Mode is
entered. All open files are closed. You can
display program variables (by an immediate
PRINT)

You can resume execution by entering a CONT
command

THEN. ..

screen output 1is suspended, but no program
interrupt occurs.

No open file is closed. You cannot display
program variables

You can resume screen output by pressing any
key.

BASIC LANGUAGE - REFERENCE MANUAL

,

3. UPDATING AND MODIFYING A PROGRAM

ABOUT THIS CHAPTER

Even an experienced programmer often needs to make changes and correc-
tions to a program.

Your program can be updated in several ways e.g., deleting lines,
replacing lines, inserting lines, renumbering lines, editing lines using
the Line Editor.

This chapter describes these functions, making use of the sample program
RECTANGLE1. Moreover it will explain how to rename a file, how to delete
it from a disk, how to MERGE two programs and how to list the names of
files residing on a specified disk.

Note that any modifications to the resident program will close data files
and clear program variables.

CONTENTS

DELETING LINES 3-1 NAME (PROGRAM/IMMEDIATE) 3-13
DELETE (IMMEDIATE) 3-2 DELETING A FILE 3-14
REPLACING LINES 3-3 KILL (PROGRAM/IMMEDIATE) 3-14
INSERTING LINES 3-4 MERGING PROGRAMS 3-15
RENUMBERING LINES 3-4 MERGE (PROGRAM/IMMEDIATE) 3-15
RENUMBERING AND CROSS- 3-5 LISTING THE NAMES OF SAVED 3-16
REFERENCES FILES

RENUM (IMMEDIATE) 3-6 FILES (PROGRAM/IMMEDIATE) 3-17
CHANGING LINES WITH THE 3-7

LINE EDITOR
EDIT (IMMEDIATE) 3-7
LINE EDIT MODE COMMANDS 3-8

EXAMINING CURRENT VARIABLE 3-12
VALUES

RENAMING A FILE 3-12

UPDATING AND MODIFYING A PROGRAM

DELETING LINES

We will use the program called RECTANGLE1 from chapter 2 as an example
for demonstration purposes.

First of all, once the program RECTANGLE1 is in memory, issue a LIST com-
mand.

DISPLAY COMMENTS
LIST RECTANGLET uses two separate
1@ REM RECTANGLE1 INPUT statements for L and W.
2@ INPUT "Length";L Let us modify the program to use
30 1IF L<= @ THEN 2¢ only one statement. First delete
49 INPUT "Width";W line 4¢

50 IF W<= @ THEN 4¢

6@ LET AREA=L*W

7@ PRINT "Area=";AREA;" L=";L;" W=";W
8¢ GOTO 2¢

9@ END

Ok

If you want to delete line 4@, enter:

(D NERNLNENTRNENSPACERANONCR]
or

KX 8 N

To see the result of this, issue another LIST command.

DISPLAY COMMENTS
LIST As it stands now, RECTANGLE1
1@ REM RECTANGLE1 will not execute. You must now
2@ INPUT ''Length';L correct line 2@ (which asks for
3¢ 1IF L<= @ THEN 2¢ only one input value) and line
50 IF W<= @ THEN 4§ 50 (which refers to a line no
60 LET AREA=L*W longer in the program). UWe
7@ PRINT "Area="';AREA;" L=";L;" W="";W shall correct our program in
8@ GOTO 2¢ the following pages
9@ END
Ok

3.1

DELETE (IMMEDIATE)

Deletes program lines. The M20 enters Command Mode after a DELETE has
been executed.

DELETE

J
line >,
number
Figure 3-1 DELETE Command
Examples
IF you enter... THEN. - :
DELETE . the current line is deleted
509 line 5@@ is deleted
OR
DELETE 508
DELETE 10¢-2¢0¢ all lines between 10 and 2@ inclusive are
deleted
DELETE -4¢¢ all lines from the beginning of the program up

to and including line 4@@ are deleted

Note: If any line number specified in a DELETE command is not present in
the program, "Illegal function call" will be issued by BASIC.

3.7 BASIC LANGUAGE - REFERENCE MANUAL

UPDATING AND MODIFYING A PROGRAM

REPLACING LINES
To change a line you can:

- replace the entire line by entering the number of that line and its new
contents

- edit the line using Edit Mode.

First let us use the former method and replace the two mentioned lines of
RECTANGLET by entering:

2@ INPUT '"Length and Width";L,W
50 1IF W<=@ THEN 20

and obtain another listing:

DISPLAY COMMENTS
LIST This version of RECTANGLE1 will
1@ REM RECTANGLE1 execute correctly. However to
2@ INPUT "Length and Width';L,W terminate execution you still
30 IF L<= @ THEN 2¢ have to press AL

50 IF W<= @ THEN 20

6@ LET AREA=L*W

70 PRINT "Area=";AREA;" L=";L;" W="";W
8¢ GOTO 2¢

9@ END

Ok

It is clumsy to have to press to terminate execution. We
shall, therefore, make some additional modifications.

We can replace statement 8@ with the following two statements:

1) INPUT '"Again:YES=Y,NO=N'";X$

2) IF X$='Y'" THEN 20

To replace the GOTO statement at line 8@, enter:

8@ INPUT "Again:YES=Y,NO=N";X$

Note: X$ is a string variable.

INSERTING LINES

Now we must insert statement 2) between line 8@ and 9¢. We may choose 85
as the line number, entering:

85 IF X$="Y" THEN 20

Let us issue another LIST command, and obtain:

DISPLAY COMMENTS
LIST This version of RECTANGLE1 does
1@ REM RECTANGLE1 not require that you press
2@ INPUT "Length and Width";L,W to stop it.
3¢ 1IF L<=@ THEN 20 However, the current line num-
50 1IF W<=@ THEN 2¢ bering is no longer in regular
6@ LET AREA = L*W increments of 1@

7@ PRINT "Area=";AREA;" L=";L;" W="";W
8¢ INPUT "Again:YES=Y,NO=N";X$

85 IF X$="Y'" THEN 20 ’

9¢ END

0k

When you run the program this is what happens. After calculating the area
of the rectangle whose length and width are entered as input, the program
asks if you want to run it again. If you do, you enter Y. When statement
85 is encountered, the program will loop back to statement 2@ and cycle
through the statements again. If you do not want another calculation, you
enter N. The condition tested at statement 85 will not be satisfied and
the program will continue to the END statement.

RENUMBERING LINES

As we have seen, the current line numbering of RECTANGLE1 is no longer in
increments of 1@. This is no great drawback for a simple program, but for
a complex program for which changes may still be planned, haphazard line
numbering can cause problems.

The RENUM command allows you to renumber the lines of a program, starting
for example at 1@ and incrementing each additional line by 1@. Simply
enter:

3.4 BASIC LANGUAGE - REFERENCE MANUAL

UPDATING AND MODIFYING A PROGRAM

(REENNQEUQMECR]

To see the result, you can issue another LIST command.

LIST

1¢ REM RECTANGLE1

2@ INPUT "Length and Width'"; L,W
3¢ IF L<= @ THEN 2¢

49 IF W<= @ THEN 2¢

5¢ LET AREA=L*W

6@ PRINT '"Area=";AREA;'" L=";L;" W=";W
7@ INPUT "Again:YES=Y,NO=N'";X$
8@ IF X$="Y'" THEN 2¢

9¢ END

Ok

RENUMBERING AND CROSS-REFERENCES

When a program is resequenced by a RENUM command, all cross-references
within the program are updated where necessary. For example, if a program
contains the statement GOTO 14@ and line 14@ is subsequently renumbered,

the reference in the GOTO will be automatically updated to reflect the
change.

General Rule

RENUM changes all line number references following GOTO, GOSUB, THEN,
ELSE, ON...GOTO, ON...GOSUB and ERL to reflect the new line numbers.

If nonexistent lines are referenced in the program, RENUM causes the
following message:

Undefined line xxxxx in yyyyy

The program will be renumbered correctly and the references to
nonexistent lines remain unchanged.

3-5

RENUM (IMMEDIATE)

Changes the line numbers of the current program.

‘ new line .

number

old line
number

Figure 3-2 RENUM Command

Where
SYNTAX ELEMENT MEANING DEFAULT VALUES

new line number the first new line 19
number

old line number the first old line the first line number
number of the program

interval the new interval be- 19
tween line numbers

Examples

IF you enter... THEN. ..

RENUM the entire program is renumbered. The first new
line (new line number) is 1@ and a line interval
of 1§ is assumed (default value)

RENUM 100 the entire program is renumbered. The first new
line is 1¢@ and a line interval of 1§ (default
value) is assumed

RENUM 154, ,2¢ the entire program is renumbered. The first new
line 1is 15¢ and a line interval of 20 is
specified

a6 BASIC LANGUAGE - REFERENCE MANUAL

UPDATING AND MODIFYING A PROGRAM

CHANGING LINES WITH THE LINE EDITOR

In Edit Mode it is possible to change portions of a line without re-
typing the entire line.

M20 enters Edit Mode if:
- you enter an EDIT command
- a syntax error is detected.

Upon entering Edit Mode, M20 displays the number of the line to be ed-
ited, then a space and waits for an Edit Mode command.

The Edit Mode commands do not appear on the screen when you enter them.
In Edit Mode, M20 takes characters as soon as they are entered in - you
do not need to press [GH.

EDIT (IMMEDIATE)

The EDIT command enters Edit Mode at the specified line.

| line
number

Figure 3-3 EDIT Command

Examples
IF you enter... THEN M20 displays...
EDIT . nn...n (entering Edit Mode at the current line).
Here nn...n means the current line number
EDIT 3¢¢ 3¢¢ (entering Edit Mode at the specified line)

3-7

LINE EDIT MODE COMMANDS

The table below summarizes Line Edit Mode

in classes.

CLASS

to start editing a
line

to move the cursor

to insert characters

COMMAND

(List)

¥ (Cancel and Start
Again)

n HI3

CTRL [H |

(Backspace)

(Insert)

(Extended Line)

commands. They are also grouped

MEANING

causes the current
state of the line to be
displayed. The current
line number is display-
ed again at the begin-
ning of a new line

restores the original
line without displaying
it. The current line
number is displayed
again at the beginning
of a new line

displays the next n
characters and moves
the cursor one position
to the right

erases’ the last char-
acter appearing on the
line and moves the
cursor one position to
the left

enters Insert State at
the current cursor po-
sition. You may insert
a string of characters.
The inserted characters
are displayed. To exit
Insert State, press

CTRL

causes the remainder of
the line to be display-
ed, moves the cursor to
end of line and enters
Insert State

BASIC LANGUAGE - REFERENCE MANUAL

UPDATING AND MODIFYING A PROGRAM

to delete characters

to search characters

CTRL § HOME

Bl (Delete one
character)

KN KB (Delete n

characters)

(Hack)

E¥ (Search for

the 1st occurrence
of x)

exits Insert State but
remains in Edit Mode.
1If you press you
exit both Insert State
and Edit Mode

deletes the next char-
acter which 1is dis-
played between back-
slashes (\) and the
cursor is positioned to
the right

deletes the next n
characters. Deleted
characters are dis-
played between back-
slashes (\) and the
cursor is positioned to
the right of the last
character deleted. If
there are fewer than n
characters to the right
of the cursor, | D |
deletes the remainder
of the line

deletes the remainder
of the line and enters
Insert State

searches for the first
occurrence of "x" in
the line (where "x" is
any printable ASCIIL
character) and posi-
tions the cursor before
it. The character at
the current cursor pos-
ition is not included
in the search. If the
character is not found
in the line, the cursor
will stop at the end of

3-9

to replace characters

to exit Edit Mode

| n | ¥ (Search

for the nth occur-
rence of x)

¥ (Delete until

the 1st occurrence
of x)

KN K3 BN (Delete
until the nth occur-
rence of x)

I8 (Change one

character)

Tl (Change n char-
acters)

(Exit)

the 1line. All char-
acters passed over dur-
ing the search are
displayed

is similar to | x |
except that it searches
for the nth occurrence

is similar to o]
except that all the
characters passed over
in the search are de-
leted. The cursor is
positioned before "x"
and the deleted char-
acters are enclosed in

backslashes (\)

is similar to
except that it searches
for the nth occurrence

changes the next char-

acter to "'x

changes the next n
characters to the spec-
ified string (keyed
after [Sl). When you
have keyed a string of
n characters, Change
State is exited and you
will return to Edit
Mode

causes BASIC to display
the new modified line
and to return to Com-
mand Mode

has the same effect as

W, but the remainder
of the 1line 1is not
displayed

BASIC LANGUAGE - REFERENCE MANUAL

UPDATING AND MODIFYING A PROGRAM

KN (Quit) returns to Command Mode
and cancels all the
changes that were made
to the 1line 1in the
current editing session

Examples

The following table give you some examples for the use of Edit Mode
commands.

Note that the cursor is displayed as shown here below (_) when the M20 is
in Edit Mode.

STEP If you enter... THEN M20 displays...

1 EQD | SPACE 500 _

2 5¢@ FOR 1=1 TO 15 STEP 2
500

3 I (6 times) 5@¢@ FOR I=_

4 5¢@ FOR 1=2_

5 HZX (5 times) 5¢@ FOR 1=2 TO 1_

6 [6 | 508 FOR 1=2 TO 16_

7 5¢¢ FOR 1=2 TO 16 STEP 2

1 |ERDNTINTHN SPACE 51¢

5] [0 |

2 51¢ LET A(1)=I*SIN(X)
519

3 YOl (11 times) 519 LET A(1)=1*_

4 [0 | 519 LET A(1)=1*C0S_

5 [XN : RPRREINNET] 51¢ LET A(1)=I1*COS(X):PRINT A(1)
SPACE WA N (] WA

1 N N S N 51

2 4 QD | 51¢ \LET _

3 (11 times) 51¢ \LET \ A(1)=1*COS(_

4 51¢ \LET \ A(1)=1*COS(Y+_

- (9 times) 51¢ \LET \ A(I1)=I*COS(Y+X):PRINT_
6 (AR CHN IR, NXN; NCR] 51¢ \LET \ A(1)=I*COS(Y+X):

PRINT 1,X;

Yo I Bl 51¢ A(1)=1*COS(Y+X):PRINT 1,X;

~

EXAMINING CURRENT VARIABLE VALUES

EDITing a program line automatically clears all variable values and
closes open data files. If BASIC encounters a syntax error during program
execution, it will automatically put you in the Edit Mode. Before editing
the line, you may want to examine current variable values. In this case,
you must press M as your first Edit Mode command. This will return you
to the Command Mode, where you may examine variable values. Any other
Edit Mode command (pressing I3, etc) will clear out all variables.

RENAMING A FILE

You may change the name of a program or data file residing on a disk with
the NAME command, provided there is no write protection. The old filename
must exist and the new filename must not exist on the selected volume.
After a NAME command is executed, the file exists on the same disk, in
the same area of disk space, with the new name. File and volume passwords
(if any) are not changed. You must specify the file password and the
volume must be enabled (or you must specify the volume password).

3.7 BASIC LANGUAGE - REFERENCE MANUAL

UPDATING AND MODIFYING A PROGRAM

Changes the name of a disk file.

file
identifier

—@ED—

file
name

Figure 3-4 NAME Command

Where

SYNTAX ELEMENT

file identifier is either a

MEANING

string constant or a string variable

which specifies the program or data file whose
name is to be changed

file name is either a

string constant or a string variable

which specifies the new name of the file

Examples

Neither the volume nor the file has write protection. The volume is

presumed to be enabled.

IF you enter...

NAME "1:FR1" AS "FR2"

NAME ''VOL1:ACC/PACC' AS "ACC1"

THEN..s

.FR1 is changed into FR2. 1t resides
on the diskette inserted in drive
1. FR1 has no password

ACC 1is changed into ACC1. It re-
sides on the disk VOL1 which may be
inserted in either of the two
drives. The file password remains
PACC

DELETING A FILE

Program or data files stored on a disk can easily be deleted by use of
the KILL command, provided the disk is not write protected. After a file
has been deleted, its name can be used again in saving a new file.

You must specify the file password (if any) and the volume must be en-
abled (or you must specify the volume password).

KILL (PROGRAM/IMMEDIATE)

Deletes a program or a data file stored on a disk.

| file [
identifier

Figure 3-5 KILL Command

Where

File identifier is either a string constant or a string variable which
specifies the file to be deleted

Examples

The volume is not write protected and is enabled.

IF you enter... THEN. ..

KILL "Business.B" file business.B is deleted. The search is
limited to the last selected drive.
The file has no password

KILL "1:Business.B" file Business.B is deleted. The search is

limited to the diskette inserted in drive 1.
The file has no password

314 BASIC LANGUAGE - REFERENCE MANUAL

UPDATING AND MODIFYING A PROGRAM

KILL "NUMbers/PNUM@1" Gl file NUMbers with the password PNUM@1 is de-
leted. The search is limited to the last
selected drive.

MERGING PROGRAMS

The MERGE command allows you to include a specified program file saved
(in ASCII format) on a disk, with the program in memory. MERGE is similar
to LOAD, except that the program in memory is not erased before the disk
program is loaded. Instead, the disk program is merged into the resident
program. That is, program lines 1in the disk program will simply be
inserted into the resident program in sequential order. If a line of the
disk program and a line of the resident program have the same line
number, the line of the disk program replaces that in memory. The MERGE
command must specify the file password (if the disk program has a
password) and the volume must be enabled (or you must specify the volume
password).

Merging programs may, for instance, be useful to add (standard) sub-
routines to a program.

It is good programming practice to merge subroutines with line
numbers greater than the highest line number of the program. This will
improve the MERGE operation speed and allow room to extend the main
program.

MERGE (PROGRAM/IMMEDIATE)

Merges the current program with a specified program file (which must have
been saved in ASCI1 format).

file >
MERGE identifier

Figure 3-6 MERGE Command

Where

The file identifier is either a string constant or a string variable
which specifies an ASCI1 format program file, i.e. a program saved with
the A option.

Examples
DISPLAY COMMENTS
MERGE '"1:Fnew/FnewPASS" the program Fnew with the password
FnewPASS is merged with the program
in memory

Note: The volume resides on drive 1
and is already enabled

MERGE ''V@@1/VP@@1:F@@1/Pag" the program F@@1 with the password
P@@1 is merged with the program in
memory.

Note: The volume V@@1 is enabled by

the use of the password VP@@1 in
the MERGE command

Remark

MERGE closes any open data file and clears variables.

LISTING THE NAMES OF SAVED FILES

If you do not remember the names of program and/or data files residing on
a disk, you can use the FILES command to get a listing of them.

The FILES command may be used either with a volume or a file identifier.

When the volume identifier is specified, all the files in the volume are
listed (whether they have a password or not).

3-16 BASIC LANGUAGE - REFERENCE MANUAL

UPDATING AND MODIFYING A PROGRAM

To execute a FILES command you do not need to know the disk's password,
nor does the disk have to be enabled.

When a file identifier is specified, only this file is listed and you
need not specify the file password (if any).

Similarly the same functions may be carried out in PCOS with the VQUICK
command.

Note: The FILES command does not list passwords.

The information displayed includes:

the drive on which the disk is currently active
the name of the disk (if any)

the amount of file space left on the disk in sectors (a sector is 256
bytes).

the name of each file on the disk or the name of the specified file, or
the name of the selected file(s) if you use the wild card characters
"?" or "*' within the file identifier clause. ("?" matches any
character, "*" matches any name).

FILES (PROGRAM/IMMEDIATE)

Lists files in the directory of the specified disk.

volume
= identifier

file
identifier

Figure 3-7 FILES Command

3-17

Where

SYNTAX ELEMENT MEANING
volume identifier is either a string constant or a string variable
which specifies the disk whose directory is to
be listed
file identifier is either a string constant or a string variable
which specifies the file (in disk directory) to
be listed
Examples
IF you enter... THEN: ¢

FILES

FILES "g:"

FILES "1g:"

FILES "MYVOL:"

FILES "MYJOL/MYPASS:"

FILES "MYFILE"

the name of each file on the disk (inserted
in the last selected drive) is displayed

the name of each file on the diskette
inserted in drive @ is displayed

the name of each file on the hard disk is
displayed

the name of each file on the disk MYVOL is_
displayed. 1t may be inserted in either of
the two drives

the name of each file on the disk MYVOL
which has the password MYPASS is displayed.
It may be inserted in either of the two
drives. The specification of the volume
password does not affect the execution of
this command

the name of the file MYFILE (which resides

on the disk inserted in the last selected
drive) is displayed

BASIC LANGUAGE - REFERENCE MANUAL

UPDATING AND MODIFYING A PROGRAM

FILES "1:*.cmd" a list of all the files with the extension
'.cmd' residing on the diskette inserted in

drive 1 is displayed

FILES "@:v?22" a list of all the files resident on the
diskette inserted in drive @# with a four
letter name beginning with 'v' is displayed.

3-19

ABOUT THIS CHAPTER

In this chapter we shall consider how BASIC handles data. We shall look
at constants and variables, number representation, numeric conversions

(PROGRAM/IMMEDIATE)

and arrays.
CONTENTS
CONSTANTS AND VARIABLES 4-1 TYPE DECLARATION TAGS 4-11
CONSTANTS 4-1 NUMERIC CONVERSIONS 4-12
VARLABLES 4-1 SINGLE OR DOUBLE PRECISION 4-12
TO INTEGER
HOW BASIC NAMES VARLABLES 4-1
INTEGER TO SINGLE OR 4-13
REPRESENTATION OF NUMBERS 4-2 DOUBLE PRECISION
BINARY REPRESENTATION 4-2 SINGLE TO DOUBLE PRECISION 4-14
HEXADECIMAL AND OCTAL 4-5 DOUBLE TO SINGLE PRECISION 4-15
REPRESENTATIONS
ILLEGAL CONVERSIONS 4-16
HOW BASIC CLASSIFIES 4-6
CONSTANTS SUBSCRIPTED VARIABLES AND 4-16
ARRAYS
NUMERIC DATA 4-6
ONE DIMENSIONAL ARRAYS 4-17
STRING DATA 4-6
MULTT DIMENSIONAL ARRAYS 4-18
NORMAL TYPING CRITERIA 4-7
TO CLASSIFY CONSTANTS DIM (PROGRAM/IMMEDIATE) 4-19
TYPE DECLARATION TAGS 4-8 ERASE (PROGRAM/IMMEDIATE) 4-22
HOW BASIC CLASSIFIES 4-9 OPTION BASE 4-23
VARTABLES (PROGRAM/1MMEDIATE)
DEFINT/DEFSNG/DEFDBL/DEFSTR 4-10

DATA

CONSTANTS AND VARIABLES

Each data item may appear in a BASIC program as either a constant or a
variable.

CONSTANTS

Specific numbers such as 15, -2, 3.41 or specific strings such as
"AAA.b1", "Cursor***'" are referred to as constants. This means that their
values remain the same throughout program execution.

VARIABLES

Variables are named data items whose values may change during program
execution.

For example, the formula for computing the area of a circle:
3.141592*RA 2

uses variable R. That is R represents any radius and reserves a location
in memory for the assignment of a radial value.

Note: The symbol A is an operator which indicates that R is raised to the
power specified (2 in this case).

HOW BASIC NAMES VARIABLES

The identifier (or name) of a variable may not be longer than 40
characters. The characters allowed in a variable name are letters and
numbers. The period (.) is also allowed. The first character must be a
letter. The last character may be a letter, a number, a period, or a type
declaration tag (%, !, #, $). The meaning of type declaration tags is
illustrated later in this chapter.

Lower case letters in a variable identifier are considered equivalent to
their corresponding upper case letters and are converted to their
corresponding upper case letters when listing the program.

Examples of variable names are:

STUDENT A1 CCP1.CLASS ACCOUNT # AS STRING

4-1

Reserved Words

A reserved word (a keyword, a command or a function name), cannot be used
as a variable identifier but BASIC permits embedded reserved words within
a variable identifier. For example:

1@ PERFORMANCE = 10¢5.3
2@ SINGLE = 1371.2

are valid program lines, even though PERFORMANCE contains the keyword FOR
and SINGLE begins with the name of the built-in function SIN.

REPRESENTATION OF NUMBERS

Numbers are concepts to humans. Most humans are trained to think in base
18. In a computer, numbers are electronic patterns of ones and zeros. The
computer performs many of its operations in base 2 (referred to as
Binary).

This paragraph gives a review of the concepts of base 2 and of
alternative base representation (hexadecimal and octal).
BINARY REPRESENTATION

Before looking at base 2, let us take a look at base 1@. The number two
hundred and five is represented as:

205

Base 10 uses digits @, 1, 2, ...9.The digits have a place value
corresponding to powers of ten. The representation above really means:

(2 x10%) + (8 x 10") + (5 x 10°)

The concept of place value also exists in base 2. The difference being
that powers of two are represented instead of powers of ten. The number
two hundred and five is represented as:

119881191

Base 2 uses only the digits "1" and "@". Therefore, the binary represen-
tation shown above means:

4-2 BASIC LANGUAGE - REFERENCE MANUAL

DATA

(v1 X 27)+(1 X 26‘)+(ﬂ X 25)+(¢ X 21’)+(1 X 23)4—(1 X 22)4-(!3 X 21)+(1 X 2¢)
This is the same as:

128 + 64 + 8 + 4 + 1 = 205

A "binary digit" is referred to as a "bit". A bit may be either 1 or §.

Bytes

The grouping of 8 bits together is in such common usage that it has been
given a special name - a byte. The term byte refers to 8 bits processed
as a unit.

The bits of a byte are numbered from @ (right most, least significant) to
7 (left most, most significant). By doing this, the bit number and the
power of two it represents are the same. The following table shows the
bit position in a byte and their corresponding values.

BIT POSITION BIT 7 BIT 6| BIT 5 BIT 4 BIT 3 BIT 2 BIT 1| BIT @

Meaning 27 26 25 24 23 22 21 20
Value 128 64 | 32 16 8 4 2 1
Table 4-1
BASE 1¢ BASE 2

¢ [

12 11¢¢

27 11611

149 19819101

255 11111111

Table 4-2 Conversion Examples

Words

In the M20 data is handled 16 bits (2 bytes) at a time. This quantity is
called a '"word". The number of bits in a word is machine dependent. The
bits in a word are numbered from # (right most, least significant) to 15
(left most, most significant).

4-3

Another characteristic of a word in the M20 is that two's complement
representation is used. Two's complement representation is a method of
storing either positive or negative numbers in a word. It works like
this:

IF an integer THEN AND the word is...
number is...

positive bit 15 is @ a positive number rep-
resented in normal bi-
nary form

negative bit 15 is 1 a negative number rep-

resented in 2's com-
plement form

To find the value of a negative number, you must invert all the bits and

add 1 (this will give you its absolute value).

For example:

11111 ¢ ¢ 11 ¢ ¢ 1 1 ¢ ¢ ¢ original value (negative)

Inverting all the bits

g ¢ ¢ ¢ ¢ 11 ¢ ¢ 1 1 ¢ ¢ 1 1 1 inverted value

Adding 1

g ¢ ¢ ¢ ¢ 11 ¢ @11 9 1 @ @ @ absolute value
(inverted + 1)

So the value of the given pattern is:

-164¢

4-4 BASIC LANGUAGE - REFERENCE MANUAL

DATA

HEXADECIMAL AND OCTAL REPRESENTATIONS

We have seen that it is possible to represent numbers in decimal (base
1¢) and binary (base 2). BASIC allows you to represent numbers in octal
(base 8) and hexadecimal (base 16) too.

It is often convenient to work with binary numbers but they are tedious
to read and write. For this reason we often convert them to octal or
hexadecimal.

- base 8, known as '"octal" uses one octal digit for three binary digits

- base 16, known as '"hex'" (short for hexadecimal), uses one hex digit for
four binary digits.

The following table shows the decimal (base 1@), binary (base'Z), octal
(base 8) and hex (base 16) representations for the numbers @ to 16.

DECIMAL BINARY OCTAL DECIMAL BINARY HEX
g p99 [[gopg [
1 g1 1 1 Pl 1
2 219 2 2 9919 2
3 #11 3 3 gg11 3
4 100 4 4 3100 4
5 191 5 5 #1081 5
6 19 6 6 g11¢ 6
7 i 7 7 #1111 7
8 10090 9 8 10908 8
9 1991 1 9 1991 9
19 1919 ne 19 1919 A
1 1911 13 1 1911 B
12 1109 14 12 1109 o
13 119 15 13 1191 D
14 119 16 14 1119 E
15 MMM 17 15 1111 F
16 19999 20 16 10009 19
Table 4-3

HOW BASIC CLASSIFIES CONSTANTS

The way that BASIC steres a data item determines:
- the amount of memory it will consume

- the speed in which BASIC can process it.

NUMERIC DATA

BASIC can to store all numbers in your program as either:
- Integers (Speed and Efficiency, Limited Range),

- Single precision (General Purpose), or

- Double precision (Maximum Precision, Slowest in Computation).

INTEGERS SINGLE PRECISION DOUBLE PRECISION
Memory 2 4 8
Space
(bytes)
Range of -32768 to 32767 From +1g°° From *1g ~3°%
values To +1p38 To *1p398
Significant Up to 5 Up to 7 Up to 16
Digits
Displayed Up to 5 Up to 6 Up to 15
Digits (with rounding) (with rounding)
(PRINT/LPRINT)
Table 4-4

Note: Non significant zeros will not be displayed. For example thc value
3.4190@@ in single precision will be displayed as 3.41.

STRING DATA

Strings (sequences of ASCII characters) are useful for storing non
numeric information, such as names, addresses, codes, etc.

4-6 BASIC LANGUAGE - REFERENCE MANUAL

DATA

For example, the constant:
"FORD ,RENAULT"
is a quoted string constant of 13 characters. Each character in the

string (including blank) is stored as an ASCII code, requiring one byte
of storage. BASIC would store the above string constant internally as:

ASCI1 F 0 R D . R E N A U L T
Character
Hex 46 4F 52 44 20 2C 52 45 4E 41 55 4C 54
Code
Table 4-5

A string can be up to 255 characters long. A string with length zero is
called a "null" string and is represented by a pair of double quotes
("'). BASIC allocates strings dynamically, i.e., the memory space re-
served for a string may vary during program execution from @ to 255 bytes.

NULL STRING ' STRING OF n CHAR. ' STRING OF MAX. LENGTH

Memory space g % 255
(bytes)

Range of L Any string of printable ASCI1 characters

values including blanks

Table 4-6

NORMAL TYPING CRITERIA TO CLASSIFY CONSTANTS

1 25 THEN. .. EXAMPLES
the value is enclosed it is a string ""NO"!
in double quotes UyES?
"Circle"

"' (null string)

the value is not in
quotes

a number is whole and
in the range -32768
to 32767

the value has the pre-
fix &H and is composed
of the numerals @-9
and the letters A-F
(in the range # to
FFFF)

the value has the pre-
fix &0 or & and is
composed of the nume r-
als @#-7 (in the range
@ to 177777)

a number is not an
integer and contains 7
or fewer digits

a number contains more
than 7 digits

TYPE DECLARATION TAGS

You can override BASIC's normal typing criteria by adding the following

it is a number.

Note: An exception to
this rule is during
data input and in DATA
statements, where un-
quoted strings are al-
lowed

it is an integer
constant

it is a hexadecimal
constant

Note: A hexadecimal
constant may be con-
sidered an alternative
representation of the
corresponding integer
constant

it is an octal
constant

Note: An octal constant
may be considered an
alternative representa-
tion of the correspond-
ing integer constant

it is single precision

it is double precision

‘'tags" to the end of a numeric constant.

4-8

BASIC LANGUAGE - REFERENCE MANUAL

521

-15
3.7345E-2
43#

1924
721
-32758

&H20F @
&HF1
&H35
&HFE98
&HFFFF
&HP

&07¢
8044
&71175

=7.3
32768
45.314

-65000

52174593
-54.397124
8.799999999

DATA

TAG MEANING EXAMPLES
! makes the number 5.7211p333! the con-
single precision stant is classified as
single precision and
shortened to 7 digits
(i.e., 5.7211¢3)
E single precision 7.31E4 means
floating point. The E 7.31x1¢ i.e. 73198
indicates the constant
is to be multiplied by
a specified power of
19
makes the number 4#
double precision 5.21#
D double precision 7.2D-3 means

floating point. The D 7.2 x 18" 1i.e.
indicates the constant @ @.@@72

{is to be multiplied by

a specified power of

19

HOW BASIC CLASSIFIES VARIABLES

When BASIC encounters a variable identifier in a program, it classifies
it as either a string, integer, single or double precision number.

BASIC classifies all variable names as single precision initially. For
example, if this is the first line of your program:

19 X1 = 3.5
BASIC classifies X1 as a single precision variable.
However, you may assign different type attributes to variables using

either definition statements (DEFtype statements) or a type declaration
tag at the end of the variable identifier.

4-9

DEFINT/DEF SNG/DEFDBL/DEFSTR (PROGRAM/IMMEDIATE)

Four DEFtype statements are provided to assign different types to vari-
ables.

A DEFtype statement declares that the variable names beginning with the
letter(s) specified will be that type variable.

DEFtype statements are usually placed at the beginning of your program,
and must precede the use of the defined variables.

letter letter

Figure 4-1 DEFtype Statements

Default Values

Unless otherwise specified all program variables are assumed to be single
precision.

Examples
IF you enter... THEN...
1@ DEFINT A-Z all program variables will be integer
1¢ DEFDBL D all program variables beginning with the letter

D will be double precision

4-10 BASIC LANGUAGE - REFERENCE MANUAL

DATA

1@ DEFSTR S,U-W all program variables beginning with the letters
S, U, V and W will be string variables

TYPE DECLARATION TAGS

As with constants, you can always override the type of a variable name by
adding a type declaration tag at the end. There are four type declaration
tags for variables:

TAG MEANING EXAMPLES
% integer A%
STEP%
INCREMENT%

are all integer vari-
ables, regardless of
what attributes have
been assigned to the
letters A, S and 1

! single precision SPEED!
SPACE!
TIME!
are all single preci-
sion variables, regard-
less of what attributes
have been assigned to
the letters S and T

double precision TOTAL#
SUBTOTAL#
X1#
are all double preci-
sion variables, regard-
less of which attrib-
utes have been assigned
to the letters T, S and
X

4-11

string AS
B1$
NAME . CLASSS
are all string vari-
ables, regardless of
which attributes have
been assigned to the
letters A, B and N

NUMERIC CONVERSIONS

Often a program or immediate line might ask BASIC to assign one type of
constant to a different type of variable. For example, if you enter:

1%=5.31

SASIC will first round the single precision constant 5.31 to the nearest
integer to assign it to the integer variable 1%. Thus the value of 1%
will be 5.

You may also want to convert one type of variable to a different type of
variable. such as:

SCALE!=B%
SECONDS!=C1 #
BOX#=W%

The conversion procedures are illustrated in the examples on the
following pages.
SINGLE OR DOUBLE PRECISION TO INTEGER

BASIC converts the original value to an integer by rounding the frac-
tional part.

Note: The rounded value must be greater than or equal to -32768 and less
than 32767, otherwise an Overflow error occurs.

4. 17 BASIC LANGUAGE - REFERENCE MANUAL

DATA

Examples

DISPLAY

C%=4.1E2
0Ok
2C%
419
0Ok

C%=47.8
Ok
?C%
48
Ok

%=7.21473D-3
Ok
2C%

g
Ok

C%=-32768.5
Overflow
Ok

COMMENTS

-15 is assigned to C%

419 is assigned to C%

48 is assigned to C%

is assigned to C%

an Overflow error occurs

INTEGER TO SINGLE OR DOUBLE PRECISION

No error is introduced. The converted value looks like the original value
with zeros to the right of the decimal point.

DISPLAY COMMENTS

S1=326 326 is stored in S! as 326.0¢@@ but
Ok it is displayed as 326
?S!
326
Ok
D#= 326 326 is stored in D# as
0k 326.000000000000¢ but it is dis-
2D# played as 326
326
Ok

SINGLE TO DOUBLE PRECISION

BASIC adds trailing zeros to the single precision number.

If the original value:

- has an exact binary representation, no error will be introduced

- does not have an exact binary representation, an arithmetic error is
introduced when converting the value.

Examples
DISPLAY COMMENTS

B#=1.5 when entering B#=1.5, you store
Ok 1.50000000000@908, in B# but 1.5 is
7B# displayed.

1.5

Ok Note: 1.5 has an exact binary re-

presentation

C#=1.3 When entering C# =1.3 you store
Ok 1.299999952316288 in C# but it is
C# displayed as 1.29999995231628.

1.29999995231628

Ok Note: 1.3 does not have an exact

binary representation

4-14 BASIC LANGUAGE - REFERENCE MANUAL

DATA

Remarks

To avoid losing accuracy you should keep single to double precision
conversions out of your programs. For example, whenever you assign a
constant value to a double-precision variable, you can force the constant
to be double-precision.

B#=1.3# B#=1.3D

Both store 1.3 in B#

When the single-precision value is stored in a variable, convert the
single-precision variable to a string with STR$ function (see Chapter 9),

then convert the resultant string back into a number with VAL (see
Chapter 9).

DISPLAY COMMENTS

LIST This program displays the value of B# losing
19 B!=1.3 accuracy.

2¢ B#=B!

3¢ PRINT B#

Ok

RUN

1.29999995231628

Ok

LIST This program displays the value of B# without
1¢ B!=1.3 losing accuracy.

20 B#=VAL(STRS(B!))

3@ PRINT B#
0k

RUN

1.3

DOUBLE TO SINGLE PRECISION

This involves converting a number with up to 16 significant digits into a
number with no more than 7.

Only the first seven digits, rounded of the converted value, will be
valid.

Before displaying or printing such a number BASIC rounds it to six dig-
its.

4-15

Note: If the double precision value is outside the range of single preci-
sion values an Overflow error occurs.

Example
DISPLAY COMMENTS
P1=2.03999996 2.0400@0 is stored in P! but is is
Ok displayed as 2.@4
P!
2.04
Ok

ILLEGAL CONVERSIONS

You cannot convert numeric values to string or vice versa by an assign-
ment statement. For example:

C9=321.7

is illegal. (Use STRS and VAL functions to accomplish such conversions.
See Chapter 9).

SUBSCRIPTED VARIABLES AND ARRAYS

As mentioned before (see Chapter 1) a variable may be a simple variable
or a subscripted variable. Subscripted variables are elements of an
"array".

An array is a collection of variables of the same type under one name.
You can distinguish them by the value(s) of one or more subscripts
appearing in parentheses after the array name. For example, if A is a one
dimensional array, A(@) is the first element, A(1) the second element,
and so on (supposing that the subscript lower bound is §).

A subscript value must be a positive integer number, but any numeric

expression whose value is positive may be entered as a subscript. If its
value is not an integer, it is rounded to an integer.

Roid BASIC LANGUAGE - REFERENCE MANUAL

DATA

An array may have any number of dimensions. A one dimensional array might
be thought of as a list of items. There may be many rows but only one
column. A two dimensional array is like a table of values. There may be
several rows and several columns of items.

To define an array you must:

- give it a name (any valid variable name may be assumed)

- establish the upper and lower subscript bounds.

To do that you have to use a DIM statement, and optionally an OPTION BASE
statement.

1f you specify in a program:
19 OPTION BASE 1
The lower bound of all arrays is 1.

If you omit the OPTION BASE statement, or if you specify OPTION BASE @,
the lower bound of all arrays is @ (the default lower bound).

It is also possible to re-define an array, by writing an ERASE statement
before a DIM statement (see below).

ONE DIMENSIONAL ARRAYS

Suppose we have the following list of numbers:

17, -9, 32, 1¢5, -48

1f you define a one dimensional numeric array V, you can store all the

values in the list introducing only one array variable and you can access
each array element by specifying the appropriate subscript.

4-17

Array V

Element Contents Each element in Array V 1is specified by its
V(@) 17 subscript. For example V(1) is -9 and V(3) is 1@5.
V(1) -9 The subscript identifies the location of the
V(2) 32 element in the array.

V(3) 105
V(4) -48

MULTI DIMENSIONAL ARRAYS

We may use a two dimensional array to store the values of a table. Sup-
pose we have the following table:

NAME CODE COUNTRY SEX

Anna 21SAA Great Britain F

John 35ECK USA M

Richard 7@WST Sweden M
Table 4-7

This table contains 3 rows and 4 columns for a total of 12 string values.

1f you define a string array A$ you can store all the values in the table
introducing only one array variable and you can access any array element
by specifying the appropriate subscripts.

SUBSCRIPT @ 1 2 3
/) Anna 21SAA Great Britain F
1 John 35ECR USA M
2 Richard 7TOWST Sweden M

Table 4-8 Array AS

Each element in array AS$ is specified by its location in the array with
two subscripts, separated by a comma and enclosed within parentheses. The
first subscript designates the '"row'" in the array; the second subscript
designates the ''column'. For example:

a1 BASIC LANGUAGE - REFERENCE MANUAL

DATA

A$(@,1) 1is the string 21SAA
A$(2,3) 1is the character M

You may define arrays with even more dimensions, but they are rarely
used.

DIM (PROGRAM/IMMEDIATE)

Specifies the array name, the number of dimensions and the subscript
upper bound per dimension. The DIM statement may specify one or more
arrays.

(o)+ ooy bound

{ 5}4—7
Figure 4-2 DIM Statement
Where
SYNTAX ELEMENT MEANING DEFAULT VALUES
array is the array name.

