M 20 PERSONAL COMPUTER

CBASIC-86 Language

Reference Manual

M 20 PERSONAL COMPUTER

CBASIC-86 Language

Reference Manual

PREFACE

This manual is intended for persons using CBASIC-86 Language in the
Olivetti M20 Professional Computer. It 1is reprinted by permission of
Digital Research, developers of the CP/M-86® Operating System and the
CBASIC® language.

CBASIC® runs under the CP/M-86 Operating System, which requires that an
APB-1086 Alternative Processor Board be installed in your M20.

References to CBASIC® (as opposed to CBASIC-86) and to microprocessors
other than the 1Intel® 8086 which appear in this manual do not apply to
the M20 and should be disregarded.

REFERENCES

Professional Computer Operating System (PC0S) - User Guide
Code 4008980 G(0)

CP/M-86 Operating System - User Guide
Code 3984700 P(0)

Distribution: General
First Edition: November 1983

Release: Version 1.20, Rev. 3.00, October 21, 1983 (Digital Research)

CBASIC, CP/M, CP/M-86, and CP/NET are registered

trademarks of Digital Researcn. CBASIC-86, DODT,
MP/M, and MP/M-86 are trademarks of Digital Research. PUBLICATION ISSUED BY:

280 is a registered trademark of Zilog Inc. Intel
is a registered trademark of Intel Corporation.

- o Ing. C. Olivetti & C., S.p.A.
Copyright (©) 1983, by Digital Direzione Documentazione
Research 77, Via Jervis - 10015 IVREA (Italy)

3984710 C

‘Foreword

CBASIC® is a comprehensive and versatile programming language for developing
professional microcomputer software. Software developers worldwide have selected
CBASIC for its capacity to quickly produce reliable, maintainable programs in an
enhanced programming environment. CBASIC combines the power of a structured,
high-level language with the simplicity of BASIC to provide a serious development tool
that is easy to learn and easy to use.

If you are a newcomer to data processing, read an introductory text on BASIC first.
All you need is an understanding of elementary programming concepts and a familiarity
with BASIC terminology to learn CBASIC.

The CBASIC Language Reference Manual covers CBASIC and CBASIC-86™.

® CBASIC runs under the CP/M®, MP/M™, and CP/NET® operating systems for
computers based on the Intel® 8080, 8085 or the Zilog Z80® microprocessor.

® CBASIC-86 runs under the CP/M-86® or MP/M-86™ operating systems for
computers based on the Intel 8086 microprocessor.

Section 6 discusses the minor differences between the two versions of CBASIC.

At the end of Section 1is a demonstration program that you can compile and run by
following a few simple steps. The rest of the manual covers three main topics: CBASIC
language definition, machine dependencies, and the Compiler and Interpreter.

® Sections 2, 3, and 4 define the CBASIC language.

B Section 5 covers input and output.

® Section 6 discusses assembly language interfacing and other machine-dependent
topics.

m Section 7 discusses the Compiler, run-time Interpreter, and Cross-reference Lister.

v

Table of Contents

Getting Started with CBASIC

1.1 CBASIC COmMPONENtSvverreernerneereonaneroennaennnnnnns
1.2 Program SIIUCIUIE ittt ttiiine i iiineeerenneeannnnnn
1.3 A Demonstration Programc...ciiiiiiiiirieninnnenennenn

Names, Numbers, and Expressions

2.1 Identifiersovevttiii i e e e i
. ¢ -3
2.3 NUMDEIS . ovvitttt it ittt eeti e iin et rennneess
2.4 Variables and Array Variables i
2.5 EXPIESSIONS . ttsvsuuinenenenenensoounononeaeroseeeesasnannnes
Statements and FUnctionsccoivviirinneinnneenneennnnns

Defining and Using Functions

4.1 Function Namescoiiitrrrinerrrnnnrerrnneernnneennnnss
4.2 Function Definitionsoviiiiiiiiiirerriiiinnnnnneannns
4.2.1 Single-Statement Functionsccoieviinninnn.,
4.2.2 Multiple-Statement Functionsccovvvvunnnnn..
4.3 Function Referencesc.oveiiiireienteeeriinnnneennnnnes

Input and Output

5.1 Console Input and Outputc.oviiiiiniiiniiineennneennn..
R A o ¢ 1114 1 T
5.3 Formatted Printingc.oviiiiiirenineiiininrnineennne.
5.3.1 String Character Fieldsccviiiiiiniiienennnns
5.3.2 Fixed-Length String Fieldscovviun...
5.3.3 Variable-Length String Fieldsccoivvnuio. ...
5.34 NumericDataFieldscciiiiiiiiiiiiiiinnnnn.
5.3.5 Escape Characterscevveereeereiannnnnnnnnnnnns

\D 00 N O\ L

6

7

cC O =

leo)

Table of Contents (continued)

5.4 File Organizationeuirieriiiieiieminsemiiiannens, 114
5.4.1 Sequential Filesccciiiiiiiiiiiiiii., 115
542 Relative Filescovviiiiiiii i 117

5.5 Maintaining Files i 119

Machine Language Interface

6.1 Memory Allocationoiiiiiiiiiiiiiiiiii i, 121
6.2 Internal Data Representation ««.....evveveriinnrrerrreneeneeens, 123
6.3 Assembly Language Interfaceovvvviiniennniineennnnnnn... 124
6.4 CBASIC 8-bit (8080) Demonstration Program 126
6.5 CBASIC 16-bit (8086) Demonstration Program 129