Any legal variable
name may be used

upper bound is any positive nu- if no DIM is specifed,

meric constant or an upper bound of 10 is
variable. If it is assumed for each dimen-
not an integer, it sion and the number of
is rounded to the dimensions are set when
nearest integer you refer to an array

element in your program

Example

IF you enter... THEN. ..

19 DIM A(5), BS$(20,39) you set up a one dimensional array A with
subscripts from # to 5, and a two dimen-
sional string array B$ with subscripts from

9,0 to 20, 30.

Note: A is numeric, unless differently
stated by a DEFSTR statement

Number of Dimensions

With BASIC, you may have as many dimensions in your array as you like,
depending on the available memory. One and two dimensional arrays are the
most frequently used.

If no DIM is specified, the first reference to an array element in the
program will create the array with the specified number of dimensions.
For example, if a program statement refers to:

AR1(3,5,14)

Then AR1 is created with 3 dimensions and a default upper bound of 1¢ for
each dimension.

o BASIC LANGUAGE - REFERENCE MANUAL

DATA

Number of Elements per Dimension

1B AND TF...

no DIM is used OPTION BASE @ is set

OPTION BASE 1 is set

DIM is used OPTION BASE @ is set

OPTION BASE 1 is set

To Define an Array

YOU MUST... AND EITHER...

establish the sub-
script lower bound

use an OPTION BASE 1
statement

assign a name to the use a DIM statement
array

establish the number
of dimensions

establish the sub-
script upper bound per
dimension

THEN...

11 elements (subscripts
@-1¢ are allowed in
each dimension)

1¢ elements (subscripts
1-19 are allowed in
¢« ~h dimension)

the number of elements
in each dimension is
calculated by adding 1
to each upper bound
subscript

the number of elements
in each dimension co-
incides with each upper
bound subscript

OR.%.
adopt the default
OPTION BASE ¢

refer an array element
within the program

Note: 1In this case a
subscript upper bound
of 19 for each dimen-
sion is assumed.

4-21

Remarks

- the DIM statement sets all the elements of the specified arrays to an

initial value of zero

- a DIM statement cannot be preceded by an array reference

- a DIM statement does not set the subscript upper bound per dimension,
For example:

in case it is jumped over.

DISPLAY
LIST
19 1=1
20 GOTO 4¢
3¢ DIM A(50)
49 A(19)=3
5¢ A(11)=45
Ok
RUN

Subscript out of range in 50

Ok

ERASE (PROGRAM/IMMEDIATE)

COMMENTS
The M20 will display:
Subscript out of range in 5@
when statement 5@ is executed, as
statement 3@ is jumped over and an

upper bound of 1¢ is assumed by
default

Releases space and variable names previously reserved for arrays. The
data is lost and the array(s) no longer exist.

ERASE

array

Figure 4-3 ERASE Statement

4-22

BASIC LANGUAGE - REFERENCE MANUAL

DATA

Example

DISPLAY

14 DIM A(15,15),B(14,20)

199 ERASE A,B
11¢ DIM A (1¢9),B(2,2,2)

Remarks

COMMENTS

upon execution of statement 100,
arrays A and B are deleted and the
corresponding memory space is made
free. You may define other arrays
(see statement 11@) with the same
names but different numbers of
dimensions and upper bounds

It is not normally good programming practice to reuse an identifier. This
may generate errors or reduce the program readability. You may, however,
find it useful to redeclare an erased array; for example, when an array
name is known by a subroutine and you want to pass arrays with different
number of dimensions or subscript upper bgunds to this subroutine.

OPTION BASE (PROGRAM/IMMEDIATE)

Declares the lower bound for array subscripts.

OPTION BASE

Figure 4-4 OPTION BASE Statement

Default Value

OPTION BASE ¢ is assumed by default (i.e. if you do not write any OPTION

BASE statement in your program.)

4-23

Example

IF you enter... THEN...
1@ OPTION BASE 1 the lower bound of all arrays is 1
OR

OPTION BASE 1
(in immediate mode)

Remarks

You will find the OPTION BASE 1 useful when converting programs from
other machines to your M20. Many older BASICs number all arrays from 1.

The OPTION BASE statement cannot be preceded by a DIM statement or by an
array reference.

4-24 BASIC LANGUAGE - REFERENCE MANUAL

5. HOW BASIC INPUTS DATA

ABOUT THIS CHAPTER

This chapter will describe some ways to supply data to the computer via
your program,

We shall examine:

- the CLEAR, LET and SWAP statements

- the INPUT and LINE INPUT statement

- the DATA, READ and RESTORE statements.

Other ways to supply data, using external files, will be examined later,
(see Chapter 12).

CONTENTS

ASSIGNMENT STATEMENTS 5-1

CLEAR (PROGRAM/IMMEDIATE) 5-1

LET (PROGRAM/IMMEDIATE) 5-3
SWAP (PROGRAM/IMMEDIATE) 5-4
THE INTERNAL DATA FILE 5-5

DATA/READ/RESTORE (PROGRAM) 5-5
INPUT STATEMENTS 5-8
INPUT (PROGRAM) 5-9

LINE INPUT (PROGRAM) 5-12

HOW BASIC INPUTS DATA

ASSIGNMENT STATEMENTS

There are three assignment statements in BASIC:

- the CLEAR statement, which allows you to set all numeric variables to
zero and all string variables to null.

- the LET statement, which allows you to assign the value of an expres-
sion to a variable. The variable and the expression must be either both
numeric or both string

- the SWAP statement, which allows you to exchange the values of two
variables, provided they are the same type (integer, single-precision,
double-precision, string).

LET and SWAP are often used as immediate statements for quick computa-

tions.

CLEAR (PROGRAM/IMMEDIATE)
Sets all numeric variables to zero, all string variables to null, closes
all open data files and windows (see Chapter 14) and clears the screen.

CLEAR optionally sets the amount of user memory available for BASIC
programs and the amount of stack space.

o memory —Mo@-—‘ stack Jl‘

Figure 5-1 CLEAR Statement

Where
SYNTAX ELEMENT MEANING
memory sets the amount of memory available for BASIC

programs. This value may also be set by the PCOS

5-1

command SBASIC. If omitted, its value is either
that established by the SBASIC command, or 370@¢
(as a second a}ternatjve).

stack sets aside stack space for BASIC. The default
value is 512 bytes or one-eighth of the
available memory whichever is smaller. The stack
is a part of memory available for BASIC used to
store return addresses of subprograms, functions

etc.

Examples

DISPLAY COMMENTS

CLEAR clears variables, closes data files and windows,
and clears the screen. The memory is either that
established by the SBASIC command, or 37@@@
bytes. The stack is assumed by default.

CLEAR ,32768 as in the example above, but memory is set to
32768 bytes.

CLEAR ,,200¢ as in the first example, but stack is set to
2008 bytes.

CLEAR ,32768,200¢ as in the first example, but memory is set to
32768 bytes and stack to 20@@ bytes.

Remarks

BASIC automatically sets all numeric variables to zero and all string
variables to null at the beginning of the execution of a program (except
variables defined in the COMMON area, if the program is CHAINed to
another, see Chapter 11).

BASIC allocates string space dynamically. An '"Out of string space' error
occurs only if there is no free memory left for BASIC to use.

5-2 BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC INPUTS DATA

LET (PROGRAM/IMMEDIATE)

Assigns a value to a variable.

l:é-’f—l’ variable —’@—‘ expression f—

Figure 5-2 LET Statement

Examples
IF you enter ... THEN. ..
LET K = 1.5 G the value 1.5 1is assigned to the numeric
variable K
LET X = K + 2 the value of the numeric expression K + 2 is
assigned to the numeric variable X
A$(1) = "ABC" the value of the string constant "ABC" is as-

signed to the subscripted string variable AS(I).

Note: The keyword LET is optional

Numeric Assignments

If the data-type of the value resulting from the evaluation of the
numeric expression is different from the type of the receiving variable,
BASIC converts the type of the expression value to the type of the
receiving variable, following the rules we have just seen (see NUMERIC
CONVERSIONS paragraph in Chapter 4).

Rounding or overflow may occur, if the receiving variable is not able to
contain the computed value.

String Assignment

String assignment is performed by moving the string expression value
character by character into the receiving variable. The operation ends
when all the characters have been moved.

Remarks

Simultaneous assignments are not allowed. If you enter for instance:

199 LET B% = C% = ¢ GH

BASIC WOULD INTERPRET THE SECOND EQUAL SIGN AS A RELATIONAL OPERATOR and

set B% equal to -1 (i.e. true) if C% equalled @, and § (i.e. false) if C%
is different from zero (for a fuller explanation of relational expres-
sions see Chapter 6).

Allows you to exchange the values of two simple variables. Any type of
variable may be SWAPped (integer, single-precision, double-precision,
string) but the two variables must be of the same type or a '"Type
mismatch" error occurs. They must also be initialized, or an "Illegal
function call" =rror occurs.

variable —c@—o variable |—

Figure 5-3 " SWAP Statement*

Example

DISPLAY COMMENTS
LIST Statement 5@ SWAPs the values of A$ and BS,
19 AS = " ONE " statement 4@ displays ONE FOR ALL, statement 60
20 BS = " ALL " displays ALL FOR ONE.
3¢ CS =" FOR "

. BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC INPUTS DATA

40 PRINT A$;C$;BS
50 SWAP AS$,BS

6@ PRINT A$;C$;BS
Ok

RUN

ONE FOR ALL

ALL FOR ONE

Ok

THE INTERNAL DATA FILE

Many problems require that a large number of constants be entered into
the computer. To do this, you could use many LET, INPUT, or LINE INPUT
statements.

1t is clear, though, that this would be arduous, if you had a long list
of data to be entered. A much more convenient and effective way to enter
such constants is by using the DATA, READ, and RESTORE statements. DATA
statements create an ''internal" file, i.e. a sequence of data belongs to
the program, which must be transferred into the program variables by one
or more READ statements. The RESTORE statement allows you to reposition
the pointer at the beginning of the file or to a specified line number.

DATA/READ/RESTORE (PROGRAM)

DATA creates an internal data file.

READ reads data from one or more DATA statements into the specified
variables.

RESTORE moves the pointer either to the beginning of an internal data
file (created by one or more DATA statements) or to a specified line
number.

constant

Figure 5-4 DATA Statement

variable

Figure 5-5 READ Statement

line
RESTORE number

Figure 5-6 RESTORE Statement

Examples
DISPLAY COMMENTS

LIST the values 1 to 1@ are assigned to
1¢ READ A,B,C,D,E,F,G,H,1,J ten variables

2¢ DATA 1,2,3,4,5,6,7,8,9,10

3@ PRINT A;B;C;D;E;F;G;H;1;J
Ok

RUN

12 3 45 6 7 8 9 18
Ok

5-6 BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC INPUTS DATA

L1ST

1¢ DATA 1,2,3,4

2¢ READ A,B,C,D,E,F,G,H,1,J
3¢ DATA 5,6,7

49 DATA 8,9,1

0
5@ PRINT A;B;C;D;E;F;G;H;1;]
Ok
RUN
12 3 45 6 7 8 9 19
Ok

LIST

1@ READ A,B,C

20 DATA 1,2,3,4,5,6,7,8,9,18
3¢ PRINT A;B;C

4¢ READ D,E,F,G

5@ ‘PRINT D;E;F;6

RUN
1

4

Ok

2 =3
5 6

7

LLST:

1¢ READ A.B,C,D
2@ DATA 1,2,3,4
Ok

RUN

Out of data

Ok

,E

L1ST
19 READ A,B,C
20 DATA 15,25,35,5,6,12
3¢ PRINT A;B;C
4 RESTORE
5¢ READ X,Y,Z
68 PRINT X;Y;Z
0k
RUN
15 25 35

statements 1@, 2@, 3@, and 4@ have
the same effect as statements 10
and 20 in the previous example.

Notz: A DATA statement in a program
need not correspond to a specific
READ statement. This 1is because
before program execution, a data
file (the "internal file" as it is
often called) is created. It con-
tains all the values of all the
DATA statements in the program in
line number sequence. When the
program is executed, READ takes its
values from this file

statement 1@ assigns the values
1,2, and 3 to A,B,and C; statement
4@ assigns the values 4,5,6 and 7
to D,E,F and G respectively.

Note: When you access a data file
you do not have to read all the
values stored in it

M20 displays an error message:
Out of data

and returns to Command Modé, be-
cause there are fewer data items
than variables

statement 1@ causes the variable A
to be assigned the value 15, B the
value 25, and C the value 35. The
RESTORE statement at line 4§ will
cause values to be assigned start-
ing from the beginning of the file
again. Hence, statement 6@ causes
the very same values assigned to
A,B, and C, (15,25,35) to be
assigned, respectively, to X, Y,

5-7

15, 25 35 and Z. If RESTORE were not present,
0k X would be assigned the value 5, Y
the value 6, and Z the value 12

LIST statement 1@ causes X1$ to be
1¢ READ X1$5, Y15, Z1 assigned the -value DENVER, (in-
2@ DATA "DENVER,'", COLORADO, 8@211 cluding the final comma), Y1$ the
3¢ PRINT X1$;Y1$;21 value COLORADO, and Z1 the value
Ok 8@211.

RUN

DENVER,COLORADO 8@211 Note: READ statements may contain
0Ok both numeric and string variables,

DATA statements may contain both
numeric and string data.

The data-type of an entry in the
data sequence must correspond to
the type of the vartable to which
it is to be assigned; i.e., numeric
variables require numeric constants
as data (conversicn from one num-
eric type to another is allowed,
for example you may have a single
precision floating point constant
associated with an integer vari-
able) and string variables require
quoted or unquoted strings as data.
A quoted string is required if the
string contains commas (e.qg.
DENVER,) or initial or final blanks
(e.g. the blank preceeding COLORADO
in statement 2@ 1is skipped as
COLORADO is not a quoted string)

INPUT STATEMENTS

The DATA statement uses constants to assign values to variables. You mus*
know, when you are entering your program, what values you want to assign.
Furthermore the values contained in the internal data file are saved
whenever your program is saved. Hence, these values are relatively
permanent; they can be changed only by changing one or more DATA
statements in the program.

5-8 BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC INPUTS DATA

The INPUT and a LINE INPUT statements, offer you more flexibility. Using
them you enter values only when the program is executed. When one of
these statements is encountered, program execution is suspended and M20
waits for you to enter data from the keyboard.

As a consequence, after you have saved a program, you can run it at any
time, and supply values to the computer on the spot, without changing the
program itself. This flexibility allows you to write a general program to
solve a particular problem before you know the specific values the
program will use. However, if you have a lot of data to enter, it is
better to use an internal file (permanent data) on one or more external
files (see Chapter 12).

The INPUT statement allows you to enter one or more numeric or string
data-items (separated by a comma). They will be assigned to the vari-
able(s) specified in the statement. The LINE INPUT statement allows you
to enter an entire input line and assign it to a string variable.

You may insert a prompt message in both INPUT and LINE INPUT statements.
This will be displayed on the screen when the statement is executed to
remind you what to enter.

INPUT (PROGRAM)

Reads data-item(s) from the keyboard and assigns it/them to one or more
specified variables.

" prompt " .]

INPUT H string H variable

Figure 5-7 INPUT Statement

A Question Mark

A question mark (followed by a blank) is automatically displayed as a
standard prompt when executing an INPUT statement, even though the
statement does not include a prompt-string.

DISPLAY COMMENTS

LTST When executing statement 1@ the standard

1@ INPUT X prompt (?) 1is displayed, indicating that

2@ PRINT X 'SQUARED 1S'" XA2 @ the program is waiting for data.

3@ END

Ok No prompt string is used in the INPUT
statement in this case (see statement 1)

RUN
75
5 SQUARED 1S 25
Ok

Self Prompting

By inserting a prompt-string in an INPUT statement, you may prompt for
each value required.

DISPLAY COMMENTS
ETST; the user prompt (Radius) is displayed before the
19 P1 = 3.1415 standard prompt (?), when statement 2§ is
2@ INPUT '"Radius';R encountered
3@ A=P1*RA2
4@ PRINT "Area';A
5¢ GOTO 2@
Ok
RUN
Radius? 7.4
Area 172.829
Radius?
etc.

To Suppress the Standard Prompt

You may suppress the standard prompt (?) by writing a comma (,) after
your prompt.

5-10 BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC INPUTS DATA

DISPLAY COMMENTS
L1IST the standard prompt (?) is suppressed because a
1@ INPUT "Date ", D$ comma (,) - instead of a semicolon (;) - follows
2@ PRINT D$ the user prompt in statement 1@
Ok
RUN
Date 3@/0ct/69
3¢/0ct/69
Ok

To Suppress the Echo of

You may suppress the echo of on the screen, by writing a semicolon
(;) after INPUT.

DISPLAY COMMENTS
LIST the echo on the screen of the carriage-return/
1¢ INPUT; "Date";D$ line-feed is suppressed by inserting a semicolon
2@ PRINT " J.C." (;) immediately after INPUT (see statement 1)
Ok
RUN The next PRINT/INPUT operation will be executed
Date? 3@/0ct/69 J.C. from the next screen position (see statement 2{)

To Enter a List of Data

An INPUT statement allows you to enter one or more numeric or string data
from the keyboard.

DISPLAY COMMENTS

LIST when statement 1@ is executed, you must enter
19 INPUT A,BS,C(3) three data-items.

2@ PRINT A;BS$;C(3)

3¢ GOTO 1¢ The first must be numeric (1.2), the second
Ok string (ABC) (and need not to be surrounded by
RUN quotation marks), the third (4) numeric. They
?1.2,A8BC,4 will be assigned to variables A, B$ and C(3)
1.2 ABC 4 respectively.

? ABD,1.3,5

?Redo from start When statement 1@ 1is executed for the second
? 1.3,A8D,5 time, suppose that you enter a datum of the
1.3 ABD 5 wrong type, (ABD) i.e. a string instead of a
?AC number. The system displays:

Break in 1¢

0k ? Redo from start

and you must re-enter the value.

To interrupt program execution press HLIN
To resume execution press O f N | | CR B

Note: The data-type of a keyboard entry must
correspond to the type of the variable to which
it is to be assigned; i.e. numeric variables
require numeric constants as data (conversion
from one numeric type to another is allowed, for
example you may enter a double precision
floating point constant to initialize an integer
variable) and string variables require quoted or
unquoted strings as data. A quoted string is
required if the string contains commas or
initial or final blanks. Numeric items may be
input 1into string variables. If you input a
number into a string and then you wish to
re-obtain its numeric value use the VAL function
(see Chapter 9), to prevent type mismatch errors

?Redo from Start

Responding to INPUT with too many or too few items, or with the wrong
type of value (string instead of numeric) causes the message ''?Redo from
start" to be displayed . No assignment of input values is made until an
acceptable response is given.

LINE INPUT (PROGRAM)

Inputs an entire line up to a carriage return/line feed and assigns it to
a string variable, without the use of delimiters (255 characters is the
maximum length of a line).

5-12 BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC INPUTS DATA

-0

Figure 5-8 LINE INPUT Statement

A Question Mark within the Prompt

prompt " . string
string 3 variable

The standard prompt (?) does not appear when executing a LINE INPUT

statement.
wish.

DISPLAY

LIST

1¢ LINE INPUT "Name? "';N$
2@ PRINT "JONES"

Ok

RUN

Name? LINDA

JONES

Ok

To Suppress the Echo of

You can close your own prompt with a question mark if you

COMMENTS

the prompt string (Name?) is
displayed before input is accepted.

All 1input from the end of the
prompt to is assigned to the
string-variable (N$)

You may suppress the echo of [l on the screen, by writing a semicolon

(;) after LINE INPUT.

DISPLAY

LIST

1¢ LINE INPUT;"Name? ";N$
2@ PRINT ' JONES"

Ok

RUN

ilame? LINDA JONES

Ok

COMMENTS
does not echo a carriage
return/line-feed, as LINE INPUT

(see statement 1¢) is followed by a
semicolon (;).

The next PRINT/INPUT operation (see
statement 2@) will be executed from
the next screen positicn

ABOUT THIS CHAPTER

This chapter classifies BASIC expressions as numeric, string, relational
or logical. 1t gives the rules the user must respect in forming expres-
sions as well as the priority rules BASIC assumes in evaluating them.

CONTENTS

NUMERIC EXPRESSIONS 6-1

STRING EXPRESSIONS 6-8

RELATIONAL EXPRESSIONS 6-9

LOGICAL EXPRESSIONS 6-12

OPERATOR PRIORITY 6-15

EXPRESSIONS

NUMERIC EXPRESSIONS

Most of the programs you write will involve some numeric calculations.

As you may have noticed in our examples, only variables appear to the
left of the equal sign in LET statements.

Both variables and constants, however, can appear to the right of the
equal sign. They can, in fact, be connected by means of special symbols,
called operators, to indicate numeric operations. Some examples follow:

7@ LET L=ACCOUNT

6@ LET Y = 1641.7+12
2@ M = 83-444+37/N
28 LET X = X+1

The last statement is particularly interesting. Most LET statements look
like algebraic equations; this last one does not. The equation X = X+1
makes no sense algebraically. The LET statement assigns a value to a
variable: it does not imply that the values to the left and right of the
equal sign are mathematically equal. This last statement, which is valid
and meaningful, can be interpreted as follows: add 1 to the value repre-
sented by variable X, and assign this new value to X. This new value of X
will replace the old one. Thus the equal sign is itself an operator.

That part of the LET statement to the right of the equal sign is called
an expression. The expression specifies the value to be assigned to the
variable to its left. (The evaluation of an expression yields a single
numeric value.) A numeric expression can be composed of a single number
or a single numeric variable as well as some combination of numbers,
numeric variables, and operators. Remember, however, that a numeric
variable must be assigned a value before it is used in an expression. If
it is not, the variable automatically assumes the value #.

Some examples of numeric expressions are shown below:
X

X+Y+SPEED

6.4 A2

-7+A/CYAR

Numeric Operators

As mentioned before, BASIC uses operators to indicate numeric operations.
There are eight numeric operations, each with its own symbol.

6-1

SYMBOL

MOD

OPERATION

addition

subtraction

integer division.

The operands are rounded
to the nearest integers
(which must be in the
range - 32768 to 32767)
before the division is
performed, and the quo-
tient is truncated to
an integer

mcdulus arithmetic.
It gives the integer
value which is the re-

mainder of an integer
division

multiplication

Division

negation
1t changes the sign of the
operand

EXAMPLES

210\ 4
2
Ok
? 25.68\ 6.99
3
Ok

?1@¢.4 MOD 4
2

| Ok

(16/4 = 2 with remainder 2)

?25.68 MOD 6.99
5
Ok

(26/7 = 3 with remainder 5)

?2X%*3.92
12.544
Ok

?3/6.05
#.495868
Ok

?7-X

-3.2
Ok

BASIC LANGUAGE - REFERENCE MANUAL

EXPRESSIONS

A Exponentiation ?2XA3
32.768
0Ok
Remarks

Be sure to include the * when specifying multiplication. In mathematics,
6X is valid; in BASIC, 6*X must be written to express 6 times X.

For your convenience, all the numeric operators used in BASIC have been
placed on the M20 Keyboard both in the numeric and alphanumeric section
(except the exponentiation symbol, which appears in the alphanumeric
section only and MOD which must be entered typing its three characters).

Numeric Operator Priority

When two or more operators are used in an expression, it often seems
ambiguous. For example, does the expression:

3%L - 6%W
mean

(3*L) - (6*W)
or

3% (L - 6*W)?

BASIC has built-in priorities for performing different numeric opera-
tions.

Numeric operations and priority rules are as follows (in order of des-
cending priority).

PRIORITY OPERATION COMMENTS
HIGHEST exponentiation

negation

6-3

multiplication and Division | Multiplication and division have
the same priority

integer division
modulus arithmetic

addition and subtraction Addition and subtraction have
LOWEST the same priority

Remarks

Referring to the preceding example, we may now say that 3*L - 6*W means
(3*L) - (6*W).

For operators with the same priority (e.g./and *) , operations are
carried out from left to right. Thus, 9/3*3 is the equivalent of (9/3)*3
yielding a result of 9.

Using Parentheses to Change Priority

There are times when you will want to change the normal priority of
operations. To do this you use pairs of parentheses, exactly as you would
in mathematics. When parentheses are used, the operations within the
innermost pair of parentheses are performed first, followed by operations
within the second innermost pair, and so forth. Within a given pair of
parentheses, the normal priority of operations apply.

A simple example of the use of parentheses follows.

Suppose you want to compute (5X)2. If you enter this expression in BASIC
as 5*XA2, first X is squared, then the result is multiplied by 5 because
exponentiation has a higher priority than multiplication. To change this,
simply enter the expression as (5*X)A2. In this case; first X is
multiplied by 5, then the result is squared.

The more complicated a numeric expression is, the more complicated its
BASIC equivalent will be. In the following examples, numeric expressions
are shown with their BASIC equivalents. The examples should help you get
a better feel for the rules of priority:

6.4 BASIC LANGUAGE - REFERENCE MANUAL

EXPRESSIONS

Examples

NUMERIC EXPRESSION

2x + 5

2(x + 4)

Remarks

BASIC EQUIVALENT

(X+Y+Z)/2

X+(Y+2)/2

2%X+5

2% (X+4)

XA2+3

(X+3)A2

(X+3)A2/4

(XA2/6)*((X+Y)/2))

INTERPRETATION

. Add X, Y and Z
2. Divide the sum by 2

. Add Y to Z
. Divide the sum by 2
. Add X to the result

. Multiply X by 2
. Add 5 to the result

. Add 4 to X
. Multiply the sum by

2

. Square X
2. Add 3 to the result

. Add 3 to X
2. Square the result

. Add 3 to X
. Square the sum
. Divide the result by

4

. Square X and divide

by 6

.Add X to Y and

divide by 2

. Multiply the two

results by each
other

It is good programming practice to use-parentheses whenever you doubt the
clarity of an expression, even when they are not strictly necessary.

6-5

The expressions used in your program can get very complex. If you save a
program and do not run it often, you can easily forget exactly what
computations are being performed. For this reason, you may find it useful
to put descriptive remarks in a program as you write it. BASIC provides
the REM statement and the comment fields specifically for this purpose.

Type of Expression

The type of a numeric expression, i.e. the data-type of the result of the
evaluation of an expression (before assigning it to a variable) depends
on the type of its operands.

There are four different situations depending on the type of the two
operands involved. If the expression involves more than two operands, it

can be considered as a series of calculations involving two operands.

The table below summarises the four possible situations.

1Fs s THEN... DISPLAY
both operands are of 'the result is also A#= 3.29745219
the same numeric type of that type Ok
(integer, single-preci- B# = 4.5729719D-1
sion or double-preci- Ok
sion 2A# +B#
3.75474938

0Ok
one operand is inte- the result is I% = 25
ger and the other single-precision Ok
is single-precision C! = 4.2975

Ok

?1%-C!

20.7825

Ok
one operaffd is inte- the result is 21%*AH#
ger and the other is double-precision 82.43630475
double-precision Ok
one operand is single- | the result is ?2C!/B#
precision and the double-precision 9.3976@887993736
other is double- Ok
precision

6-6 BASIC LANGUAGE - REFERENCE MANUAL

EXPRESSIONS

Rounding, Overflow and Underflow

Floating point types are forms of approximation to the real numbers of

mathematics.

IRG o

one or more operands
in a numeric expres-
sion are floating
point

the value of the ex-
pression is bigger
than the maximum
length allowed for
that data-type

a division by zero is
encountered

the evaluation of an
exponentiation results
in zero being raised
to a negative power

the value of the ex-
pression is smaller
than the smallest re-
presentable value

in a numeric assign-
ment, the type of the
expression is differ-
ent from the type of
the receiving variable

THEN. ..

calculations are approximate and accuracy can be
lost. 1f this happens the less significant
digits are lost and the last digit maintained is
rounded off

an "Overflow" error message 1is displayed,
machine infinity* with the algebraically correct
sign is supplied as the result, and execution
continues

the "Division by zero'" error message is display-
ed, machine infinity* with the sign of the
numerator 1is supplied as the result of the
division, and execution continues

the "Division by zero" error message is display-
ed, positive machine infinity* is supplied as
the result of the exponentiation, and execution
continues

the value becomes zero (Underflow) and execution
continues

the expression is automatically converted to the
type of the receiving variable

Note: Machine infinity is displayed as 3.4@282E+38.

6-7

Undefined Values

If a numeric variable in a numeric expression has not yet been set, it is
set to zero.

Undetermined Forms

The evaluation of a numeric expression may result in an undetermined
form, such as:

@/@: the message 'Division by zero'" 1is displayed and the value
3.4@282E+38 (machine infinity) is supplied
@A@: the value is assumed to be 1.

STRING EXPRESSIONS

BASIC permits the use of string expressions, similar in many ways to the
numeric expressions we have just looked at. A string expression can be
either a string constant, a single string variable, a string array
element, a string function, or a mixture of them linked by plus signs

(+).

By using the plus sign, strings can be joined - 'concatenated" is the
technical term. These are some examples of string expressions in LET
statements:

5@ LET A$ = "Chicago,"
9¢ BS = "IL.,"
198 NS = AS+BS+"USA"

The concatenation in statement 1¢@ would result 1in N$ being
assigned the string:

Chicago, IL.,USA
When two or more strings are concatenated, the length of the resulting
string is the sum of the individual strings. The expression evaluation

proceeds from left to right.

Be careful not to assign more than 255 characters to a string variable.
In this case, the system issues an error message:

String too long

6-8 BASIC LANGUAGE - REFERENCE MANUAL

EXPRESSIONS

Remark

A string operand appearing in a string expression may be the null string
("'). The null string will also be the default value of a non-initialized
string variable.

RELATIONAL EXPRESSIONS

Relational expressions compare either two numeric or two string expres-
sions by means of a relational operator.

Relational Operators

The relational operators are:

= equals (the equals sign is also used to assign a value to a
variable, see LET statement)

> greater than

< less than

>= or => greater than or equal to
<= or =< less than or equal to

< >or >< not equal to

It is illegal to compare a numeric expression with a string expression
and vice versa. For example:

A+ B>C is valid
C+D>=E + F is valid
A$ = BS is valid
B$>C1 is wrong if C1 is a numeric variable.

Comparison of numbers has an obvious meaning. Character strings, may also
be compared, with the outcome dependent on the numeric value of the
character's representation. (This is taken to be the decimal ASCII value
of each character within the string). String scanning is performed from
left to right, character by character and ends when the first pair of
different characters is encountered. The result of the comparison is made
on the basis of the first pair of different characters.

Numeric or string expressions are performed first, then relational opera-
tors are applied to the result of such expressions.

For example, to write
A>B + C

and

A>(B + C)

is equivalent.

The result of a relational expression is numeric. It is displayed as
either -1 (if the relation is true) or @# (if it is false).

Examples

Let us look at some examples using relational expressions. First let us
assign values to the variables X and Y.

DISPLAY

X=1
Ok
Y=2
Ok

2X>Y
)
Ok

X<>Y
-1
Ok

?SIN (X) <@
g
Ok

?X MOD Y=1
-1
Ok

COMMENTS

BASIC executes the specified assignments

BASIC displays @ (i.e. false), as X is not

greater than Y

BASIC displays -1 (i.e. true), as X is different
from Y

BASIC displays @ (i.e. false), as SIN(X) is
positive

BASIC displays -1 (i.e. true), as X MOD Y
equals 1

BASIC LANGUAGE - REFERENCE MANUAL

EXPRESSIONS

?2"TOKYO'" > "FRANKFURT" BASIC displays -1 (i.e. true) as TOKYO is great-
-1 er than FRANKFURT (i.e. it comes after FRANKFURT

Ok in alphabetical order)

?"TOKYQ'" >""TOKY01" BASIC displays @ (i.e. false) as TOKYO is less
) than TOKY01. Where two strings are of unequal

Ok length and the shorter string exactly matches

the first part of the larger string then the
longer string is considered greater than the
shorter one

Using Relational Expressions

The result of a relational expression may be used to make a decision
regarding program flow. You can use relational expressions in the fol-
lowing control statements:

= IF... 60TO,.. ELSE, or
= IF.«. THEN... ELSE, or
- WHILE

where a condition is tested to determine later operations in the program
(see Chapter 8).

The condition may be a numeric, relational or logical expression. BASIC
determines whether the condition (after IF or WHILE) is true or false by
testing the result of the expression for non-zero and zero respectively.
A non-zero result is assumed to be true, and a zero result is false.

For example, the following statement:
198 1IF AS>BS$ THEN 5¢
will transfer control of execution to statement 5¢ if the condition

(A$>BS) is true, (i.e. AS$ greater than BS). If the condition is false
(i.e. AS not greater than BS$) the next statement will be executed.

LOGICAL EXPRESSIONS

A logical expression consists of one operand preceded by the logical.
operator NOT, two operands separated by another logical operator (AND,
OR, XOR, EQV and IMP), or two operands separated by a logical operator
and NOT.

The operands in a logical expression may be numeric or relational expres-
sions. Both have numeric values.

The result of a logical expression is also numeric: it is an integer
value with any combination of bits in the rarige -32768 to 32767.

Examples of logical expressions are:

NOT X is valid
X AND Y is valid
A>B OR C>D is valid
1% AND A$<B$ is valid
AS XOR BS is not valid (as the operands are string)

Logical Operators

Logical operators work by converting their operands to sixteen bit,
signed, two's complement integers in the rangs -32768 to +32767. (1f the
operands are not in this range, an error occurs.) The given operation is
performed on these integers, each bit of the result being determined by
the corresponding bits in the two operands.

The logical operators are listed below in a table called the 'truth
table". 1t describes graphically the results of the logical operations on
a bit-by-bit basis. Every possible combination of bits is given. (Notice
that the two operators XOR and EQV are exact opposites.)

A NOT A A B A AND B A OR B A XOR B A EQV B A IMP B
1 g 1 1 1 1) 1 1
g 1 1 g g L 1 g ¢

) 1 g 1 1 g 1

g g g g g 1 1

Table 6-1 The Truth Table

6-12 BASIC LANGUAGE - REFERENCE MANUAL

EXPRESSIONS

Logical Operator Priority

In an expression, logical operations are performed after numeric and
relational operations.

The table below lists logical operators in the order BASIC evaluates
them.

OPERATORS PRIORITY

NOT HIGHEST
AND

OR

XOR

IMP

EQV LOWEST

Table 6-2 Logical Operator Priority

Examples

Let us look at some examples. First let us assign values to the variables
X, Y, AND Z.

DISPLAY COMMENTS
X%=0 BASIC executes the specified assignments
Ok
Y%=3
0Ok
2%=5
Ok
?X%<Y% AND Z%= the result is false (@), as X%<Y% is true
[(-1) but Z%=3 is false (@)
Ok
?X% OR X% <Z% the result is true (-1), as X% is false (@)
-1 but X%<Z% is true (-1)
0k

6-13

?63 AND 16
16
Ok

?4 0R 2

Ok

?2-1 OR-2
-1
0k

2§<2 AND 4=4
<
0k

2% XOR Y%=3
=1
0k

22% >Y% AND NOT "A" >"B"
-1
0k

Using Logical Expressions

the result is 16, as

63
16

binary 111111
binary §10900
919999

the result is 6, as

4 = binary 108
2 = binary @§1¢
110

the result is -1, as

L
<7

binary 11,11111111111111
binary 111111111111111¢
1111111111111

the result is true (-1), as

§<2 is true (-1), and
4=4 is true (-1)

the result is true (-1), as

g is false (@), and
Y%=3 is true (-1)

the result is true (-1), as

7% >Y% is true (-1), and
"A">"B" is false (@)

Note: It is possible to write two consecutive
logical operators only if the second one is
the NOT operator

You can use logical expressions:

- to test a condition in the following control statements:

BASIC LANGUAGE - REFERENCE MANUAL

EXPRESSIONS

IF. s GOTO.: .. ELSE,
1F. .. THEN: .. "ELSE;
WHILE

For example:
5¢ IF A$>BS$ and B<=C THEN 3¢¢

will transfer control of execution to statement 3@@ if the condition
(A$>BS AND B<=C) is true (i.e. AS greater than B$ and B less than or
equal to C). If the condition is false (i.e. A$ less than B$ or B
greater than C) the next statement will be executed.

- to test words (16 bits) for a particular bit pattern. For example the
AND operator may be used to "mask' all but one of the bits of a status
word at a machine 1/0 port. The OR operator may be used to '"merge'" two
words to create a particular binary value.

For example:

-1 AND 8 is 8
and:

-1 0R 8 is -1
as
-1
8

binary 1111111111111111
binary g@PRRPPEARE1009

OPERATOR PRIORITY

The table below lists all operators (numeric, string, relational, and
logical) in the order BASIC evaluates them.

OPERATORS PRIORITY
A (exponentiation) HIGHEST
= (negation)
* / (multiplication and division)
\ (integer division)
MoD (modulus arithmetic)

* = (addition and subtraction)
+ (string concatenation)

All relational operators

NOT

AND

OR

XO0R

IMP

EQV LOWEST

Table 6-3 Operator Priority

Remarks
- operators shown on the same line have equal precedence
- all relational operators have equal precedence

- evaluation order of expressions can be overridden by the use of paren-
theses. For example the evaluation order of:

NOT A>B AND C>D OR E>F
is different from the evaluation order of:
NOT (A>B AND (C>D OR E>F))

if, for instance, A>B is true, C>D is false and E > F is true, the
first expression is true, whereas the second is false.

- the result of any expression can also be an operand, thus you can form
very complex expressions, for instance chaining two or more logical
expressions by a logical operator (as in the examples above). However
it is not good programming practice to write,too complex expressions.

6-16 BASIC LANGUAGE - REFERENCE MANUAL

7. HOW BASIC OUTPUTS DATA

ABOUT THIS CHAPTER

You have now seen how to input data to the M20 and how to process it.

In this chapter you will see how to set the screen or printer line width
(WIDTH command) and how to get results from the computer. We shall ex-
amine the LPRINT, PRINT, LPRINT USIHG and PRINT USING statements. They
allow you to output data either in a standard or in a user-defined
format.

CONTENTS

SETTING THE NUMBER OF NULLS 7-1
AND THE WIDTH

NULL (PROGRAM/IMMEDIATE) 7-1

WIDTH (PROGRAM/IMMEDIATE) 7-2

STANDARD FORMAT 7-3
LPRINT/PRINT 7-4
(PROGRAM/IMMEDIATE)

WRITE (PROGRAM/IMMEDIATE) 7-10
USER DEFINED FORMAT 7-11
LPRINT USING/PRINT USING 7-12

(PROGRAM/IMMEDIATE)

HOW BASIC OUTPUTS DATA

SETTING THE NUMBER OF NULLS AND THE WIDTH

The NULL command (which may also be used in a program) allows you to set
the number of nulls printed after each line.

The WIDTH command (which may also be used in a program) allows you to set
the screen or printer line width.

NULL (PROGRAM/IMMEDIATE)

Sets the number of nulls to be printed at the end of each line and hence
delays the printing of the next line.

Figure 7-1 NULL Command

Example

IF you enter...

NULL 2

- numeric >
NULL expression

THEN. ..
2 nulls will be printed after each line.

Note: The numeric expression is rounded to the
nearest integer (if necessary).

For 1@-character-per-second tape punches the
numeric expression value should be >= 3. This
also identifies lines on the tape. When tapes
are not being punched, this value should be @ or
1 for teletypes and teletype-compatible CRTs.
This value should be 2 or 3 for 3@ cps hard copy
printers

7-1

WIDTH (PROGRAM/IMMEDIATE)

Sets screen or printer line width, when a PRINT, WRITE, LPRINT, PRINT
USING, LPRINT USING statement is executed or an error message is issued.

() ! ; l numeric
WIDTH (LPRINT expression

Figure 7-2 WIDTH Command

Default Values

If you do not use a WIDTH command a screen width of 64 characters is
assumed.

1f you do not use a WIDTH LPRINT command a printer line width of 132
characters is assumed.

Examples

1@ PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ'
RUN

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Ok

WIDTH 18

Ok

RUN

ABCDEFGHIJKLMNOPQR

STUVWXYZ

0k

Characteristics

B e THEN...

the LPRINT option is the line width is set for the screen only
omitted

7-2 BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC OUTPUTS DATA

LPRINT is included the line width is set for the line printer.
For example:

1¢ WIDTH LPRINT 4

2¢ LPRINT "AAAABBBBCC'
RUN

Ok

AAAA
BBBB
cc

the numeric expression | it is rounded to the nearest integer and must
value is not an integer have a value in the range 15 to 255.

If the rounded value is 255, the line width is
"infinite", that 1is, BASIC never 1inserts a
carriage return. However, the position of the
cursor or the print head, as given by the POS or
LPOS function, returns to zero after position
255.

If the rounded value is greater than 255 an
error is issued. (Illegal function call.)

STANDARD FORMAT

You may output your results in standard format by the PRINT, WRITE and
LPRINT statements. They can be used as immediate statements too. They
allow you to have the results of calculations either printed (LPRINT) or
displayed (PRINT and WRITE).

If you wish to output the results of two or more expressions on one line,
separate your expressions with commas (WRITE) and with commas or
semicolons (PRINT, LPRINT).

With the WRITE statement each item displayed will be separated from the
last by a comma (and strings will be delimited by quotation marks). With
the PRINT and LPRINT statements, if you use commas, the results will be
separated, whereas semicolons will cause the results to be packed
together and the strings will not be delimited by quotation marks.

7-3

LPRINT/PRINT (PROGRAM/IMMEDIATE)
LPRINT prints a list of data in a standard format.