Compiling and Running CBASIC Programs

7.1 Compiler DIirectivesveveiiineereiieeinrreeeanneeeennns 133
7.2 Listing Controlo ottt e 133
7.3 %INCLUDE Directiveviiiiiiiiiiiiiiiiiiinreereeeennnns 134
7.4 %CHAIN Directiveciuiuiiiiiiiieiiiiieeeinnrrinineenns 134
7.5 CBASIC Compile-time Togglescccviiiiinn.t. 135
7.6 Compiler QUIPUL ittt ittt it 137
7.7 TRACE Optionuuriiteetettniiriiiatiierteneersereeenns 139
7.8 Cross-Reference Listeroouiiiiiiiinniininneninneunenne 140

Appendixes

Compiler Error Messagesovvivieenirriienierennieeinneonns, 143
Run-time Error Messagescvuuiitinennrennerneerneenseeneenns 149
CBASIC Key Wordsovutiiintiitiiiiiiiiieiiienneennees 155
Decimal-ASCII-Hex Table, 157
Glossary ... i 159

TABLE OF CONTENTS

5-1

6-1
6-2
63

Table of Contents (continued)

List of Tables

Hierarchy of Operatorsccovviiiiiiriinrrnineenneeennnns 10
Compile-time Togglesccoiiiiiiiiiiiiiiiieiinanns 137-138
Cross-reference Lister Toggle Functionsccccvieiieennenn., 141
File System and Memory Space Errorsccvinieviinnnnn, 143-144
Compilation Error Codescoviiiiiiiniirenneennnnenns 144-148
CBASIC Warning Messagesceuvenninnereeereronnnenannnns 149
CBASIC Warning Codescitiriiimiiinieiriiiiiennnenns 150
CBASIC Error €Codes ...uviirevnnnieriniinrerenneeeennnnnnss 150-154
Conversion Table i 157-158

Sequential File v i i i i e 115

Relative File et ittt 117

CP/M Memory Allocation ..ottt 121

Real Number Storageccoiiiiiiiiiiiiiiiiiii i 123

Integer StOrageoiiiiii i it i e e e et et 124
vii

viii

1. GETTING STARTED WITH CBASIC

Section 1
Getting Started With CBASIC

1.1 CBASIC Components

The CBASIC system has two main components: the Compiler and the run-time
Interpreter. CBASIC also provides a Cross-reference Lister.

® The CBASIC Compiler translates a source program into intermediate code.
Source programs must be in .BAS files. The intermediate files are .INT files.

® The run-time Interpreter executes the .INT file that the Compiler generates.

® The Cross-reference Lister produces an alphabetized list of identifiers used in
your CBASIC program. The Cross-reference Lister is a utility program provided
as a convenience. It does not affect your programs.

1.2 Program Structure

CBASIC has features found in high-level languages, such as structured statements,
functions, complex expressions, and data types. Some other CBASIC features are parameter
passing, local and global variables, easy access to the operating system, and chaining
between programs.

CBASIC requires no line numbers and allows the free use of commas, spaces, and
tabs to make your programs more readable. A statement number or label is needed
only when the statement is referenced from another location in the program. CBASIC
allows integers, decimal fractions and exponential numbers as statement labels, as in
the following examples:

1 PRINT "THESE ARE VALID LINE NUMBERS"
0 INPUT "ENTER A NUMBER:"SiN
100 GO TO 100.0

100.0 END

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 1

1.2 Program Structure CBASIC Language Reference Manual

21,543 A% NAMES$

7920E12 Y 2.0 ¥ X

CBASIC statement labels do not have to be sequential. The Compiler treats the labels
as strings of characters, not as numeric quantities. For example, the two labels 100
and 100.0 are distinct CBASIC statement labels. The maximum length for a statement
label is 31 characters.

CBASIC statements can span more than one line. Use the backslash character, \, to
continue a CBASIC statement on the next line. The Compiler ignores any character
that follows a backslash on the same line. The backslash does not work as a continuation
character if used within a string constant. The following example demonstrates the
continuation character:

IF X = 3 THEN \

PRINT "THE VALUES ARE EQUAL" \
ELSE \

GOSsSuB 1000

In most cases, you can write multiple statements on the same line. Use a colon, :,
to separate each command that appears on one line. However, the statements DIM,
IF, DATA, and END cannot appear on one line with others. The following example
demonstrates multiple statements on one line:

PRINT TAB(10)3i"X": READ #13iNAME$: GOTOD 1000

Use comments or remarks freely to document your programs. The REM statement
allows unlimited program notation. Also, use spaces freely to enhance readability of
your programs. Comments, long variable names, and blank spaces do not affect the
size of your compiled program.

1.3 A Demonstration Program

The following demonstration program should help you get over the initial hurdle of
compiling and running your first CBASIC program. You should already be familiar
with CP/M and a text editor. The following instructions are for CBASIC on a CP/M-
based system with two floppy-disk drives.

2 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 1.3 A Demonstration Program

Make a back-up copy of your master CBASIC disk. Place your operating system
disk into drive A and a copy of your CBASIC disk into drive B.

1. Write the program.

Using your text editor, create a file named TEST.BAS on your CBASIC disk
in drive B. Enter the following program into TEST.BAS exactly as it appears
below:

PRINT
FOR IZ =1 TO 10
PRINT IZi "TESTING CBASIC!"
NEXT IZ
PRINT
PRINT "FINISHED"
END

2. Compile the program.

To start the CBASIC Compiler, enter the following command. Be sure drive B
is the default drive.

B>CBAS TEST

The Compiler assumes a filetype of .BAS for the file you specify in the Compiler
command. A sign-on message, a listing of your source program, and several
diagnostic messages display on your terminal. The message NO ERRORS
DETECTED indicates a successful compilation. The Compiler creates an inter-
mediate file for the TEST.BAS program. The directory for disk B should have
the new file TEST.INT.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 3

1.3 A Demonstration Program CBASIC Language Reference Manual

3. Run the program.

To start the run-time Interpreter, enter the following command. Be sure drive
B is the default drive.

B>CRUN TEST

The following output should appear on your terminal:

CRUN Ver., 2.XX Serial No.000-00000 Copyright (c)
1982 Didital Researchs Inc. All rights reserved

1 TESTING CBASIC!
2 TESTING CBASIC!
3 TESTING CBASIC!
4 TESTING CBASIC!
S TESTING CBASIC!
6 TESTING CBASIC!
7 TESTING CBASIC!
8 TESTING CBASIC!
9 TESTING CBASIC!
10 TESTING CBASIC!

FINISHED

Minor differences appear in the sign-on message for the different versions of
CBASIC.

End of Section 1

4 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

2. NAMES, NUMBERS, AND EXPRESSIONS

Section 2
Names, Numbers, and
Expressions

CBASIC has three principal data types: integers, real numbers, and strings. CBASIC
also supports dynamic, multidimensional arrays of all three data types. Each data type
has a distinct form for identifiers. Numeric constants can be written in several forms.

CBASIC has a large set of operators for building expressions with variables, constants,

and functions of the three data types. By converting from one type to another, where
necessary, CBASIC allows real numbers to be mixed with integers in most expressions.

2.1 Identifiers
An identifier can be any length, as long as it fits on one line. Only the first thirty-

one characters are meaningful for distinguishing one name from another. The first
character must be a letter, the remaining characters can be letters, numerals, or periods.
The final character in an identifier determines which data type it represents.

® Identifiers ending with $ are for strings.

® Identifiers ending with % are for integers.

B Identifiers without a $ or % are for real numbers.

The Compiler converts lower-case letters to upper-case letters unless toggle D is set.

Names for variables cannot begin with the letters FN. Names for user-defined func-
tions always begin with FN.

The following are examples of valid CBASIC identifiers.
A%

NEW.SUM

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 5

2.1 Identifiers CBASIC Language Reference Manual

filelZ.name$

Pavroll.Identification.Numberi

2.2 Strings

String constants are delimited by quotes. A string constant can have zero or more
printing characters, as long as the string fits on a single line. The \ character has no
special meaning inside a string constant. Two adjacent quotes represent one printed
quote in the string.

For example, the string constant

"""Hello»"" said Tom,"

is stored internally as the string:
"Hello,»" said Tom.

Although string constants cannot contain control characters and must fit on one
line, string variables are more flexible. Internally, a string can have from 0 to 255
characters. Each character takes up one byte. The first byte in the string data area
contains the length of the string. To build long strings, or to embed control characters
in strings, use string expressions, as described later in this section, and string functions,
as described in Section 3.

The following are examples of valid CBASIC string constants:

"July 4, 1776"

"Enter vyour name Please:"
llllll\llll

has no special meaning inside a string.,"

“v — the null string

6 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 2.3 Numbers

2.3 Numbers

Two types of numeric quantities are supported by CBASIC: real and integer. A real
constant is written in either fixed format or exponential notation. In both cases, it
contains from one to fourteen digits, a sign, and a decimal point. In exponential
notation, the exponent is of the form Esdd, where s, if present, is a valid sign, +, —,
or blank, and where dd is one or two valid digits. The sign is the exponent sign and
should not be confused with the optional sign of the mantissa. The numbers range
from 1.0E-64 to0 9.9999999999999E62. Although only fourteen significant digits are
maintained internally by CBASIC, more digits can be included in a real constant. Real
constants are rounded to fourteen significant digits.

A constant is treated as an integer if the constant does not contain an embedded
decimal point, is not in exponential notation, and ranges from —32768 to +32767.

Integer constants can also be expressed as hexadecimal or binary constants. The
letter H terminates a hexadecimal constant. The letter B terminates a binary constant.
The first digit of a hexadecimal constant must be numeric. For example, 255 in hex-
adecimal is OFFH, not FFH. FFH is a valid identifier.

Hexadecimal and binary constants do not contain a decimal point. The value retained
is the sixteen least-significant bits of the number specified.

In this manual, the terms real number and floating-point number are interchangeable.
The term numeric applies to either a real or integer quantity.

Examples of valid numbers are:
1+ 1,0, -99, 123456.789
1,993, .01, 4E12, 1,77E-9
1,5E+3 is equivalentto 1500,0
1,5E-3 is equivalentto ,001S

1abOH, 101111108+ OFFFFH

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 7

2.4 Variables and Array Variables CBASIC Language Reference Manual

2.4 Variables and Array Variables

A variable in CBASIC represents an integer, real number, or a string, depending on
the type of the identifier.