PRINT displays a list of data in a standard format. A question mark (?)
may be used instead of PRINT.

—c!

Figure 7-3 LPRINT Statement

2]

Figure 7-4 PRINT Statement

7-4 BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC OUTPUTS DATA

Characteristics

IF: o THEN. ..

an LPRINT (or a PRINT) 'a new line of output is printed (or displayed)
statement does not end when the statement is executed.

with a comma or semi-

colon For example:

LIST

1¢ PRINT 1
2@ PRINT 2
Ok

RUN

1

2
Ok

no expressions appear a line is skipped.
in an LPRINT (or a
PRINT) statement For example:

LIST

1@ PRINT 1
2@ PRINT
3¢ PRINT 2
Ok

RUN

1

2
Ok

This form of LPRINT (or PRINT) 1is useful for
producing spaces between output lines

expressions in the each value is printed (or displayed) left justi-
output list are sep- fied in one of the "print zones" in which each
arated by commas line is divided. (Each zone has 14 positions).

7-5

the list of expres-
sions has many en-
tries

one or more numeric
expressions appear in
an LPRINT (or a PRINT)
statement

7-6

For example:

LIST

19 A$ = "For June..."

20 X = .353

3@ PRINT "Results", AS$, X

Ok

RUN

Results For June... +353
Ok

Note: Each positive value (in this case .353) is
preceded by a space (see below).

The number of print zones on each line depends
on the maximum number of characters each can
contain. This may be specified by the WIDTH

command or assumed by default.

String values displayed (or printed with LPRINT)
are not delimited by quotation marks

two or more lines of output may be produced.

For example:

WIDTH 31

0k

PRINT 1, 142, 2+3, 7, 9, "ABCD"
1 3

5 7

9 ABCD

Ok

Note: Each positive value is preceded by a space
(see below)

- each value printed or displayed is always
followed by a space

- each positive value is preceded by a space

- each negative value 1is preceded by a minus
sign

BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC OUTPUTS DATA

a comma follows
the last expression
in the list

- each single-precision value that can be rep-
resented with 6 or fewer digits in the fixed
point . format as accurately as it can be
represented in the floating point (or "ex-
ponential") format, is output using the fixed
point format

- each double-precision value that can be rep-
resented with 15 or fewer digits in the fixed
point format as accurately as it can be
represented in the floating point (or '"ex-
ponential') format, is output using the fixed
point format:

For example:

PRINT 18 A -6
.pogep
0k
PRINT 18 A-7
1E-97
Ok
PRINT 1D-15, 1D-16
.PP00Pe3Ra338001 1D-16
Ok

Note: The second value is displayed left justi-
fied in the third print zone (as the first value
overflows into the second print zone)

the next character or digit issued as output
(that 1is, the first character or digit in a
subsequent PRINT or INPUT or LPRINT operation)
is printed or displayed on the same line (at the
beginning of the next print zone) if sufficient
space is available (otherwise on a new line).

a semicolon follows
the last expression
in the list

commas are used
consecutively

For example:

LIST

19 AS = "For July..."

20 X = .49

3@ PRINT "Results'", AS,

4¢ PRINT X

Ok

RUN

Results For July... ,.491

the next character or digit issued as output
(that 1is, the first character or digit in a
subsequent PRINT, or INPUT or LPRINT operation)
is printed or displayed on the same line (at the
cursor position) - if sufficient space 1is
available, otherwise on a new line.

For example:

LIST
19 INPUT X
2¢ PRINT X "SQUARED IS'" XA2 "AND";
3¢ PRINT X 'CUBED IS" XA3
49 PRINT
5¢ GOTO 10
Ok
RUN
29
9 SQUARED 1S 81 AND 9 CUBED IS 729

? 21
21 SQUARED 1S 441 AND 21 CUBED IS 9261

?
the effect of each comma is to position the
print head (or the cursor) at the start of the

next zone.

The use of commas in this way lets you display
(or print) data widely spaced.

BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC OUTPUTS DATA

semicolons or blanks
are used instead

of commas to sepa-
rate expressions in
the list

you mix semicolons

and commas in the same
LPRINT (or PRINT)
statement

For example:

PRINT "M",,"N"
M N
Ok

output values are spaced more closely. The exact
spacing depends on the number of digits or
characters in each value. The use of semicolons
in this way allows you to print (or display)
more values on each line.

Having more than one space or semicolon between
expressions has the same effect as one space or
semicolon.

For example:

LIST

19 A1 = 1099
20 A2 = 2099
3¢ A3 = 3009
40 A4 = 4009
5¢ A5 = 5008
60 A6 = 6000
70 A7 = -7¢0¢
8@ PRINT A1;A2;A3;A4;;A5 A6 A7
Ok

RUN

1000 2008 30p¢ APE0 SPPP 6P -7000

The spaces between the numbers appear because
the system adds one space after printing (or
displaying) each number and eliminates the im-
plied plus sign before each positive value

you get a simple method of labelling each of

your results and of gaining wide spaces within a
line.

7-9

you use the special
built-in function
TAB

you use the special
built-in function
SPC

WRITE (PROGRAM/IMMEDIATE)

For example:

L1ST

19 INPUT '"Length and Width"; L,W

2@ PRINT "Area =";L*W,"Length =";L,"Width =";W
3¢ GOTO 19

Ok

RUN

Length and Width? 1.2, 3

Area = 3.6 Length = 1.2 Width = 3

Length and Width? AC
Break in 10
Ok

you name the precise print (or cursor) position,
in a line, at which you want your next data item
to begin.

For example:

PRINT 1; TAB(6); 2
1 2
Ok

you insert a specified number of blanks on the
line. (In calculating the number of blanks you
want, remember that numeric data is always
output with one blank after it).

For example:
PRINT 1; SPC(6); 2

1 2
Ok

Displays a list of data. Each item displayed will be separated from the
last by a comma. Strings will be delimited by quotation marks('"). After
the last item is displayed, BASIC inserts a carriage return/line feed.

7-10

BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC OUTPUTS DATA

expression

Figure 7-5 WRITE Statement

Where

Expression may be a numeric, relational, logical, or string expression.
If no expression is indicated a blank line is output.

Example

DISPLAY COMMENTS
10 A=8¢ : B=9¢ when a WRITE statement is executed, each item is
20 CS="THAT'S ALL" separated from the last by a comma, and strings
3@ WRITE A,B,CS$ are delimited by quotation marks.
RUN
8¢, 9@, "THAT'S ALL" Note: Numeric values are displayed using the
Ok same format as the PRINT statement but they are

not followed by blanks

USER DEFINED FORMAT

You have seen that the use of commas, semicolons, quoted strings, and the
SPC and TAB functions provides limited control of the format of displayed
or printed information. Two statements, LPRINT USING and PRINT USING,
provide the capability of generating prihted or displayed output with
complete control of the format.

They are usually used in a program, but they can be used as immediate
statements too.

LPRINT USING/PRINT USING (PROGRAM/IMMEDIATE)
LPRINT USING prints a list of data in a user-defined format.
PRINT USING displays a list of data in a user-defined format.

The expressions appearing in an LPRINT (or PRINT) USING statement must be
separated by commas (,) or semicolons (;), it makes no difference which
punctuation mark is used. Values will be output (printed or displayed) in
a format specified by the string expression appearing after USING. This
expression is a string literal or variable that is composed of special
formatting characters. These formatting characters (see below) determine
the fields and the format of the output strings or numbers.

| string 5
LPRINT USING I o o expression

Figure 7-6 LPRINT USING Statement

string
expression

PRINT USING expression

Figure 7-7 PRINT USING Statement

7-12 BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC OUTPUTS DATA

Where

SYNTAX ELEMENT

string expression

expression

To Output Strings

MEANING

is a string of formatting characters (see
below) or a string variable consisting of a
string of formatting characters

is a numeric, relational, logical or string
expression which is to be printed or displayed

One of three formatting characters may be used:

FORMATTING CHARACTER

"\ n spaces \'

MEANING

specifies that only the first character in the
given string is to be output.

For example:

L1ST
10 AS="WATCH"

20 BS="0UT"

3¢ PRINT USING "!";A$;BS
Ok

RUN

Wo

Ok

specifies that 2+n characters from the string
are to be output. 1f the backslashes are entered
with no spaces, two characters will be output.
With one space, three characters will be output,
and so on. If the string is longer than the
field, the extra characters are ignored. If the
field is longer than the string, the string will
be left-justified in the field and padded with
spaces to the right.

To Output Numbers

The following formatting

FORMATTING CHARACTERS

7-14

ngn

#

For example:

LIST

19 A$="LOOK"

20 B$="0UT"

3¢ PRINT USING "\ \';A$;B$
4¢ PRINT USING "\ \';A$;BS
Ok

RUN

LOOKOUT

LOOK 0uT

specifies a variable length string field. When
the field is specified with "&'", the string is
output exactly as input.

Example:

LIST

1@ A$="LOOK":B$="0UT"
2@ PRINT USING "!";AS;
3@ PRINT USING "&";B$
Ok

RUN

Lout

Ok

characters may be used:

MEANING

a number sign is used to represent each digit
position. Digit positions are always filled. If
the number to be output has fewer digits than
positions specified, the number will be right-
justified (preceded by spaces) in the field.

BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC OUTPUTS DATA

For example:

PRINT USING "####";99
99
0k

. a decimal point may be inserted at any position
in the field. If the format string specifies
that a digit is to precede the decimal point,
the digit will be output only if it is different
from zero. Numbers are rounded when necessary.

For example:

PRINT USING "###.##";.78
.78
0k

PRINT USING "###. ##";987.654 HOH

987.65

Ok

PRINT USING "##.## '";1¢.,5.3,66.789,.234 140
19.00 5.3¢ 66.79 .23

Ok

In the last example, three spaces were insecrted
at the end of the format string to separate the
displayed values on the line.

5 a plus sign at the beginning or end of the
format string will cause the number sign (plus
or minus) to be output before or after the
number.

For exanmple:

PRINT USING "+# #.## ";-68.95,2.4,55.6,-.9 W
-68.95 +2.4f +55.60 -.9¢
0Ok

Note: If you only want the minus sign (not the
plus sign) to precede the number, you should
start the format string with an extra number
sign (#).

7-16

dk

$$

**s

For example:

PRINT USING "###.##":-68.95,68.95
-68.95 68.95

a minus sign at the end of the format field will
cause negative numbers to be output with a

trailing minus sign.

For example:

PRINT USING "##.##- ";-68.95,22.449,-7.¢1 {3
68.95- 22.45 7.91-
Ok

a double asterisk at the beginning of the format
string causes leading spaces in the numeric
field to be filled with asterisks. The ** also
specifies positions for two more digits.

For example:

PRINT USING "**#.# ";12.39,-§.9,765.1
*12.4 *%_-.9 765 1
0k

a double dollar sign causes a dollar sign to be
output to the immediate left of the formatted
number. The $$ specifies two more digit posi-
tions, one of which is the dollar sign. The
exponential format (AAAA) cannot be used with
$$. Negative numbers cannot be used unless the
format string ends with a minus or a plus sign.
In the former case negative numbers appear with
the negative sign on the right, in the latter
case both positive and negative numbers appear
with the appropriate sign on the right.

For example:

PRINT USING "SS###.## -";-456.78
$456.78-

Ok

the **¢ at the beginning of a format string
combines the effects of the two symbols describ-
ed above. Leading spaces will be asterisk-filled

BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC OUTPUTS DATA

AAAN

and a dollar sign will be inserted before the
number. **$ specifies three more digit posi-
tions, one of which is the dollar sign.

For example:

PRINT USING "#*$##. ##";2.34 G-
*#%$2 34
0k

A comma to the left of the decimal point in a
formatting string causes a comma to be output to
the left of every third digit to the left of the
decimal point. A comma at the end of the format
string is output as part of the string. A comma
specifies another digit position. A comma has no
effect if used with the exponential (AAAA)
format. ‘

For example:

PRINT USING "####,.##";1234.5
1,234.5¢
0k

PRINT USING "####.##,";1234.5
1234.50,
0k

four carats (or up-arrows) may be placed after
the digit position characters to specify expo-
nential format. The four carats allow space for
E+xx to be output. Any decimal point position
may be specified. The significant digits are
left-juscified, and the exponent is adjusted.
Unless a leading + or trailing + or - is

specified, one digit position will be used to.

the left of the decimal point to output a space
or a minus sign.

For example:

PRINT USING "##. ##AAAA";234.56
2.35E+02
0k

PRINT USING '".####AAAA"; 388888 HGH
.8889E+06

Ok

PRINT USING "+.####AAA";123 IEH
+.1230E+93

Ok

an underscore in the format string causes the
next character to be output as a literal charac-
ter (i.e. as it appears in the format string)

For example:

PRINT USING " !##.## 1";12.34
112.34!
(3

The literal character itself may be an under-
score by placing " " in the format string

if the number to be output is larger than the
specified numeric field, a percent sign is
output in front of the number. If rounding
causes the number,to exceed the field, a percent
sign will be output in front of the rounded
number.

For example:

PRINT USING "##.##';111.22
%111.22

0k

PRINT USING ".##";.999
%1.0¢

Ok

If the number of digits specified exceeds 24, an
"I1legal function call" error will result

BASIC LANGUAGE - REFERENCE MANUAL

HOW BASIC OUTPUTS DATA

Remarks

If the same format string is to be used several times in a program, you
may find it convenient to assign the formatting characters to a string
variable and then specify the variable name instead of the format string.
This technique is shown below:

10 AS="## ##"
2¢ PRINT USING AS; 8.49

19@ PRINT USING A$;A,B,C

150 PRINT USING A$;A1,B1

8. CONTROL STATEMENTS

ABOUT THIS CHAPTER

Normally the statements in a BASIC program are executed sequentially in
the same order as they appear, following the 1line numbers of the
statements. Sometimes, however, it is necessary to '"branch" to some other
part of the program, thus changing the normal sequence of execution.

Branches and loops are two methods of altering the normal flow of program
execution. In this chapter we shall examine conditional and unconditional
branches as well as loops.

CONTENTS
UNCONDITIONAL BRANCHES 8-1
GOTO (PROGRAM/IMMEDIATE) 8-1

ON...GOTO (PROGRAM/IMMEDIATE) 8-3

CONDITIONAL BRANCHES 8-4
IF...GOTO...ELSE/ 8-4
IF...THEN...ELSE
(PROGRAM/TMMED1ATE)

LOOPS 8-9

FOR/NEXT (PROGRAM/IMMEDIATE) 8-11

WHILE/WEND 8-20
(PROGRAM/IMMEDIATE)

CONTROL STATEMENTS

UNCONDITIONAL BRANCHES

Branches may be conditional or unconditional. The GOTO statement causes
an unconditional transfer of control. In the statement, you simply
indicate the 1line number to which control is to be transferred. The
sample program, RECTANGLE1 (see Chapter 1 and 2) contains the following
GOTO statement:

8¢ GOTO 2¢

This statement tells the M20 to execute statement 20 next, rather than
the statement with the next higher line number.

There 1is one more form of unconditional branching; the ON...GOTO or
computed GOTO statement. This enables you to transfer control to one of
perhaps several statements, depending on the value of a numeric
expression. For example:

19@ ON A GOTO 15, 3¢, 5¢d
This statement says; if A=1, go to statement 15, if A=2 go to

statement 3@, if A=3 go to statement 5@@ but if A< 1 or A>3, BASIC
continues with the next executable statement.

GOTO (PROGRAM/IMMEDIATE)

Transfers control to a specified program line.

line
GOTO number [

Figure 8-1 GOTO Statement

Examples

DISPLAY

LIST

1¢ READ R

2@ PRINT "R ='";R,
30 A = 3.14*RA2
4@ PRINT "AREA ='";A

5¢ GOTO 1¢
6@ DATA 5,7,12
Ok
RUN
R=5 AREA = 78.5
R=7 AREA = 153.86
R =12 AREA = 452.16
Out of data in 10
Ok
Characteristics
IF..:s
you enter

GOTO 5@9
when you are in Command Mode
AND
5¢@ is a statement of your current
program

the statement specified by line
number is non executable (e.qg.
a REM statement)

8-2

COMMENT

statement 5@ transfers control
unconditionally to statement 1@

THEN...

GOTO is used as an alternative to
RUN.

Note: GOTO 1line number wused in
Command Mode causes execution to
begin at the specified line number
without an automatic CLEAR. This
lets you pass values to program
variables while in Command Mode.
This technique may be wused in
debugging your program

control is passed to the first
subsequent executable statement

BASIC LANGUAGE - REFERENCE MANUAL

CONTROL STATEMENTS

a GOTO statement is encountered
within a FOR/NEXT loop

AND
transfers control outside the loop

the value of the control variable
(see FOR/NEXT below) is the last
value assumed within the loop

ON...GOTO (PROGRAM/IMMEDIATE)

Transfers control to one of several specified lines, according to the

value of a specified expression.

expression

Figure 8-2 ON...GOTO Statement

Characteristics

| § ZFSE

you have a program so structured:

2¢ INPUT A
3¢ ON A GOTO 1¢¢,2¢9,300
49

A=1

o
109
A=2 LRI
Leosn
A=3

—30p

line
number

THEN. ..

the value of A determines which
line number in the list will be
used for branching. For example, if
the value is 3, the third line
number in the list will be the
destination of the branch. (If the
value o7 A is a non-integer, the
fractional portion is rounded)

8-3

the value of the expression after BASIC continues with the next
ON is zero or greater than the executable statement

number of items in the list (but

less than or equal to 255)

the value of the expression after an '"Illegal function call" error
ON is negative or greater than occurs
255

CONDITIONAL BRANCHES

In many situations you will want to branch to different portions of a
program depending on conditions that arise within it. To test these
conditions and make a decision as to what to do next, you can use an
IF...GOTO...ELSE, or an IF..THEN...ELSE statement.

IF...GOTO...ELSE/IF...THEN...ELSE (PROGRAM/IMMEDIATE)

Both these statements transfer control, conditionally, to a specified
statement.

IF...THEN...ELSE is more powerful (as you can see by the syntax); it
allows a series of statements to be entered both after THEN and ELSE.

Figure 8-3 1IF...GOTO...ELSE Statement

8-4 BASIC LANGUAGE - REFERENCE MANUAL

CONTROL STATEMENTS

er!

Figure 8-4 1F...THEN...ELSE Statement

Where

SYNTAX ELEMENT

condition

MEANING
ma; be:
- a numeric expression
- a relational expression
- a logical expression.

Note: BASIC determines whether the condition is
true or false by testing the resulit of the
expression for non zero and zero respectively. A
non zero result is true and a zero result is
false. Because of this, you can test whether the
value of a variable is non zero or zero by
merely specifying the name of the variable as
""condition".

A comma is allowed before THEN

8-5

Characteristics

IF.+

the condition is true

the condition is false
JAND TF

the ELSE clause is

omitted

the condition is false
AND 1IF

the ELSE clause is
present

Examples

DISPLAY

LIST

1@ REM IF GOTO test program

28 INPUT X%
3¢ IF X%>=1¢ GOTO 60

4@ PRINT "IF GOTO failed the test"

5¢ GOTO 99

THEN. ..

control is
EITHER
passed to the statement whose line number is
specified after GOTO (or THEN)
OR
to the first statement specified after THEN

control is passed to the next executable state-
ment following the IF...GOTO or IF...THEN state-
ment

control is
EITHER
passed to the statement whose line number is
specified after ELSE
OR
to the first statement specified after ELSE.

Note: After executing®the statement(s) following

ELSE, control is passed to the next executable
statement
COMMENTS
if you enter 1¢ the condition

(X%>=1@) in statement 3@ is true
and control 1is transferred to
statement 6@. If you enter 2 the
condition is false and control is
transferred to statement 40

6@ PRINT "IF GOTO passed the test'

99 GOTO 2¢
Ok

RUN

219

IF GOTO passed the test

8-6

BASIC LANGUAGE - REFERENCE MANUAL

CONTROL STATEMENTS

?72

IF GOTO failed the test
? AC

Break in 2¢

Ok

LIST
1@ INPUT X
20 IF X=INT(X)
THEN PRINT X; '"is an integer"
ELSE PRINT X; "is not an integer"
3@ 1F X=9999 THEN END ELSE 18
Ok
RUN
21
1 is an integer
2 NS
1.5 is not an integer
2 NG
Break in 10
Ok

5@ IF 1 THEN A=1¢¢¢

78 1F (1<3@) AND (1>5) THEN
A=B+C:GOTO 350
8¢ PRINT '"OUT OF RANGE"

Nesting of IF Statements

if you enter 1, the condition
(X=INT(X)) in statement 2@ is true
and control is transferred to the
PRINT statement after THEN. 1f you
enter 1.5 the condition is false
and control is transferred to the
PRINT statement after ELSE

Note: Statement 2@ is one logical
line divided into three physical
lines.

the value 1¢@f 1is assigned to
variable A if 1 is not zero

a test determines if 1 is greater
than 5 and less than 3@¢. If 1 is
in this range, A is calculated and
execution branches to line 35@. If
1 is not in this range execution
continues with line 8¢

IF...GOTO...ELSE or IF...THEN...ELSE statements may be nested. Nesting is
limited only by the length of the line. For example:

IF....

you enter:

1IF X>Y THEN PRINT "GREATER"

ELSE IF Y>X THEN PRINT "LESS THAN"
ELSE PRINT "EQUAL"

THEN. ..
you have entered a legal statement

(it is one logical line divided
into three physical lines)

8-7

the statement does not contain the
same number of ELSE and THEN
clauses

To Test Equality for a Floating Point

[858

you use an IF...GOTO0...ELSE or an
IF...THEN...ELSE statement to test
equality for a value that is the
result of a floating point
computation

8-8

each ELSE is matched with the most
recent unmatched THEN. For example:

10 1F A=B THEN IF B=C THEN
PRINT "A=C"

ELSE PRINT "A< >C"
NBess

Will display A=C when A=B and
B=C; will display A< >C when A=B
but B is different from C. If A is
different from B control is trans-
ferred to the statement 114.

Value

THEN. ..

the test should be against the
range over which the accuracy of
the value may vary (as the interval
representation of the value may not
be exact).

For example, to test a computed
variable A against the value 1.8
use:

1IF ABS(A-1.0)
or
1IF ABS(A-1.9)

1.¢E-6 GOTO...
1.@E-6 THEN...
This test returns true if the value

of A is 1.¢ with a relative error
of less than 1.0E-6

BASIC LANGUAGE - REFERENCE MANUAL

CONTROL STATEMENTS

LOOPS

Repeatedly executing a series of statements is known as looping.
You may create loops by:

- the FOR and NEXT statements; they are used to enclose a series of
statements, enabling you to repeat those statements a specified number
of times

- the WHILE and WEND statements; they are used to enclose a series of
statements, enabling you to repeat those statements as long as a given
condition is true.

How a Loop can Simplify Your Task

Suppose you wanted to display a listing of each number from 1 to 25, to-
gether with its square root.

You could do 1it, using the following statements, but this is a very
primitive solution to the problem:

1@ PRINT 1,SQR(1)
2@ PRINT 2,SQR(2)
3¢ PRINT 3,SQR(3)

and so on, ending with:

249 PRINT 24,SQR(24)
25@ PRINT 25,SQR(25)
260 END

using an IF...THEN statement instead would be far more efficient:

1¢ LET A=1

2¢ PRINT A,SQR(A)
3¢ LET A=A+1

49 1F A<26 THEN 20
5¢ END

A further simplification would be to use a FOR/NEXT loop:
19 FOR A=1 TO 25
20 PRINT A,SQR(A)

3@ NEXT A
40 END

8-9

At the moment, this simplification may not seem very dramatic, but the
uses to which you can put a FOR/NEXT loop are surprising. We will now
explore some of these possibilities.

Starting the Loop - the FOR Statement

The FOR statement identifies the start of a loop; the NEXT statement
identifies the end of one. FOR specifies how many times the loop (i.e.
the statement or sequence of statements between the FOR and the NEXT
statement) is to be executed.

In the preceding example, FOR specifies that the PRINT statement is to be
executed for successive values of A from 1 through 25 (an increment of 1
is added to A for each execution of PRINT). When the value of A exceeds
25, execution of the loop stops, and control is passed to the statement
following the NEXT statement. In this case, the statement that follows is
END, denoting the end of the program.

The specification A=1 TO 25 defines the set of values over which the loop
will be executed. In this context, A is called a control variable;
controlling the number of times the loop is to be executed. The control
variable will always increase by 1 if the FOR statement contains no
instructions to the contrary. You can, however, increment the control
variable by some value other than 1 if you want to. This is done by
adding a STEP clause, for example:

1@ FOR A=1 TO 25 STEP 2

This statement indicates an increment (or step) of 2. Thus, the loop will
be executed once for every odd value of A from 1 to 25 (that is,
1,3,5,...25). When the value of A exceeds 25 (when it reaches 27), exe-
cution of the loop will end. The value of A will be 27 before the
statement that follows the NEXT statement is executed.

If you wanted to execute the loop once for every even value of A from 1
to 25, you could specify:

1¢ FOR A=2 TO 25 STEP 2

Agéin, when the value of A exceeds 25 (when it reaches 26), execution of
the loop will end.

You could explicitly specify a step value of 1, as in the example below:

8¢ FOR X=1 TO 4@ STEP 1

8-10 BASIC LANGUAGE - REFERENCE MANUAL

CONTROL STATEMENTS

but it is unnecessary.

As with the expressions in LET and PRINT statements, specifications in
FOR statements can be quite complicated. For example, all of the
following FOR statements are valid:

7¢ FOR A=B TO C
8@ FOR X=8/M+N TO AA2
5@ FOR I=SQR(A) TO 155@ STEP B*C+6

If the value of an increment is negative, the FOR/NEXT loop is executed
until the value of control variable is less than the final value (i.e.
the value expressed after T0).

For example:

LIS

1@ FOR K%=1
2 PRINT K%;
3¢ NEXT K%
Ok

RUN

1 §-1-2-3-4-5-6-7-8-9-1¢

TO -1@ STEP -1

With this example the loop is repeated 12 times.

Closing the Loop - the NEXT Statement

Just as the loop always begins with a FOR statement, it always ends with
a NEXT statement. Remember that the loop comprises all the statements
included between the FOR and NEXT statements.

The NEXT statement consists of the keyword NEXT, optionally followed by a
list of control variables. Each control variable must be the same as the
control variable that appears in the corresponding FOR statement. More
than one FOR statement may be associated with only one NEXT statement
(see Nested Loops below).

FOR and NEXT statements allow a series of statements to be performed in
loop a given number of times.

8-11

@ control e initial o final '- l
variable value value

Figure 8-5 FOR Statement

control
variable

Figure 8-6 NEXT Statement

Where

SYNTAX ELEMENT

control variable

MEANING

is a simple numeric
variable (defined as

an integer or a single-
precision variable).
The name of the con-
trol variable speci-
fied in the NEXT state-
ment must be the same
as that specified in
the FOR statement but
the NEXT statement may
specify a list of con-
trol variables (see
Nested Loops below)

or even none

DEFAULT VALUES

if a NEXT statement
specifies no control
variable the NEXT

statement will match
the most recent FOR
statement

BASIC LANGUAGE - REFERENCE MANUAL

CONTROL STATEMENTS

initial value

final value

increment

is a numeric expres-
sion specifying the
first value assigned
to the control vari-
able when the FOR
statement is executed

is a numeric expres-
sion specifying the
limit of the control
variable. This value
is compared with the
control variable each
time the loop is about
to be repeated

is a numeric expres-
sion specifying the

value to be added (with|

its algebraic sign) to
the control variable
when the NEXT state-
ment is encountered

if the STEP option is
not specified an incre-
ment of +1 is assumed

8-13

How FOR/NEXT Statements Work

Entry——

If a FOR is
encountered . .

is assigned to

... the initial value

control variable . . .

Increment > @ AO

Increment < 0

Increment=0

GO—

indefinitely (%)

8-14

Figure 8-7 FOR/NEXT Statements

i e ariabl when NEXT is
/1T controjvariabloyiviEs b stateanSr;‘s a encountered , control
vl i Ne&f’re" anted variable is increased \
inal value are execu by increment
NO|] the.first statement
after NEXT is —Exit
executed
\ 2,
3 + when NEXT is
. if control variable] YES statements between encountered, control
2 = FOR and NEXT variable is decreased \
final value are executed by increment
NOJ the first statement
after NEXT is —Exit
executed
J/
the loop is
executed

BASIC LANGUAGE - REFERENCE MANUAL

(*) Unless the initial and final value are equal. In this case the first
statement after next is executed

CONTROL STATEMENTS

Remarks

We shall say that a FOR/NEXT loop is "pending" if it has not yet been
completed when a break is encountered. Any modification to the resident
program (deleting, editing lines, and so on) will prohibit the loop from

resuming execution.

Value of Increment Positive

IFuiss

the value of increment is positive

the value of increment is positive
AND 1F

the initial value exceeds the final

value

THEN...
the FOR/NEXT loop 1is executed
until the value of the control
variable is not greater than the

final value.

For example:

LIST

19 K =190

2¢ FOR I=1 TO 19 STEP 2
3@ PRINT 1;

40 K=K+1¢
58 PRINT K
6@ NEXT
0k
RUN

1 20

3 3¢

5 49

7 5@

9 6¢
0k

Here the loop executes five times

the loop does not execute.

8-15

Value of Increment Negative

TESS

the value of increment is negative

For example:

LIST

19 J=¢

20 FOR 1=1 T0 J

3@ PRINT 1

40 NEXT 1

5@ PRINT "Exit of the loop"
Ok

RUN

Exit of the loop

Ok

THEN. ..

the FOR/NEXT loop is executed until
the value of the control variable
is less than the final value.

For example:

LIST
19 FOR 1%=1 TO -1¢ STEP -3
2@ PRINT 1%;
3@ NEXT 1%
4¢ PRINT
5¢ PRINT "Exit "
"CONTROL VARIABLE=";1%
Ok
RUN

1-2-5-8
Exit CONTROL VARIABLE=-11

Here the loop executes four times.
When it is exited, control variable
maintains its last value (-11),
which is displayed by statement 5¢

BASIC LANGUAGE - REFERENCE MANUAL

CONTROL STATEMENTS

the value of increment is negative
AND TIF

initial value is less than final

value

Value of Increment Zero

1B

the value of the increment is zero

Nested Loops

the loop does not execute.
For example:

LIST

19 FOR K%=1 TO 1@ STEP -2

20 PRINT K%;

3¢ NEXT K%

4@ PRINT "Exit ";
"CONTROL VARIABLE='';K%

Ok

RUN

Exit CONTROL VARIABLE=1

Ok

THEN. ..

the loop is executed indefinitely
(unless the initial and final
values are equal; in this case the
loop will not be executed at all).

For example:

LIST
19@ FOR A%=1 TO 3¢ STEP ¢
11@ PRINT A%;

120 NEXT A%

0k

RUN

i T (R o
You have to press [ELIN to

interrupt execution

FOR/NEXT loops may be nested one within the other as long as the internal
FOR/NEXT loop is entirely within the outer FOR/NEXT loop. For example,

the following nesting is valid:

8-17

5¢ FOR1 =1 T0 1¢
199 FOR J = 2 TO 20
20@ NEXT J
3@@ NEXT 1
while the following is not:
50 FOR 1 =1 T0 1¢
[£E1¢¢ FOR J = 2 TO 20
150 NEXT 1
L20 next 3
Nested FOR/NEXT loops cannot use the same control variable.

Each FOR statement specified must have a corresponding NEXT statement.

If nested loops have the same end point, a single NEXT statement may be
used for all of them (with a list of control variables).

When a nested loop is encountered it is executed, when it is exited the
first statement following the associated NEXT statement will be executed.

Loops may be nested to any depth.

The number of simultaneously active loops is only limited by the amount
of memory available.

For example:

5¢ FOR 1 =1 T0 1¢
198 FOR J = 2 TO 2¢
208 NEXT J,1

Nested loops provide a very useful programming technique for solving a
wide range of problems. An example of a nested loop 1s shown below.

8-18 BASIC LANGUAGE - REFERENCE MANUAL

CONTROL STATEMENTS

Example

DISPLAY

LIST

1@ REM PRIME NUMBERS

2@ INPUT "Enter limits N,M";N,M
3@ PRINT "Primes from';N;"T0";M
40 PRINT

5@ PRINT

6@ FOR I=N TO M

7@ LET K=SQR(1)

8¢ FOR J=2 TO K

9@ LET E=1/J-INT(1/J])
160 1F E=@ THEN 13¢

118 NEXT J

120 PRINT 1;

13@ NEXT 1

14@ PRINT

15@ PRINT

16@ PRINT "End of List"
17¢ END

Ok

RUN

Enter limits N,M? 1,15
Primes from 1 TO 15

1 23 58 7 11 13

End of List
Ok

Remarks

COMMENTS

you will display all the prime
numbers within a given range of
numbers. One FOR/NEXT loop speci-
fies the range of the numbers to be
used. Nested within that loop is a
second loop, one that contains an
algorithm to determine if any
number in the specified range is a
prime number.

To explain the algorithm: numbers
assigned to a variable (1) are
divided by an integer (J) whose
value ranges from 2 to the square
root of 1. If the remainder of the
division is @ then 1 is not a prime
number, so the number I+1 is
generated and the process repeated.
The choice of the final value
square root 1is made because if
there are any integer factors of
the number 1 they will always lie
between 2 and the square root of 1

Note: Statement 1¢@ allows you to
exit the inner loop even if J is
not greater than K. You can always
exit a loop by an IF...THEN or GOTO
statement, however you cannot enter
the loop in any statement other
than the initial FOR

- if a NEXT statement is encountered before its corresponding FOR state-

ment, a

NEXT without FOR

error message is issued and execution is terminated.

8-19

For example:

120@¢ 1F A>5 THEN 2¢19

2¢@@ FOR J=1 TO 7
2¢1@ PRINT "HELLO";
202 NEXT J

When executing statement 2@2@ following a jump from 12@@, BASIC
displays the above mentioned error message and enters Command Mode

- the final value is always set before the initial value is set.
For example, if you write:

19 1=5
20 FOR 1=1 TO 145

statement 2@ will assign the value 1§ to the final value. However, for
program readability, we do not advise you to use the control variable
to define the final value

- if possible use an integer variable for the control variable and
integer constants (or integer variables) for the initial and final
value and the increment. This will improve the speed of execution.

WHILE/WEND (PROGRAM/IMMEDIATE)

Executes a series of statements in a loop as long as a given condition is
true.

WHILE | condition |—*

Figure 8-8 WHILE Statement

8-20 BASIC LANGUAGE - REFERENCE MANUAL

CONTROL STATEMENTS

Figure 8-9 WEND Statement
Where

SYNTAX ELEMENT MEANING

condition may be:
- a numeric expression
- a relational expression
- a logical expression
Note: BASIC determines whether the condition is
true or false by testing the result of the
expression for non zero and zero respectively. A
non zero result is true and a zero result is
false.
Because of this, you can test whether the value
of a variable is non zero or zero by merely

specifying the name of the variable as a
condition

8-21

How WHILE/WEND Statements Work

.. .and the .. . control is passed .
E“"V—w—’ If a WHILE condition is to the statement | Exit |
is encountered . . . false . . . following WEND

the sequence of

.. and the statements from
condition is WHILE and WEND
true . . . is executed

Figure 8-1§ WHILE/WEND Statements

Remarks

We shall say that a WHILE/WEND loop is "pending" if it has not yet been
completed when a break is encountered. Any modification to the resident
program (deleting or editing lines, and so on...) will prohibit the
loop from resuming execution.

Example
DISPLAY COMMENT

LIST you sort the elements of array
9@ 'BUBBLE SORT ARRAY AS AS in ascending value order
19@ FLIPS=1 'FORCE ONE PASS THRU LOOP (from subscript 1 to subscript
11¢ WHILE FLIPS J)
115 FLIPS=@
12@ FOR 1=1 TO J-1 Note: the condition (in this
13¢ 1F AS(1)>AS(I+1) THEN case the value of variable

SWAP AS$(1),A$(1+1):FLIPS=1 ‘FLIPS) may be changed during the
148 NEXT 1 loop (see line 13¢)
15@¢ WEND
Ok
RUN
Ok

8-22 BASIC LANGUAGE - REFERENCE MANUAL

CONTROL STATEMENTS

Remarks

WHILE/WEND loops may be nested to any level. Each WEND will match the
most recent WHILE. An unmatched WHILE statement causes a "WHILE without
WEND'" error, and an unmatched WEND statement causes a "WEND without
WHILE" error.

You can exit a WHILE/WEND loop either when the condition after WHILE is

false or by an IF...THEN or GOTO statement, but you cannot enter the loop
in any statement other than the initial WHILE.

8-23

9. FUNCTIONS

ABOUT THIS CHAPTER

This chapter describes the intrinsic (built-in) functions, which may be
called by any program without further definition and user-defined
functions which once set up can be used in exactly the same way but only
within the program containing the definition.

CONTENTS
INTRODUCTION 9-1 RND (PROGRAM/IMMEDIATE) 9-14
USER DEFINED FUNCTIONS 9-2 RANDOMI ZE 9-15

(PROGRAM/TMMEDIATE)
DEF FN (PROGRAM) 9-3

SGN (PROGRAM/IMMEDIATE) 9-16
BUILT-IN NUMERIC FUNCTIONS 9-5

SIN (PROGRAM/IMMEDIATE) 9-17
ABS (PROGRAM/IMMEDIATE) 9-6

SQR (PROGRAM/IMMEDIATE) 9-17
ATN (PROGRAM/IMMEDIATE) 9-6

TAN (PROGRAM/IMMEDIATE) 9-18
CDBL (PROGRAM/IMMEDIATE) 9-7

BUILT-IN STRING FUNCTIONS 9-19
CINT (PROGRAM/IMMEDIATE) 9-8

ASC (PROGRAM/IMMEDIATE) 9-19
C0S (PROGRAM/IMMEDIATE) 9-8

CHRS$ (PROGRAM/IMMEDIATE) 9-20
CSNG (PROGRAM/IMMEDIATE) 9-9

HEX$ (PROGRAM/IMMEDIATE) 9-21
EXP (PROGRAM/IMMEDIATE) 9-10

INKEYS (PROGRAM/IMMEDIATE) 9-22
FIX (PROGRAM/IMMEDIATE) 9-10

INPUTS (PROGRAM/IMMEDIATE) 9-23
FRE (PROGRAM/IMMEDIATE) 9-11

INSTR (PROGRAM/IMMEDIATE) 9-24
INT (PROGRAM/IMMEDIATE) 9-12

LEFTS (PROGRAM/IMMEDIATE) 9-25
LOG (PROGRAM/IMMEDIATE) 9-13

LEN (PROGRAM/IMMEDIATE)
M1D$ (PROGRAM/IMMEDIATE)
MID$ (PROGRAM/IMMEDIATE)
0CTS (PROGRAM/IMMEDIATE)
RIGHTS (PROGRAM/IMMEDIATE)
SPACE$ (PROGRAM/IMMEDIATE)
STR$ (PROGRAM/IMMEDIATE)
STRINGS (PROGRAM/IMMEDIATE)
VAL (PROGRAM/IMMEDIATE)

INPUT/OUTPUT AND SPECIAL
BUILT-IN FUNCTIONS

DATES/TIMES
(PROGRAM/TMMEDIATE)

CVD (PROGRAM/IMMEDIATE)
CVI (PROGRAM/IMMEDIATE)
CVS (PROGRAM/IMMEDIATE)
EOF (PROGRAM)

ERL (PROGRAM/IMMEDLATE)
ERR (PROGRAM/IMMEDIATE)
LOC (PROGRAM/IMMEDIATE)
LPOS (PROGRAM/IMMEDIATE)
MKD$ (PROGRAM/IMMEDIATE)
MK1$ (PROGRAM/IMMEDIATE)
MKS$ (PROGRAM/IMMEDIATE)

SPC (PROGRAM/IMMEDIATE)

9-26

9-27

9-28

9-30

9-31

9-32

9-33

9-34

9-35

9-36

9-37

TAB (PROGRAM/IMMEDIATE)

VARPTR (PROGRAM/IMMEDIATE)

9-41

9-42

9-iii

FUNCTIONS

INTRODUCTION

There are occasions when identical expressions are required a number of
times in the same program.

To avoid writing these expressions more than once and to save storage,
functions can be written and then activated from many places in a BASIC
program.

Each function can be called simply by stating its name followed, in
parentheses, by one or more 'arguments' representing the values the
function parameters are to assume. Each argument is associated with a
parameter in the function definition.

Arguments are separated by commas. An argument may be a constant, a
variable, or an expression.

Parameters are separated by commas too. A parameter may only be a
variable.

The number of arguments must be the same as the number of parameters in
the function definition and their types (numeric or string) must match.
The association between arguments and parameters is positional, i.e. the
first argument will be associated with the first parameter etc.... We can
pass one or several arguments to a function, or no argument at all.

Numeric conversions are valid from one numeric argument to the corre-
sponding parameter, if it is a different numeric type. If for instance, a
floating point value is supplied where an integer is required, BASIC will
round the fractional portion and use the resulting integer.

A function returns a single value, which may be a numeric or a string
value, depending on the type of the expression used to define the
function.

We can classify BASIC functions into two main categories:

- Intrinsic (or built-in) functions
Built-in functions are an intrinsic part of BASIC. They provide a set
of commonly used numeric and string operations. The user can invoke
them without an explicit definition within any program. A complete list
and a detailed description of built-in functions will be given below.