Each variable has a value always associated with it during program execution. A
string variable does not have a fixed length associated with it. Rather, as different
strings are assigned to the variable, the storage is dynamically allocated. The maximum
length allowed in a string variable is 255 characters. Numeric variables are 1mt1ahzed
to 0. String variables are initialized to the null string.

A variable takes the general form:

identifier [(subscript list)]

The following are examples of variables:
X$
PAYMENT

dav.of.derositi

Array variables look like regular variables with an added subscript list. CBASIC
arrays can hold strings, integers, or reals. As with regular variables, the type of identifier
specifies the type of array. The subscripts specify which element in the array to reference.

A subscript takes fhe general form:

expression { , expression }

The following examples show array variables:.
y$ (1% s d% s R 214D
COST(3+5)
POSX (XAXISZL +YAXISZ)

INCOME(AMT(CLIENTZ) sCURRENT .MONTH?%)

8 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 2.4 Variables and Array Variables

The expressions in a subscript list must be numeric. Access to array elements is more
efficient if integer expressions are used in subscript lists. If the expression is real, the
value is rounded to the nearest integer before using the value. The subscript list indicates
the variable is an array variable and indicates which element of the array reference.

When subscripts are calculated, a check ensures that the element selected resides in
the referenced array. A run-time error occurs if the element does not reside in the
referenced array. The run-time check ensures that the location calculated is included
in the physical storage area of the array.

Before an array variable is referenced in a program, it must be dimensioned using
the DIM statement. The DIM statement specifies the upper-bound of each subscript
and allocates storage for the array. Section 3 describes the DIM statement.

An array must be dimensioned explicitly; no default options are provided. Arrays
are stored in row-major order.

The subscript list is used to specify the number of dimensions and the extent of each
dimension of the array being declared. The subscript list cannot contain a reference to
the array being dimensioned. All subscripts have an implied lower-bound of zero.

The same identifier can name both a variable and an array variable in the same
program, although that is not a recommended practice.

2.5 Expressions

The following are examples of expressions:
cost + overhead * rercent
a*b/c(l.2+xvz)
last.name$ + ", " + first.name$
index% + 1

Expressions consist of algebraic combinations of function references, variables, con-

stants and operators. Expressions evaluate to an integer, real, or string value. Table
2-1 gives the hierarchy of operators.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9

2.5 Expressions CBASIC Language Reference Manual

Table 2-1. Hierarchy of Operators

Hierarchy Operator Definition
1 () balanced parentheses
2) power operator

Arithmetic Operators

3 * ! multiply, divide
4 +, — plus, minus

Relational Operators

5 LT (less than)
<= LE (less than/equal to)
GT (greater than)

>= E (greater than/equal to)
= Q (equal to)
<> E (not equal)

Logical Operators

6 NOT
7 AND
8 OR

9 XOR

Arithmetic and relational operations work with integers and real numbers. An integer
value converts to a real number if the operation combines a real and integer value.
The operation then uses the two real values, resulting in a real value. This is mixed-
mode arithmetic.

Mixed-mode operations require more time to execute because the Compiler generates
more code. A mixed-mode expression always evaluates to a real value.

The power operator calculates the logarithm of the number being raised to the power
if real values are used. A warning results when the number to the left of the operator
is negative because the logarithm of a negative number is undefined. The absolute
value of the negative quantity calculates the result. The exponent is positive or negative.

10 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 2.5 Expressions

If both values used with the power operator are either integer constants or integer
variables, the result is calculated by successive multiplication. This allows a negative
integer number to be raised to an integer power. With integers, if the exponent is
negative, the result is zero. In all cases, 0 * 0 is 1 and 0 " X, where X is not equal to
0,is 0.

If the exponent is an integer but the base is real, the integer is converted to a real
value before calculating the result. Likewise, if the exponent is real but the base is an
integer quantity, the result is calculated using real values.

String variables can only be operated on by the relational operators and the concatena-
tion operator +. Mixed string and numeric operations are not permitted. The mnemonic
relational operators (LT, LE, etc.) are interchangeable with the corresponding algebraic
operators (<, <=, etc.).

Relational operators result in integer values. A 0 is false and a -1 is true. Logical
operators AND, NOT, OR, and XOR operate on integer values and result in an integer
number. If a real value is used with logical operators, it is first converted to an integer.

If a numeric quantity exceeds the range from 32,767 to -32,768, it cannot be rep-
resented by a 16-bit two’s complement binary number. Logical operations on such a

number produce unpredictable results.

These are results of logical operations:

12 AND 3 =0 1100B AND 0101B =4
NOT -1 =0 NOT 3H = -4
12 OR 3 =15 OCH OR SH =13

12.4 XOR 3.2

1]
oo

15 12.4 XOR 3.7
Efficiency is increased by using integer expressions for relational tests and logical
operations. Programs written in Version 1 of CBASIC should be converted to use

integer variables wherever possible.

Note: if a series of digits contains no decimal point or ends in a decimal point, CBASIC
attempts to store it as an integer. If the resulting number is in the range of CBASIC

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 11

2.5 Expressions CBASIC Language Reference Manual

integers, it is treated as an integer. If the constant is then required in an expression as
a real number, the constant converts to a real number at run-time. For example,

X=X+1.

causes the integer constant 1. to be converted to a real value before adding it to X.
To eliminate this extra conversion, embed the decimal in the number as shown below:

X=X+1.0

Actually, there is very little difference in execution speed. A similar situation exists
in the following statement:

Y% = X% + 1.0

In this case, the X% is converted to a real number before adding it to the real constant.
The result is then converted back to an integer prior to assignment to Y%.

Generally you should avoid mixed-mode expressions whenever possible, and not use
real constants with integer variables. Most whole numbers used in a program are stored
as integers. This provides the most effective execution.

If an overflow occurs during an operation between real values, a warning is printed.
Execution continues, with the result of the operation set to the largest real number.

In the case of integers, no checking for overflow is performed because this reduces the
efficiency of integer operations. The calculated value returns a negative number if the
results of an integer operation fall outside the range of integer values, greater than 32767
and less than -32767.

End of Section 2

12 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

3. STATEMENTS AND FUNCTIONS

Section 3
Statements and Functions

This section uses the following typographical conventions to highlight the various
elements that make up each statement and function.

® CAPS indicate CBASIC keywords.

B Lower-case letters identify variables.

® Italics indicate syntactic items, such as expressions.

® Items enclosed in square brackets [] are optional.

® Jtems enclosed in braces { } are optional and can be repeated.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 13

ABS Function CBASIC Language Reference Manual

ABS Function

The ABS(x) function returns the absolute value of the expression x.

Syntax:
y = ABS (numeric expression)
Explanation:

The ABS function returns a floating-point number. If the expression is an integer,
CBASIC converts it to floating point. If the expression is positive or zero, the function
returns the value unchanged. Otherwise, the function returns the negative of the value.
Examples:

DISTANCE = ABS(START - FINISH)

IF ABS(DELTA.X) <= LIM THEN STOP

14 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual ASC Function

ASC Function

The ASC(a$) function returns the ASCII decimal value of the first character in the
string argument.

Syntax:
x% = ASC (string expression)
Explanation:

The function argument must be a string that is at least one character long, otherwise
the function produces a run-time error.

See also the CHRS$ function, which is the inverse of ASC.
Examples:

IF ASC(DIGIT$)>47 AND ASC(DIGIT$%)<58 THEN
PRINT "VALID DIGIT"

OUT TAPE.PORTZs ASC("*")

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 15

ATN Function CBASIC Language Reference Manual

ATN Function
The ATN(x) function returns the arc tangent of x.
y = ATN (numeric expression)

Explanation:

The result of ATN(x) is the angle, expressed in radians, whose tangent is x. The
result is a floating-point number.

Examples:
RADIANS = ATN(X)

IF ATN(N) < PI/Z.0 THEN\
PRINT "ANGLE LESS THAN 90 DEGREES"

16 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual CALL Statement

CALL Statement
The CALL statement links to a machine language subroutine.
CALL numeric expression
Explanation:

The statement calls the machine language subroutine address specified by the expres-
sion. If the value is a real number, CBASIC rounds it to the nearest integer.

Section 6 discusses machine language interfacing and addressing on different micro-
processors.

Examples:

See Section 6.5 for examples of the CALL statement.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 17

CHAIN Statement CBASIC Language Reference Manual

CHAIN Statement

The CHAIN statement transfers control to another program.

Syntax:
CHAIN filespec
Explanation:

The CHAIN statement transfers control to the program specified in the string expres-
sion. The expression must evaluate to a file specification. The drive name is optional;
the default is the currently logged-in drive. The file must be of type INT. Even if a
different file type is specified, the statement only recognizes type INT files.
Examples:

CHAIN "B:PAYROLL"

CHAIN SEGMENTS$

18 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual CHRS$ Function

CHRS$ Function
The CHRS$(x) function returns the character whose ASCII decimal value is x.
a$ = CHRS (numeric expression)
Explanation:
The result of CHR$ is a single-character string, whose ASCII value is equal to the
value of the input expression. If the expression is in floating point, CBASIC converts it to

an integer.

Appendix D lists the character set and their ASCII values. Use CHR$ to send control
characters to an output device, as shown in the examples below.

Examples:
PRINT CHR%(7) REM BEEP THE TERMINAL
PRINT CHR$(LINEFEEDZ)

IF CHR$(INP(IN,PORTZ)) = "A" THEN GOSUB 100

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 19

CLOSE Statement CBASIC Language Reference Manual

CLOSE Statement

The CLOSE statement deactivates open files.
CLOSE file number {,file number}
Explanation:
The CLOSE statement deactivates an open file. This means that the file is no longer
available for input or output. The specified file must have been activated by a CREATE,

FILE, or OPEN statement before using CLOSE.

Each expression refers to the identification number of an active file. The expression
must be an integer ranging from 1 to 20. CBASIC converts real numbers to integers.

The CLOSE statement closes the file, releases the file number, and reallocates all
buffer space used by the file. IF END statements assigned to closed files have no further
effect.

A STOP statement automatically closes all active files. A CTRL-Z entered in response
to an INPUT statement closes all active files. A CTRL-C does not close active files.
Run-time errors do not close active files.