- User defined functions
The user can define an arbitrary number of functions in a BASIC

program, by the statement DEF FN. The name of a user defined function
begins with FN and may be any valid variable name.

Each function definition must precede any function call in the program.

Examples

DISPLAY

10 A=X*SIN(X)+L0G(X)

LIST

10 DEF FNH(X,Y)=SQR(X*X+Y*Y)

2@ INPUT '"SIDES'";X1,Y1

3¢ PRINT "H='";FNH(X1,Y1);
"OX1=" X Y1=" YA

4¢ GOTO 2¢

Ok

RUN

SIDES? 3.5;1:2

H= 3.7 X1= 3.5 Y1= 1.2

SIDES? 1.7,4

H= 4.34626 X1=1.7 Y1= 4

SIDES? AC

Break in 20

Ok

COMMENTS

here SIN and LOG are built-in
numeric functions

FNH is a user-defined function. A
DEF FN statement defines it (see
statement 10). It calculates the
square root of the sum of the
squares of the parameters X and Y
(by using the built-in function
SQR).

Statement 3¢ calls the user-defined
function and passes two arguments
to the corresponding parameters.

Note: The names of the arguments
need not be the same as the names
of the corresponding parameters

USER DEFINED FUNCTIONS

If a numeric or string equation is to be used several times, it is more
convenient to define the equation as a function. Once defined, the func-
tion can be called in exactly the same way as a built-in function. The
only limitation is that the definition is program dependent and must
therefore be redefined in each program that needs to use it (unless the
second program is CHAINed to the first, with the MERGE option).

9-2

BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

DEF FN (PROGRAM)

DEF FN defines a numeric or string function.

A DEF FN statement must be executed before the function it defines can be
called.

A DEF FN statment is not permitted in immediate mode.

function s
DEF =
FN GaNe (parameter) = expression

Figure 9-1 DEF FN Statement

function J > argument

name

Figure 9-2 Function Call

Where

SYNTAX ELEMENT MEANING

fhnaridn Yans a legal variable name beginning with FN. No

blanks may be 1inserted between FN and the
remainder of the name and the first character
after FN must be a letter.

If a type is specified in the function name, the
value of the expression is forced to that type
before it is returned to the calling statement

9-3

parameter a ''dummy" variable that is to be replaced by the
corresponding argument value when the function
is called. The association between arguments and
parameters is positional (i.e. the first argu-
ment is associated to the first parameter etc.)

argument the actual value to be passed to the correspond-
ing parameter. Each argument may be a conscant,
a variable, or an expression

expression an expression that performs the operation of the
function.

The type of expression must agree with the type
(numeric or string) of the function.

The expression normally includes only parameters
as variables, but it may also include program
variables defined outside the function defini-
tion (global variables).

Parameter names that appear in the expression
serve only to define the function, they do not
affect program variables that have the same
name. However, for program readability, we do
not advise you to use the same names

Characteristics
10 THEN. ..
an argument type does a "Type mismatch' error occurs

not agree with the
corresponding para-
meter type

a user-defined func- an "Undefined user function' error occurs

tion is called before
it has been defined

9-4 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

a user-defined func- the called function must be defined in the same
tion is called by an- program and preceed the call.

other user-defined

function For example:

1@ DEF FNA(X)=(SIN(X/5)*3.1)/18¢
2@ DEF FNB(X)=(FNA(X)+SIN(X))*.5

a program CHAINs an- function definitions must be placed 1in the
other program with the | CHAINing program before the CHAIN statement.
option MERGE Otherwise, the user-defined functions will be

undefined when the merge is complete. (For more
details see Chapter 11).

For example:

1@ DEF FNA(X)=(X+X*(X+1))

1¢@ CHAIN MERGE 'V1:PROG1"

Remark

The syntax of the Function Call is valid both for user-cefined and
built-in functions.

BUILT-IN NUMERIC FUNCTIONS

BASIC provides a number of pre-written routines, that save you the effort
of writing groups of statements to calculate such mathematical functions
as square root, sine and natural logarithm. With the exception of CDBL,
which returns a double precision result, only integer and single
precision results are returned by built-in numeric functions.

All the built-in numeric functions are listed in alphabetical order,
‘below.

Note: In this list we also include the RANDOMIZE statement, as it is
closely related to the RND function.

ABS (PROGRAM/IMMEDIATE)

Returns the absolute value of a numeric expression.

numeric
ABS a | expression

Figure 9-3 ABS Function

Example
PRINT ABS(7*(-5))

35
Ok

ATN (PROGRAM/IMMEDIATE)
Returns the arctangent of the argument.

The value returned is expressed in radians and falls in the range - @/2
to @w/2 (where & is 3.1415...).

numeric
expression

Figure 9-4 ATN Function

9-6 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

Example

1¢ INPUT X

2@ PRINT ATN(X)
Ok

RUN

23

1.24905

0k

Remark

The evaluation of ATN is performed in single precision.

CDBL (PROGRAM/IMMEDIATE)

CDBL converts any numeric type to a double precision (8 bytes) argument.

numeric (:)
CDBL (expression

Figure 9-5 CDBL Function

Example

19 A = 454,67

2@ PRINT A;CDBL(A)

RUN

454.67 454.670013427734
Ok

CINT (PROGRAM/IMMEDIATE)

Converts any numeric type argument to an integer by rounding the frac-
tional part (if the fraction is > = .5 the integer part is rounded up,
otherwise a truncation occurs).

numeric
CINT o expression '(:) ’

Figure 9-6 CINT Function

Example

PRINT CINT(45.67)
46

Ok

Remarks

If the argument is a value outside the range -32768 and 32767, an
"Overflow' error occurs.

See also FIX and INT, which also return integer values.

COS (PROGRAM/IMMEDIATE)

Returns the cosine of the argument.

@ a numeric
expression

Figure 9-7 CO0S Function

.

9-8 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

Example

18 X = 2*C0S(.4)
2@ PRINT X

RUN

1.84212
Ok

Remarks

The argument passed to the function is assumed to be the value of an
angle measured in radians.

The evaluation of COS is performed in single precision.

CSNG (PROGRAM/IMMEDIATE)

Converts any numeric type argument to a single precision number (4
bytes).

(numeric
expression

Figure 9-8 CSNG Function

Example

10 A# = 975.3421#

20 PRINT A#; CSNG(A#)
RUN

975.3421 975.342
0K

Remarks

See also CINT and CDBL functions for converting numbers to the integer
and double precision data types.

9-9

EXP (PROGRAM/IMMEDIATE)

Raises the constant "e" (e = 2.71828) to the power of the argument.

numeric
EXP 0 expression ’ (:) -

Figure 9-9 EXP Function

Example

1 X=5

2@ PRINT EXP(X-1)
RUN

54.5981
Ok

Remarks
The argument value must be < =88.7228. Otherwise the overflow error
message is displayed, machine infinity with the appropriate sign is

supplied as the result and execution continues.

The evaluation of EXP is performed in single precision.

FIX (PROGRAM/IMMEDIATE)

Returns the integer part of the argument (truncation).

numeric
FIX o expression _’< : >_'

Figure 9-10 FIX Function

9-10 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

Examples

PRINT FIX(58.75)
58
Ok

PRINT FIX(-58.75)

-58

Ok

Remarks

FIX(X) is equivalent to SGN(X)*INT(ABS(X)). Unlike INT, FIX does not

return the next lower number for negative arguments (see the second
example above).

FRE (PROGRAM/IMMEDIATE)

Returns the number of bytes in memory not being used by BASIC.

ED— O G
argument

Figure 9-11 FRE Function

Where
SYNTAX ELEMENT MEANING
dummy argument is any numeric or string expression. The value
returned is not affected by the argument value
Examples

PRINT FRE(f@)
14542
Ok

PRINT FRE(X$)
14542
0k

Remarks

FRE(™) forces a garbage collection before returning the number of free
bytes. Moreover, BASIC will perform a garbage collection if all memory

has been used up.

INT (PROGRAM/IMMEDIATE)

Returns the largest integer less than or equal to the argument.

INT

Figure 9-12 INT Function

Examples

PRINT INT(99.89)
99
Ok

PRINT INT(-12.11)

=13
Ok

Remarks

| numeric
expression

Notice the difference between INT and FIX. With negative values, the
returned value for INT is always smaller than or equal to the argument,
whilst for FIX it is always greater than or equal to the argument.

9-12

BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

LOG (PROGRAM/IMMEDIATE)

Returns the natural logarithm of a positive argument.

numeric
@ expression

Figura 9-13 LOG Function

Where
SYNTAX ELEMENT MEANING
numeric expression must be positive. Otherwise an "1llegal function
call" error occurs
Example

PRINT LOG(45/7)
1.86@75
Ok

Remarks
log x
Since logax = e the common logarithm (or any other base) can easily
e

be evaluated by use of the LOG function.

1f you need this function frequently in a program, it should be specified
as a user-defined function.

For example, you may write at the beginning of your program:
1¢ DEF FNLOG1@(X)=LOG(X)/LOG(1¢)

and call FNLOG1@, passing the corresponding argument, anywhere you need.

The evaluation of LOG is performed in single precision.

RND (PROGRAM/IMMEDIATE)

Returns a random number between @ and 1. The same sequence of random
numbers is generated each time the program is RUN, unless the random
number generator is reseeded (see RANDOMIZE statement).

numeric
expression

Figure 9-14 RND Function

Uhere
SYNTAX ELEMENT MEANING
numeric expression <@ restarts the same random number sequence
=@ repeats the last number generated
>@ (or omitted, i.e. RND) the next random number
in the sequence is generated
Example

1@ FOR 1=1 T0 5

2@ PRINT INT(RND*184);
3¢ NEXT

RUN

8 25 77 68 7

Ok

Remarks
Although it is called Random, the number is actually taken from a fixed
cycle of numbers, about one million in all. Since the cycle starts for

each run, the same program gives the same result every time it is run. If
all the numbers are used. the cycle begins again.

9-14 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

To change the random nurnber sequence every time the program is RUN, place
a RANDOMIZE statement at the beginning of the program and change the
argument with each RUN (see RANDOMIZE).

Reseeds the random number generator.

numeric
RANDOMIZE expression

Figure 9-15 RANDOMIZE Statement

Where

SYNTAX ELEMENT

numeric expression

Remarks

MEANING

must be in the range of integers (-32768 to
32767). 1f it is not an integer it is rounded to
the nearest integer. This number is used to set
the starting point (seed) of a new random number
sequence. If it 1is omitted, BASIC suspends
program execution and asks for a value by
displaying:

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE

1f the random number generator is not reseeded, the RMD function returns
the same sequence of random numbers each time the program is RUN. To
change the sequence of random numbers every time the program is RUN.
place a RANDOMIZE statement at the beginning of the program and change
the argument with each RUN.

You are not limited to random numbers between @ and 1. To generate the
sequence between A and B, use the formula:

FIX((B+1-A)*RND+A)

Examples

1¢ RANDOMIZE

2@ FOR 1=1 TO 5

3@ PRINT RND;

40 NEXT 1

RUN

Random Number Seed (-32768 TO 32767)? 3 (user enters 3)
.88598 .484668 .586328 .119426 .7@9225

0K

RUN

Random Number Seed (-32768 to 32767)? 4 (user enters 4 Gl
.8@3506 .162462 .929364 .292443 .322921

Ok

RUN

Random Number Seed (-32768 to 32767)? 3 (same sequence as first RUN)
.88598 .484668 .586328 .119426 .7@9225

Ok

SGN (PROGRAM/IMMEDIATE)

Returns 1 if the argument is positive, @ if the argument is zero and -1
if the argument is negative.

| numeric
expression

Figure 9-16 SGN Function

Example

ON SGM{X)+2 GOTO 1¢@,200,30¢

9-16 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

branches to:
- 100 if X< ¢
- 200 if X = ¢

- 300 if X> ¢

SIN (PROGRAM/IMMEDIATE)

Returns the sine of the argument.

CO—O—se |G
expression

Figure 9-17 SIN Function

Example

PRINT SIN(1.5)
.997495

0k

Remarks

The argument passed to the function is assumed to be the value of an
angle measured in radians.

SIN is evaluated as single precision.

SQR (PROGRAM/IMMEDIATE)

Returns the square root of the argument.

@ 0 numeric
expression

Figure 9-18 SQR Function

Example

1¢ FOR X = 1@ TO 25 STEP 5
2@ PRINT X, SQR(X)

3@ NEXT
RUN
10 3.16228
15 3.87298
20 4.47214
25 5
Ok
Remarks

An "Illegal function call" error results if the argument is negative.

SQR is evaluated in single precision.

TAN (PROGRAM/IMMEDIATE)

Returns the tangent to the argument.

numeric . < : > >
TAN o expression

Figure 9-19 TAN Function

Example

19 Y = Q*TAN(X)/2

9-18 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

Remarks

The value of the argument is assumed to be measured in radians.

If TAN overflows, an 'Overflow'" error message is displayed, machine
infinity with the appropriate sign is supplied as the result and execu-

tion continues.

TAN is evaluated in single precision.

BUILT-IN STRING FUNCTIONS

They are intrinsic functions which return a string or numeric value and
permit one or more than one numeric and/or string arguments.

They simplify such string operations as extracting group of characters- a
substring-from a larger string.

All the built-in string functions are listed in alphabetical order,
below.

Note: In this list we also include the MID$ statement, as it is closely
related to the MID$ function.

ASC (PROGRAM/IMMEDIATE)

Returns a numerical value that is the ASCI1 code of the first character
of a given string.

string
expression

Figure 9-20 ASC Function

Example

10 X$ = "TEST"
2@ PRINT ASC(X$)
RUN

84
Ok

Remarks

1If the string expression argument is the null string ("), an "Illegal
function call' error occurs.

See the CHRS function for ASCIlI-to-string conversion.

CHR$ (PROGRAM/IMMEDIATE)

Returns a one-character string whose ASCII code is the value of the arqu-
ment.

numeric (:)
CHR$ 0 expression

Figure 9-21 CHRS$ Function

Where
SYNTAX ELEMENT MEANINC
numeric expression is evaluated and rounded to the nearest integer.
It is interpreted as an ASCI1l code and must be
in the range @ to 255. Otherwise an "Illegal
function call" error occurs
Example

PRINT CHRS$(66)
B
Ok

9-20 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

Remarks

CHRS is commonly used to send a special character to the terminal. For
instance, the character could be sent (CHR$(7)) as a preface to an error
message, or a form feed could be sent (CHR$(12)) to clear a CRT screen

and return the cursor to the home position.

See the ASC function for ASCII-to-numeric conversion.

HEX$ (PROGRAM/IMMEDIATE)

Converts a decimal number to the corresponding hexadecimal string.

numeric -
HEXS o expression)

Figure 9-22 HEXS$ Function

Where
SYNTAX ELEMENT MEANING
numeric expression is rounded to the nearest integer before HEX$ is
evaluated
Example
1¢ INPUT X

28 AS = HEXS(X)

3¢ PRINT X "DECIMAL 1S " A$ " HEXADECIMAL"
RUN

? 32

32 DECIMAL 1S 2¢ HEXADECIMAL

Ok

9-21

Remark

See the OCT$ function for octal conversion.

INKEY$ (PROGRAM/IMMEDIATE)

Returns either a one character string containing a character read from
the keyboard or a null string if no character is pending at the keyboard
No characters will be echoed and all characters are passed through to the
program except for which interrupts program execution.

Figure 9-23 INKEY$ Function

Examples

DISPLAY COMMENTS
100¢ 'Timed Input Subroutine This subroutine returns two
191@ RESPONSES=""' values:
1928 FOR 1%=1 TO TIMELIMIT%
1930 AS=INKEYS:1F LEN(AS)=@ THEN 1060 - RESPONSES which contains
184¢ 1IF ASC(A$)=13 THEN TIMEOUT%=@:RETURN the string entered from
105@ RESPONSES=RESPONSES+AS keyboard
1960 NEXT 1%
197¢ TIMEOUT%=1:RETURN - TIMEOUT% which equals @ if

the user enters a string of
characters from keyboard
before a specified number
of loops (TIMELIMIT%)
otherwise equals 1

Note: the LEN function is

described later in this
chapter

9-22 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

INPUTS (PROGRAM/IMMEDIATE)

Returns a string of a specified length, read from the keyboard or from a
disk file. No characters will be echoed and all control characters are
passed through except LN which is used to interrupt the execution

of the INPUTS function.

—ED—0 olo 1o

Figure 9-24 INPUTS Function

Where

SYNTAX ELEMENT

MEANING

length is a numeric expression rounded to the nearest
integer. It specifies the length of the returned

string

file number

is the number of the buffer associated with the

file (see Chapter 12)

Examples

DISPLAY

1@ OPEN'"1',1,"DATA"

2¢ 1F EOF(1) THEN 5¢

3¢ PRINT HEX$(ASC(INPUTS(1,#1)));
4% GOTO 2¢

5@ PRINT

6@ END

119 X$=INPUTS(1)
128 1F X$="S" THEN END

COMMENTS

this program lists the contents
of a sequential file in hexa-
decimal

Note: EOF equals -1 when the end
of file is reached (see Chapter
12)

enter S to end the program, or
any other character to continue

9-23

INSTR (PROGRAM/IMMEDIATE)

Searches for the first occurrence of a given substring in a given string
and returns the position at which the match is found.

start >
D-0HE-O o ®

Figure 9-25 1INSTR Function

Where
SYNTAX ELEMENT Meaning

start position is a numeric expression rounded to the nearest
integer which specifies where the search is to
begin. Its value must be in the range 1 to 255.
If it is omitted 1 is assumed

string is a string expression whose value 1is the
string to be searched

substring is either a string constant or.string variable
whose first occurrence is to be searched for

Example

DISPLAY COMMENTS

1@ X$ = "ABCDEB" Note that the position at which the

20 Y$ = "B" match is found is always evaluated

3¢ PRINT INSTR(XS,Y$);INSTR(4,X$,Y$) | from the beginning of the original

RUN string, even if a start position is

2 6 specified
Ok

9-24 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

Special Values

I THEN. ..

start position>LEN(string) the returned value is @

start position falls outside the an error message is issued (Illegal
range 1 to 255 function call)

string is empty (null string) the returned value is §

substring cannot be found the returned value is §

substring is empty and start posi- the returned value equals the start
tion is specified position value

substring is empty and start posi- the returned value is 1

tion is omitted

LEFTS (PROGRAM/IMMEDIATE)

Returns a substring comprised of the leftmost string characters of a
given length.

LEFTS$ o | string —»< : }—» length —b‘ :}——»

Figure 9-26 LEFTS Function

Where
SYNTAX ELEMENT MEANING
string is a string expression whose value 1is the
string from which the substring is to be re-
turned

9-25

length is a numeric expression rounded to the nearest
integer, whose value (from @ to 255) represents
the length of the returned string

Example

19 A$ = "BASIC LANGUAGE"
2@ BS = LEFTS$(AS,5)

3¢ PRINT B$

RUN

BASIC

Ok

Remarks

B THEN. ..
length=0 the null string is returned

length falls outside the range an "Illegal function call" error is
1 to 255 issued

length> = LEN(string) the entire string is returned

LEN (PROGRAM/IMMEDIATE)

Returns the length of a specified string.

o string
expression

Figure 9-27 LEN Function

9-26 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

Example

19 X$ = "PORTLAND, OREGON"

2¢ PRINT LEN(XS)
RUN

16
Ok

Remarks

A1l characters, printable and non printable and blanks are counted by the

LEN function.

MIDS (PROGRAM/IMMEDIATE)

Returns a substring from a specified string, starting from a specified
character position. The length of the returned substring can be speci-
fied, or all the characters to the end of the string are returned.

start
D 2 O ()] posiion "IIDIII | o

Figure 9-28 MIDS$ Function

Where

SYNJAX ELEMENT

string

start position

MEANING

is a string expression whose value is the
string from which the substring is to be re-
turned

is a numeric expression rounded to the nearest
integer, whose value (>=1 and <= the length of
string) specifies the character position of the
beginning of the returned substring

9-27

length is a numeric expression rounded to the nearest
integer, whose value (from @ to 255) represents
the length of the returned substring. If length
is omitted all the characters from start posi-
tion to the end of the string are returned. If
length = @ the null string is returned

Example

LIST
10 A$="600D "

20 B$="MORNING EVENING AFTERNOON"
3g PRINT A$;MID$(BS,9,7)

0k

RUN

GOOD EVENING

Ok

Remarks

TF s
start position>LEN(string)
start position=@
length is omitted
OR

there are fewer characters
left than length specifies

THEN. ..
MID$ returns a null string

the error message ''Illegal function
call" will be displayed

all the characters from start
position to the end of the string
are returned

Replaces a portion of a string with another string

9-28

BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

start
m |_.@_.[n

replacing
string

Figure 9-29 MIDS Statement

Where

SYNTAX ELEMENT

string

start position

length

replacing string

MEANING

is a string variable whose value is the string
from which a substring is to be replaced

is a numeric expression rounded to the nearest
integer, whose value (>= 1 and<= the length of
string) specifies the character position where
the replacement has to begin.

is a numeric expression rounded to the nearest
integer, whose value (from @ to 255) represents
the length of the returned string. If length is
omitted all the characters from start position
to the end of the replacing string are replaced.
However, regardless of whether length is omitted
or included, the replacement of characters never
goes beyond the original lenght of string. If
length = @ the null string is returned.

is a string expression which replaces the

characters in the original string, beginning at
start position.

9-29

Example

19 A$="KANSAS CITY, MO"
20 MIDS(A$,14)="KS"

3¢ PRINT AS

RUN

KANSAS CITY, KS

Remarks
[YRS THEN. ..

start position>LEN(string) MID$ returns a null string

start position=f the error message "Illegal function
call" will be displayed

length is omitted all the characters froin start
position to the end of the replac-

" ing string will be replaced

length=f the null string is returned

an attempt is made the replacement of characters ends

to replace characters at the 1last character of the

beyond the original original string

length of the string

OCT$ (PROGRAM/IMMEDIATE)

Returns string which represents the octal value of a decimal argument.

numeric
ocT$ o | expression '(:) »

Figure 9-30 OCTS Function

9-30 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

Where
SYNTAX ELEMENT MEANING
numeric expression is rounded to the nearest integer before OCTS is
evaluated
Example

PRINT 0CT$(24)
3¢
Ok

Remark

See the HEXS$ function for hexadecimal conversion.

RIGHTS (PROGRAM/IMMEDIATE)

Returns a substring from a specified string, extracting its rightmost
characters.

RIGHTS ®—+ string —»@—9 length —b@-—o

Figure 9-31 RIGHTS Function

9-31

Where

SYNTAX ELEMENT

string

length

Example

1@ AS="DISK BASIC"
2@ PRINT RIGHTS(AS,5)
RUN

BASIC
Ok

Remarks

IF: o
length=@

length >=LEN(string)

MEANING
is a string expression whose value is the origi-
nal string from which a substring is to be
returned
is a numeric expression rounded to the nearest

integer, whose value (from @ to 255) represents
the length of the returned substring

THEN. ..
the null string (length zero) is returned

the entire original string is returned

' SPACES (PROGRAM/IMMEDIATE)

Returns a string of a specified number of spaces.

; numeric (:) .
SPACES 0 expression

Sigure 9-32 SPACE$ Function

9-32

BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

Where

SYNTAX ELEMENT

numeric expression

Example

14 FOR 1=1 TO 5
20 X$=SPACES(1)
3¢ PRINT X$;1
40 NEXT 1

RUN

Ok

Remark

MEANING

is rounded to the nearest integer and must be in
the range @ to 255 (to avoid '"lIllegal function
call" error). It specifies the number of
spaces, i.e. the length of the returned string

Also see the SPC function in the next paragraph.

STRS (PROGRAM/IMMEDIATE)

Converts a numeric expression to a string.

STRS numeric
expression

Figure 9-33 STR$ Function

9-33

Examples

DISPLAY COMMENTS

The entered number N is converted
to a string by the STR$ function

5 REM ARITHMETIC FOR KIDS

1¢ INPUT "TYPE A NUMBER";N

2¢ ON LEN (STRS$(N)) GOSUB 3¢,10d,
208,300, 400,500

LIST 7¢ (the argument of STRS is a

19 A$=STR$(7¢)
2¢ PRINT AS
Ok

number, but the contents of AS$ is a
two character string whose value is

7¢)

RUN
7@
Ok

LTS The conversion in line 2@ causes
19 A!'=1.3 the value in A! to be stored
2@ A#=VAL(STRS(A!)) accurately in double-precision
3@ PRINT A# variable A#

Ok

RUN

1.3
0k

Remark

VAL performs the opposite function (see VAL).

STRINGS (PROGRAM/IMMEDIATE)

Returns a string of specified length, whose characters are all the same
specified ASCII code value, or are all the first character of a specified
string.

9-34 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

D0

expression

numeric
expression

length —b@—o sting

Figure 9-34 STRINGS Function

Where

SYNTAX ELEMENT

length

numeric expression

string expression

Example

19 X$=STRINGS(14,45)

MEANING

is a numeric expression rounded to the nearest
integer. It specifies the length (from @ to 255)
of the resulting string

is rounded to the nearest integer. It ‘specifies
the ASCI1 decimal code (from @ to 255) whose
corresponding character 1is used to form the
resulting string

is evaluated. 1ts first character is used to
form the resulting string

2@ PRINT X$''MONTHLY REPORT"X$

RUN

VAL (PROGRAM/IMMEDIATE)

Converts the string representation of a number to its numeric value.

9-35

string ,(: > >
VAL o expression

Figure 9-35 VAL Function

Where
SYNTAX ELEMENT MEANING

string expression is evaluated. Leading and trailing blanks, tabs,
and linefeeds (if any) are stripped away. The
remaining string is converted to a number (if it
is a valid numeric representation value, other-
wise VAL returns @). For exampla:
VAL(" -3") is 3
VAL ("'ABC") is §

Example

1¢ READ NAMES,CITYS$,STATES,ZIPS

20 1F VAL(Z1P$)<9@@@@ OR VAL(Z1PS$)>96699 THEN
PRINT NAMES TAB(25) '"OUT OF STATE"

3¢ IF VAL(ZIP$)>=9@8@1 AND VAL(ZIP$)<=9@815 THEN
PRINT NAMES TAB(25) "LONG BEACH"

Remark

The STRS function performs the opposite task (see STRS).

INPUT/OUTPUT AND SPECIAL BUILT-IN FUNCTIONS

These functions perform the various tasks to do with input/output, value
conversions, error handling, carriage positions, memory locations, etc.

They are listed in alphabetic order below.

9-36 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

Note: This section also includes the reserved string words DATES and
TIMES (which may be used as functions or as variables depending on
whether they appear in an expression or to the left side of the equal
sign in an assignment statement).

DATES/TIMES (PROGRAM/IMMEDIATE)

Are PCOS elements that are readable or changeable in BASIC by referencing
these reserved strings.

Figure 9-36 DATES and TIMES

Remarks

Date and Time may be set either in PCOS by the SSYS command or in BASIC
by an assignment statement. The date is entered either as mm:dd:yy, or
mm:dd:yyyy. The time 1is entered as hh:mm:ss. The user can use his own
delimiter. (Any printable ASCII character, excluding digits).

For more details see 'Professional Computer Operating System (PCOS) User
Guide'".

Example
DISPLAY " COMMENTS
190 1F DATES="@4:3@:82" statement 1@@ checks the date.
THEN 3¢@@

Statement 5@@ sets the date, and
: also changes the delimiter.
5@@ DATES="@5/06/1981"
Statement 6@@ displays the time.

6@@ PRINT TIMES Statement 7@@ set the time

709 %IME$=“¢7:4¢:15”

9-37

CVD (PROGRAM/IMMEDIATE)

Converts an 8-character string to a double precision number.

See Chapter 12.

CVI (PROGRAM/IMMEDIATE)

Converts a 2-character string to an integer.

See Chapter 12.

CVS (PROGRAM/IMMEDIATE)

Converts a 4-characters string to a single precision number.

See Chapter 12.

EOF (PROGRAM)

Returns true(-1) if the end of a sequential file has been reached.

See Chapter 12.

ERL (PROGRAM/IMMEDIATE)

Returns the line number of the line in which an error was detected.

See Chapter 13.

ERR (PROGRAM/IMMEDIATE)

Returns the error code number.

See Chapter 13.

9-38 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

LOC (PROGRAM/IMMEDIATE)

Returns the record number just read or written (random files), or the
number of sectors read or written since the file was OPENed (sequential
files).

See Chapter 12.

LPOS (PROGRAM/IMMEDIATE)

Returns the current position of the connected line printer print head
within the line printer buffer.

LPOS 0 dummy |
argument

Figure 9-37 LPOS Function

Where
SYNTAX ELEMENT MEAMING
dummy argument is any numeric or string expression. The
returned value is not affected .by the value of
the argument
Example

19@ 1F LPOS(X)>4@ THEN LPRINT CHR$(13)

MKD$ (PROGRAM/IMMEDIATE)

Converts a double precision value to an 8-character string.

See Chapter 12.

MKI$ (PROGRAM/IMMEDIATE)

Converts an integer to a 2-character string.

See Chapter 12.

MKS$ (PROGRAM/IMMEDIATE)

Converts a single precision value to a 4-character string.

See Chapter 12.
SPC (PROGRAM/IMMEDIATE)

Inserts spaces in PRINT or LPRINT statements.

numeric
@ expression »

Figure 9-38 SPC Function

Where
SYNTAX ELEMENT MEANING
numeric expression is rounded to the nearest integer. 1t specifies

the number of spaces to be inserted in the
output image either between two output items or
at the beginning or the end of the image.

It must be in the range @ to 255 (to avoid an
"11legal function call" error)

9-40 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

Example
PRINT "OVER' SPC(15) "THERE"

OVER THERE
Ok

Remarks

Either a semicolon (;) or a blank follows SPC in a PRINT or LPRINT

statement.

See also the SPACES function.

TAB (PROGRAM/IMMEDIATE)

Tabs the cursor or the print head to a specified position, in PRINT or

LPRINT statements.

numeric
T 0 ;
AB expression

—(0)—

Figure 9-39 TAB Function

Where

SYNTAX ELEMENT

MEANING

numeric expression is rounded to the nearest integer. The expres-
sion must be in the range 1 to 255 (to avoid
"I1llegal function call" error).

1 is the left hand limit, width minus one is the
righthand limit. It specifies the precise cursor
(or print head) position in a line

9-41

Examples

1¢ PRINT 'NAME' TAB(25) 'AMOUNT':PRINT
2¢) READ A$,BS

3¢ PRINT AS$ TAB(25) BS

4¢ DATA "G.T.JONES",'"$25.00"

RUN

NAME AMOUNT
G.T.JONES $25.00
Ok

Remark

If the current cursor or print head position is beyond the value of the
argument, TAB goes to that position on the next line.

VARPTR (PROGRAM/IMMEDIATE)

Format 1 (below). Returns the address in memory of the first byte of data
associated with the specified variable.

Format 2. For sequential files, returns the starting address of the disk
1/0 buffer associated with the file. For random files, returns the
address of the FIELD buffer associated with the file.

vt }—(O— iz =Q—

‘l!ﬂiiii" ". "’ Eﬁnber)

Figure 9-4 VARPTR Function

9-42 BASIC LANGUAGE - REFERENCE MANUAL

FUNCTIONS

Where

SYNTAX ELEMENT

variable name

file number

Example

108 X%=VARPTR(A(g))

Remarks

MEANING

any type of variable (numeric string or array).
The address returned will be an integer in the
range -32768 to 32767.

Note: If a negative address is returned, add
65536 to obtain the actual address

the number of the buffer associated with the
file.

A value must be assigned to the variable prior to execution of VARPTR, if
it is a simple variable. Otherwise an "Illegal function call". error

results.

VARPTR is usually used to obtain the address of a variable or array so it
may be passed to an assembly language subprogram. A function call of the
form VARPTR(A(@)) is usually specified when passing an array, so that the
lowest-addressed element of the array is returned.

9-43

10. SUBPROGRAMS

ABOUT THIS CHAPTER

Often, the same sequence of statements must be executed more than once
within a program. In this case you need not reproduce that sequence
several times. You may parcel it up as a subprogram and simply call that
subprogram from various places in your program. At the end of each
execution of the subprogram control goes back to the statement following
the call.

The M20 provides you with two kinds of subprogram which may be called by
a BASIC program:

- subprograms written in BASIC (we shall call them "BASIC Subroutines")

- subprograms written in the M20 ASSEMBLER i.e., PCOS commands or other
assembler subprograms.

This chapter will illustrate these two kinds of subprograms and how to
call them when you are in BASIC.

CONTENTS
BASIC SUBROUTINES 10-1
GOSUB/RETURN (PROGRAM) 10-3

ON...GOSUB/RETURN (PROGRAM) 10-7

PCOS COMMANDS CALLED FROM 10-8
BASIC AND ASSEMBLY LANGUAGE

SUBPROGRAMS
CALL (PROGRAM/IMMEDIATE) 10-9
EXEC (PROGRAM/IMMEDIATE) 10-11

SYSTEM (PROGRAM/IMMEDIATE) 10-13

PROGRAMMABLE KEYS 10-13
BASIC KEYBOARDS 10-13
DEVICE RE-ROUTING FROM 10-14

BASIC

SUBPROGRAMS

BASIC SUBROUTINES

A BASIC subroutine is formed by a sequence of BASIC statements and it is
an integral part of the program. Usually (but not necessarily) a BASIC
subroutine begins with a REM statement and ends with a RETURN statement.
It is good programming practice always to insert subroutines one after
the other at the end of the program and write an END, GOTO, or STOP
statement before the first statement of the first subroutine (to avoid
""falling" into the subroutine block).

A subroutine is called by a GOSUB or an ON...GOSUB statement. At the end
of the execution of a subroutine, control is returned to the first
statement following the most recent GOSUB (or ON...GOSUB) that has been
executed.

We shall call a BASIC subroutine '"pending" if it has not yet been
completed when a break is encountered. Any modification to the resident
program (deleting, or editing lines, and so on), will prevent the
subroutine from resuming execution.

The following example illustrates the call mechanism (statements GOSUB
and RETURN).

DISPLAY COMMENTS

18 REM Main Program when statement 5@ is encountered (GOSUB), con-

trol is passed to statement number 25@ (which is

. the first statement of the subroutine). The

5@ GOSUB 25@ subroutine is then executed and when statement

6@ PRINT X <— 299 (the RETURN statement) 1is encountered,

control is transferred back to statement 6@, the
first statement after GOSUB.

249 GOTO 599

25@ REM Sub1 The statement 24@ (GOTO) prevents falling into
26@ Z=SQR(T) the subroutine by directing control of execution
around it

29¢ RETURN—

599 END

10-1

If a program refers to the same subroutine more than once, control is
always returned from the subroutine to the statement following the most
recent GOSUB (or ON..,GOSUB) executed. For example, consider a program
that contains the following statements:

DISPLAY COMMENTS

1@ REM Main Program when the subroutine is referred to by
i statement 5@ (GOSUB), control 1is returned,
. after execution of the subroutine, to state-
5@ GOSUB 258 ment 6@. When the subroutine is referred to
6@ PRINT X «———— by statement 14¢ (GOSUB), control is returned
to statement 150

140 GOSUB 250
15¢ 1F X >32 THEN 3¢ <«

249 GOTO 5@¢
»>25@ REM Subl
26@ 7=SQR(T)

29@% RETURN
5@@ END

A subroutine may also be called by another subroutine. In this case we
say that the called subroutine is '"nested'" within the calling one. The
process may be repeated to any depth; the number of nested active
subroutines is only limited by the amount of memory available. (An active
subroutine is a subroutine where RETURN has not yet been executed). Each
GOSUB, whether in the main program or in a subroutine, is always
associated with a RETURN statement.

This RETURN statement causes: control to be transferred to the first
statement following GOSUB. This kind of association is made dynamically
(i.e., at run-time), the first RETURN executed is associated with the
most recent GOSUB executed, the second RETURN with the next most recent
GOSUB and so on.

10-2 BASIC LANGUAGE - REFERENCE MANUAL

SUBPROGRAMS

DISPLAY

14 REM Main Program

80@ éOSUB 1509
819 —

1498 END
15@@ REM Sub1

19¢¢‘GOSUB 2509
1919 <——

2499 RETURN ——|—
25@@ REM Sub2

3009 ‘RETURN ——

COMMENTS

8@@ GOSUB 15@@ shifts control to the subroutine
Sub1

15¢@ REM Subl marks the entry point of the
subroutine Subl

1909 GOSUB 25@@ shifts control from Subl to Sub2
(nested subroutine)

25¢% REM Sub2 marks the entry point of the
subroutine Sub2

3@@¢ RETURN shifts control to the statement
following the most recent GOSUB that has been
executed (i.e., to the statement 191¢). 249¢
RETURN shifts control to the statement following
the next most recent GOSUB that has been
executed (i.e., to the statement 81(¢)

GOSUB/RETURN (PROGRAM)

GOSU3 calls a BASIC subroutine by branching to the specified line number.

RETURN transfers control to the statement following the most recent GOSUB
(or ON...GOSUB) executed.

> line >
Lol number

Figure 10-1 GOSUB Statement

10-3

Figure 10-2 RETURN Statement

Where

SYNTAX ELEMENT

line number

Characteristics

A SUBROUTINE MAY...

begin with any statement other than
NEXT or WEND

finish with a RETURN statement

10-4

MEANING

is the first line of a BASIC subroutine

COMMENTS
for example a subroutine might
begin with REM, LET, FOR, . etc.

It is good programming practice to
begin a subroutine with a REM
statement (or a statement with a
comment field)

it is good programming practice to
finish a subroutine with a RETURN
statement. In any case RETURN must
be the last statement executed in a
subroutine, as RETURN is the only
statement that allows control to be
returned to the main program.

A subroutine may also contain more

than one RETURN statement (for
instance, if a subroutine has
several branches, any of which

require a return to be made to the
main program)

BASIC LANGUAGE - REFERENCE MANUAL

SUBPROGRAMS

be called anywhere and any number
of times in a program

be placed anywhere in the program

call another subroutine

access any program variable

Examples

DISPLAY

LIST

1@ DEFINT A-Z 'defines all integers
2@ INPUT "Enter 3 integers'';A,B,C
3¢ LET X=A

4¢ LET Y=B

5¢ GOSUB 110

6@ LET X=6

7@ LET Y=C

8@ GOSUB 11¢

9@ PRINT "The GCD of'";A;B;C;"is";G
188 GOTO 198

1@ LET Q=INT (X/Y) 'routine GCD

if a program calls the same sub-
routine more than once, control is
returned, after execution of the
subroutine, to the statement fol-
lowing the GOSUB (or ON...GOSUB)
that was last executed

however it 1is good programming
practice to write subroutines one
after the other at the end of the
program. To avoid 'falling" into a
subroutine write an END, or GOTO or
STOP statement before the first
statement of a subroutine

the number of nested active sub-
routines is only limited by the
amount of memory available

all variables defined in the 'main"
program ('"global variables") are
available to the subroutines.
Therefore subroutines may work on
program variables without restric-
tion (even modifying their values
if need be)

COMMENTS

on the left is a complete program
illustrating a subroutine. The
subroutine uses Euclid's Algorithm
to find the greatest common divisor
(GCD) of three integers. The user
enters three integer numbers from
the keyboard. The first two numbers
entered (A and B) are assigned to X
and Y respectively (see statements
3¢ and 4@) and their GCD is deter-
mined in the subroutine (statements
119 to 18@). The GCD just found is

10-5

120 LET R=X-Q*Y

13@ 1F R=@ THEN 170

14¢ LET X=Y

15¢ LET Y=R

16¢ GOTO 110

17¢ LET G=Y

18@ RETURN

19¢ END

Ok

RUN

Enter 3 integers? 1377,2916,485
The GCD of 1377 2916 4@5 is 81
Ok

RUN

Enter 3 integers? 4,3333,67

The GCD of 4 3333 67 is 1

Ok

LIST
19 INPUT "Enter N>@";N%
2@ 1IF N%<=@ THEN 1¢
3¢ GOSUB 5¢
4@ END
5@ REM SUB1(Sum of Integers)
6@ S%=(N%*(N%+1))/2
7@ PRINT "Sum of Integers

from 1 to ";N%;"=";S%
8@ INPUT "Sum of Squares (Y/N)'";X$
9@ IF X$="Y" THEN GOSUB 11¢
19@ RETURN
11@ REM SUB2(Sum of Squares)
120 S2%=(N%* (N%+1)*(2*N%+1))/6
13@ PRINT "Sum of Squares

from 1 to '";N%;"=";52%
14¢ RETURN
Ok
RUN
Enter N>@? 5
Sum of Integers from 1 to 5 = 15
Sum of Squares(Y/N)? Y
Sum of Squares from 1 to 5 = 55
Ok

10-6

assigned to X in statement 6§ and
the third number (C) is assigned to
Y in statement 7@. The subroutine
is called again from statement 8¢
to find the GCD of these two
numbers. This result is the GCD of
the three integers entered. These
three numbers, with their GCD, are
displayed by statement 90.

Note: Statement 1§ defines all
variables as integer variables as
the program works on integer num-
bers only

this program calculates the sum of
integer numbers from 1 to N (where
N is entered from keyboard) and
optionally the sum of the square of
these numbers. The program has two
subroutines; SUB1 and SUB2 written
at the end of the program (state-
ments from 5@ to 1¢¢ and from 119
to 14¢).