Examples:

CLOSE FILE.NO%Z

CLOSE NEW.MASTER.FILE%Z:s OLD.MASTER.FILE%: UPDATE.B12%
FOR %% = 1 70 NO.OF.WORK.FILESY%

CLOSE™ X%
NEXT X%

20 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual COMMANDS Function

COMMANDS$ Function

The COMMANDS function returns a string containing the parameters from the
command line that started the program.

a$ = COMMANDS$
Explanation:
COMMANDS returns the command line from the operating system, minus the
program name. The word TRACE and any associated line numbers are not included

in the string if the TRACE option is in the command line.

COMMANDS$ removes leading blanks and converts alphabetic characters to upper-
case. The maximum length of the returned string is 50 characters.

Use the COMMANDS function anywhere in the program, any number of times,
and with any program loaded by a CHAIN statement.

Section 7 discusses command lines in more detail.
Examples:
IF COMMAND$ = "" THEN STOP
If any of the following commands starts a CBASIC program,
CRUN PAYROLL NOCHECKS TOTALS
CRUNBE pPavroll nochecKs totals
CRUNBE payroll trace nochecKks totals
the resulting string from COMMANDS is:

NOCHECKS TOTALS

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 21

COMMON Statement CBASIC Language Reference Manual

COMMON Statement

The COMMON statement specifies variables that are common to the main program
and all programs executed through CHAIN statements.

Syntax:
COMMON variable { , variable }
Explanation:

A COMMON statement is a nonexecutable statement that specifies the listed var-
iables common to the main program, and all programs executed through a CHAIN
statement. If present, COMMON statements must be the first statements in a program.
However, blank lines and REM statements can precede COMMON statements.

If the main program contains COMMON statements, each chained program must
have COMMON statements that match those in the main program. Matching means
that there are the same number of variables in each COMMON statement, and that
the type of each variable in the COMMON statement of the main program matches
the type of each variable in the COMMON statement of the chained program. Also,
dimensioned variables must have the same number of subscripts in each program.

Specify array variables by placing the number of subscripts in parentheses after the
array name.

Examples:
COMMON X Y+ A(3) ., B$(2)
This statement specifies that X and Y are nonsubscripted real variables, common to all

chained programs. A and B$ are arrays accessible by all programs. A has three subscripts,
while B$ has two. The COMMON statement does not indicate the size of any subscript.

Note: the specification of an array in a COMMON statement is not generally the same
as the specification in a DIM statement (see Section 2.4).

COMMON A(3)

can be used with

22 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual COMMON Statement

DIM A(20,+30,20)
However, an error occurs if you use COMMON A(3) with:
DIM A(3)

Note: the array must be created using the DIM statement before accessing an element
in an array in COMMON.

The first program that requires access to the array must ensure that a DIM statement,
which specifies the desired range for each subscript, is executed. Subsequent programs
can access this array with the data remaining unchanged through the chaining process.
If a subsequent program executes a DIM statement for this array, the data in the array
is lost; in other words, the array is reinitialized. However, with string arrays, elements
in the array are not released from memory.

You should set elements of string arrays to null strings before executing a second
DIM statement for the array.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 23

CONCHAR% Function CBASIC Language Reference Manual

CONCHAR% Function

CONCHAR% reads one character from the console device.
Syntax:
i% = CONCHAR%

Explanation:

The value returned is an integer. The low-order eight bits of the returned value are

the binary representation of the ASCII character input. The high-order eight bits are
zero.

Examples:
1% = CONCHARY%

CHARY = 0
IF CONSTATZ THEN\
CHARY = CONCHARZ

IF CHARZ = STOPCHARZX THEN\
RETURN

24 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual CONSOLE Statement

CONSOLE Statement
The CONSOLE statement restores printed output to the console.
CONSOLE
Explanation:
The console is the physical unit currently assigned to CON: by CP/M.

If the list device print position is not 1, a carriage return and line-feed are output
to the list device.

The width of the console device is changed with the POKE statement. The console
width is one byte at location 272 base 10, or 110H. The new console width becomes
effective at the next execution of a CONSOLE statement. The console line width is
initially set to 80, SOH.

A width of zero results in an infinite width. With a zero width in effect, carriage
returns and line-feeds are never automatically output to the console as a result of
exceeding the line width.

Examples:

490 CONSOLE

IF END.,OF.PAGEYX THEN\

CONSOLE =\

PRINT USING "##,ss#s WORDS THIS PAGE" SWDORDS%:\

INPUT "INSERT NEW PAGE,» THEN CR"SLINE NULL.STRINGS
LPRINTER

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 25

CONSTAT% Function CBASIC Language Reference Manual

CONSTAT % Function
CONSTAT% returns the console status as a boolean integer value.
i% = CONSTAT%
Explanation:

If the console device is ready, a logical true, -1, is returned, otherwise a logical false,
0, is returned.

Examples:

IF CONSTATZ THEN\
GOSUB 100 REM PROCESS OPERATOR INTERRUPT

WHILE NOT CONSTATZ
WEND

26 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual COS Function

COS Function

COS(x) returns the cosine of x.

Syntax:
y = COS (x)
Explanation:

The argument x is expressed in radians. The value returned by COS is real. If x is
an integer, CBASIC converts it to a real number.

Examples:
IF COS(ANGLE) = 0.0 THEN VERTICALZ = TRUEX

PRINT CONSTANT * COS(ROTATION)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 27

L S

CREATE Statement CBASIC Language Reference Manual

CREATE Statement

The CREATE statement is identical to an OPEN statement except that a new file is
created on the selected drive.