First of all statements 1@, 2§ and
3¢ are executed. Statement 3¢
(GOSUB) calls the subroutine SUB1
and its statements are executed in
sequence up to statement 9. This
statement executes a test:

- if X$ (entered from keyboard) 1s
different from "Y", control
passes to the statement 10¢
(RETURN) and then to statement 4§
(END)

- if X$ equals "Y", control passes
to SUB2 ('mested subroutine').
When statement 14@ (RETURN of
SUB2) is reached, control passes
to statement 1@@ (RETURN of
SUB1), then to statement 4@ (END)

BASIC LANGUAGE - REFERENCE MANUAL

SUBPROGRAMS

ON...GOSUB/RETURN (PROGRAM)

ON...GOSUB calls one of several specified subroutines, depending on the
value of a given expression.

RETURN transfers control to the statement following the most recent
ON...GOSUB (or GOSUB) that has been executed.

line
number

@ numeric
expression

Figure 10-3 ON...GOSUB Statement

Figure 10-4 RETURN Statement

Where
SYNTAX ELEMENT MEANING
numeric expression its value determines which line number in the

list will be used for branching. A value of 1
causes the subroutine at the first line' number
in the list to be called; a value of 2 causes
the subroutine at the second line number in the
list to be called and so on. If the value is a
non 1integer, it 1is rounded to the nearest
integer.

If the value is zero or greater than the number
of items in the list (but less than or equal to

10-7

line number

255), BASIC continues with the next executable
statement. If the value is negative or greater
than 255, an "Illegal function call" error
occurs

each line number in the list must be the first
line number of a subroutine

Example

COMMENTS
LIST if you enter 1, 2, or 3 the program
1@ INPUT "Enter 1,2,0r3";K% will display SUB1, SUB2 or SUB3

2@ ON K% GOSUB 4¢,5@,60

3¢ END

4@ PRINT ''SUB1'":RETURN
5@ PRINT ''SUB2'":RETURN
6@ PRINT "'SUB3'":RETURN

Ok
RUN

Enter 1,2,0r3? 2

SuB2
Ok

respectively. In every case a
RETURN statement transfers control
to the END.

1f you enter an integer between @
and 255, other than 1, 2, or 3, the
program will display nothing

PCOS COMMANDS CALLED FROM BASIC AND ASSEMBLY LANGUAGE SUBPROGRAMS

CALL and EXEC allow you to call PCOS commands or Assembly language
subprograms, when you are in BASIC.

Both CALL and EXEC statements perform the same function but:

- EXEC is used when the arguments to be passed to the corresponding
parameters are constants;

- CALL is used when the arguments to be passed to the corresponding
parameters are either constants or program variables or both.

10-8

BASIC LANGUAGE - REFERENCE MANUAL

SUBPROGRAMS

CALL and EXEC may be used either in a BASIC program or in immediate mode
but they are more often used in a program. At the end of the execution of
an Assembly language subprogram or a PCOS command, control returns either
to the statement following the call (if CALL or EXEC were used in a pro-
gram), or to BASIC Command Mode (if CALL or EXEC were used in Immediate
Mode).

CALL and EXEC allow a BASIC program to communicate with the PCOS oper-
ating system, for example to set system global variables to desired
values before other BASIC programs and PCOS commands are executed. At the
end of the execution of such a program you may remain in BASIC or go to
PCOS (by the SYSTEM Command).

Usually a system initialization program is called INIT.BAS. This is a
reserved file name. The M20 system just after loading PCOS and BASIC,
searches for that file on both drives. 1f the file is found, the M20
enters BASIC and INIT.BAS is run.

Remarks

At the end of execution of a CALL or EXEC statement activating a SBASIC
PCOS command, the newly set values will not be taken into account in the
current program (otherwise the current program could be destroyed).The
newly set values will become operative in subsequent programs, thus an
EXEC "ba file identifier' often follows an EXEC 'sb..." statement.

The EXEC statement only (not the CALL statement) allows you to execute a

device re-routing command while 1in BASIC (for further details see
"Professional Computer Operating System (PCOS) - User Guide").

CALL (PROGRAM/IMMEDIATE)

Calls a PCOS command or an Assembly language subprogram, passing either
program variables or constant arguments to the subprogram.

—{ CALL :‘\;k')';‘)erogram argument < :>l

Figure 10-5 CALL Statement

10-9

Where

SYNTAX ELEMENT

subprogram name

argument

Examples

DISPLAY
1¢ DEFINT A-C
3¢ FILES="VOL1:FILE@@1"

40 S1ZE%=1¢
50 CALL "fn"(FILES,S1ZE%)

9¢ Cé:”LIST“
10¢ CALL '"pk'(&41,CS$)

10-10

MEANING

may either be the name of a PCOS command or the
name of an Assembly language subprogram. It must
be either a string constant or a string variable

may be a constant or a simple variable or an
expression whose value is passed to the corre-
sponding parameter (in the same way as an
argument 1is passed to the corresponding para-
meter in a functiom call, See Chapter 9).

If it 1is an output argument (i.e. a program
variable into which a value 1is returned), the
argument name must be preceded by an "at'" sign

(e@).

A variable argument (both an input and an output
argument) must be initialized before executing
the CALL statement.

1f the argument is numeric it must be an
integer.

COMMENTS

statement 5@ calls PCOS command
FNEW, passing the file identifier
by the string variable FILES and
the file size by the numeric
variable SIZE%. Statement 10@ calls
the pkey PCOS command, specifying
the key by the hexadecimal constant
&41 (i.e. A, see Appendix A) and
the corresponding string by the
variable C$. Statement 25¢ calls
the Assembly language subprogram

BASIC LANGUAGE - REFERENCE MANUAL

SUBPROGRAMS

220 A=1¢ SUB121 specifying two input argu-
230 B=2¢ ments (A and B) and one output
249 C=20¢ argument (@ C). Note that A, B and
25¢ CALL "SUB121"(A,B, C) C have been initialized before.
Remarks

The PCOS command LTERM (Line Terminator) is normally called from BASIC by
the CALL statement. It returns an integer (@, 1, 2) corresponding to the
respective carriage return (, I HE, Il last entered.

The PCOS command CI (Communication Interface) is normally called from
BASIC to send and receive characters to and from a communication RS-232-C
port. Other PCOS commands (LABEL, SPRINT, BVOLUME, etc.) are normally
called from BASIC.

For more information see 'Professional Computer Operating System (PCOS)

User Guide" and for CI command see '"1/0 with External Peripherals User
Guide'..

EXEC (PROGRAM/IMMEDIATE)

Calls a PCOS command or an Assembly language subprogram passing constant
values to the subprogram.

- string
EXEC expression

Figure 10-6 EXEC Statement

10-11

Where

SYNTAX ELEMENT MEANING

string expression its value is interpreted as a subprogram name
followed by a list of constant arguments

Remarks

If EXEC calls a PCOS command, the contents of the string expression
following EXEC must agree with the command as it would be entered if you
were in PCOS.

If EXEC calls an Assembly language subprogram, the contents of the string
expression following EXEC is a list of parameters separated by commas.
The first of them specifies the subprogram name and the following
parameters specify the arguments to be passed to the subprogram.

Note: The arguments are not enclosed in parentheses and may only be
constant arguments.

Examples
DISPLAY COMMENTS
statement 10¢ allows you to call
. the PKEY PCOS command. Note that
19@ EXEC "pk ' ', 'RUN V1:CASHFLOW'' the strings:

- #
150 EXEC '"fp 1:MY.FILE/SECRET" = RUN V1:CASHELON

must be surrounded by a pair of
< single quotes (') as if you were in
180 AS="fn 1:FILEA,15" PCOS.

5 Statement 150 allows you to call
23P EXEC AS the FPASS PCOS command.

Statement 23¢ allows you to call
the FNEW PCOS command, specifying
the command as the contents of the
string variable initialized in
statement 180.

10-12 BASIC LANGUAGE - REFERENCE MANUAL

SUBPROGRAMS

SYSTEM (PROGRAM/IMMEDIATE)

Returns to PCOS and closes all data files.

Figure 10-7 SYSTEM Command

Remarks

SYSTEM allows you to exit BASIC and return to PCOS. It may be used both
in a program and an immediate line. SYSTEM is often used at the end of an
initialization program which executes a series of PCOS commands and/or
Assembly language subprograms using CALL and EXEC statements.

PROGRAMMABLE KEYS

By using the GG and BEGLIYDM keys, in conjunction with other
non-shift keys, you may assign a special meaning to each key.

This may be a BASIC or PCOS command, an expression, a constant, or any
group of characters that you may find useful to have on the keyboard.
Assignment can be made either in a BASIC program via the CALL "pk'" (or
EXEC "pk...") statement, or in PCOS via the PKEY command.

Depending on your needs, assignment of a specific function to a key can
be 'permanent", automatically made every time you initialize the system,
or '"temporary", to last until the next system initialization. For more
details see "Professional Computer Operating System (PCOS) User Guide'.

BASIC KEYBOARDS

To define keys to enter BASIC statements inscribed into keys with USA
ASCI1 or GREAT BRITAIN keyboards a program (called BKEYBOARD.BAS) is
available.

10-13

This program is a sequence of PKEY statements which define the
corresponding keys to enter BASIC statements when pressed together with

COMMAND B

This program is normally distributed on every system diskette. You can
run this program, entering:

bk HGH

in PCOS environment, or

RUN '"BKEYBOARD.BAS"

in BASIC.

Running this program the key definitions will be valid until the next
system initialization. 1f you want the definitions to be loaded into

memory at every initialization, you must use a customised PCOS made by
the PSAVE command. For further information see '"PCOS - User Guide'.

DEVICE RE-ROUTING FROM BASIC

You may execute a PCOS command from BASIC by an EXEC or CALL statement,
also specifying a device re-routing parameter. The device selection
remain valid until you either execute another PCOS command which changes
it or you exit from BASIC, but if the EXEC or CALL statement makes a
permanent device selection, this continues to be valid also when you
return to PCOS.

Examples
1f you enter ... THEN ...

ba the system loads BASIC and enters BASIC

. (Command mode). The first EXEC statment

5 displays the directory of the diskette

EXEC "VL 1:,+D1:0UT" inserted in drive 1 and also stores what
appears on the video into OUT file.

EXEC "-D1:0UT" This OUT file will be created if it does

not exist on the specified diskette. If it
exists, it will be overwritten.

10-14 BASIC LANGUAGE - REFERENCE MANUAL

SUBPROGRAMS

ba KGH

EXEC."vl 1:,+dprt:"
SYSTEM

ba GH

EXEC "sprt

SYSTEM

The second EXEC statement disables this OUT
file as output unit.

the system enters BASIC.
The EXEC statement displays the directory
of the diskette inserted in drive 1 both on

the video and the printer.

The SYSTEM command returns to PCOS and the
printer is disabled as output unit.

The system enters BASIC.

The EXEC statement displays what appears on
the video (permanent selection).

The SYSTEM command returns to PCOS but does

not disable the printer, as the EXEC made a
permanent selection.

10-15

11. PROGRAM SEGMENTATION

ABOUT THIS CHAPTER

In this chapter we shall look at the techinque of Program Segmentation
and how to pass data from one program to another. We shall illustrate
CHAIN (and its several options) and common statements. Moreover, we shall
look again at the use of RUN and LOAD with the R option.

CONTENTS

WHEN USING PROGRAM SEGMEN- 11-1

TATION

PASSING DATA 11-1
PROGRAM CHAINING 11-2
CHAIN (PROGRAM) 11-3

COMMON (PROGRAM) 11-6

PROGRAM SEGMENTATION

WHEN USING PROGRAM SEGMENTATION

Program segmentation means splitting a large program into two or more
smaller programs (''segments') which may be executed in sequence to solve
the same problem. Using this technique you may execute programs which
could be larger than the available memory, but Program Segmentation is
useful in many other situations too (some of these situations are
illustrated in the following table).

1B+ 5w THEN...
a program is larger than the avail- you need to split it into several
able memory small programs to be executed one

after the other

a program has sections which are you could code these sections as
rarely executed separate programs and load them
into memory when necessary

a program has a section which must you could code these sections as

always be resident, whereas other separate programs. The resident

sections may be transient (and/or segment (root) will load the first

used by other programs) transient segment (overlay) this
(or the root) will load the second,
and so on

Each overlay (or a part of it) may
be deleted before a new overlay is

loaded
a program may be divided into dif- you could code these sections as
ferent sections, each performing separate programs to reduce the
a specific function cost of programming

PASSING DATA

Program segmentation can imply the need to pass data from one segment to
another.

This may be done in several ways as shown in the following table.

IF you use...

CHAIN in conjunction
with one or more COMMON
statements

CHAIN with ALL

CHAIN and the current
program accesses one
or more data files

RUN or LOAD with the
option R, and the cur-
rent program accesses
one or more data

files

THEN...

is not
loaded

BASIC creates a 'common area" which

deleted when the CHAINed program is
(whereas the current program is deleted).
The common area is passed to the CHAINed program
and contains all the variables specified in the
COMMON statement(s)

all the variables defined in the current program
are passed to the CHAINed program

you may pass data to the CHAINed program via
data files.

The CHAIN statement does not close data files.

Passing data via data files is compatible with:

- CHAIN and COMMON statement

- CHAIN with ALL

- CHAIN with MERGE (and possibly DELETE - see
the DELETE option explanation later in this

Chapter)

you pass data to the specified program via data
files.

RUN and LOAD with R do not close data files

PROGRAM CHAINING

As we have already seen program segmentation may be performed by the use

of:

- CHAIN and COMMON statements

- RUN and LOAD commands.

BASIC LANGUAGE - REFERENCE MANUAL

PROGRAM SEGMENTATION

The CHAIN statement, with its several options, gives you a powerful tool
for segmenting a program.

CHAIN may be used either:

- in conjunction with COMMON statements to pass common variables to the
CHAINed program, or

- with the MERGE option to merge the CHAINed program with the current one
(DELETE is often used in conjunction with MERGE to delete a section of

the program, allowing overlays to be loaded in sequence) or

- with the option ALL to pass all the variables to the CHAINed program.
CHAIN (PROGRAM)

Chains a specified program to the program in memory and allows you to
pass variables.

CHAIN leaves the files open and preserves the current OPTION BASE set-
ting.

Figure 11-1 CHAIN Statement

Where
SYNTAX ELEMENT MEANING
MERGE specifies that the CHAINed program is MERGed

with the program in memory. The CHAINed program
must be an ASCII file.

file identifier

line number expression

ALL

DELETE

11-4

IF MERGE is omitted, the program in memory is
deleted (except the common area) after the
CHAINed program has been loaded.

It is often used with line number expression and
DELETE to load overlays (see Examples).

Note: MERGE option preserves variable types for
use by the CHAINed program. When using the
MERGE option, user-defined functions will be un-
defined after the merge is complete

is a string expression which specifies the
program file to be CHAINed

is either a line number or an expression that
evaluates to a line number in the CHAINed pro-
gram.

It is the starting point for execution of the
CHAINed program.

It is often used with MERGE and DELETE to load
overlays.

If it is omitted, execution begins at the first
line.

Note: Line number expression is not affected by
a RENUM command

specifies that all the variables of the program
in 'memory are to be passed to the CHAINed
program. (It preserves variable types).

If it is omitted, information is passed either
by the use of a common area or by the use of
data files

specifies (by a- range of line numbers) that a

section of the current program has to be
deleted.

BASIC LANGUAGE - REFERENCE MANUAL

PROGRAM SEGMENTATION

Examples
DISPLAY
1@ REM PROG1

2¢ COMMON A1,B1,C1$

1@@ CHAIN "PROG2"
11¢ END

1¢ REM PROG2
2¢% COMMON A2$,B2S

8¢ CHAIN "PROG3'",20¢
9¢ END

1¢ REM PROG1¢

5@ CHAIN "1:PROG11", 19¢, ALL

6@ END

The DELETE operation comes before the CHAINed
program has been loaded.

DELETE is often used with MERGE and line number
expression, to load overlays.

Note: The line numbers used after DELETE are
affected by a RENUM command

COMMENTS

program 'PROG1 chains PR0G2 and
passes the values of A1,B1, and
C1$ to it (by use of a common
area).

PROG2 resides on the last sele-
cted drive.

program PROG2 chains PROG3 and
passes the values of A2$ and B2$
to it (by use .of a common area).

The starting point for execution
of PROG3 is line 2¢@.

PROG3 resides on the last selected
drive

program PROG1¢¥ chains PROG11 and
passes all the program variables

touits

The starting point for execution
of PROG11 is line 1¢@.

11-5

1¢ REM ROOT

19@ CHAIN MERGE "V1:0VERLAY1", 10¢¢
11¢ END

10@@ REM OVERLAY1

15¢@ CHAIN MERGE 'V1:0VERLAY2",
10@¢, DELETE 10@@-1500
151@ END

COMMON (PROGRAM)

Defines a common area which is not
allows you to pass variables from one

PROG11 resides on the diskette
inserted in drive 1

ROOT chains OVERLAY1 with the
option MERGE. OVERLAY1 must be an
ASCI1 format file residing on the
disk named V1. It will be executed
starting from line 1@@@

OVERLAY1 chains OVERLAY2 with the
option MERGE. OVERLAY2 must be an
ASC11 format file residing on the
disk named V1. Before it is loaded,
lines 100@¢ to 15@¢@ will be deleted
in memory.

OVERLAY2 will be executed starting
from line 10@¢

erased by the CHAINed program and
program to another.

COMMON variable

array

Figure 11-2 COMMON Statement

11-6

BASIC LANGUAGE - REFERENCE MANUAL

Examples

DISPLAY

19 REM PG1
2@ COMMON A1,B1,C1,D1$

8¢ CHAIN "VOL2:PG2"
9¢ END

10 REM PG2

2¢ PRINT A1,B1,C1,D15

12¢ END

19 REM PG1
2@ DEFDBL C
3¢ COMMON A1,B1,C1,D1$

9@ CHAIN "VOL2;PG2"
1¢@ END

19 REM PG2

2@ DEFDBL C

13¢ END

COMMENTS

COMMON statements are used in conjunction with a
CHAIN statement.

A program may have one or more COMMON state-
ments.

Variables specified in these statements are
allocated in the common area starting from the
beginning and in the order in which they appear
in the program.

The CHAINed program need not specify, through
the wuse of COMMON statements, the common
variables specified by the CHAINing program.

The CHAINed program will use these variables
with the same names specified in the CHAINing
program.

In our example the values of the variables A1,
B1, C1 and D1$ in the program PG1 are passed to
the CHAINed program PG2, which may display them
(see statement 28).

Each type definition statement (DEFINT, DEFSNG,
DEFDBL, DEFSTR) referring to common variables,
must precede the associated COMMON statement and
must be repeated in the CHAINed program. (Note
the statements DEFDBL, both within PG1 and PG2).

1-7

19 REM PROGRAM1
2¢ COMMON AS,BS$,CS
3¢ COMMON A$,A1

16¢ END

19 REM PG1
2¢ DIM A1(15,2¢)
3¢ COMMON A1(),B1,C1

1¢@ CHAIN "VOL2:PG2"
11¢ END

1¢ REM PG2
5¢ PRINT A1(1,1)

9¢ END

1¢ REM mod1

20 A=1:B=2

3¢ COMMON A,B
40 GOTO 6@

5@ COMMON C

6@ CHAIN 'mod3"

1¢ REM mod2
2@ A=1:B=2
3¢ COMMON A
49 GOTO 6¢
5¢ COMMON B
6@ CHAIN "mod3"

1¢ REM mod3
2@ PRINT A;B

Remark

it is not good programming practice to repeat a
same variable name (in this case A$) either in
different COMMON statements of the same program,
or in the same COMMON statement. In any case
multiple definitions are equivalent to a single
definition.

a COMMON statement can also specify array names.
Such specifications are followed by a pair of
parentheses.

Each use of common array must be explicitly
described by a DIM statement in the CHAINing
program (but not in the CHAINed one, otherwise a
"Duplicate Definition' error occurs).

The DIM statement must be written before the
associated COMMON statement.

The COMMON statement is a declarative statement,
thus it allocates a common area even if control
of execution does not pass through it.

For example, when executing program 'mod1" an
"Illegal function call in 5¢" is issued, as
variable C has not been 1initialized. When
executing program ''mod2'" instead, program 'mod3"
is CHAINed: it displays both A and B variables,
even if statement 5@ of 'mod2'" is jumped over.

Common variables must always be initialized within the CHAINing program.

BASIC LANGUAGE - REFERENCE MANUAL

12. DISK FILE HANDLING

ABOUT THIS CHAPTER

This chapter describes the two types of external data files available;
sequential and random files. We shall see how each is created, opened and
closed and how to get data in and out of them.

CONTENTS

SEQUENTIAL AND RANDOM FILES

SEQUENTIAL FILES

RANDOM FILES

OPENING AND CLOSING FILES

OPEN (PROGRAM/IMMEDIATE)
CLOSE (PROGRAM/IMMEDIATE)

WRITING A SEQUENTIAL FILE

PRINT # (PROGRAM/IMMEDIATE)

PRINT#USING (PROGRAM/
1IMMEDIATE

WRITE # (PROGRAM/IMMEDIATE)
LOC (PROGRAM/IMMEDIATE)

READING A SEQUENTIAL FILE

INPUT # (PROGRAM/IMMEDIATE)

LINE INPUT # (PROGRAM/
IMMEDIATE)

EOF (PROGRAM)

12-17

12-18

12-19

12-20

12-23

12-26

UPDATING A SEQUENTIAL FILE

DEFINING A RECORD LAYOUT

FIELD (PROGRAM/IMMEDIATE)

WRITING RECORDS TO A RANDOM
FILE

LSET/RSET
(PROGRAM/IMMEDIATE)

MKIS$/MKSS$/MKDS
(PROGRAM/IMMEDIATE)

PUT-File (PROGRAM/IMMEDIATE)
LOC (PROGRAM/IMMEDIATE)

READING RECORDS FROM A
RANDOM FILE

GET-File (PROGRAM/IMMEDIATE)

CVI/CVS/CVD
(PROGRAM/IMMED1ATE)

UPDATING RECORDS OF A
RANDOM. FILE

12-27

12-27

12-28

12-30

12-31

12-33

12-35

12-37

12-38

12-39

12-41

12-42

DISK FILE HANDLING

SEQUENTIAL AND RANDOM FILES

A data file is created (i.e. made known to the system) either by:

- the PCOS command FNEW which gives a name to a new file and specifies
its initial size

- the OPEN statement which allows a BASIC program to access the file.

OPEN gives a name to a file (which has not yet been created by FNEW or
another OPEN). Moreover it associates a data buffer with the file (to be
used for any Input/Output operation) and specifies an access mode.

If you must create a very large data file and you know the final file
size fairly accurately, then create the file by FNEW instead of by an
OPEN statement. FNEW will allocate a sequence of contiguous disk sectors
to the file thus making Input/Output operations more efficient. Moreover
FNEW will assure you that there is enough room for the file on the disk.

A1l files are 'byte stream'" only, and thus have no intrinsic data format
or data interpretation upon 1/0. There are five possible modes to open a
file in, however. These modes control only the type of access that will
be allowed, and do not add any interpretation of the data flow.

The access mode may be changed for a file each time it is re-OPENed.
The table below summarizes the main features of a data file and

classifies files into two categories (sequential and random) depending on
the access mode used.

FILE TYPE CHARACTERISTICS ACCESS MODE
Sequential (or Stream- a sequential file is Input: sequential input
oriented) considered as a (one 1item after an-

sequence of ASCII char-
acters without any
grouping criterion.

The number of data
items read or written
by each Input/Output
statement can vary and
is usually determined
by the list of vari-
ables specified in the
statement

other) from the begin-
ning of the file

Output: sequential out-
put from the beginning
of the file. Data on
the file (if any) is
lost

12-1

Append: sequential out-
put from the end of the
file. Data on the file
is not lost

Random (or Record- a random file is Random: direct access
oriented) considered as a se- Input/Output to the
quence of data grouped = specified record
in records.

Each Input/Output Examine: direct acess
statement may read or Input from the specifi-
write one record at a ed record.

time.

The records of a ran-
dom file all have the
same length and struc-
ture

SEQUENTIAL FILES

Sequential files are the simplest way to store data. They are ideal for
storing free-form data (which may not be grouped in records). The data
that is written to a sequential file is stored, one item after another
(sequentially), in the order it is sent and is read back in the same
order.

There are several points to bear in mind:

- if you open a sequential file in Output, you start writing at the
beginning of the file and the file's previous contents are lost

- if you open a sequential file in Append, you start writing after the
last data item on the file

- to update a sequential file, open the file in Input, read the file and
write the updated data to a new file which must have been opened in

Output

- data written on a sequential file usually includes delimiters to signi-
fy where each data item begins and ends

122 BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

- to read a sequential file, you must open it in Input and you must know
the format of the data; whether for example, the file consists of
numbers separated by blanks, or of numbers and strings separated by
commas

- a data item on the file is always written as a string of characters
(one byte for each character of data). For example, the number:

351.27
requires 6 bytes of disk storage, excluding the delimiters (which may
be blanks or commas).

RANDOM FILES

These are ideal for storing data which may be grouped in records. The
records of a random file must all be of the same length.

Accessing random files requires more program steps than sequential files
but there are advantages when using random files:

- instead of having to start reading or writing at the beginning of a
file, you can read or write any record you specify

- to update a file, you do not have to read the entire file, update the
data and write it again. You can rewrite or add to any record you

choose, without accessing all the preceeding records

- opening a random file allows you to read and write from the file via
the same buffer.

- opening a random file in Examine, you can read any record you specify

OPENING AND CLOSING FILES

To access a file with a BASIC program, you must open it with an OPEN
statement. This specifies the file identifier, the access mode, the file
number and if the file is a random file, the record length.

The maximum number of concurrent files (i.e., OPENed at the same time may
be set by the PCOS command SBASIC or assumed by default (the default
value is 3). The maximum number cannot exceed 15.

Whenever you open a file, a file (or buffer) number is associated with
the file. Each buffer is given a number from 1 to 15. You will use this
number to specify the file in any 1/0 statement of your program. You can
think of a buffer as a waiting area that data must pass through on the
way to and from the disk file.

For random files, the user must define the structure of the buffer (i.e.,
of the records in the file) by fixing the length (in characters) of each

data item within the buffer by a FIELD statement.

When you access a file by an Input/Output statement, you must specify the
file by its file number instead of its identifier.

When you CLOSE a file you delete the connection between the file and its
buffer and that file may no longer be accessed, until you re-OPEN it. If
you re-OPEN it, you may associate either the same or another buffer with
the file.

OPEN (PROGRAM/IMMEDIATE)

Opens a disk file allowing Input/Output operations on the file.

1f the specified file is not found it will be created (unless access
mode is "I1'" or "E'" - See Remark below).

> {Eoloi o o=

Figure 12-1 OPEN Statement

Where
SYNTAX ELEMENT MEANING
access mode is either a string constant or a string variable

containing one of the following characters:

12-4 BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

file number

file identifier

record length

- "A" (Append): sequential output after the last
data item on a sequential file. Data on
the file (if any) is not lost, new data
will be added at the end

- "E" (Examine): lnput access to the records of
a random file

- "1" (Input): sequential input starting from
the beginning of a sequential file

- "0" (Output): sequential output starting from
the beginning of a sequential file. Data
on the file (if any) is lost

- "R" (Random): Input/Qutput access to the
records of a random file

Note: If a sequential file is empty (i.e. does
not contain data), "0" and "A" are equivalent

is a numeric expression whose value, rounded to
the nearest integer, must be in the range 1 to
15. The specified file number remains associated
with the file as long as it is open and will be
used to specify the file in any 1/0 statement in
the program

is either a string constant or a string variable
and may specify:

- a new file (i.e. unknown to the system); in
this case the file is created (except for
access mode "I'" or "E")

- an existing file; in this case the file is
only OPENed

js a numeric expression (rounded to the nearest
integer) which, if included, sets the record
length of a random file.

This parameter may only be set for random files.
Its default value is 256 bytes. .

Its maximum value is that of the record size
parameter set by the PCOS command SBASIC. SBASIC
can set the record size parameter from 1 to
4096 (with a default value of 256)

12-5

Examples

DISPLAY

5@ OPEN "A",1,'"V1:EXAMPLE"
168 OPEN "0",2,"V1:TEST"

27¢ OPEN "R",3,"V2:F1",80
28¢ OPEN "R",4,"V2:F2",20 .

499 CLOSE 2
5@@ OPEN "1',5,"V1:TEST"

6@@ OPEN "R",2,FILES,RN

7@¢@ OPEN "E",6,"1:ARCHIVE", 6@

12-6

COMMENTS =

Statement 5@ opens the sequential
file EXAMPLE, which is resident on
the disk named V1. The access mode
is Append and file number 1 is
associated with the file.

Statement 160 opens the sequential
file TEST, which is resident on the
disk named V1. The access mode is
Output and file number 2 is asso-
ciated with the file.

Statement 278 opens the random file
F1, which is resident on the disk
named V2. The file number 3 is
associated with the file and a
record length of 8@ bytes is set.

Statement 28@ opens the random file
F2, which is resident on the disk
named V2. The file number 4 is
associated with the file and a
record length of 2@ bytes is set.

Statement 49f closes the file TEST.

Statement 5@@ re-opens the file
TEST in Input mode and associates
the file number 5 with it.

Statement 6@@ opens a random file,
whose identifier is the contents of
the string variable FILES. The
record length is the contents of
the numeric variable RN. The as-
sociated file number is 2. It has
been made available by statement
499

BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

Remark

Statement 7@@ opens the random file
ARCHIVE which 1is resident on the
diskette in drive 1. The access
mode is Examine, file number 6 is
associated with the file and a
record length of 60 is set

You cannot create a file by an OPEN statement if you specify "I" or "E"
as access mode. If you try to, a '"File not found" error occurs.

Closes disk files.

CLOSE (PROGRAM/IMMEDIATE)

file
number

Figure 12-2 CLOSE Statement

Where

SYNTAX ELEMENT

file number

MEANING

is a numeric expression whose rounded value
specifies the number of the buffer associated
with the file. This number must be from 1 to 15.
A CLOSE with no parameters closes all open data
files

Examples

DISPLAY

17@ CLOSE #2
250 A=6

29¢ CLOSE 3,5,A

12¢¢ CLOSE

Characteristics

TG -

a CLOSE is executed

an END statement or a SYSTEM com-
mand is executed

El CTRL 4 is issued

any modification is made to the
current program (line insertion,
line editing and so on...)

either a CHAIN statement or a LOAD

(RUN) command with the option R is
executed

12-8

COMMENTS

Statement 17@ closes the file whose
file number is 2.

Statement 290 <closes the files
whose file numbers are 3,5 and 6
(if A equals 6).

Statement 12@@ closes all the

files

THEN. .-

the association between a file and
its buffer is deleted; that buffer_
may now be reused to OPEN any file.

A CLOSEd file may be re-OPENed by
another OPEN statement (within the
same or another program) and any
free buffer may be associated with
the file

all OPENed data files are CLOSEd

all OPENed data files are CLOSEd,
and any data still in buffers, and
not yet written to disk will be
lost

all OPENed data files are CLOSEd

no OPENed data files are CLOSEd

BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

a program 1interruption occurs (upon no OPENed data files are CLOSEd
execution of a STOP statement, or

when an error message is issued, or

when the user presses | C)]

an attempt is made to CLOSE an the CLOSE statement has no effect
already CLOSEd or not yet OPENed

file

Remark

It is good programming practice to always CLOSE a file when you have
finished with it, unless you want to chain another program (by CHAIN or
RUN with the R option or LOAD with the R option) working on the same
files and with the same acces mode. A LOAD or RUN without the R option,
or a SAVE command close all open files.

WRITING A SEQUENTIAL FILE

To write a sequential file you must OPEN it in Output ("0") or Append
(llAll) o

Output statements are PRINT#, PRINT# USING and WRITE#.

PRINT# and WRITE# output standard format data, whereas PRINT # USING
outputs data in a user defined format.

The difference between PRINT# and WRITE# is that:

- PRINT# writes data to a disk in the same format used by the PRINT
statement

- WRITE# writes data to a disk in the same format used by the WRITE

statement, i.e. inserting commas between data and quoting string values.

Note: LOC function may be used to know the number of sectors (256 byte
blocks) written to or read from the a file since it was OPENed, to avoid
a "Disk full" error message.

The following steps are required to write data to a sequential file.

12-9

STEP OPERATION EXAMPLES

1 Open the file, specifying 1¢ OPEN "0",1,"1:F1"
either "A", or '"0" as ac-
cess mode

2 Write a series of numeric

and/or string values to =
the file, using an output 5@ WRITE#1,AS$,B,CS
statement .

3 lepeat step 2 for each
butput operation :
15¢ WRITE#1,A1,B1,C1$

18¢ WRITE#1,A2,B2$,C2,D2

4 When you have finished with
the file close it (unless .
another CHAINed program 3¢@ CLOSE#1
uses the file with the
same access mode)

PRINT # (PROGRAM/IMMEDIATE)

Writes data to a sequential file, in the same way as the PRINT statement.

12-10 BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

ll PRINT # l AGrabor ’ expression |

file

-

Figure 12-3 PRINT# Statement

Where

SYNTAX ELEMENT

file number

expression

Remark

MEANING

is a numeric expression whose rounded value
specifies the number of the buffer associated
with the file

is a numeric, relational, logical or string
expression whose value is written to the file

An image of the data is written to the disk, just as it would be dis-
played on the screen with a PRINT statement. For this reason, care
should be taken to delimit the data on the disk, so that it will be input

correctly from the disk.

Characteristics

IE s

THEN. ..

a PRINT# statement is executed data is output sequentially to the

specified file

12-11

the file is OPENed for Output ("0")

the file is OPENed for Append ("A")

you want to set up your PRINT# list
correctly for access by one or more
INPUT# statements

you have to output numeric values
(resulting from the evaluation of a
numeric, relational or logical ex-
pression)

12-12

the file pointer is set to the
beginning of the file, therefore
your first PRINT# places data at
the beginning of the file.

For each PRINT# operation, the
pointer advances, so the values are
written in sequence

the file pointer is set to the end
of the file, therefore, your first
PRINT# places data after the last
data item on the file. For each
PRINT# operation the pointer ad-
vances, so the values are written
in sequence

remember that a PRINT# statement
creates a disk image similar to
that which a PRINT creates on the
screen.

PRINT# writes an ASCII coded image
of the data. The punctuation in the
PRINT# list is very important.

Unquoted commas and semicolons have
the same effect as they do in PRINT

statements

you may use both commas or semi-
colons to separate the expressions.

Generally you would not want to
waste disk space, so you should use

semicolons instead of commas.

For example:

BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

you have to output string values

you have to output string values
which do not contain commas, semi-
colons, significant leading or
trailing blanks, carriage returns
or line feeds

LIST

14 OPEN "0",#1,"DATAT"
20 A=1:B=2:C=3

3@ PRINT#1,A;B;C

4@ CLOSE#1

5@ OPEN "1",#1,"DATA1"
6@ INPUT#1,A1,B1,C1

7@ PRINT A1;B1;C1

8@ CLOSE#1
9@ END
Ok
RUN
1123
Ok
3¢ PRINT#1,A,B,C
RUN
1 2 3
Ok

If you separate the variables A,B
and C in statement 3@ with commas
instead of semicolons the program
displays the same results but you
waste disk space.

With semicolons the disk image will
be:

With commas it will be:

you have to insert explicit de-
limiters, if you want to INPUT#
them as distinct strings

use a comma as a string constant
(",") to separate string expres-
sions in the PRINT# statement. Thus
data items will be separated on the
disk by a comma and will be read
back as different strings by an
INPUT#statement.

12-13

12-14

For example:

LIST

1¢ OPEN "0'",#1,"DATA1"
20 AS$="CAMERA"

3¢ B$="936@5-2"

49 PRINT#1,A$;BS

5@ CLOSE#1

6@ OPEN "1",#1,"DATA1"
78 INPUT#1,A1$

8¢ PRINT A1$

9¢ CLOSE#1

199 END

Ok

RUN

CAMERA936@5-2

Ok

4@ PRINT#1,A$;",";BS
7@ INPUT#1,A15,B1$

8¢ PRINT A1$,B1$

RUN

CAMERA 936@5-2
0k

If you separate A$S and B$S by a
semicolon in statement 4@, the disk
image will be:

CAMERA936@5-2

Because there are no delimiters
this cannot be input as two sepa-
rate strings. To correct the prob-
lem, insert an explicit delimiter
(",") into statement 4@ and modify
statements 7@ and 8§ too. The disk
image will be:

CAMERA,936@5-2

This can be read back into two
string variables (see the new run)

BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

you have to output string values
containing commas, semicolons,
significant leading or trailing
blanks, carriage returns or line
feeds

write them to disk and surround
them by explicit quotation marks,
CHR$(34).

For example:

LIST

1¢ OPEN "0'",#1,"DATA1"

20 A$="CAMERA, AUTOMATIC"

3¢ B$=" 936@5-2"

40 PRINT#1,A$;BS

5@ CLOSE#1

6@ OPEN "1'",#1,"DATA1"

7¢ INPUT#1,A$,BS

8@ PRINT A$;BS

9@ CLOSE#1

1¢¢ END

Ok

RUN

CAMERAAUTOMATIC 936@5-2

0k

40 PRINT#1,CHRS(34);A$;CHRS(34);
CHRS(34); BS;CHRS(34)

RUN

CAMERA, AUTOMATIC 936@5-2

Ok

Statement 4@ writes the following
image to disk: :

CAMERA, AUTOMATIC 936@5-2
and statement 7@ inputs
CAMERA
to AS$ and
AUTOMATIC 936@5-2
to BS, as you can check by state-
ment 8§, when you run the program
for the first time. If you change

statement 4 as indicated, you
write the following image to disk:

12-15

""CAMERA, AUTOMATIC'"' 936@5-2"
and statement 7@ inputs

""CAMERA, AUTOMATIC'" to AS$ and

" 936@5-2" to BS, as you can
check by statement 8@, when you run
the program for the second time

PRINT# USING (PROGRAM/IMMEDIATE)

Writes data to a sequential file in a user defined format in the same way
as PRINT USING statement displays data on the screen.

.‘

string
expression

| expression I

Figure 12-4 PRINT# USING Statement

Where

SYNTAX ELEMENT

file number

string expression

expression

12-16

MEANING
is a numeric expression whose rounded value
specifies the number of the buffer associated

with the file

is the formatting characters fully described in
Chapter 7

is a numeric, relational, logical, or string
expression to be written to the file

BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

Remarks

Care should be taken to delimit data items on the disk, so that they will
be input correctly by an INPUT# statement.

For example, the statement:
PRINT#1,USING"####.##,";A,B,C,D

could be used to write numeric data to disk without explicit delimiters.
The comma at the end of the format string serves to separate the items in
the disk file.

See Chapter 7 for full details of the facilities offered by the PRINT
USING statement.

WRITE# (PROGRAM/IMMEDIATE)

Writes data to a sequential file, in the same way as the WRITE statement
displays data on the screen. Each data item will be separated from the
preceding one by a comma. Strings will be delimited by quotation marks
("). After the last item in the list is written to disk, BASIC inserts a
carriage return/line feed.

file expressi
WRITE # T xXpression

Figure 12-5 WRITE# Statement

Where

SYNTAX ELEMENT MEANING
file number is a numeric expression whose rounded value

specifies the number of the buffer associated
with the file

12-17

expression is a numeric, relational, logical or string
expression to be written to the file

Remarks

1t is not necessary to put explicit delimiters in the list of a WRITE
statement

If you want to write a string to a disk file that contains a quotation
mark ("), you must use a PRINT# instead of a WRITE# statement. A
quotation mark may be inserted by the CHR$(34) in a string value which
does not contain commas, semicolons, significant leading or trailing
blanks, carriage returns or line feeds. A quotation mark may also belong
to a string variable whose value is assigned by use of the READ and DATA
statements, or by an INPUT (LINE INPUT, INPUT#, LINE INPUT#) statement.

Example
DISPLAY COMMENTS
LIST Statement 4@ writes the following
1¢ OPEN '0",1,"DATA2" image to disk:
20 AS="CAMERA"
3@ BS='"936@5-2" ""CAMERA'', "'936@5-2"
49 WRITE 1,A$,BS
5¢ CLOSE 1 Statement 7@ inputs "CAMERA" to A$
6¢ OPEN "I'",1,"DATA2" and "936@5-2" to BS, as you can
7¢ INPUT 1,A$,BS check by statement 8¢
8¢ WRITE AS,BS
9@ CLOSE 1
10@ END
Ok
RUN
""CAMERA", "'936@5-2"
Ok

LOC (PROGRAM/IMMEDIATE)

With sequential files, LOC returns the number of sectors (256 byte
blocks) read from, or written to the file, since it was OPENed.

12-18 BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

LOC function may also be used with random files (see below).

file .< :) >
LoC o number

Figure 12-6 LOC Function

Where
SYNTAX ELEMENT MEANING
file number is a numeric expression rounded to
the nearest integer. It is the
number of the buffer associated
with the file
Example

2¢@ 1F LOC(2)> 3@ THEN STOP

READING A SEQUENTIAL FILE

To read a sequential file, you must open it in Input mode ("1").

INPUT# and LINE INPUT# statements allow you to read data from a sequen-
tial file. INPUT# reads one or more data items separated by delimiters
and assigns them to numeric and or string variables. LINE INPUT# reads an
entire line and assigns it to a string variable.

Besides these two statements, BASIC allows you to use the following two
functions, which are very useful in handling sequential files:

- the EOF function which allows you to test whether an end of file

condition exists to avoid further read operations which would cause the
following message to appear:

12-19

Input past end

- the LOC function which tells you the number of sectors (256 byte
blocks) read from or written to the file, since it was OPENed.

The following program steps are required to read data from a sequential

file.

STEP OPERATION

1 open the file, specifying
"I'" as access mode

2 input a series of numeric
and/or string values from
the file, using an INPUT#
and/or a LINE INPUT#
statement

3 repeat step 2 for each in-
put operation (possibly
testing for End Of File)

4 when you have finished
with the file, close it
(unless another CHAINed
program uses the file
with the same access mode)

INPUT# (PROGRAM/IMMEDIATE)

EXAMPLES

1¢ OPEN "'1' #2,"DATA"

5¢ INPUT#2,XS$,Y$,Z

10@ INPUT#2,X1,X2,X3, X4

15@ INPUT#2,US, WS

20@ CLOSE#2

Reads data items from a sequential file and assigns them to program

variables.

12-20

BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

—(inpuTs ;‘l'f;nber

Figure 12-7 1INPUT# Statement
Where

SYNTAX ELEMENT

file number

o=

is a numeric expression whose

MEANING

rounded value

specifies the number of the buffer associated

with the file

variable

is the name of a variable which will receive a

data item from the file

Remark

Unlike INPUT, the INPUT# statement does not display a prompt (?) when it

is executed.

Characteristics

)

an INPUT# statement is executed

THEN...

data is input sequentially from the
specified file. That is, when the
file is first opened, a pointer is
set to the beginning of the file.
Each time a data item is input, the
pointer moves to the next data
item. To restart reading from the
beginning of the file, close the
file and re-open it

12-21

you want to input data successfully

BASIC is inputting to a numeric
variable

BASIC is inputting to a string
variable

the first character is a quota-
tion mark (")

12-22

you need to know the type (numeric
or string) of each successive data
item on the file. Data items must
be separated by delimiters (see
below)

Note: Numeric items may be input
into string variables. If you input
a number into a string, use the VAL
function to get the numeric value,
to prevent mismatched type errors.

leading spaces, carriage returns
and line feeds are ignored. The
first character encountered that is
not a space, carriage return or

line feed 1is assumed to be the
start of a number. The number
terminates on a space, carriage

return, line feed or comma.

Note: Numeric conversions are val-
id. That is a numeric constant may
be assigned to a numeric variable
of different type, as with a LET,
an INPUT or a READ statement (see
Chapter 5)

leading spaces, carriage returns
and line feeds are also ignored.
The first character encountered
that is not a space, carriage
return, or line feed is assumed to
be the start of a string item

the string item will consist of all
characters read between the first
quotation mark and the second. The
quotation marks themselves do not
become a part of the string. (Thus,
a quoted string may not contain a
quotation mark as a character)

BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

the first character is not a quota-|| the string 1s an unquoted string

tion mark and will terminate with a comma, or
carriage return, or line feed (or
after 255 characters have been
read).

For example, if the data on disk
185

SUBROUTINES, SUBPROGRAMS "HOW TO
CALL THEM?"

the statement:
INPUT#1,RS,S$,TS
will assign values as follows:

RS = SUBROUTINES
S$ = SUBPROGRAM '"HOW TO CALL THEM?"
T$ = null string

If you insert a comma on the disk
file before the first quotation
mark, i.e.

SUBROUTINES, SUBPROGRAMS, '"HOW TO
CALL THEM?"

the same INPUT# statement will
assign:

R$ = SUBROUTINES
S$ = SUBPROGRAM
T$ = "HOW TO CALL THEM?"

Reads an entire line (up to a carriage return) from a sequential file and
assigns it to a string variable.

12-23

file string iy
LINE INPUT # number (:) variable

Figure 12-8 LINE INPUT# Statement

Where

SYNTAX ELEMENT

file number

string variable

Characteristics

g ZEE:

MEANING
is a numeric expression whose rounded value
specifies the number of the buffer associated

with the file

is the variable name to which the line will be
assigned

THEN. ..

a LINE INPUT# statement is executed = a line of string data is read into

12-24

the specified string variable.

LINE INPUT# reads all characters in
the file up to:

- a carriage return, or

a carriage return/line feed, or

the end of file, or

the 255th data character (this
255 character is included in the
string)

BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

leading characters or other delim-
iters are encountered - quotation
marks, commas, blanks, and so on..

you want to read in data without
following the usual restrictions
regarding leading characters and
terminators

you want to read an ASCII - format
BASIC program file as data

Remarks

they are included in the string

use LINE INPUT# statements

use LINE INPUT# statements. (You
can write programs that edit other
ASCI1 programs; renumber them,
change LPRINTs to PRINTs, etc.)

LINE INPUT# reads all characters in the sequential file up to a carriage
return. It then skips over the carriage return/line feed sequence and the
next LINE INPUT# reads all characters up to the next carriage return (If
a line feed/carriage return sequence is encountered, it is preserved).

Example

DISPLAY

LIST

1¢ INPUT "PROGRAM IDENTIFIER";P$
2¢ OPEN "1",1,P$

3¢ K%=@

4¢ 1F EOF(1) THEN 8¢

50 K%=K%+1

6@ LINE INPUT# 1,A$

7¢ GOTO 4¢

8@ PRINT P$ " 15" K% "LINES LONG'"
9@ CLOSE

199 GOTO 1¢

119 END

Ok

RUN

COMMENTS

this program counts the number of
lines in an ASCII format program
file. Each line ends with a car-
riage return/line feed, thus the
LINE INPUT# in line 6@ reads one
entire line at a time, into the
dummy variable A$. Variable K%
counts the lines of the program

12-25

PROGRAM IDENTIFIER? V1:P1
V1:P1 1S 35¢ LINES LONG
PROGRAM IDENTIFIER? V1:P2
V1:P2 1S 152@ LINES LONG
PROGRAM IDENTIFIER?A C
Break in 10

Ok

EOF (PROGRAM)

Returns -1 (true) if the

Use EOF to test for end
end" errors.

end of a sequential file has been reached.

of file while INPUTting, to avoid 'Input past

Roer 0)

Figure 12-9 EOF Function

Where

SYNTAX ELEMENT

file number

Example
19 DIM A(50)

2¢ OPEN "1'",1,"DATA1"
3¢ FOR K%=@ TO 5@

12-26

MEANING
is a numeric expression rounded to the nearest

integer. It is the number of the buffer
associated with the file

BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

4¢ 1F EOF(1) THEN 1¢¢
5¢ INPUT#1,A(K%)
6@ NEXT K%

UPDATING A SEQUENTIAL FILE

To update a sequential file, read in the file and write out the updated
data to a new output file, as indicated by the following table.

STEP OPERATION
1 Open the sequential file to be updated for Input
2 Open another new sequential file for Output
3 Input a list of data and update them as necessary
4 Output the updated data to the new file
5 Repeat steps 3 and 4 until all data has been read, updated and

output to the new file; then go to step 6

6 Close both files (unless you want to chain a program working on
the same files with the same access mode)

DEFINING A RECORD LAYOUT

After opening a random file you have to define the record layout by a
FIELD statement. FIELD organizes the random file buffer so that you can
pass data from the program to disk and vice versa. The record can be
divided up into any number of fields by a FIELD statement, but the total
number of bytes allocated in a FIELD statement must not exceed the record
length that was specified when the file was OPENed. Otherwise, a 'Field
overflow" error occurs. (The default record length is 256).

12-27

The FIELD statement sets up the size of each of these fields and allows
string variable names to point to each field. These field names, unlike
ordinary strings which point to an area in memory called "string space',
point to the buffer area associated with the file.

All data, both strings and numbers, must be placed into the buffer in
string form. There are three pairs of functions (MKIS$/CVI, MKSS$/CVS,
MKD$/CVD) for converting numbers to strings and vice versa.

Note: Do not use a field name in an INPUT statement, or on the left side
of a LET statement. That name will no longer point to the buffer field
(but to the string space); therefore, you will not be able to access that
field using the previously assigned field name.

FIELD (PROGRAM/IMMEDIATE)

Defines fields in a random file buffer.

file field field
®

Figure 12-10 FIELD Statement

Where
SYNTAX ELEMENT MEANING

file number is a numeric expression whose rounded value
specifies the number of the buffer associated
with the file

field width is the number of bytes to be allocated to the
field. One byte corresponds to one characters of
data

field name is the str1ngvname to be assigned to the field
defined by the immediately preceeding fiela
width

12-28 BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

Examples
DISPLAY
2@ FIELD#1,15 AS NAMES,2@ AS CS$,
19 AS PS
8@ NAMES=BS

(Wrong)

1¢¢ LSET NAMES=BS (Right)

3¢ FIELD#2,128 AS N1$,128 AS N2$

10@ FIELD#2,128 AS N3$,108 AS N4$,
28 AS N5$

5¢ FIELD#3,16 AS K$(1),112 AS LS(1)

9¢ FIELD#3,128 AS DUMMYS,
16 AS K$(2),112 AS LS(2)

Remarks

COMMENTS

Statement 2@ allocates the first 15
positions (bytes) of the random
file buffer#1 to the name NAMES,
the next 2@ to C$ and the (last) 10
to PS.

After executing statement 8@ NAMES
becomes an ordinary string variable
name. You will not be able to
access the first field of the
buffer any more.

Use statement 1@@ instead (see
LSET/RSET statements below)

You may use FIELD any number of
times to ''re-organize'" a file
buffer.

Re-organizing a buffer by a FIELD
statement does not clear the con-

tents of the Gtuffer; only the
means of accessing the buffer
(the field names) are changed.

Thus two or more field names can
reference the same area of the buffer

You may use a dumny variable in a
FIELD statement to 'pass over" a
portion of the buffer and start
fielding it somewhere in the
middle.

In the second FIELD statement,
DUMMYS serves to move the starting
position of K$(2) to position 129

It is good programming practice that the sum of all the field widths
equals the record length specified by the OPEN statement. In any case

12-29

this sum must not be greater than the record lenght, otherwise a "Field
overflow" error occurs.

WRITING RECORDS TO A RANDOM FILE

To write records to a random file, you must open it, specifying '"R" as
access mode.

The PUT-File statement allows you to write a record to a random file. The
contents of the record must have been prepared within the random buffer
before executing the PUT-File statement by LSET or RSET statements. LSET
and RSET move data from memory to the random file buffer by allocating
string expressions to the field names previously defined.

1f the string expression uses less bytes than you had allocated in the
FIELD statement the extra space allocated is padded with blanks. These
blanks can be set to be on the left or the right of the string expression
value. Left justification (see the LSET statement) starts at the first
position of the field. Right justification (see the RSET statement)
finishes at the last position of the field. When you have to transfer
numeric values into the buffer you must convert them to strings by the
MK1S$, MKS$ and MKD$ functions.

Note: The LOC function either returns the record number written from a
PUT-File statement or gets the record number just read from a GET-File
statement.

The following program steps are required to write records to a random
file.

STEP OPERATION EXAMPLE

1 open the file, specifying 1@ OPEN 'R",#1,'"1:DIR",22
"R" as access mode and
(optionally) the record

length

Z field the buffer 2@ FIELD#1,15 AS AS,5 AS BS,
2 AS C$

12-30 BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

3 insert data into the
buffer

4 write a record to the file

5 to write another record

continue at step 3. Other-
wise, go to step 6

6 close the file (unless you
want to chain a program
working on the same file
with the same access mode)

10@ LSET AS="JOHN JONES"
11¢ LSET B$="U.K."
120 LSET C$=MK1$(1%)

13@ PUT 1,5

15@¢ CLOSE#1

LSET/RSET (PROGRAM/IMMEDIATE)

LSET stores a string value in a random buffer field left justified, or
left justifies a string value in a string variable

RSET stores a string value in a random buffer field right justified, or
right justifies a string value in a string variable.

I string I

variable

Figure 12-11 LSET/RSET Statements

l expression I

numeric
expression

12-31

DISK FILE HANDLING

Where

SYNTAX ELEMENT

field name

string variable

MKI$/MKSS/MKDS

string expression

numeric expression

Examples

DISPLAY

MEANING

is a string variable name which specifies the
name of a field of a random buffer

the name of an ordinary string variable
the 'make' function which converts an integer
(MK1$), or a single (MKS$), or a double (MKDS)

precision value to a string value

the string to be left or right justified in a
given field

the numeric value to be converted to a string
and left or right justified in a given field

COMMENTS

19 OPEN "R",#1,"1:MYFILE/MYPASS",2¢ @ Statements 3¢ and 4§ put the data

2¢ FIELD#1,1¢ AS N1$,18 AS N2$ in the buffer #1 as follows:
3¢ LSET N1$="CHARLES"
4@ LSET N2S$="JAMES" N1$
5 ICHARLES
10@ RSET N1$='"CHARLES"
11@ RSET N2$="JAMES"
N2$
2@ LSET N1$="CHARLES THOMSON" JAMES

12-32

Statements 19@ and 11¢ put the cata
in the buffer as follows:

N1$

CHARLES

BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

N2$

JAMES

Statement 2@@ put the data in the
buffer as follows:

N1$

HARLES TH

Note: If a string is too long to
fit in the specified buffer field,
it is truncated on the right,
irrespective of whether LSET or
RSET was specified.

119 AS=SPACES(2¢) LSET and RSET can also be used with

12¢ RSET A$=N$ a non field variable to left
justify or right justify a string
in a given field. This can be a
useful formatting technique when
printing output.

In the example on your left RSET
right justifies the string N$ in a
2@-character field

MKL$/MKS$S/MKDS (PROGRAM/IMMEDIATE)

These functions change a number to a string.

MKI$ converts an integer to a 2-character string

12-33

DISK FILE HANDLING

MKS$ converts a single precision value to a 4-character string

MKDS$ converts a double precision value to an 8-character string

(xis }—(O—] xores
expression

Fiqure 12-12 MKI$ Function

single
MKS$ 0 precision —o@—b
expression

Figure 12-13 MKS$ Function

double
MKD$ 0 precision _.®_.
expression

Figure 12-14 MKD$ Function

Examples

DISPLAY COMMENTS
3@ LSET D$=MK1$(1%) Field name D$ would now contain a

two byte representation of the
integer 1%

12-34 BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

1008 STRACS=MKSS(SPV)

A '"make" function is not confined
to use with the LSET and RSET
statements. Here SPV is the name of
a single precision variable, which
is converted into a 4 character
string and assigned to the STR4CS
variable

PUT-File (PROGRAM/IMMEDIATE)

Writes data from a random file buffer to a random file.

@ o file J | record l
number number

Figure 12-15 PUT-File Statement

Where

SYNTAX ELEMENT

file number

record number

MEANING

is a numeric expression which specifies the
number of the buffer associated with the file

is a numeric expression which specifies the
record number in the file. The smallest record
number 1is 1, the largest 32767. 1f this
parameter is omitted, the current record number
is assumed.

Note: The current record is the record whose
number 1is one higher than that of the last
record accessed. The first time you access a
random file the current record number is set
equal to 1

12-35

Example

DISPLAY

LIST

1@ OPEN "r'",1,"1:RAND",48
2@ FIELD 1,28 AS R1$,20¢ AS R2$,8 AS R3$
3@ FOR L=1 TO 4

4@ INPUT "name' ;NS

5¢ INPUT "address';M$
6@ INPUT "phone'";P#
7@ LSET R1$=N$

8@ LSET R2$=M$

9@ LSET R3$=MKSS$(P#)
168 PUT 1,L

11¢ NEXT L

12@ CLOSE 1

13@ END

Ok

RUN

name? super man
address? USA

phone? 11234621

name? robin hood
address? England
phone? 23462101

Ok

COMMENTS

Statement 1§ opens the random
file RAND, with a record length
of 48 on the diskette mounted in
drive 1. The file number is 1.
Statement 20 divides the buffer
into fields.

Statement 10@ writes a record to
file RAND, with the record
number being set by the control
variable of the FOR/NEXT loop

12-36

BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

With random files,

LOC (PROGRAM/IMMEDIATE)

the LOC function either gets the record number just

read from a GET-File statement, or returns the record number just written

from a PUT-File statement.

file
number

Figure 12-16 LOC Function
Where

SYNTAX ELEMENT

file number

Example

DISPLAY

1¢ OPEN "R",2,"TOWNS'",80

2¢ FIELD 2,20 AS F1$,2@8 AS F2§,
20 AS F3$, 2@ AS F4$

3¢ v=1

10@ AS="MILAN L
110 GET 2,Y

120 Y=Y+1

13@ 1F F1$=A$ THEN PRINT

MEANING

is a numeric expression rounded to
the nearest integer. It 1is the
number of the buffer associated
with the file

COMMENTS
here F1$ is a field name. If F1$

matches AS$, the record number in
which it was found is displayed

12-37

""FOUND IN RECORD";LOC(2):
CLOSE:END
14¢ GOTO 114

Remark

1f the file is open, but no disk 1/0 has been performed yet, LOC returns
the value @.

READING RECORDS FROM A RANDOM FILE

To read records from a random file you must open it, specifying "R" as
access mode. The GET-File statement allows you to read a record from a
random file. GET-File specifies both the file number and the number of
the record to be read. When executing a GET-File, the contents of the
specified record is transferred into the file buffer.

To access a single data item stored in the buffer (field name) you may
use either:

- a LET statement (if you want to assign it to a program variable), or

- a PRINT, PRINT USING, LPRINT, or LPRINT USING statement (if you want to
display or print it)

Note: If you have to assign, display or print a field name to be con-
verted to a number you must convert it using a CVI, or CVS or CVD
function.

Note: The LOC function returns the number of the record just read by a
GET-File or written by a PUT-File statement.

The following program steps are required to read data from a random file.

12-38 BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

STEP OPERATION EXAMPLES

1 open the file, specifying 1@ OPEN "R",#2,"1:DIR",22
"R" as access mode and
(optionally) the record
length

2 Structure the buffer by a 20 FIELD#2,15 AS AS$,5 AS BS,2 AS C$
FIELD statement

3 Read a record from the 100 GET#2,A
file (variable A contains
the record number).

4 extract data from the 100 A15=AS
buffer by either a LET or 12¢ PRINT BS
a PRINT (PRINT USING) 13¢@ 1%=CVI(CS)

statement. Numeric values
(stored in string format
within the buffer) must be
converted to numbers using
the "convert" functions:
CVl, CVS and CVD

5 to read another record,
continue at step 3. Other-
wise, go to step 6
6 close the file (unless you = 5@@ CLOSE#2

want to chain a program
working on the same file)

Note: In a program that performs both input and output on the same random
file, you can often use just one OPEN statement and one FIELD statement.

GET-File (PROGRAM/IMMEDIATE)

Reads a record from a random file.

12-39

n file record _)_.
GET o number (:) number

Figure 12-17 GET-File St

Where

SYNTAX ELEMENT

file number

record number

Examples

DISPLAY

LIST
1¢ OPEN "r'",1,"1:RAND", 48

atement

MEANING

is a numeric expression, whose rounded value
specifies the number of the buffer associated
with the file

is a numeric expression whose rounded value
specifies the number of the record to be read
(i.e. transferred to the buffer). 1f omitted,
the current record is read.

The smallest record number is 1, the largest
32767

Note: The current record is the record whose
number 1is one higher than that of the last
record accessed. The first time you access a
random file (without specifying a record number)
the current record number is set equal to 1

COMMENTS

This program retrieves informa-
tion stored in the specified

2¢ FIELD 1,2¢ AS R1$,2¢ AS R2$,8 AS R3$ file. The data read into the

3¢ FOR L=1T0 4

4¢ GET 1,L

5@ PRINT R1%,R2%,CVD(R3$%)
6@ NEXT

12-40

buffer may be accessed by the
program. This is done here by a
PRINT statement (see statement
5¢).

BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

7@ CLOSE 1 These data items were written to
8¢ END the file by the PUT-File state-
Ok ment.

RUN

Super man USA 11234621

robin hood England 23462191

Ok

CVI/CVS/CVD (PROGRAM/IMMEDIATE)

Convert string values to numeric values.

CVI converts a 2-character string to an integer

CVS converts a 4-character string to a single precision number
CVD converts a 8-character string to a double precision number

(Cev)—() oo
g

2 byte
field name

Figure 12-18 CVI Function

—O~—[a
string

4 byte
field name

Figure 12-19 CVS Function

12-41

8 byte
string |

8 byte
field name

Figure 12-20 CVD Function

Examples

10 X#=CVD(N$)
20 Y!=CVS(R1$)

UPDATING RECORDS OF A RANDOM FILE

To update a random file, read in each record to be updated and rewrite
it, as indicated by the following table.

STEP OPERATION

1 open the random file

2 divide the buffer into fields

3 read the record to be updated

4 extract data items from the buffer to display them or assign

them to program variables

5 insert new values into the buffer fields

6 write the updated record

4 to update another record, continue at step 3. Otherwise, go to
step 8

8 close the file (unless you want to chain a program working on

the same file)

12-42 BASIC LANGUAGE - REFERENCE MANUAL

DISK FILE HANDLING

Example

DISPLAY

LIST

1@ OPEN "r',1,"1:filetext",128
2@ FIELD 1,128 AS AS

3@ INPUT "record number '';RNUM
4@ GET 1,RNUM

5@ PRINT A$

6@ INPUT "give me data '";PP$
7@ LSET AS='"new data --'"+PP$
8¢ PUT 1,RNUM

9@ INPUT "CONTINUE (y/n) ";R$
19¢ 1F R$="y'" THEN 3¢

11¢ CLOSE

Ok

RUN

record number ? 1

new datapoloo

give me data ? gio

CONTINUE (y/n) ? vy

record number ? 1

new data --gio

give me data ? pol

CONTINUE (y/n) ? n

Ok

COMMENTS

Statement 1@ opens a random file,
called filetext and residing on the
diskette mounted in drive 1.

Statement 2@ specifies only one
field name in this case .

Statement 4§ reads the record to be
updated, whose number is entered
via keyboard by statement 3@.

Statement 5@ displays data from the
buffer.

Statement 7¢ inserts new values
into the buffer field, chaining the
string variable PP$ to the string
constant '"'new data s

Statement 8@ writes the updated
record.

Statements 9¢ and 1¢¢ allow you to
continue or to stop.

Statement 11¢ closes the file

12-43

13. DEBUGGING AND ERROR RECOVERY

ABOUT THIS CHAPTER

This chapter describes the statements, and some of the techniques, used
for diagnosing and correcting errors {(bugs).

CONTENTS
TYPES OF ERRORS 1341

TRACING PROGRAM EXECUTION 13-2

TRON/TROFF 13-2
(PROGRAM/TMMEDIATE)

INTERRUPTING PROGRAM 13-3
EXECUTION

END (PROGRAM) 13-4
STOP (PROGRAM) 13-4
CONT (IMMEDIATE) 13-5

ERROR TESTING AND RECOVERY 13-7

ERROR (PROGRAM/IMMEDIATE) 13-8
0l ERROR GOTO (PROGRAM) 13-9
ERL/ERR (PROGRAM/IMMEDIATE) 13-11

RESUME (PROGRAM) 13-13

DEBUGGING AND ERROR RECOVERY

TYPES OF ERRORS

Even accomplished programmers can rarely write an error-free program at
the first attempt. There are, in general, two types of errors that can be
made (excluding errors made when entering a line which have already been
described in Chapter 1):

- run-time errors, which halt execution and cause an error message

- logic errors, which permit complete execution, but cause incorrect or
unexpected results.

The process of finding the cause of an error (often called a "bug'") is
termed ''debugging'. The M20 provides a number of features that reduce the

cost and frustration of debugging.

TYPES OF ERRORS

Run-time errors (i.e.
errors detected by the
M20 when executing a
program or an immedi-
ate line)

Logic errors (i.e.
errors that permit
complete execution,
but cause incorrect
or unexpected results)

COMMENTS

They may be Syntax errors (when a line contains
some incorrect sequence of characters) or other
types of run-time errors (NEXT without FOR,
RETURN without GOSUB, etc...).

You can also simulate the occurrence of a BASIC
error, or generate a user defined error type (to
be handled by an error trap routine). See ERROR
and ON ERROR GOTO statements below.

These errors are the most difficult to find. To
give a simple example, assume you have written a
program that is supposed to print the results of
15 calculations. When the program is run, only
11 results are printed. Obviously something is
wrong, but if the program is long and complex,
with many branches, 1loops and subroutines,
finding the error is not a simple task. Perhaps
you have transferred control to a statement you
did not intend to and some calculation is not
being performed. You could have gone wrong in
many ways. In such cases, the ability to trace
exactly which statements are being executed -
and when - would be very useful.

13-1

TRACING PROGRAM EXECUTION

A convenient method of debugging logic errors is to trace the order of
statement execution in all or part of a program. The M20 provides the
following two tracing commands (they may also be used as program state-
ments) :

TRON/TROFF (PROGRAM/IMMEDIATE)

TRON (TRACE ON) causes the line number of each statement executed to be
listed.

TROFF (TRACE OFF) stops the line number listing initiated by TRON.

Figure 13-1 TRON Command

Figure 13-2 TROFF Command

142 BASIC LANGUAGE - REFERENCE MANUAL

DEBUGGING AND ERROR RECOVERY

Example

DISPLAY

TRON

Ok

LIST

19 K=1¢

2@ FOR J=1 T0 2

30 L=K+1¢

4@ PRINT J;K;L

50 K=K+1¢

6@ NEXT

7@ END

Ok

RUN

(9] [20] (3@] (48] 1 19 20
(5¢] [eg] [3¢] (48] 2 2¢ 3¢
(5¢] [60] [79]

0Ok

TROFF

Ok

COMMENTS

TRON sets the trace flag that
displays each line number of the
program as it is executed. The
numbers appear enclosed in square
brackets.

The numbers which are not enclosed
in square brackets (in the example)
are the output of the statement

4@ PRINT J;K;L
The trace flag is set to off with

TROFF (or when a NEW command is
executed).

INTERRUPTING PROGRAM EXECUTION

A program is interrupted if:

- you press GG NN, or

- a STOP or END statement is executed, or

- an error message is displayed.

In any of the above mentioned cases, the M20 enters Command Mode, (except
in the case of a Syntax error when M20 enters Edit Mode). If you are 1

Command Mode, you may display program variables (by immediate PRINT o
PRINT USING statements) or change their values (by immediate LET or SWAP

statements.

You can continue execution by entering a CONT command

(except when an error is encountered, or if you modify the program).

13-3

END (PROGRAM)

Interrupts program execution, closes all data files and returns to Com-
mand Mode.

Figure 13-3 END Statement

Remarks

Although it is not essential for a program to finish with an END state-
ment, it is useful in that it closes all open files, and it enhances
readability. The END statement is also useful in enabling the program to
be terminated at the end of a branch. For example:

25¢ 1F Z>1¢@@ THEN END

END statements may be placed anywhere in the program to terminate exe-
cution. ‘

Unlike the STOP statement, END does not cause a BREAK message to be
displayed. The execution of an END statement always causes a return to
Command Mode. You may display the values of program variables by an

immediate PRINT (or PRINT USING) statement, and you may resume execution
by a CONT command (but take care as all files have been closed).

STOP (PROGRAM)

Interrupts program execution and returns to Command Mode.

Figure 13-4 STOP Statement

13-4 BASIC LANGUAGE - REFERENCE MANUAL

DEBUGGING AND ERROR RECOVERY

Remarks

Like END, a STOP statement can be used anywhere in a program. When a STOP
is encountered, the following message is displayed:

Break in line nnnnn
Unlike the END statement, the STOP statement does not close files.

BASIC always returns to Command Mode after a STOP is executed. Execution
is resumed by issuing a CONT command (see below).

Example
DISPLAY COMMENTS

LIST Statement 3@ allows you to check and observe the
1@ INPUT A,B,C first value of X before the second is calculated
20 X=A*B and displayed.
3@ STOP
4f X=X/C Although in such a simple case the STOP state-
5@ PRINT X ment does not appear very useful, it can be very
6@ END useful in larger programs: by entering a STOP at
Ok the end of a branch, for example, the program
RUN will only stop if the branch is used. It also
? 4,3,6 enables you to change some variables before the
Break in 30 program is CONTinued: a useful diagnostic test.
Ok
PRINT X When the program has been sufficiently tested,

12 you have to delete all the STOPs inserted for
Ok debugging and RENUMber the program.
CONT

2
Ok

CONT (IMMEDIATE)

Continues program execution after either a has been entered,

or a STOP or an END statement encountered.

Execution resumes at the point where the break occurred.

13-5

Figure 13-5 CONT Command

Characteristics

j { NS

you press

CTRL after a
prompt from an INPUT

statement

either a STOP is en-
countered or and END
statement

13-6

THEN. ..

execution continues with the reprinting of the
prompt (? followed by a blank, or prompt
string).

intermediate values may be examined and changed
using immediate statements (PRINT, PRINT USING,
LET, SWAP).

Execution may be resumed with CONT or an immedi-
ate GOTO, which resumes execution at a specified
line number. (Entering RUN 1line number instead
of GOTO 1line number will clear all program
variables.)

For example:

1@ INPUT A,B,C
20 K=AA 2*%5.3:L=BA 3/.26
3@ STOP
4@ M=C*K+1@@:PRINT M
RUN
1,2,3
Break in 3¢
Ok
PRINT L
30.7692
Ok
CONT
115.9
Ok

BASIC LANGUAGE - REFERENCE MANUAL

 DEBUGGING AND ERROR RECOVERY

the program has been CONT is invalid
edited during the
break
OR
an error is issued

ERROR TESTING AND RECOVERY

Normally, when an error is encountered, BASIC handles the error by halt-
ing execution and displaying an appropriate message. In the case of a
syntax error, the M20 goes into Edit Mode. In all other cases the M20
goes into Command Mode.

Often the user wants the handling of a particular error to be different
from this. This is accomplished by writing his own error-handling
routine.

Through use of the ON ERROR GOTO statement, error handling routines can
be entered so that execution continues with the specified line after an
error occurs. Only one error handling routine may be active at any given
time.

Execution of an ON ERROR GOTO @ outside an error handling routine
disables error trapping.

Execution of an ON ERROR GOTO @ inside an error handling routine
specifies normal error-handling for any error which the routine does not
handle.

When an error occurs and the error trapping has been enabled, execution
is transferred to the specified line. Then the ERR and ERL functions
could be tested and error recovery procedures could be executed. The ERR
function contains the error code, the ERL functiun contains the line
number of the line in which the error was detected.

A user-error handling routine should check for all the particular errors
the user wishes to recover from, and indicate what - to do in each case.
This usually involves correcting the error, and resuming execution at the
statement where the error occurred, rather than returning to Command
Mode.

13-7

ERROR (PROGRAM/IMMEDIATE)

Simulates the occurrence of a BASIC error, or generates a user defined

error.

ERROR

numeric
expression

Figure 13-6 ERROR Statement

Where

SYNTAX ELEMENT

numeric expression

Characteristics

IF. ..

the value of the
numeric expression
equals an error code
already in use by
BASIC (see Appendix F)

13-8

MEANING

the value of the numeric expression represents
an error code.

It must be greater than @ and less than or equal
to 255. If it is not an integer, it is rounded
to the nearest integer.

Note: BASIC does not use all the error codes
available. The initialised error codes display
the message 'Unprintable error'

THEN. ..

the ERROR statement will simulate the occurrence
of that error, and the corresponding error
message will be displayed.

For example:
LIST
19 S=13

20 T=5
30 ERROR S+T

'BASIC LANGUAGE - REFERENCE MANUAL

'DEBUGGING AND ERROR RECOVERY

4% END

0k

RUN

String too long in line 3@
Ok

Or, in immediate mode:

ERROR 15
String too long
Ok
the value of the the ERROR statement will generate a user-defined
numeric expression error. This user-defined error code may then be
is greater than any handled in the error handling routine (see ON
used by BASIC error ERROR GOTO below).
codes
Note: To define your own error, use a value that
is greater than any used by BASIC error codes.
(It is preferable to use the highest available
values, so compatibility may be maintained if
more error codes are added to BASIC).
an ERROR statement BASIC responds with the message:
specifies a code for
which no error mes- Unprintable error

sage has been defined

ON ERROR GOTO (PROGRAM)

Enables error handling and specifies the first line of the error handling
routine. (Each BASIC program may only have one active error handling rou-
tine at any given time.)

line
ON ERROR GOTO e —

Figure 13-7 ON ERROR GOTO Statement

13-9

Where

SYNTAX ELEMENT MEANING

line number is the first line of the error handling routine.
1t must be greater than @ and less than or equal
to 65529.

Note: The statement ON ERROR GOTO # does not
enable error trapping at a routine whose first
line 1is zero, but, rather it disables error
trapping. Thus, if ON ERROR GOTO @ is within the
error handling routine and that statement is
reached with an error still pending, then the
standard error message is displayed and Command
Mode is entered.

Example

DISPLAY

If you enter a value of
'IB greater than 5¢¢@,
. the message:

119 ON ERROR GOTO 400
12¢ INPUT "WHAT 1S YOUR BET";B HOUSE LIMIT 1S $5¢0¢
139 1F B > 5@¢@@ THEN ERROR 21¢
lis displayed and exe-
cution resumes at 120.
If any other error is
4¢P 1F ERR=21¢ THEN PRINT "HOUSE LIMIT 1S $5@@8" |encountered statement

41@ 1F ERL=13@ THEN RESUME 120 420 causes the standard
42¢ ON ERROR GOTO @ error message to be
displayed.

13-10 BASIC LANGUAGE - REFERENCE MANUAL

DEBUGGING AND ERROR RECOVERY

Characteristics

)

Error trapping has
been enabled

Line number does not
exist

an ON ERROR GOTO @ is
executed

an ON ERROR GOTO @ is
executed within an
error trap routine

an error occurs during
execution of an error
handling routine

Remark

THEN. ..

all errors detected, including immediate mode
errors, will cause a jump to the specified error
handling routine.

an "Undefined line" message is displayed.

error trapping is disabled. Subsequent errors
will display a standard error message and halt
execution.

BASIC displays the standard error message for
the error which caused the trap and stops.

Note: It is recommended that all error handling
routines execute an ON ERROR GOTO @, if an error
is encountered for which there is no recovery
action.

the BASIC error message 1is displayed and
execution terminates. Error trapping cannot be
activated within an error handling routine.

"Overflow'" and ''division by zero'" errors cannot be trapped.

ERL/ERR (PROGRAM/IMMEDIATE)

When an error occurs the ERL function returns the line number of the line
in which the error was detected, and the ERR function returns the error

code.

13-11

line
number

Figure 13-8 ERL Function

6. o B @

Figure 13-9 ERR Function

Characteristics

The ERL and ERR functions are usually used in IF...THEN...ELSE or IF...
GOTO...ELSE statements to direct program flow in the error handling
routine.

IF e THEN. ..
the statement that ERL will contain 65535.
caused the error was To test if an error occurred in an immediate
an immediate state- statement, use:
ment
IF 65535=ERL THEN...
Otherwise, use:
IF ERR = error code THEN...
IF ERL = line number THEN...
the line number is it cannot be renumbered by RENUM.

not on the right side
of the relational
operator

13-12 BASIC LANGUAGE - REFERENCE MANUAL

DEBUGGING AND ERROR RECOVERY

Example

DISPLAY

LIST
10 REM RECTANGLE2
2@ ON ERROR GOTO 74
3¢ INPUT "Length and Width";L,W
4¢ TF (L<@) OR (W<@) THEN ERROR 20@
50 PRINT "Area=";L*W;" L=";L;" W=";W
6@ GOTO 3¢
7¢ 1F (ERR=2¢@) AND (ERL=4¢)
THEN PRINT "L or W<@":RESUME 30
8¢ ON ERROR GOTO @
99 END
Ok
RUN
Length and Width? -2,5
L or W<
Length and Width? 2,5
Area= 18 L=2 W= 5
Length and Width? AC
Break in 3¢
Ok

Remarks

COMMENTS

If you enter a negative
value for L or W, the
error handling routine
is activated and the
system displays:

L or W<@

Execution is resumed at
statement 3@ (see RE-
SUME statement below).
Note the use of ERR and
ERL functions in the
error handling routine.

These functions can also be used as regular BASIC functions.

For éxample:
PRINT ERR
PRINT "Too big", ERL

1% = ERR

RESUME (PROGRAM)

Resumes execution after the error handling routine has been entered.

13-13

line
number

Figure 13-10 RESUME Statement

Where

SYNTAX ELEMENT

)

NEXT

line number

Remark

MEANING

Execution will resume at the statement which
caused the error.
Note: RESUME @ and RESUME are equivalent

Execution will resume at the first statement
after the one causing the error

Execution will resume at the specified line
number

A RESUME statement that is not within an error handling routine causes a
"RESUME without error'" message to be displayed.

13-14

BASIC LANGUAGE - REFERENCE MANUAL

DEBUGGING AND ERROR RECOVERY

Examples

DISPLAY

LIST

1¢ REM RECTANGLE3

2@ ON ERROR GOTO 7¢

3@ INPUT "Length and Width'";L,W

49 1F (L<@) OR (W<@) THEN ERROR 2¢@

5@ PRINT "Area=";L*W;" L=";L;" W=";W

6@ GOTO 3¢

7¢ 1F (ERR=2@@) AND (ERL=4@) THEN RESUME

8¢ ON ERROR GOTO @

9@ END

Ok

RUN

Length and Width? -2,5
AC

0k

78 1F (ERR=2@@) AND (ERL=4@) THEN RESUME NEXT

RUN

Length and Width? -2,5
Area=-1@ L=-2 W= 5
Length and Width? AC
Break in 3@

013

7@ 1F (ERP=2@@) AND (ERL=4@) THEN RESUME 3@
RUN

Length and Width? -2,5

Length and Width? 2,5

Area= 10 L= 2 W=5

Length and Width? AC

Break in 3¢

Ok

COMMENTS

If you enter a negative
value for L or W, the
error handling routine
is activated. 1In this
case the routine re-
sumes execution at the
statement which caused
the error, thus an
endless loop is en-
tered.

To stop
press:

execution

CTRL f C |

Correcting line 7@ in
this way, the error is
'ignored".

Correcting line 7¢ in
this way, the error
handling routine re-
sumes execution at
statement 30.

13-15

14. GRAPHICS

ABOUT THIS CHAPTER

This chapter provides an introduction to the graphics facilities avail-
able with BASIC on the M20. On a computer, 'graphics' is the way informa-
tion is conveyed in 'picture' form. This chapter explains how to execute
graphics operations on the M20; the term 'graphics' covers any combina-
tion of text and geometric forms.

CONTENTS
INTRODUCTION
WINDOWS

WINDOW - TO OPEN A
WINDOW (PROGRAM/IMMEDIATE)

WINDOW - TO SET WINDOW
SPACING (PROGRAM/IMMEDIATE)

WINDOW TO SELECT A
WINDOW (PROGRAM/IMMEDIATE)

CLOSE WINDOW
(PROGRAM/1MMEDIATE)

USING COLOURS

COLOR - GLOBAL COLOUR

SET SELECTION
(PROGRAM/IMMEDIATE)

COLOR - TO SELECT FOREGROUND
AND BACKGROUND COLOURS
(PROGRAM/IMMEDIATE)

CLS (PROGRAM/IMMEDIATE)

CO-ORDINATE SYSTEMS

14-11

14-1

14-2

14-3

14-8

14-9

14-10

14-11

14-14

14-15

14-16

14-17

SCALE (PROGRAM/IMMEDIATE)
SCALEX (PROGRAM/IMMEDIATE)
SCALEY (PROGRAM/IMMEDIATE)

DISPLAYING POINTS

PSET (PROGRAM/IMMEDIATE)
PRESET (PROGRAM/IMMEDIATE)
POINT (PROGRAM/IMMEDIATE)

DISPLAYING CURSORS

CURSOR (PROGRAM/IMMEDIATE)

POS (PROGRAM/IMMEDIATE)

DRAWING LTNES, RECTANGLES,

AND CIRCLES

LINE (PROGRAM/IMMEDIATE)
CIRCLE (PROGRAM/IMMEDIATE)

DRAW (PROGRAM/IMMEDIATE)

14-18

14-21

14-22

14-22

14-22

14-23

14-24

14-25

14-26

14-29

14-29

14-30

14-33

14-35

PAINT (PROGRAM/IMMEDIATE)

HOW TO STORE AND DISPLAY
WINDOWS AND RECTANGLES

GET - Graphics
(PROGRAM /IMMEDIATE)

PUT - Graphics
(PROGRAM/IMMEDIATE)

GRAPHICS FACILITIES
PROVIDED BY PCOS

14-40

14-44

14-44

14-46

14-50

14-iii

GRAPHICS

INTRODUCTION

There are two types of screen available with the M20: one has a black and
white display, the other a colour display. For both displays you can
select either a 512 x 256 or a 48§ x 256 pixel screen display (256
scanlines of either 512 or 48¢ pixels, where the term pixel is a contrac-
tion of ''picture element'" and scanline is a row of pixels).

To select the former (256 x 512 pixels) or the latter (48§ x 256 pixels)
display mode you may use either the SSYS PCOS command or the WINDOW (to

set window spacing) statement.

The maximum dimensions of the video image is 225 mm by 14@ mm.

>
>
>

1B

512 ‘pixels’
v ‘ \ v ‘

Figure 14-1 Display Modes (512 x 256 or 48§ x 256)

—

480 ‘pixels’

‘pixels’
‘pixels’

256
256

=
=

Each line of text on the video can contain either 64 or 8¢ characters.
The space between lines can 3lso be varied: a screen can display from 16
lines (minimum) to 25 lines (maximum).