Syntax:
CREATE filespec {RECL rec length\
AS file number {BUFF number of sectors\
RECS size of sector}

Explanation:

When a file with the same name is present, the existing file is erased before the new
file is created.

The CREATE statement has no effect on any IF END statement currently in effect
for the identification number assigned to the new file.

Examples:
1200 CREATE "NEW.FIL" AS 19 BUFF 4 RECS 128
CREATE ACC,MASTER$ RECL M.REC.LENXZ AS ACC.FILE.NOY

CREATE "B:" + NAME$ + "." + LEFT$(STR$(CURRENT.WORKY? »3)
AS CURRENT.WORK?Z

28 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual DATA Statement

DATA Statement

DATA statements are nonexecutable statements that define string, real, and integer
constants assigned to variables using the READ statement. Any number of DATA
statements can occur anywhere in a program.

Syntax:
DATA constant {, constant}
Explanation:

The constants are stored consecutively in a data area as they appear in the program
and are not syntax checked by the Compiler. Strings can be enclosed in quotation
marks or optionally delimited by commas.

A DATA statement must be the only statement on a line; it cannot be continued
with a continuation character. However, all DATA statements in a program are treated
collectively as a concatenated list of constants separated by commas.

If a real constant is assigned to an integer variable with a READ statement, the
constant is rounded off to the integer portion of the real number. If the value of a
number assigned to an integer is outside the range of CBASIC integers, incorrect values
are assigned. If a real number exceeds the range of real numbers, an overflow warning
occurs and the largest CBASIC number is used in its place.

Examples:

400 DATA 332.33: 43,0089E5, "ALGORITHM"

DATA ONEs TWO,s» THREEs 4, 5, B

ALL INFORMATION PRESENTED HERE IS PROPRILTARY TO DIGITAL RESEARCH 29

DEF Statement CBASIC Language Reference Manual

DEF Statement
Use the DEF statement to define both single- and multiple-statement functions.
Single: DEF FN function.name[(dummy arg list)] = expression

Multiple: DEF FN function.name[(dummy arg list)]
CBASIC statements

RETURN
FEND

Explanation:

A function definition must occur in a program before making a function reference. To
define a function, the keyword DEF must precede the function name. CBASIC supports
two types of function definitions: single-statement and multiple-statement. Refer to
Section 4 for more information.

Examples:
Single: DEF FN.CALC = RND #25.0
Multiple: DEF FN.WRITE OUTPUT (OUTPUT.NO%)
PRINT# OUTPUT.NOZ3 CUSTNOZ »AMOUNT
RETURN
FEND

30 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual DELETE Statement

DELETE Statement
The DELETE statement removes the referenced files from their respective directories.
DELETE file number {,file number}
Explanation:
Each expression must be in the range of 1 to 20. If the number is not currently
assigned to an active file, a run-time error occurs. The expression must be numeric.

Real numbers are converted to integers. A string value results in an error.

If an IF END statement is currently associated with the identification number for
the file being deleted, the IF END is no longer in effect.

Examples:
DELETE 1
OELETE FILE.NOXZ:. OUTPUT.FILE.NOZ
I = 0
WHILE IZ < NO.OF.WORKFILESX
Iz = IZ + 1

DELETE I%
WEND

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 31

DIM Statement CBASIC Language Reference Manual

DIM Statement

The DIM statement dynamically allocates space for an array.
Syntax:

DIM identifier (subscript list)
{,identifier (subscript list)}

Explanation:

A DIM statement is an executable statement; each execution allocates a new array.
Before CBASIC references an array variable in a program, the variable must be dimen-
sioned using the DIM statement. The DIM statement specifies the upper-bound of each
subscript and allocates storage for the array.

The DIM statement dynamically allocates space for numeric or string arrays. If the
array contains numeric data, the previous array is deleted before allocating space for
a new array. If the array is string, each element must be set to a null string before
reexecuting the DIM statement to regain the maximum amount of storage.

Elements of string arrays are any length up to 255 bytes, and change in length as
different values are assumed. Initially, numeric arrays are set to zero and all elements
of string arrays are null strings.

Examples: .

DIM A(10)

DIM ACCOUNTS$(100) »ADDRESS4%(100) sNAME®(100)
DIM B%(2+5,10), SALES.PERSONZ(STAFF.SIZE%)

DIM X{AZC(I%) sMZLsNL)

32 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual END Statement

END Statement
The END statement terminates a source program.
END
Explanation:

The END statement is a directive to the Compiler indicating an end to the source
program. The Compiler ignores any statements that follow an END statement.

An END statement cannot appear on the same line with other statements.
Examples:
300 END

END

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 33

EXP Function CBASIC Language Reference Manual

EXP Function

EXP returns the value of the irrational constant e, raised to the power given by x.

Syntax:
y = EXP(x)
Explanation:

The value returned by EXP is real. If x is an integer, CBASIC converts it to a real |
number.

Examples:
Y = A ¥ EXP(BX%)

E=EXP(1) REM CONSTANT E = 2.,7182¢4 44

34 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual FEND Statement

FEND Statement
FEND is the multiple-line, user-defined function terminator statement.
FEND
Explanation:

FEND must appear only once, at the end of the function definition.