A colour system may be either a 4-colour or an 8-colour system, depending
on whether 4 or 8 concurrent colours are permitted.

With the 4-colour version of the video, characters and graphics can be
displayed using four colours, selected from the eight colours provided
with the system. With the 8-colour version characters and graphics can
be displayed using all the eight colours simultaneously. The eight
colours are: black, green, blue, cyan, red, yellow, magenta and white.

With a colour display the background colour is normally black and the

foreground colour (the colour in which characters and graphics are
displayed) is green. For the black and white display the background is

14-1

normally black and the foreground white. You can alter these values to
suit your needs; later on in this chapter there is a description of how
these values can be changed (see the COLOR statement). For black and
white videos your only option is to reverse the normal method of
characters or graphics display (providing black characters/graphics on a
white background).

With both a black and white and a colour display, you can subdivide the
screen into rectangular areas, called '"windows'.

WINDOWS

A window is a portion of the screen that you can work on as if it were a
screen in its own right.A window can be used to display text, or graphics
or both text and graphics. The operations you perform within a window
have no effect on any other window you may have opened. The dimensions of
the windows you open are under your control by using the WINDOW (to open
a window) statement, which is explained later in this chaoter. If an
attempt is made to draw a figure or a label string (by a LABEL PCOS
command) which falls outside the current window boundary (i.e. outside
the window you are working on), only the portion of the figure (or the
label string) which falls inside the window boundary is drawn, and the
remainder is 'clipped". If you want to use graphics in a window you can
either select your own co-ordinate system or you can use the co-ordinate
system supplied by the system (these options are described later on in
this chapter).

By using the default co-ordinate system, the window is subdivided in 512
units along the x-axis and 256 units along the y-axis and the origin
(@,d8) is placed at the lower left-hand corner of the window.

The default co-ordinate system is then a user co-ordinate system unless
the video has not been split into windows and the 512 x 256 display mode
has been used.

By using a hardware co-ordinate system, it is possible to specify a pixel
by its (x, y) co-ordinates; by using a user co-ordinate system it is only
possible to specify the pixel nearest the (x, y) co-ordinates.

If you want to use a window to display and operate on lines of text, the
origin is placed at the top left-hand corner of the window, at the
position (1,1) where you enter your first character. (The text co-ordin-
ates are always expressed in terms of column and row). The CURSOR state-
ment (described later in this chapter) allows you to move to any charac-
ter position within the window.

14-2 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

Remember that graphics co-ordinates and text co-ordinates are totally
independent. Every window has two cursors, one for graphics, another for
text. The text cursor moves one position to the right as soon as you
enter a character. The graphic cursor does not move automatically when
graphic statements are executed. Both text and graphic cursors may be
positioned by using the CURSOR statement.

When BASIC is initially entered, the default co-ordinate system exists,
and the entire screen is one single window, window number 1. You may
define a new window to be a rectangular portion of any existing window.
To do that, you must use the WINDOW (to open a window) statement.

A maximum of sixteen windows can be opened. The SBASIC PCOS command may
be used to preallocate memory space for a specified number of windows.
WINDOW - TO OPEN A WINDOW (PROGRAM/IMMEDIATE)
Opens a new window by subdividing the current window (which is called the
"parent' window). The current window is the one you are working within.

When you open a new window, the current window from which it has been
generated is called the '"parent window".

This statement opens but does not select a new window. To select a window
you must use the WINDOW (to select a window) statement.

window
—={ number e w o quadrant position
variable

[J vertical horizontal
spacing I spacing

Figure 14-2 WINDOW Statement - To open a window

14-3

Where

SYNTAX ELEMENT

window number va

quadrant

position

14-4

MEANING

this is an integer variable, to which the system
assigns an integer value which identifies the
window you are opening. This value will be in
the range 2 to 16. The system assigns values in
ascending numeric sequence. The first window is
known to the system as window number 1, the
second 2, etc. Thus, if you are working within
window 4 and decide to open another window, the
system will assign number 5 to the new window,
unless any of the windows 2 or 3 have been
closed (see CLOSE WINDOW statement below), in
which case the new window will be assigned the
smallest available window number. Window 1 can
never be closed. The window being split (in this
example window 4) 1is called the parent window
because the new window is a subdivision of it.

Note: The complete screen is considered by the
system to be the first window and is therefore
assigned window number 1. If it is split to
generate other windows, it maintains the number
1

specifies in which part of the parent window a
new window will be opened.

There are four options:

g top section of the parent window
1 bottom section

2 left-hand section

3 right-hand section

this parameter defines the position where the
parent window is to be split to open the new
window.

If the value of ‘'quadrant' is @ or 1 then a
horizontal split will be made. The value

BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

vertical spacing

horizontal spacing

provided for 'position' is an integer number of
scanlines within the range 1 to 255.

Note: The splitting line (which is not drawn) is
always calculated from the top of the parent
window.

If the value of 'quadrant' is 2 or 3 a vertical
split will be made. In this case the integer
provided for ‘'position' will be an integer
number of characters within the following range:

lower limit =1

upper limit = (width of the parent window) - 1

Note: If position = -1, then the parent window
will be split in half (vertically or horizontal-
ly depending on the value of the quadrant).

If the 'quadrant' value is 2 or 3, the split is
calculated from the left-hand side of the parent
window.

this 1is an optional parameter which sets the
number of scanlines for each line of text, for
the window being opened. The minimum value for
'vertical spacing' is 10 scanlines; this pro-
vides 25 lines of text on the whole screen. The
maximum value is 16, providing 16 lines of text.
If both the 'vertical spacing' and the horizon-
tal spacing parameters are omitted, then the
vertical spacing of the parent window is
assumed. However 1if the vertical spacing is
omitted but the horizontal spacing is given and
is different than that of the parent window,
then the resulting vertical spacing will be 16
if the horizontal spacing is 8, and 1¢ if the
horizontal spacing is 6

this is an optional parameter which sets the
space between characters in a line of text, for
the window being opened. The 'horizontal spac-
ing' parameter is expressed in terms of 'pixels'
and can have one of two values 6 or 8. The first
of these values gives 8@ characters per full
screen line and the second 64. If this parameter

14-5

is omitted, then the horizontal spacing of the
parent window is assumed

Remark

When a new window is opened the previous contents of that area on the
screen are cleared and the background and foreground colours of the

parent window are assumed.

Examples

1IF you enter..

A=WINDOW(@,1¢9)

A=WINDOW(@,10d,14)

B=WINDOW(2,50)

A=WINDOW(@,199)
PRINT A

A=3:D=40:F=15:6=8
W=WINDOW(A,D,F,G)

14-6

THEN. ..

the screen is split horizontally, the new win-
dow is opened in the top part of the parent
window. The new window will have a height of a
hundred scanlines and line spacing is given
the value of the parent window

as above, except the vertical line spacing is
specified as 14 scanlines

the screen is split vertically, the new window
is opened in the left-hand part of the parent
window. The new window will be 5@ character
positions wide. Line-spacing has the value of
the parent window

the WINDOW statement opens a window which is
identified by the variable A. The operating
system assigns an integer value to this vari-
able. This can be displayed by the PRINT A
statement

the screen is split vertically, the new window
is opened in the right-hand part of the parent
window, the vertical spacing is 15 scanlines
and each full text 1line may contain 64
characters

BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

W2=WINDOW(1,184,16) these WINDOW statements split the screen into
W3=WINDOW(@,5@,16) five windows. The splitting sequence is shown
W4=WINDOW(2,16,16) in the following figures

W5=WINDOW(3,43,16)

=
Ty
)\ (=
)

Figure 14-3 Sequence Opening Windows

Remark

We have already seen that it is possible to specify the vertical and
horizontal spacing of a window at the time it is opened.

In some cases it may be necessary to vary these spacing values in a

window which has already been opened. You can do this using the WINDOW
statement with the parameters quadrant and position set to zero.

14-7

WINDOW - TO SET WINDOW SPACING (PROGRAM/IMMEDIATE)

This window statement is handled as a special case. A new window is not
opened. Instead the number of the current window is returned. This
statement can be used to vary character spacing and/or line spacing
values for an existing window.

— e - —O0—0—0—0

variable
vertical horizontal
spacing spacing

Figure 14-4 WINDOW Statement - To Set Window Spacing

Where

SYNTAX ELEMENT MEANING

window number variable @ the parameter 'window number variable' 1is an
integer variable to which the system assigns the
number of the current window

@ value of the 'quadrant' parameter
g value of the 'position' parameter
vertical spacing this is an optional parameter which sets the

number of scanlines for each line of text, for
the existing window. The minimum value for
'vertical spacing' is 1@ scanlines; this pro-
vides 25 lines of text on the whole screen. The
maximum value is 16, providing 16 lines of text.
If both the ‘'vertical spacing' and the 'hori-
zontal spacing' parameters are omitted, then the
vertical spacing is not changed. However if the
vertical spacing is omitted, but the horizontal
spacing 1is given and 1is different from its
current value, then the resulting vertical

14-8 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

spacing will be 16 if the horizontal spacing is
8, and 1@ if the horizontal spacing is 6

horizontal spacing this is an optional parameter which sets the
space between characters in a line of text, for
the existing window. The ‘'horizontal spacing'
parameter is expressed in terms of 'pixels' and
can have one of two values 6 or 8. The first of
these values gives 8¢ characters per full screen
line and the second 64. If this parameter is
omitted, then the horizontal spacing is not
changed

Remarks

When you switch the system on there is only one window, window number 1,
consisting of the entire screen. The horizontal spacing value is 8, and
the vertical spacing is 16, giving a display mode of 64 characters across
by 16 text lines down (if you initialize the system with a standard
PCOS). You can change the display mode to 8§ by 25 either by using the
SSYS PCOS command or the WINDOW statement (immediately after entering
BASIC, and specifying the horizontal spacing as 6 pixels and the vertical
spacing as 1@ scanlines).

Note that it is only possible to have either 64 or 8§ columns, but it is

possible to vary the number of rows from 16 to 25 by the above mentioned
WINDOW statement (see vertical spacing parameter).

WINDOW - TO SELECT A WINDOW (PROGRAM/IMMEDIATE)

This statement selects a window. The window selected becomes the 'current
window'.

window
WINDOW e number —_

expression

Figure 14-5 WINDOW Statement - To select a window

14-9

Where

SYNTAX ELEMENT

window number
expression

Examples

IF you enter...

WINDOW %A

WINDOW %1

MEANING

this selects the window to become the current
window. It is a numeric expression whose value
is rounded to the nearest integer to represent
the window number. 1t has a value between 1 and
16 and it must correspond to an existing window,
otherwise an error occurs

THEN. ..

the system starts to operate within the window
which was assigned the value of the variable A
when it was opened. If the value assigned to the
variable A is known, (e.g. 2) then this
statement could be entered as follows:

WINDOW %2

the system starts to operate within the window
to which the operating system assigned the value
1. As you know, this is the main window (i.e.
the whole screen or what is left of it).

CLOSE WINDOW (PROGRAM/IMMEDIATE)

Closes a selected window or all opened windows.

CLOSE WINDOW .
expression

window ‘
number

Figure 14-6 CLOSE WINDOW Statement

14-10

BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

Where
SYNTAX ELEMENT MEANING

window number this is a numeric integer expression represent-

expression ing a window number. It identifies the window to
be closed. I1f omitted, all opened windows,
except the main window (i.e. the window number
1) are closed

Characteristics

The CLOSE WINDOW statement with the window number expression parameter
closes the window identified by the parameter. The area of this window is
assigned to the rectangle which was originally split to open it. The area
of the window which has been closed is displayed with the background
colour of the window to which the released space is assigned.

Remark

The CLOSE WINDOW statement has no effect on the main window. This window
can never be closed.

USING COLOURS

As mentioned above the M20 may have either a 4-colour (which permits you
to display 4 colours at the same time) or an 8-colour display (which
permits you to display 8 colours at the same time).

In both cases the video is the same: you pass from a 4-colour to an
8-colour display by adding a memory board and setting some jumpers.

In a black and white system there exists in memory one Bit Map where each
bit corresponds to a pixel (bit = @ for black, bit = 1 for white).

In a 4-colour system there are two superimposed Bit Maps, where each pair
of bits corresponds to a pixel. Thus, four possible colour numbers may be
associated with each pixel as two bits may generate the number @, 1, 2
and 3. In a 4-colour system you can work with 4 colours on the whole
screen. These colours are chosen from a set of 8 possible colours by the

14-11

COLOR (global colour set selection) statement. In an 8-colour system
there are three superimposed Bit Maps where each three bits corresponds
to a pixel. Thus, eight colour numbers may be associated with each pixel
as three bits may generate the number @ to 7. In an 8-colour system you
can work with 8 colours on the whole screen.

Colour Codes

The following table specifies the numeric code for each colour. It is
valid for both 4-colour and 8-colour systems.

COLOUR CODE COLOUR

black
green
blue
cyan
red
yellow
magenta
white

NOoO A WN -2 S

Table 14-1

Colour Numbers

In many graphics statements, an optional parameter is a 'colour number'.
In an 8-colour system there is no distinction between colour codes and
colour numbers. In a 4-colour system the colour number is an integer from
@ to 3 corresponding to the order position - from left to right - of the
four colour codes given in the COLOR (Global Colour Set Selection)
statement.

The COLOR statement described above has no effect either when used on a
black and white system, because the colour numbers are defined as @ for
black and 1 for white, or when used on an 8-colour system, because there
is no distinction between colour codes and colour numbers.

Default Colours

In a 4-colour system, if this COLOR statement is not executed, the four
default colours are: black, green, blue and red. Note that this is as
though the statement COLOUR=#,1,2,4 has been executed.

14-12 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

In an 8-colour system there are no default colours (as all the colours
are present).

Background and Foreground Colours

Each window has a background and a foreground colour.

The foreground 1is the colour with which characters and figures are
displayed, figures and label strings can also be displayed in a different
colour, if the corresponding graphic statement or LABEL command specifies

that colour.

The background and foreground colours may either be chosen by the user,
or assumed by default.

For both a black and white and a colour system the default value is

colour number @ for the background and colour jumber 1 for the foreground

colour. The following colours are associated with these colour numbers:

- black (background) and white (foreground) for a black and white system;

- black (background) and green (foreground) for an 8-colour system;

- black (background) and green (foreground) for a 4-colour system, unless
a COLOR (global colour set selection) statement specifying differently

has been executed.

If such a statement is executed the background and foreground colours
are the first and the second colours specified by the statement.

By the COLOR (to select foreground and background colours) statement, you
can specify foreground and background colours different from the default
ones. With a black and white system you can only specify a reverse video
i.e. a black foreground on a white background.

The Colour of the Cursor

Each window has a text and a graphic cursor.

For a 4-colour system the colour of the (text and graphic) cursor is

either the last colour explicitly declared by the COLOR (global colour
set selection) statement or red, if this statement has not been executed.

14-13

In fact, the following COLOR statement:

COLOR = ¢, 1, 2, 4

is assumed by default.

For an 8-colour system the colour of the (text and graphic) cursor is
always white.

1t is possible to change the shape of both the text and graphic cursor by
the CURSOR statement, but it is not possible to change its colour, except
with a 4-colour system.

If you want to change the colour of the cursor in a 4-colour system, you

must execute a COLOR (global colour set selection) statement specifying a
different colour code in the fourth position.

COLOR - GLOBAL COLOUR SET SELECTION (PROGRAM/IMMEDIATE)

Selects 4 of the 8 colours for use on a 4-colour display.

With a black and white or an 8-colour display it may be used, but it has
no effect.

- colour colour colour colour
COLOR = code) code) code) code

Figure 14-7 COLOR - Global Colour Set Selection Statement

Where
SYNTAX ELEMENT MEANING
colour code is a numeric expression having an irnteger value

in the range @ to 7. Each of these values
corresponds to a colour as in Table 14-1.

1f the numeric expression value is not integer,
it is rounded to the nearest integer.

14-14 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

Selects the background and foreground colours for a particular window.

window
foreground k d
COLOR (%) number) colour) colour

expression

Figure 14-8 COLOR Statement

Where
SYNTAX ELEMENT MEANING

window number specifies the window to be operated on; it is

expression optional and, if omitted, the statement operates
on the current window

foreground colour specifies the foreground colour number of the
window. It may be a numeric expression whose
value is rounded to the nearest integer

background colour this is optional and is used to specify the
background colour number. It may be a numeric
expression whose value is rounded to the nearest
integer. I1f omitted, the previously specified
background colour remains.

Characteristics

Both in a black and white and a colour system the default colour numbers
are § for the background and 1 for the foreground.

Once the COLOR Statement has been executed, the foreground and background

colours are changed accordingly. You may do one of the following to
realize the change of colour requested.

14-15

1. Execute the CLS statement (described later in this chapter), to supply
the window with a new background colour.

2. Execute the PRESET statement (described later in this chapter), to
colour parts of the window with a new background colour.

3. Display a text to change the foreground and/or background colour for
that part of the window where the new text appears.

Examples
IF you enter... THEN. ..
COLOR @,1 the current window will have a white background
and a black foreground
COLOR %A,8,1 as above, but the statement operates on the
window identified by the variable A
Remarks

If the user enters COLOR @#.1 instead of COLOR @,1, further character
input from keyboard will be invisible (as @.1 is rounded to @#). To
recover, enter CLEAR or the COLOR statement in the correct way.

CLS (PROGRAM/IMMEDIATE)

Clears the contents of either the current window or a specified window.
To clear a window means to fill it with its background colour.

(G5)L o) —] rimber _l.

expression

Figure 14-9 CLS Statement

14-16 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

Where

SYNTAX ELEMENT MEANING
window number this selects the window to be operated on. It is
expression a numeric integer expression which represents a

window number.

The use of this parameter is optional. If it is
not specified, the operation is performed on the
current window

CO-ORDINATE SYSTEMS

The SCALE statement allows you to choose a 'user co-ordinate system'" to
suit your needs; it defines the mapping from the default co-ordinate
system and your own co-ordinate system.

The 'default co-ordinate system'" is the hardware co-ordinate system (in
pixels) only if the video has not been subdivided into windows and the
512 x 256 display mode has been assumed, or if you are in PCO0S. In any
other case the default co-ordinate system is a user co-ordinate system,
as the window is automatically subdivided into 512 units along the x-axis
and into 256 units along the y-axis and the origin is placed at the lower
left-hand corner of the window.

When a hardware co-ordinate system has been assumed, it is possible to
specify a pixel by its (x, y) co-ordinates; when a user co-ordinate
system has been assumed, it is only possible to specify the pixel nearest
the (x, y) co-ordinates.

The SCALEX and SCALEY functions return the hardware co-ordinate (i.e. in
pixels) of any point of the video.

The returned value of SCALEX is the abscisse (in pixels) of the specified
point.

The returned value of SCALEY is the ordinate (in pixels) of the specified
point.

The origin of the current window is always its lower left-hand corner.
Using SCALEX and SCALEY functions may be useful in several cases.

14-17

For example it is possible, by the SCALE statement and the SCALEX and
SCALEY functions, to specify exactly a single pixel even if a user
co-ordinate system has been set. To do this is is sufficient to execute
the following statement:

'

SCALE ¢,SCALEX(511),@,SCALEY(255)

as, in this case, any integer value between @“and SCALEX(511) specifies
the abscissa of a pixel and any integer value between @ and SCALEY(255)
specifies the ordinate of a pixel of the current window.

The SCALEX and SCALEY functions are also useful, for instance, to execute
a LABEL PCOS command. The LABEL command requires the x-pos and y-pos
parameters in hardware co-ordinates, thus, if you are working with a user
co-ordinate system, you must use the SCALEX and SCALEY functions.

SCALE (PROGRAM/IMMEDIATE:

Allows you to change to any user co-ordinate system, defining a scale
between the default co-ordinates and the user co-ordinates.

window
SCALE o number ——Olo Xo —-‘:'—o X —o‘:’—‘
expression

o

Figure 14-10 SCALE Statement

Where

SYNTAX ELEMENT MEANING
window number a numeric integer expression selecting the
expression window. If omitted the current window is

selected

14-18 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

x@,x1,yd,y1 | window dimensions (user coordinates):

x@: left-hand side of the window (i.e. x
minimum)

x1: right-hand side of the window (i.e. x
maximum)

y@: bottom of the window (i.e. y minimum)
y1: top of the window (i.e. y maximum)

|| Note: x1 - x@, y1 - y@ can be either positive or
| negative, but must never be equal to zero.

Characteristics

When a SCALE statement has been executed, you must express co-ordinate
values that refer to the user co-ordinate system.

The co-ordinate system is the default one if:
- no SCALE statement has been executed, or
- the statement:

SCALE ¢, 511, @, 255 has been executed.

Having defined a user co-ordinate system, using the SCALE statement, it
remains in effect until a new SCALE statement is executed or you leave
the BASIC environment.

Examples (4-colour display)

IF you enter... THEN. ..
e W |
COLOR = 3,0,1,5
OBy CR |
LINE(@,@)-(511,255)

The LINE statement (described la-
ter) draws a black line on a cyan
background from a point specified
by co-ordinates (#,#) to (511,255).

This line is shown in the figure
14-11.

14-19

SCALE -100¢,1000,-1000,100¢
LINE (@,@)-(511,255)

If no SCALE statement has been
executed previously, the default
co-ordirate system is adopted.

a user co-ordinate system is adop-
ted using a SCALE statement. Thus
the same LINE statement as above
displays a different image. (See
the figure 14-12).

Figure 14-11 LINE Statement

14-20

BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

Figure 14-12 SCALE and LINE Statements

Converts a user co-ordinate into the associated pixel co-ordinate on the
x-axis of the current window.

Figure 14-13 SCALEX Function

Where
SYNTAX ELEMENT MEANING
coordinate a user co-ordinate on the x-axis

14-21

SCALEY (PROGRAM/IMMEDIATE)

Converts a user co-ordinate into the associated pixel co-ordinate on the
y-axis of the current window.

SCALEY 0 | coordinate _'®_‘

Figure 14-14 SCALEY Function

Where
SYNTAX ELEMENT MEANING
co-ordinate a user co-ordinate on the y-axis

DISPLAYING POINTS

The most elementary graphic function is that of illuminating the position
of a single point in a specified colour. This can be done using the PSET
and PRESET statements.

The POINT function allows you to know the colour number of a specified
pixel.

PSET (PROGRAM/IMMEDIATE)

Colours the pixel either at the specified (x,y) co-ordinates or, if the
window has been scaled, the pixel nearest the (x,y) co-ordinates. It
colours this pixel with either a specified or foreground colour.

14-22 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

PSET %

window
number
expression

(x) ¥) B colour

Figure 14-15 PSET Statement

Where

SYNTAX ELEMENT

window number
expression

ny

colour

Remark

MEANING

a numeric integer expression, which represents
the window 1in which PSET is to work. It is
optional, the default is the current window

the co-ordinates wused by PSET. 1If the x,y
co-ordinates specify a point outside the window,
the point will not be displayed because of the
"clipping".

defines the colour number for the point dis-
played. This parameter 1is optional; by default
the foreground colour of the specified window is
used

The colour parameter of the PSET statement does not change either the
background or the foreground colour of the specified window.

PRESET (PROGRAM/IMMEDIATE)

Colours the pixel either at the (x,y) co-ordinates or, if the window has
been scaled, the pixel nearest the (x,y) co-ordinates. It colours this
pixel with the current background colour of either the current or

selected window.

14-23

CEDEO

window
=l =0 0 O

Figure 14-16 PRESET Statement

Where

SYNTAX ELEMENT

window number
expression

X, Y

POINT (PROGRAM/IMMEDIATE)

MEANING

a numeric integer expression representing the
window in which the PRESET statement is to
operate. This 1is an optional parameter; the
default is the current window

co-ordinates on which PRESET works. If the x,y
specify a point outside the window, the point
will not be displayed because of the ''clipping"

Returns the colour number of th pixel either at the specified (x,y)
co-ordinates or, if the window has been scaled, the pixel nearest the
(x,y) co-ordinates within the current window.

colour

—] number °

variable

.00 0. 0 0

Figure 14-17 POINT Statement

14-24

BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

Where

SYNTAX ELEMENT

colour number variable

xly

Examples

DISPLAY

1¢ CIRCLE(5@,50),20

2¢ PSET(5@,50)

3¢ A%=POINT(5@,50)

4@ PRINT A%

MEANING

a variable to which the system assigns an
integer value: @ or 1 for a black and white
system; 1in the range (@-3) for a 4-colour
system; in the range (@-7) for an 8-colour
system. This variable specifies the colour
number of the pixel either at the (x,y)
co-ordinates or, if the window has been scaled,
the pixel nearest the (x,y) co-ordinates

the co-ordinates of the pixel in question

COMMENTS

draws a circle on the screen with its centre at
5¢,5¢ and radius of 2.

illuminates the pixel either at (5@,5@) with the
foreground colour or, if the window has been
scaled, the pixel nearest (5@,5@)

assigns the colour number (of the pixel either
at the (50¢,5¢) co-ordinates or, if the window
has been scaled, the pixel nearest the (5@,5@)
co-ordinates to the A% variable

displays the contents of A%

DISPLAYING CURSORS

Each window has two cursor positions: one for text and one for graphics.
The text cursor position indicates the position where the next alpha-
numeric character will be displayed. This position is expressed in terms
of the text row number and the text column number.

The POS function allows you to know the position of the text cursor in
the current window.

Another visible cursor may be associated with any position you desire.
This cursor 1is called the graphic cursor, although it need not be
associated with graphics, nor does it move automatically when graphic
statements are executed.

By using the CURSOR statement described below, you can specify whether
you want to display one of the cursors, whether to make it blink, and
whether to change its shape from the default shape.

The default shape of the graphic cursor is a rectangle of 2 x 2 pixels.
The default shape of the text cursor is an underbar. If you want to
dtsplay one of the cursors, you can only do this in the window where you
are operating; in fact as soon as you select another window, the cursor
in the previous window disappears, but it is stored and appears again
with the same characteristics whenever you return to that window. Bear in
mind that when the text cursor is turned on, the graphic cursor is
automatically disabled and viceversa; thus the two cursors cannot be
displayed at the same time.

CURSOR (PROGRAM/IMMEDIATE)

There are two basic formats for this statement: CURSOR and CURSOR POINT,
allowing the position and attributes of the text cursor and graphic
cursor, respectively, to be specified.

CURSOR POINT (X] Y

|on—off| ’ rate shape |

Figure 14-18 CURSOR Statement

14-26 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

Where

SYNTAX ELEMENT

POINT

X,y

on-off

rate

shape

MEANING

this is an optional keyword. It is used to
operate on the graphic cursor. If omitted,
operations are performed on the text cursor

these specify where the cursor is to be placed.
If we are dealing with the text cursor, then x
and y represent the column and row of text res
pectively. If we are dealing with the graphic
cursor, then x and y represent the co-ordinates
of the lower left hand corner of the cursor
bitmap.

specifies whether or not the cursor is to be
displayed:

g

not displayed

1 = displayed

specifies whether or not the cursor is to blink:
@ = no blinking
1-2¢ = number of blinks per second

this 1is an optional parameter. It alters the
shape of the cursor. It is the first element of
a six element integer array. The array must be
defined by the user; its components are the
desired bit-map of the cursor. Each bit of the
cursor bit-map represents a pixel.

The contents of the cursor bitmap get XORed with
the contents of that part of the screen bit-map
representing the screen area occupied by the
cursor.

For both the text cursor and the graphic cursor
the bit-map is 8 pixels wide and 12 pixels high

14-27

Examples

IF you enter...

CURSOR POINT(8@,30):
AS=INPUTS(1)

CURSOR POINT(5@,5¢)1:
AS=INPUTS(1)

CURSOR POINT(5@,5¢)1,1:
AS=INPUTS(1)

CURSOR (32,8)1:A$=INPUTS(1)

[CR |

CURSOR (32,8)1,8,A%(1):
AS$=INPUT$(1)-

BIT MAP

ge910999
g9¢1110¢¢
#1111199
1111111¢
30111099
#81119¢¢
#g11100¢
g99111099
#¢11100¢
g9811190¢
@8111dd9
#911100¢

ELEMENT

A%(1)
A%(2)

%(3)
A%(4)
A%(5)

A%(6)

Table 14-2 Cursor Bit Map

THEN. ..

the graphic cursor is positioned at the
point with co-ordinates (8¢,3@).

The statement AS=INPUTS(1) has been
entered to allow the cursor to remain in
the specified position until you enter a
character from keyboard

the graphic cursor is positioned at the
point with co-ordinates (5¢,5@) and is
displayed

the graphic cursor is positioned at the
point with co-ordinates (5@,5@), it is
displayed and blinks at a rate of 1
blink per second

the text cursor is positioned at column
32 of row 8; it is displayed and is not
blinking.

as above but the cursor shape has been
defined by the user as an up arrow (see
table below)

DECIMAL EXADECIMAL
4152 &H1038
31998 &H7CFE
14392 &H3838
14392 &H3838
14392 &H3838
14392 &H3838

Note: Remember that each element of the integer array is a sixteen bit

representation.

14-28

BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

POS (PROGRAM/IMMEDIATE)

Returns the position of the text cursor in the current window.

——] variable _.@_. g:tt:irg:::te @

Figure 14-19 POS Statement

Where
SYNTAX ELEMENT MEANING

variable a numeric variable to which the system assigns
an integer value. This represents either the row
or column position of the text cursor within the
current window (see the co-ordinate attribute
below)

coordinate attribute specifies either the row or column position.It

is @ for a column position or any non zero value
for the row position

DRAWING LINES, RECTANGLES, AND CIRCLES

The M20 BASIC graphics extensions include statements allowing you to draw
straight lines and rectangles (by the LINE statement), circumferences (by
the CIRCLE statement) or any figure (by the DRAW statement) and to paint
closed figures (by the PAINT statement).

14-29

LINE (PROGRAM/IMMEDIATE)

Draws either a line or a rectangle, or a filled rectangle, in a specified
colour, with a specified diagonal.

window

L@ =

expression

l[&®lo

*2

f colour |

action
8 F ’ verb

Figure 14-20 LINE Statement

Where

SYNTAX ELEMENT

window number
expression

STEP

14-30

MEANING

A numeric integer expression specifying the
window on which the LINE statement is to work.
By default the LINE statement operates on the
current window.

optional keyword. This allows the use of rela-
tive co-ordinates. Relative starting co-ordi-
nates (x,,y.) are relative to the co-ordinates
of the last point drawn or (in the absence of
such a point) to the co-ordinates of the bottom
left-hand corner of the window. Relative ending
co-ordinates (x_,y.) are relative to the start
of the line (or Tectangle).

BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

X91Yq

Xar¥y

colour

B (Box)

F (Filled)

action verb

These are the co-ordinates of the starting point
of the line. If omitted, the line specified by
the LINE statement starts from the last point
drawn, or from the bottom left-hand corner of
the window, if no point has yet been drawn.

These are the co-ordinates of the end point of
the line.

A colour number specifying the colour with which
the line or rectangle will be drawn. The default
value is the foreground colour of the current
window.

An optional parameter which allows you to trace
a rectangle with its sides parallel to the edges
of the window. Its diagonal is specified by the
co-ordinates (x1,y1) and (xz,yz).

An optional parameter which can only be used if
B is also used. 'BF' draws a rectangle and fills
it in with the colour specified by the colour
parameter or with the foreground colour, if the
colour parameter is not given.

This is an optional parameter which can assume
the following values: AND, XOR, OR, NOT, PSET,
PRESET.

The verb PSET indicates that the line, rectangle
or filled rectangle is to be drawn in the speci-
fied colour. The verbs AND, OR, and ¥OR indicate
that the colour of the 1line, rectangle, or
filled rectangle 1is the result of a logical
operation between the specified colour and the
existing colour of each pixel on the screen
covered by the figure. The verb NOT indicates
that the colour of the 1line, rectangle, or
filled rectangle will be the complement of the
existing colour of each pixel covered by the
figure. The verb PRESET indicates that the line,
rectangle, or filled rectangle will be drawn in
the background colour.

The default action verb is PSET.

14-31

Example (4-colour display)

DISPLAY COMMENTS
1¢ COLOR = 4,2,4,5 This program draws an isosceles tri-
2¢ CLS angle and paints it blue (the fore-
3¢ LINE (206,100)- (306,100 ground colour).
4¢ LINE (256,200)
5¢ LINE STEP (-5¢,-1¢@) The background colour 1is red (see
6@ PAINT (256,15@) figure 14-21)

The PAINT statement 1is described
below.

Figure 14-21 Drawing a Triangle

Remark

If the parameters specified for drawing a line or a box are such that a
portion of the line or the box falls outside the window boundary, the
line or box will still be drawn with the portion outside the window
boundary clipped.

14-32 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

CIRCLE (PROGRAM/IMMEDIATE)

Draws a circumference in a given colour, specifying the x,y co-ordinates
of the centre and the radius.

CED O

window
number x ’ ¥
expression

aspect action
I colour | J ratio '(:) verb

Figure 14-22 CIRCLE Statement

Where

SYNTAX ELEMENT

window number
expression

aspect ratio

MEANING

A numeric integer expression which selects the
window 1in which the CIRCLE statement is to
operate. This is optional and, if omitted, the
current window is selected.

The centre of the circle.
The radius of the circle.

A colour number specifying the colour with which
the circumference will be drawn. The default is
the current foreground colour of the selected
window.

Due to the non-uniform physical distribution of
the pixels on the screen, the user may specify a
value of the aspect ratio to draw a true circle
with different monitors.

14-33

action verb

Remarks

When a SCALE statement

The default value of aspect ratio (which must be
a positive real number) is @.8@7. This value
produces a circle, with the M20 standard
monitor.

An optional parameter which may assume one of
the following values: AND, XOR, OR, NOT, PSET,
PRESET.

Each defines the operation which will be done
for every pixel along the curve.

The verb PSET indicates that the circle is to be
drawn in the specified colour. The verbs AND,
OR, and XOR indicate that the colour of the
circle is the result of a logical operation
between the specified colour and the existing
colour of each pixel covered by the curve. The
verb NOT indicates that the colour of the circle
will be the complement of the existing colour of
each pixel along that curve. The verb PRESET
indicates that the circle will be drawn in the
background colour. The default action verb is
PSET.

is used, the aspect ratio parameter 1is not

affected by the scaling, and the radius. of the circle is determined only
by the horizontal scaling of the window in which the circle is to be

drawn.

Example (4-colour display)

DISPLAY

1¢ COLOR = 2,4,5,¢

20 CLS

3¢ CIRCLE (10¢,129),9¢
4¢ CIRCLE (15¢,13@),12¢
5¢ CIRCLE (25¢,12¢),10¢
6@ PAINT (18¢,120)

14-34

COMMENTS

The program draws three intersecting
circles.

The background colour 1is blue, the
circumferences are red (the foreground
colour) and the area of intersection
is also red. See figure 14-23.

BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

The PAINT statement 1is described
below.

Figure 14-23 Intersecting Circles
DRAW (PROGRAM/IMMEDIATE)

The screen may be thought of as a sheet of paper on which you can draw
with a pen (known as the '"virtual pen') in a given colour. You can move
the pen within a window, drawing ("pen down') or not ("pen up') by the
DRAW statement;

window 1
DRAW number Somand L
expression

Figure 14-24 DRAW Statement

14-35

Where

SYNTAX ELEMENT

window number
expression

command string

MEANING

A numeric integér expression 7specifying the
window in which DRAW is to operate. The default
is the current window.

This can be either a string constant or a string
variable. The string, in both cases, consists of
one or more commands shown in the table below
(see Commands), which control the movement of
the virtual pen.

With the exception of the C command, all
commands may be prefixed with the B option,
which inhibits drawing, and followed by one of
the following actién verbs: AND, XOR, OR, NOT,

|PSET, PRESET, which define an operation on any
| lpoint of the _line. The action verbs are

specified by their first letter, except PRESET
which is specified by R.

The verb P (i.e. PSET) indicates that the figure
is to be drawn in the specified colour. The
verbs A (i.e. AND), O (i.e. OR), and X (i.e.
XOR) indicate that the colour of the figure is
the result of a logical operation between the
specified colour and the existing screen con-
tents along that figure. The verb N (i.e. NOT)
indicates that the colour of the figure will be
the complement of the screen contents along that
figure. The verb R (i.e. PRESET) indicates that
the figure will be drawn in the background
colour.

The default action verb is P.

Note: Command parameters (dx,dy,x,y and colour) can be expressed as
variables. In this case the variable names must be written between equals
signs. See the examples below.

14-36

BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

Commands
COMMAND

M dx,dy

J X,y

U dy

D dy

L dx

R dx

C colour

Examples
DISPLAY

9¢ PSET(14,20)
109 X=23

13P DRAW 'M=X=,25"

MEANING

Moves the pen from its present position (a,b
say) to the position indicated by (a+dx,b+dy).

Moves the pen to the position indicated by
(x,y).

Moves the pen up by dy positions.
Moves the pen dowﬁ by dy positions.
Moves the pen left by dx positions.
Moves the pen right by dx positions.

Sets the colour to be used to draw. A colour
number must be specified after C.

If no C is specified the last colour used by a

preceding DRAW or the foreground colour of the
current window is assumed.

COMMENTS

Statement 9¢ colours the point (10,20) with the
current foreground colour.

Statement 100 sets X=23
Statement 13¢ draws a line from the current pen

position (1¢,2¢) to the position (33,45), that
is (10+23,20+25)

14-37

250 A$="BM 1¢,2
D 2¢ MR 15,-3"

26@ DRAW AS

Remarks

Statement 250 sets AS$ to the following command
string:

- the M command with the B option to move the
pen, without drawing from its current position
(a,b say) to the position (a+1@,b+2)

- the D command to move the pen down 20
positions, i.e. to the point (a+1@,b-18)

- the M command to move the pen from its current
position (a+1@,b-18) to the point (a+25,b-21).
The R option (PRESET) indicates that the line
must be drawn in the current background
colour.

Statement 260 executes the sequence of commands
specified by the AS$ variable.

The sequence of commands in a DRAW statement may be entered either in
lower case or in upper case letters. They may be separated by blanks or
they may be written contiguously.

Example (8-colour display)

DISPLAY

19 CLS

20 DRAW "big,@"

3@ X=511: Y=255

49 K=g

5¢ FOR I=1 TO 23

6@ GOSUB 17¢

70 DRAW ''u=y=": Y=Y-5
8¢ GOSUB 17¢

90 DRAW "'r=x="': X=X-1¢
10¢ GOSUB 178

118 DRAW "d=y='": Y=Y-5
12¢ GOSUB 17¢

130 DRAW "I=x="': X=X-10¢
140 NEXT

14-38

COMMENTS

The program draws a rectangular spiral
starting from the point at cordinates
3,8 (see statement 2¢).

This point is placed at the lower
left-hand corner of the video, as no
SCALE statement has been used.

The subroutine at lines 17¢ and 184
allows you to change the colour of the
line to be drawn (choosing a colour
number from 1 to 7 - thus excluding
black which is the background colour).
This subroutine is executed by a GOSUB

BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

150 AS=INPUTS(1)

16¢ END

17¢ COL=(K MOD 7)+1

180 K=K+1:DRAW"c=col="":RETURN

statement, each time a line has to be
drawn.

The DRAW statement, at line 70 draws a
line along the positive y-axis, Y units
long, and the next statement reduces
the value of the variable Y by 5 units.

The DRAW statement, at line 9¢ draws a
line along the positive x-axis, X units
long, and the next statement reduces
the value of the variable X by 16
units.

The DRAW statement, at line 11¢ draws a
line along the negative y-axis, Y units
long, and the next statement reduces
the value of the variable Y by 5 units.

The DRAW statement at line 13@ draws a
line along the negative x-axis, X units
long, and the next statement reduces
the value of the variable X by 14
units.

The number of lines drawn is controlled
in a loop by the control variable 1
which varies from 1 to 23.

This loop allows you to draw a rect-
angualar spiral of 23 x 4 = 92
segments, each of different colour (see
Figure 14-25).

14-39

Figure 14-25

PAINT (PROGRAM/IMMEDIATE)

Colours the area inside a closed figure, starting from the pixel either
at the specified (x,y) co-ordinates or, if the window has been scaled,
the pixel nearest the (x,y) co-ordinates.

The area can be the whole or part of the specified window.

window
PAINT e number ——-&—-@—_ x —oO—o v
expression

colour] beolour

Figure 14-26 PAINT Statement

14-40 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

Where
SYNTAX ELEMENT MEANING

window number numeric integer expression which represents the

expression window on which the PAINT statement is to work.
This 1is an optional parameter. By default the
current window is selected

X,y co-ordinates of the pixel from which painting
begins

colour a colour number specifying the colour to be used
to paint the window or a closed figure within
it. Its default value is the current foreground
colour

bcolour a colour number specifying the colour of the
border of the closed figure to be PAINTed. By
default, the foreground colour of the specified
window is assumed

Remarks

To PAINT inside a predefined closed figure, ensure that x,y fall within
the border of the figure. If they fall outside the border of the figure,
only the portion of the window which is outside the figure will be
coloured.

To use the PAINT statement correctly, the borders of the closed figure
must all be of the same colour: the one specified by the 'bcolour"
parameter in the PAINT statement, or the current foreground colour if
this parameter has been omitted. For example, if you want to paint a
circular ring, the two circumferences which include the ring must be of
the same colour.

If this is not true and:
-~ the colour specified by the "bcolour' parameter is that of the external

circumference, the PAINT statement paints the entire circle which has
this circumference;

14-41

the colour specified by the '"bcolour' parameter is that of the internal
circumference, the PAINT statement paints all the area which is
external to this circumference and is bounded by the window boundaries
(or by a line of the same colour as the internal circumference).

Example (4-colour display)

DISPLAY COMMENTS
1¢ COLOR = 2,5,4,0 statement 10 selects four among the
20 CLS eight available colours. Statement
3¢ CIRCLE (256,128),134,2 20 clears the screen with the
4¢ PAINT (256,128),1,2 background colour (in this case

5¢ LINE (251,123)-STEP (1¢,1¢),3,BF @ blue). Statement 3@ draws a red
circumference with a radius of 13¢
whose centre 1is (256,128). State-
ment 4@ paints the circle yellow.
Statement 5@ draws a black filled
in box in the middle of the circle
(see figure 14-27)

igure 14-27 Drawing and Painting a Circle with a black box in the
middle

14-42 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

Example (8-colour display)

DISPLAY
14 CLS
20 FOR 1=1 TO 7
3¢ COLOR 1,0

49 CIRCLE (256,128),119-1*1¢

5¢ CIRCLE (256,128),11¢-(1-1)*1¢
60 PAINT (256-11¢-(1-.5)*1¢,128)
7@ NEXT

COMMENTS

This program displays 7 concentric
circular rings. The centre is the
point (256,128) i.e. it co-incides
with the center of the screen.

The background colour is black (as
the second parameter in the COLOR
statement at line 3¢ is @) and the
foreground colour changes with the
control variable 1 which varies
from 1 (green) to 7 (white).

The circular rings are coloured by
the PAINT statement (see line 6f).
The point from which the system
begins to paint is the intersection
between the parallel to the x-axis
passing through the centre and the
average radius of the ring.

The colour to be used to paint and
the colour of the borders of each
ring are not specified by the PAINT
statement; thus they co-incide with
the current foreground colour.

See the figure 14-28.

14-43

Figure 14-28 Concentric Circular Rings

HOW TO STORE AND DISPLAY WINDOWS AND RECTANGLES

You can store the whole window or any rectangle within a window, in a
one-dimensional integer array using the GET statement, or conversely you
can restore anywhere on the screen a rectangle taken from a one-dimen-
sional integer array by a PUT statement.

GET - Graphics (PROGRAM/IMMEDIATE)

Stores the whole or any rectangle within a window in a specified
one-dimensional integer array.

1444 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

window
number Xy —.O—o vy
expression

[.(:) |<) (:) (:) () array
X2 J b element »

Figure 14-29 GET - Graphics Statement

Where

SYNTAX ELEMENT

window number
expression

:1”'1
2'Y2

array element

MEANING

A numeric 1integer expression specifying the
window in which GET is to operate. The default
is the current window.

Define the rectangle to be stored, the rectangle
whose diagonal is specified by the line (x1,y1)
to (xz,yz).

The first element of the one-dimensional array
which is to contain the information acquired by
the GET operation. The system will fill the
array as follows: the first three elements of
the array will contain the width of the
rectangle, the height of the rectangle, and the
colour/monochrome flag, respectively. The re-
mainder of the array will contain the bit image
of each scanline of the rectangle itself. Each
array element contains a string of 16 bits. This
one dimensional array must have been previously
dimensioned by a DIM statement. The following
formula shows how to calculate the number of
elements of the array:

14-45

(([w::th X height) X DT)+ 3

where:
DT=1 with a black and white display
DT=2 with a 4-colour display

DT=3 with an 8-colour display
]means take integer (always round up)

PUT - Graphics (PROGRAM/IMMEDIATE)

Displays an image previously stored in a one-dimensional integer array
using a GET statement.

window
@] e o 5% K
expression
Y array action
';) '(:) B '(.) o I (_) ’(:) *Heiement '6 verb

Figure 14-30 PUT - Graphics Statement

Where

SYNTAX ELEMENT MEANING
window number A numeric integer expression :pecifying the
expression window in which PUT is to operate. The default

is the current window.

14-46 BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

%q2Yy
X2Ya

array element

action verb

Define the position of the rectangle to be
displayed, the rectangle whose diagonal is
defined by the line (x1,y1) to (xz,yz).

If this rectangle is a different size from the
one in the stored array, the smaller of the two
is used. If x_ and y_ are omitted the stored
rectangle will be displayed starting from the
top left-hand corner Xgr Yq+

The first element of the one-dimensional array
which contains the information stored by a GET
operation.

An optional parameter which may assume one of
the following values: AND, XOR, OR, NOT, PSET,
or PRESET. Each defines the operation which will
be done for every pixel within the rectangle.

The verb PSET indicates that the rectangle is to
be restored directly from the stored array. The
verbs AND, OR, and XOR 1indicate that the
rectangle displayed is the result of a logical
operation between the colour number of each
pixel in the stored array and the existing
colour number of each pixel on the screen within
that rectangle. The verb NOT indicates that the
existing colour number of each pixel on the
screen will be complemented within that rectan-
gle, without regard to the stored array. The
verb PRESET indicates that the complement of the
stored array will be displayed on the screen.

The default action verb is PSET.

14-47

Example (4-colour display)

DISPLAY

1 COLOR = 2,4,5,0
5 DIM B%(2¢@@)
1¢ CLS:CIRCLE (256,128),8¢,3
2¢ LINE (199,60)-(358,195),,BF,XO0R
3¢ GET (194,60)-(368,128),B%(#)
5¢ CLS:PUT (258,22¢),B%(@)

14-48

COMMENTS

Statement 5 defines the array to
hold the bit image.

Line 1¢ clears the screen, (back-
ground is blue) and draws a black
circumference.

Statement 2@ draws a rectangle
superimposed on the circle and it
is filled-in in red. The XOR
operation between @ (blue), the
background colour number, and 1
(red), the foreground colour num-
ber, is 1 (red). The portion of the
circumference within the rectangle
is coloured yellow, as the XOR
operation between 3 and 1 is 2.
(See figure 14-31.)

Statement 3@ saves a section of the
screen in the array B%.

Line 5@ clears the screen and

restores the saved section of the
screen (see figure 14-32).

BASIC LANGUAGE - REFERENCE MANUAL

GRAPHICS

Figure 14-31 1Image on the Screen Resulting from Statements 10 and 20

Figure 14-32 1Image on the Screen Resulting from Statement 5@

14-49

GRAPHICS FACILITIES PROVIDED BY PCOS

PCOS allows you to choose the display mode (256 x 512 or 256 x 480
pixels) by the SSYS command and to allocate memory space for a specified
number of windows by the SBASIC command (But PCOS does not allow you to
open, close and select windows; these operations may only be made while
in BASIC or ASSEMBLER).

Other important graphic features are provided by the PCOS commands LABEL,
SPRINT, LSCREEN, RFONT and WFONT, and the special parameters +cc and -cc:

- Using the LABEL command you can display label strings of variable size
and orientation and in a given colour (this command may also be called
from BASIC by an EXEC or CALL statement);

- Using the SPRINT command you can print the image of either the entire
screen or a specified window (this command may also be called from
BASIC by an EXEC or CALL statement);

- Using the LSCREEN command you can print only the text contents of the
entire screen or a specified window (this command may also be called

from BASIC by an EXEC or CALL statement);

- Using the RFONT and WFONT commands (together with the Video File
Editor) you can define a character font of your choice;

- Using the special parameters +cc and -cc, you can display the first 32
characters of the ASCII table (hedadecimal codes @@ to 1F).

For detailed descriptions see the '"PCOS (Professional Computer Operating
System), User Guide'.

14-50 BASIC LANGUAGE - REFERENCE MANUAL

A. ASCIl CODES

This table sho
ASCII code.

Ws

decimal, hexadecimal,

and binary representation of the

alb c d |Ja|b c d|a|lb c a|b c

o | 00 | 00000000 | NUL | 64 | 40 | 01000000 128 | 80 | 10000000 | 192| co | 11000000
1 | o1 | 00000001 | SOH | 65 | 41 01000001 | A |129 | 81 | 10000001 | 193 C1 [11000001
2 | 02 (00000010 | TX | 66 [42 (01000010 | B |130 82 [10000010 | 194 c2 [11000010
3 | 03 | 0ooooort | ETX | &7 | 43 [o1000011 | € Ju31 |8y | 10000011 | 195 Cs [11000011
4 | 04 | 00000100 | EQT | 68 | 44 01000100 | D | 13284 | 10000100 | 196 | Ca | 11000100
] 05 | 00000101 | ENQ | 69 | 43 | 01000101 4 133 | 85 | 10000101 | 197 C5 | 11000101
6 | 06 [00000110 | Ack | 70 [46 01000110 | F | 13486 [10000110 | 198 co | 11000110
7 07 | 00000111 | BEL | 71 | 47 | 01000111 G 135 | 87 | 10000111 | 199| C7 | 11000111
8 | 08 [00001000 | BS | 72| 48 |o01001000 [H 136 |88 | 10001000 | 200| C8 | 11001000
9 | 09 00001001 | HT | 73| 49 |o1001001 [1 J137| 89 | 10001001 | 201 3 | 1100 1001
10 | oA |o0000t010 | LF | 74| 4 [or001010| 1 |38 2a [10001010 | 202| cA [11001010
1 | o8 |ooootor | v | 75| 4B [or001001| K | 139 8B | 10001011 | 203 cB | 11001011
12 [oc ooco1100| FF | 76 [4 [o01001100 | L | 140 8C | 10001100 | 204| C | 11001100
13 0D | 0000 1101 CR 77 | 4D | 0100 1101 M 141 | 8D | 10001101 | 205| CD| 11001101
14 | oE [o0001110| so | 78| 4 [o1001110 | N | 142 8E | 10001110 | 206| CE | 11001110
15 | OF | 0000 1111 SI 79 | 4F | 01001111 o 143 | 8F | 1000 1111 | 207 | CF | 1100 1111
16 | 10 [00010000 | DLE | s0 | 50 [o1010000| P | 14490 | 10010000 | 208| Do | 11010000
” 11 | 00010001 | DC 81| 51 [01010001 Q 145 | 91 | 10010001 | 209| D1 | 1101 0001
s 12 | 00010010 | DC: 82| 52 | 01010010 R 146 | 92 | 10010010 | 210| D2 | 11010010
19 | 13 [00010011 | DG, | 83 53 |otoroons | s | 147] 93 | 10010011 | 211| 3| 11010011
20 | 14 | 00010100 [DC | 84| 54 [or010100| T | 148 94 [10010100 | 212| D4 11010100
21 [15 | oooroton [NAK | s | ss [ot010101 | U | 149 95 | 10010101 | 213 D3| 11010108
2 16 | 00010110 | SYN 86| 36 | 01010110 v 150 | 96 | 10010110 | 214] Dé | 11010110
2 17 | 00010111 | ETB 87| 57 | 01010111 w 151 97 | 10010111 | 215| D7 | 11010111
24 18 | 0001 1000 | CAN | 88| 58 | 0101 1000 X 152 98 | 10011000 | 216| D& 11011000
23 19 | 0001 1001 | EM 89| 59 | 0101 1001 Y 133 | 99 | 10011001 | 217| D9 | 1101 1001
2 | 1a| 00011010 | suB | so| sa [owor1010| z |54 9a | 10011010 | 218| DA 11011010
27 | 1B | 000t 1011 | EsC | o1 | sB [o101 1011 153 | 98 | 1001 1011 | 219| DB 1101 1011
28 | 1c|ooorrtoo| Fs | sz sc [o1011100 136 | 9C | 1001 1100 | 220| DC| 1101 1100
29 [1D | ooorti01| Gs | 93| sp [o101 1100 157| 9D | 1001 1101 | 221| DD| 1101 1101
30 | 1€ | ooor1110| Rs | s4| sE |ororunso [v |iss| 9E | 10011110 | 222| DE| 11011110
3 1F | 0001 1111 us 95| SF | o101 1111 - 159 | 9F | 1001 1111 | 223| DF| 1101 1111
32 [20 | 00100000 [SPACE 96 | 60 | 01100000 | [| 160 | A0 | 10100000 | 224| Eo| 11100000
33 | 21 oot00001| t | 97]| 61 | 01100001 [o |61 | Ar [10100001 | 225 E1f 11100001
34 | 22 | 00100010 » 98 | 62 | 01100010 b 162| A2 | 10100010 | 226| E2| 11100010
35 | 23 | oo100011 99| &3 (o001t | ¢ | 1e3]| As [10100011 | 227 E3 | 11100011
36 | 24 | 00100100 100 [64 01100100 | d | 164] A4 | 10100100 | 228 E4| 11100100
37 [25 | oot00101 101 63 | 01100101 [e | 1es| As [10100101 | 229| Es[11100100
38 | 26 [oo100110| & |102| s |oroono| ¢ |ies| Ae [10100110 | 230| Es | 11100110
39 | 27 | oosootts | * fuos| 67 |oroornn | g fue7| A7 | 1010010 | 23| E7 [11100111
40 | 28 | 0010 1000 { 104 | 68 | 0110 1000 h 168 | A8 | 10101000 | 2352| ES&| 11101000
41 | 29 | 0010 1001) 103 | 69 | 01101001 i 169 | A9 | 1010 1001 § 233| E9 | 11101001
42 | 2A | 00101010 - 106 | 6A | 01101010 I 170 | AA | 10101010 | 234| EA| 11101010
43 | 2B | o0i0 1011 + 107 | 68 | 01101011 k 171 | AB | 10101011 | 235| EB| 11101011
4| 2c|ooonoo| , fosfec|ononoo| 1 Ji72| Ac [10101100 | 236| EC| 11101100
45 | 2D | o010 1101 - 109 [6D | 0110 1101 m 173| AD | 1010 1101 | 237| ED| 11101101
46 | 2E [00101110 no [€ |o1o1io [o Ji74| AE [10101110 | 28] EE[11101110
47 | 2F | 00101111 / 11| 6F (01101111 © 175 | AF | 10101001 | 239| EF | 11101111
48 | 30 | 00110000| o |nz| 70 [o1rooeo| p |76 Bo | 10110000 | 240f Fo | 11110000
49 | 31 | 00110001 1 13| 71 | 01110001 9 177 B1 | 10110001 | 241| F1 | 11110001
30 |32 [oornooro| 2 fura| 72 [orrnooro| « Ji78| B2 [10110010 | 242 F2 | 11110000
5 3 00110011 3 s | 7y |orrroon . 179 | B3 | 10110011 | 243| F3 | 11100001
2 34 | 00110100 4 116 | 74 | 01110100 t 180 | B4 | 10110100 | 244 F4 | 11110100
53 | 35 |ootrotor [s Juz|7s fornnoror | w [usi]Bs [ro110101 | 245| F5 [11110100
s4 | 36 |oorronto| & |us|7e |ornrono| v |is2] Be | 10110110 | 246| Fe | 11110110
s | 97 [ootonn| 7 fus |77 |ornons [w fissf 87 [ro1011s | 247] F7 [trroins
56 | 38 |ooti1000(8 |i120|78 |orrr1000 [x |18s| B8 | 10111000 | 248| F8 | 11011000
57 | 39 |oottioor [9 |21 79 |onnnsoor [y | 1ss| Be | 10111001 | 249] F9 | 11111001
58 | 3Afootiioio| : |22 7 |omntoto | x| 1ss| BA [10111010 | 20| FA | 11111010
39 | 38 [ootrion | 5 |23 |78 [ornnon 187| 8B [10111011 | 251 FB | 1i1vton
60 3C | 0011 1100 < 124 | 7C | 0111 1100 188 | BC | 10111100 | 252| FC | 11111100
sl 3D | o011 1101 = 125 | 7D | 0111 1101 189 | BD | 10111101 | 253| FD | 1111 1101
62 [3E|ooniino| > |i2s| 7€ [ornnine 190 | BE [10111110 | 254| FE [11111110
o3 | Joornn] > ez | [ornnnin | DeL | ior] BF Jronnann fass| FF | i

Nete: Boxed characters are different on

dix B).

A-0

Decimal
Hexadecimal

8 bit Binary
Representation

ASCII Code

national keyhoards (see Appen-

BASIC LANGUAGE - REFERENCE MANUAL

B. ASCIl CHARACTER EQUIVALENCES

This table shows the national equivalences for those
which appear on the video screen or printer in various

ASCI1 characters
national guises.

ASCIL VALUE NATIONAL EQUIVALENT
> s o
2 = L i & g 3
E £ 38 8 8 § £ &8 3 ¢ 3£ & &
s a3 (® ¢ & & & & £ # € # £ £ £ £ #
% w | (8 ¢ & s ® § 8% 5 & @ 3 s s .
6 @ | (& § & e § § § § - e - § § o 3§
91 5B [o e (SR S A B K E 3 3 [s
92 5C ® s s v 6 6 F ¢ @ 8 g ¢ ¢ \ ¢
93 50 1 & 8) | A T U SR S 11
% 60 3 5 2 = & HaE & g Bk, 2 & R
123 78 a2 & (& & ° 3 =2 i =2 & 3 { «
124 7C | & o | & & & ¢ 6 & ¢ & & | ¢
125 70) & & } & & ¢ 8 & & & @ @)} %
126 7€ C ! =L gl By S S - é @ g ‘
* Encircled characters are used for functions in BASIC.

C. ERROR CODES AND THEIR MEANING

ABOUT THIS APPENDIX

This Appendix lists all the errors returned from BASIC or PCOS.
If an error occurs in BASIC only the message without the code is
displayed. Viceversa if an error occurs in PCOS only the code without the

message is displayed, unless the EPRINT command is resident (in this case
also the error message is displayed).

CONTENTS

BASIC AND PCOS ERRORS C-1

ERROR CODES AND THEIR MEANING

BASIC AND PCOS ERRORS

ERROR MESSAGE

CODE (BASIC/PCOS)

i NEXT without FOR
(BASIC)

2 Syntax error
(BASIC)

3 RETURN without GOSUB
(BASIC)

4 Out of DATA
(BASIC)

5 I1legal function call
(BASIC)

COMMENT

A NEXT statement has been encoun-
tered without a matching FOR

A line has been encountered which
includes an incorrect sequence of
characters (misspelled keyword,
incorrect punctuation etc.)

A RETURN has been encountered for
which there 1is no previous un-
matched GOSUB statement

A READ statement has been executed
when there are no DATA statements
with unread data remaining in the
program

A parameter that is out of range
has been passed to a numeric or a
string function.

Such an error may occur when:
either

a. An array subscript is
negative or too big.

b. A log function is assigned a
negative or a null argument.

c. The SQR function is assigned a
negative value.

d. A negative number has an expo-
nent which is not an integer.

e. An incorrect argument has been
made in one of the following
functions: MID$, LEFTS, RIGHTS,
TAB, SPC, STRINGS, SPACESS,
INSTR, or ON...GOTO.

ERROR
CODE

19

C-2

MESSAGE
(BAS1C/PCOS)

Overflow

(BASIC)

Out of memory

(BASIC/PCOS)

Undefined line number
(BASIC)
Subscript out of range

(BASIC)

Duplicate Definition

(BASIC)

COMMENT

The result of a calculation is too
large to be represented in BASIC's
number format.

N.B. With underflow, the result is
taken as zero, and execution con-
tinues without indication of an
error.

In BASIC: a program is too big; or

has too many loops, subroutines,
variables; or has expressions toc
complicated to evaluate

In PCOS: a PCOS command or an

Assembly language routine is called
which is too big to be allocated in
the available memory

A line reference is to a non-exis-
tent line from a GOTO, GOSUB,
1IF..THEN..ELSE or DELETE

An array element has been referred
to either with a subscript that is
outside the dimensions of the array
or with the wrong number of sub-
scripts

Two DIM statements have been given
for the same array, or a DIM
statement has also been applied to
an array after the default dimen-
sion of 10 was previously estab-
lished for that array

BASIC LANGUAGE - REFERENCE MANUAL

ERROR CODES AND THEIR MEANING

ERROR MESSAGE
CODE (BASIC/PCOS)
11 Division by zero
(BASIC)
12 Illegal direct
(BASIC)
13 Type mismatch
(BASIC/PCOS)
14 Out of string space
(BASIC)
15 String too long
(BASIC)
16 String formula too
complex
(BASIC)
17 Can't continue
(BASIC)

In BASIC:

In PCOS: a

COMMENT

A division by zero has been encoun-
tered or the value zero has Leen
raised to a negative power. In the
former case the result is machine
infinity (with the appropriate
sign) and in the latter case the
result is positive machine infinity

A statement which 1is invalid in
immediate (direct) mocde has been
entered as an immediate command.

a string variable name
has been assigned a numeric value;
a function that expects a numeric
argument has been given a string
argument

string variable is
entered when a numeric value is
required and vice versa

String variables have caused BASIC
to exceed the amount of free user
memory remaining. (BASIC will al-
locate space dynamically until it
runs out of memory)

An attempt has been made to create
a string more than 255 characters

long

A string expression is too long or

too complex to be processed. It
should be broken into smaller
expressions

An attempt has been made to con-
tinue a program that is non-
continuable; as it is halted due to
an error, was modified during a
break in execution, or does not
exist in user memory

ERROR
CODE

18

19

20

22

23

26

29

3¢

31

32

C-4

MESSAGE
(BASIC/PCOS)

Undefined function
(BASIC)

No RESUME

(BAS1C)

RESUME without error
(BASIC)

Missing operand
(BASIC)

Buffer overflow
(BASIC)

FOR without NEXT
(BASIC)

WHILE without WEND
(BASIC)

WEND without WHILE
(BASIC)

1EEE: Invalid talker/
listener address

(BASIC)

1EEE: talker = listener

address

(BAS1C)

COMMENT

A function, that has not been
previously defined, has been called

An error-trapping routine has been
entered that contains no RESUME
statement

A RESUME statement has been encoun-
tered before an error-trapping
routine is entered

An expression contains an operator

but no following operand

An attempt has been made to enter a
line with more than 255 characters

A FOR has been encountered without
a matching NEXT

A WHILE has been encountered with-
out a matching WEND

A WEND has been encountered without
a matching WHILE

Use of illegal talker listener
address

An attempt has been made to talk to

. a talker, or listen to a listener

BASIC LANGUAGE - REFERENCE MANUAL

ERROR CODES AND THEIR MEANING

ERROR MESSAGE

CODE (BAS1C/PCOS)

33 1EEE: Unprintable error
(BAS1C)

34 1EEE: Board not present
(BASIC)

35 Window not open
(BASIC/PCOS)

36 Unable to create Qindow
(BASIC/PCOS)

37 Invalid action verb
(BASIC)

38 Parameter out of range
(BASIC)

39 Too many dimensions
(BASIC)

5¢ FIELD overflow
(BASIC)

COMMENT

An error message is not printable
i.e. corresponds to an error with
an undefined error code

An attempt has been made to use
1IEEE on a machine which does not
have the optional IEEE interface

An attempt has been made to use a
window which is not at present open.

It may also happen in PC0S, when
executing an Assembly language
subprogram

The dimensions of the window to be
created are wrong.

It may also happen in PCOS, when
executing an Assembly language
subprogram

An action verb has been incorrectly
spelt or used

One or more parameters have ex-
ceeded the limits set for their
range

An attempt has been made to use an
array of more than one dimension,
in graphics mode

A FIELD statement has attempted to
allocate more bytes than were
specified for the record length of
a random file

C-5

ERROR
CODE

51

52

53

54

55

57

C-6

MESSAGE

(BASIC/PCOS)

Internal error

(BASIC)

Bad file number

(BASIC)

File not found
(BASIC/PCOS)
Bad file mode

(BASIC/PCOS)

File already open

(BAS1C/PCOS)

Disk 1/0 error

(BAS1C/PCOS)

COMMENT

An internal malfunction has oc-
cured. Report the conditions under
which the error occurred to your
Support Organisation

A statement or command refers to a
file (having a file number not
within the range specified at
initialization) or the correspon-
ding file is not open

A BASIC or PCOS command or an OPEN
statement refers to a file that
does not exist on the current disk

In BASIC: an attempt has been made

to use random file operations (GET
or PUT) with a sequential file; or
to use LOAD or RUN with a data
file; or to use an illegal access
mode with OPEN, i.e. not A,I,0, or
R.

In PCOS: it may happen when exe-
cuting an Assembly language sub-
program

In BASIC: an OPEN statement has
been issued for a file that is
already open, or a KILL has been
applied to a file that is open.

In PCOS: it may happen, when
executing an Assembly language
subprogram

An input/output error has occurred
during a disk 1/0 operation. It is
a termination error, i.e. PCOS/-

BASIC cannot recover - apply a
RESET

BASIC LANGUAGE - REFERENCE MANUAL

ERROR CODES AND THEIR MEANING

ERROR MESSAGE

CODE (BASIC/PCOS)

58 File already exists
(BASIC/PCOS)

59 Disk type mismatch
(PCOS)

60 Disk not initialized
(PCOS)

61 Disk full
(BASIC/PCOS)

62 End of file
(BASIC/PCOS)

63 Invalid record number
(BASIC/PCOS)

64 Invalid file name
(BASIC/PCOS)

66 Direct statement in file
(BASIC)

67 Too many files
(BASIC)

COMMENT

An attempt has been made to assign
a file a name which is identical to
a filename already in use on the
disk

An operation has been made which
requires two diskettes of equal
capacity with two diskettes of
different capacity

An attempt has been made to access
a not initialized disk

All disk storage space available is
in use

An incorrect End of File has been
issued

The record number exceeds range,
i.e. is less than or equal to @ or
greater than 32767

An invalid form of filename has
been used (too long or including
illegal characters)

A direct (immediate) statement has
been encountered when loading an
ASCII format file.

The LOAD operation is terminated
An attempt has been made to create
a new file (using SAVE or OPEN)

when the present directory is
already full

c-7

ERROR
CODE

69

70

7

72

73

74

75

76

78

79

C-8

MESSAGE
(BASIC/PCOS)

Volume name not found
(BASIC/PCOS)

Rename error
(BASIC/PCOS)

Invalid volume number
(BASIC/PCOS)

Volume not enabled
(BAS1C/PCOS)

Invalid password
(BASIC/PCOS)

Illegal disk change
(BASIC/PCOS)

Write protected file
(BASIC/PCOS)

Error in parameter
(BASIC/PCOS)

Too many parameters
(BASIC/PCOS)

File not OPEN
(BASIC/PCOS)

Printer error

(BASIC/PCOS)

COMMENT

The volume name referred to does
not match any mounted disk(s)

An attempt has been made to rename
a volume with an illegal name

The specified volume number is
illegal

An attempt has been made to access
a volume which has not been enabled

The password entered is illegal

The disk has been changed since
last using the file

An attempt has been made to write
to a write protected file

An attempt has been made to enter
an illegal parameter

Too many
specified

parameters have been

| An attempt has been made to access

a file that is not open

A printer error has been referred
indicating that some operator re-
sponse is required, such as out of
ribbon

BASIC LANGUAGE - REFERENCE MANUAL

ERROR CODES AND THEIR MEANING

ERROR MESSAGE
CODE (BAS1C/PCOS)
8¢ Copy protected file
(PCOS)
81 Paper empty
(BASIC/PCOS)
82 Printer fault
(BASIC/PCOS)
92 Command not found
(PCOS)
99 Bad load file
(PCOS)
M Error in time or date
(PCOS)
108 Call-user error
(PCOS)
119 Time-out
(PCOS)
m Invalid device
(PCOS)

COMMENT

An attempt has been made to copy a
copy protected file

The printer has run out of paper

The printer has a hardware fault

An invalid keyword has been entered

The program file specified is not
compatible with the PCOS version
being used

An invalid time or date has been

entered

An error has been encountered in a
call to an Assembly Language rou-
tine or a PCOS command

A time-out error has occurred

The specified device name does not
exist

c-9

D. DIFFERENCES BETWEEN PCOS RELEASES

ABOUT THIS APPENDIX

This Appendix shows the differences between 1.3,

releases.

CONTENTS

DIFFERENCES BETWEEN PCOS

RELEASES

GETCONV.BAS UTILITY

D-1

2.x and 3.x

PCOS

DIFFERENCES BETWEEN PCOS RELEASES

PCOS RELEASE 1.3
Hard Disk is not supported

The 160K byte and 640K byte
diskettes are not supported

8-colour video is not supported

The Assembly and PASCAL language
are not supported

The following PCOS commands are not
supported:

ASM, BVOLUME, CKEY, DCONFIG, LSCREEN,
PDEBUG, PUNLOAD, RFONT, SLANG, TLOC,
VVERIFY, WFONT

Greece and Yugoslavia keyboards
are not supported

PCOS RELEASE 2.x ONWARDS

Hard Disk 1is supported (from
R.2.9).

The 160K byte diskettes are sup-
ported (from R.2.§) and 64@K byte
diskette from R.3.0

8-colour video is supported (from
R.2.0).

The Assembly language is supported
(from R.2.¢) and PASCAL (from
R.3.9)

The following PCOS commands are
supported (from R.2.9):

ASM, BVOLUME, CKEY, DCONFIG,
LSCREEN, PDEBUG, PUNLOAD, RFONT,
SLANG, TLOC, VVERIFY, WFONT

The following options are sup-
ported:

%g with the EDIT command (from
R.2.9)

%h with the FLIST command (from
Ri:35%)

% with the PKEY command (from
R.3.0)

disk time with the SSYS command
(from R.3.0)

The FNEW command may create a list
of files (from R.3.0)

Greece and Yugoslavia keyboards

are supported (from R.2.0) and
Israel keyboard (from R.3.%)

D-1

PCOS RELEASE 1.3
BASIC command is resident
PCOS and BASIC are booted at
initialization
At initialization the last selected
drive is drive @
The PCOS prompt is

=

The default value of the memory
parameter in the CLEAR statement is

38000

The LABEL PCOS command does not
permit a colour parameter.

The range of values of the '"position'

parameter in the WINDOW (To open a
window) statement, if a horizontal
split is to be made, is:

lower limit = vertical spacing value

of the parent window + 1

upper limit = height of the parent
window - (lower limit + 1)

The printers PR 1481, PR 2300,

PR 430, PR 2835 and PR 320 and the
electronic typewriters ET 121 and
ET 231 are not supported

lower limit

upper limit

PCOS RELEASE 2.x ONWARDS

BASIC command 1is transient (from
R.2.0)

Only PCOS 1is booted at initial-
ization (from R.2.0)

At initialization the last select-
ed drive is the one that PCOS is
booted from (from R.2.)

The PCOS prompt is
n>

where n specifies the last select-
ed drive (from R.2.¢)

The default value of the memory
parameter in the CLEAR statement
is 368¢¢ (from R.2.¢) and 3600¢
(from R.3.9)

The LABEL PCOS command may specify
a colour parameter (from R.2.0)

The range of values of the '"posi-
tion" parameter in the WINDOW (To
open a window) statement, if a
horizontal split is to be made,
is:

]
-

255

(from R.2.9)

The printers PR 1481, PR 2300, PR
430 and the electronic typewriters
ET 121 and ET 231 are supported
(from R.2.@) and the printers:

PR 2835 and PR 320 are supported
(from R.3.9)

BASIC LANGUAGE - REFERENCE MANUAL

DIFFERENCES BETWEEN PCOS RELEASES

PCOS RELEASE 1.3

It is not possible to display the
first 32 characters of the ASCII
table

Two independent lists of error
messages exist: the former is
related to BASIC and the latter to
PCOS

The maximum number of parameters
in a PCOS command is 11

PCOS RELEASE 2.x ONWARDS

It 1is possible to display the
first 32 characters of the ASCII
table (from R.3.0) by the special
parameters +cc and -cc

Only one error list exists (from
R.3.9)

The maximum number of parameters
in a PCOS command 1is 2@ (from
R.2.9)

GETCONV.BAS UTILITY

1f (using a release 1.x of PCOS) you store on a file a window (or a
rectangle within a window) and you want to use this file to display the
same image under a more recent release (2.x onwards) you have to convert

this file by the GETCONV.BAS utility.

To convert this file you must follow the procedure here below:

STEP ACTION
1 Load PCOS 2.x (or one of the more recent releases)
2 Enter:

ba HH

and, when the BASIC prompt (Ok) appears on the video, enter:

RUN "getconv.bas"

Note: You may also enter, from PCOS:

ge HGH

D-3

Enter the file identifier related to the file to be con-
verted, when the corresponding prompt appears on the video.

Enter the output file identifier, when the corresponding
prompt appears on the video

Enter "s" if the file to be converted is a sequential file,
and "r'" if it is a random file

Verify what appears on the video, in particular the dimen-
sion of the one-dimensional integer array, stored on the
file. 1f the dimension displayed is bigger than the one
specified within the BASIC program you will have to change
the DIM statement in the BASIC program too.

Wait until the conversion is completed, i.e. until the BASIC
prompt (Ok) appears on the video

BASIC LANGUAGE - REFERENCE MANUAL

- E. BASIC STATEMENTS, COMMANDS AND
FUNCTIONS

ABOUT THIS APPENDIX

This Appendix 1lists all BASIC statements, commands and functions in
alphabetical order and provides a reference to the corresponding page.

If a statement, a command or a function may be used both in a program and
an immediate line, PROGRAM/IMMEDIATE is specified; if it may only be used
in an immediate line, IMMEDIATE is specified; if it may only be used in a
program line, PROGRAM is specified.

CONTENTS

BASIC STATEMENTS, COMMANDS E-1
AND FUNCTIONS

BASIC STATEMENTS. COMMANDS AND FUNCTIONS

ABS
ASC
ATN
AUTO
CALL
CDBL
CHAIN
CHRS
CINT
CIRCLE
CLEAR
CLOSE
CLOSE WINDOW
CLS

COLOR

COLOR - Global Colour

Set Selection
COMMON

CONT

cos

CSNG

CURSOR

(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/TMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/TMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/TMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM)
(IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

Page

2-5
10-9
9-7

1-3

9-8
14-29
5-1
12=7
14-20
14-14
14-13

14-11

14-21

E-1

Page

CVD (PROGRAM/IMMEDIATE) 1;:33;
V1 (PROGRAM/IMMEDIATE) 9-38;
12-41
g (PROGRAM/IMMEDIATE) 9-38;
12-41
DATA (PROGRAM) 5-5
DATES (PROGRAM/IMMEDIATE) 9-37
DEFDBL (PROGRAM/IMMEDIATE) 4-10
DEF FN (PROGRAM) 9-3
DEFINT (PROGRAM/IMMEDIATE) 4-10
DEFSNG (PROGRAM/IMMEDIATE) 4-10
DEFSTR (PROGRAM/IMMEDIATE) 4-10
DELETE (IMMEDIATE) 3-2
DIM (PROGRAM/IMMEDIATE) 4-19
DRAW (PROGRAM/IMMEDIATE) 14-42
EDIT (IMMEDIATE) 3.7
END (PROGRAM) 13-4
EOF (PROGRAM) 1;:32;
ERASE (PROGRAM/IMMEDIATE) 4-22
ERL (PROGRAM/IMMEDIATE) b v
ERR (PROGRAM/IMMEDIATE) 1;:??‘
ERROR (PROGRAM/IMMEDIATE) 13-8

E-2 BASIC LANGUAGE - REFERENCE MANUAL

BASIC STATEMENTS. COMMANDS AND FUNCTIONS

EXEC

EXP

FIELD

FILES

FIX

FOR

FRE

GET - File

GET - Graphics
GOSuB

GOTO

HEX$
IF...GOTO...ELSE
IF...THEN...ELSE
INKEYS

INPUT

INPUT

INPUTS

INSTR

INT

KILL

LEFTS

LEN

(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM)

(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM)

(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

12-39

14-37

10-3

8-1

9-21

LET

LIST

LINE

LINE INPUT
LINE INPUT
LLTST

LOAD

Loc

LOG

LPOS

LPRINT
LPRINT USING
LSET

MERGE

MIDS

M1D$

MKD$

MK1$

MKS$

NAME

E-4

(PROGRAM/IMMEDIATE)

(IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM)
(PROGRAM/IMMEDIATE)
(IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

Page

12-23
2-9
2-24
9-39;

12-18;
12-37

BASIC LANGUAGE - REFERENCE MANUAL

BASIC STATEMENTS. COMMANDS AND FUNCTIONS

NEXT
NEW

NULL
0CcT$

ON ERROR GOTO

ON...GOSUB
ON...GOTO
OPEN

OPTION BASE
PAINT

POINT

P0OS

PRESET

PRINT

PRINT

PRINT USING
PRINT USING
PSET

PUT - File
PUT - Graphics
RANDOMIZE
READ

RENUM

(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM)

(PROGRAM)

(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/TMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/TMMEDIATE)
(PROGRAM/TMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/TIMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM)

(IMMEDIATE)

13-9
10-7

8-3

14-33
14-36
14-24

14-32

12-10
7-12
12-16
14-32
12-35
14-39
9-15
5-5

3-6

E-5

RESTORE (PROGRAM) 5-5

RESUME (PROGRAM) 13-13
RETURN (PROGRAM) i :3;
RIGHTS (PROGRAM/IMMEDIATE) 9-31
RND (PROGRAM/IMMEDIATE) 9-14
RSET (PROGRAM/IMMEDIATE) 12-31
RUN (PROGRAM/IMMEDIATE) 2-26
SAVE (PROGRAM/IMMEDIATE) 2-20
SCALE (PROGRAM/IMMEDIATE) 14-15
SCALEX (PROGRAM/IMMEDIATE) 14-21
SCALEY (PROGRAM/IMMEDIATE) 14-22
SGN (PROGRAM/IMMEDIATE) 9-16
SIN (PROGRAM/IMMEDIATE) 9-17
SPACES (PROGRAM/IMMEDIATE) 9-32
SPC (PROGRAM/IMMEDIATE) 9-40
SQR (PROGRAM/IMMEDIATE) 9-17
STOP (PROGRAM) 13-4

STRS (PROGRAM/IMMEDIATE) 9-33
STRINGS (PROGRAM/IMMEDIATE) 9-34
SWAP (PROGRAM/IMMEDIATE) 5-4

SYSTEM (PROGRAM/IMMEDIATE) 10-12
TAB (PROGRAM/IMMEDIATE) 9-41

E-6 BASIC LANGUAGE - REFERENCE MANUAL

BASIC STATEMENTS, COMMANDS AND FUNCTIONS

NEXT

NEW

NULL

0CT$

ON ERROR GOTO

ON. . .GOSuB
ON...GOTO
OPEN

OPTION BASE
PAINT

POINT

POS

PRESET

PRINT

PRINT

PRINT USING
PRINT USING
PSET

PUT - File
PUT - Graphics
RANDOMIZE
READ

RENUM

(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM)

(PROGRAM)

(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/TMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM)

(IMMEDIATE)

4-23
14-33
14-36
14-24
14-32

7-4
12-10

7-12
12-16
14-32
12-35

14-39

5-5

3-6

E-5

Page

RESTORE (PROGRAM) 5-5

RESUME (PROGRAM) 13-13
RETURN (PROGRAM) :3;
RIGHTS (PROGRAM/IMMEDIATE) 9-31
RND (PROGRAM/IMMEDIATE) 9-14
RSET (PROGRAM/IMMEDIATE) 12-31
RUN (PROGRAM/IMMEDIATE) 2-26
SAVE (PROGRAM/IMMEDIATE) 2-20
SCALE (PROGRAM/IMMEDIATE) 14-15
SCALEX (PROGRAM/IMMEDIATE) 14-21
SCALEY (PROGRAM/IMMEDIATE) 14-22
SGN (PROGRAM/IMMEDIATE) 9-16
SIN (PROGRAM/IMMEDIATE) 9-17
SPACES (PROGRAM/IMMEDIATE) 9-32
SPC (PROGRAM/IMMEDIATE) 9-40
SQR (PROGRAM/IMMEDIATE) 9-17
STOP (PROGRAM) 13-4

STRS (PROGRAM/IMMEDIATE) 9-33
STRINGS (PROGRAM/IMMEDIATE) 9-34
SWAP (PROGRAM/IMMEDIATE) 5-4

SYSTEM (PROGRAM/IMMEDIATE) 10-12
TAB (PROGRAM/IMMEDIATE) 9-41

E-6 BASIC LANGUAGE - REFERENCE MANUAL

BASIC STATEMENTS. COMMANDS AND FUNCTIONS

TAN
TIMES
TROFF
TRON
VAL
VARPTR
WEND
WHILE
WIDTH

WINDOW-To open
a window

WINDOW-To select
a window

WINDOW-To set window
spacing

WRITE

WRITE

(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

14-3

14-10

14-6

7-10

12-17

NOTICE

Ing. C. Olivetti & C. S.p.A. reserves the right to make improvements in
the product described in this manual at any “time and without notice.

This material was prepared for the benefit of Olivetti customers. It is
recommended that the package be test run before actual use.

Anything in the standard form of the Olivetti Sales Contract to the
contrary not withstanding, all software being licensed to Customer is
licensed "as is". THERE ARE NO WARRANTIES EXPRESS OR IMPLIED INCLUDING
WITHOUT LIMITATION THE 14PLIED WARRANTY OF FITNESS FOR PURPOSE AND
OLIVETTI SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR
INCIDENTAL DAMAGES IN CONNECTION WITH SUCH SOFTWARE.

The enclosed programs are protected by Copyright and may be used only by
the Customer, Copying for use by third parties without the express
written consent of Olivetti is prohibited.

GR Code 3982430 P (3)
Printed in Italy

GR Code 3982430 P (3)
Printed in Italy