The run-time Interpreter detects an error condition and aborts the program if the
interpreter executes a FEND statement. Therefore, always place a RETURN statement
in a function definition.

Examples:

350 FEND

FEND

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 35

FILE Statement CBASIC Language Reference Manual

FILE Statement

A FILE statement opens an existing file for reading or updating. If the file does not
exist, the FILE statement creates it.

Syntax:

FILE filespec [(rec length)]
{, filespec [(rec length)]}

Explanation:
The filespec contains the name of the file to be accessed. As each file is activated,
the file is assigned the next unused file number starting with 1. If all 20 numbers are

assigned, an error occurs.

The record length must be a numeric expression. Real numbers are converted to
integers. A string value causes an error.

The variable must not be subscripted, and it must be string. It cannot be literal or
an expression.

Examples:
FILE NAMES$

FILE FILE.NAME$(REC.LENZ)

36 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual FLOAT Function

FLOAT Function

FLOAT(i%) converts the argument i% to a real value.
Syntax:
y = FLOAT(i%)
Explanation:

The argument should be numeric. If i% is real, CBASIC first converts it to an integer,
and then back to a real number.

Examples:
AMOUNT = FLOAT(COSTZ)

POSITION = SIN(FLOAT(ANGZ)) #* OFFSET

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 37

FOR Statement CBASIC Language Reference Manual

FOR Statement

The FOR statement controls a FOR/NEXT loop.
Syntax:

FOR index = numeric exp. TO
numeric exp [STEP numeric exp.)

Explanation:

Execution of all statements between the FOR statement and its corresponding NEXT
statement repeats until the indexing variable, incremented by the STEP expression after
each iteration, reaches the exit criteria.

If the STEP expression is positive, the loop exit criteria is met when the index exceeds
the value of the TO expression. If the STEP expression is negative, the index must be
less than the value of the TO expression for the exit criteria to be satisfied.

The index cannot be an array variable initially set to the value of the first expression.
Both the TO and STEP expressions are evaluated on each loop; all variables associated
with these expressions can change in the loop.

Also, the index can be changed during execution of the loop. The type of the index
can be real or integer, but all expressions must be the same. If any of the expressions
are string, an error occurs. Particular care should be taken to ensure proper matching
of the expression types. For example,

FOR I%Z = 1 TO DONE

generates unnecessary code because DONE is real, but 1% and 1 are integers. Here is
a more subtle example,

FOR 1 1. TO DONE

where 1 and DONE are real, but 1. is an integer.
There is one situation when a FOR statement, which appears valid, generates Com-

piler error FE. This occurs if the type of the expression following the TO is not the
same as the type of the loop index variable.

38 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual FOR Statement

For example,
FOR I = 1 TO 13 STEP 3

results in an FE error because the index variable 1 is real, but the value following the
TO is an integer. Changing the index to 1% eliminates the error.

If you omit the STEP clause, a default value of one is assumed. The type of the STEP
expression in this case is the same as the type of the index.

The statements within a FOR loop are always executed at least once.

If you want a step of one, omit the STEP clause. The execution is much faster because
fewer run-time checks are made. Also, less intermediate code is produced. Execution
speed also substantially improves if all the expressions are integer.

Examples:

FOR INDEXZ = 1 TD 10
SUM = SUM + VECTOR(INDEXZ)
NEXT INDEXZ

FOR POSITION=MARGIN+TABS TO PAPER.WIDTH STEP TABS
PRINT TAB(POSITION) iSET.TABS;
NEXT POSITION

Note: In the CP/M-86 implementation of CBASIC, the upper limit for an integer
index variable in a FOR loop is 32766. A larger value causes an infinite loop.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 39

FRE Function CBASIC Language Reference Manual

FRE Function

FRE returns the number of bytes of unused space in the free storage area.

Syntax:
y = FRE
Explanation:

The value returned by FRE is a floating-point number.
Examples:
X=FRE

IF FRE < 500.,0 THEN GOSUB 10 REM PRINT WARNING

40 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual GOSUB Statement

GOSUB Statement

The GOSUB statement transfers statement execution to a statement specified by a
reference to a label.

GOSUB stmt number
GO SUB stmt number
Explanation:

Ina GOSUB or GO SUB statement, CBASIC saves the location of the next sequential
instruction on the return stack. Control then transfers to the statement labeled with the
statement number following the GOSUB. A subroutine call can be nested 20 deep. See
the RETURN statement for more information.

Examples:
GosuB 700

PRINT "BEFORE TABLE"
GOSuB 200 REM PRINT THE TABLE
PRINT "AFTER TABLE"
STOP
200 REM PRINT THE TABLE
FOR INDEXZ = 1 70 TABLE.SIZEXZ
PRINT TABLE(INDEXY)
NEXT INDEXZ
RETURN

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 41

GOTO Statement CBASIC Language Reference Manual

GOTO Statement

The GOTO statement transfers execution to a statement identified by a statement
number.

Syntax:
GOTO stmt number
GO TO stmt number
Explanation:

Following a GOTO or GO TO statement, execution continues at the statement
labeled with the statement number. If the statement number branched to is not an
executable statement, execution continues with the next executable statement after the
statement number.

If control is transferred to a nonexisting statement number, an error occurs.
Examples:

80 GO TO 35

GOTD 100.5

42 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual IF Statement

IF Statement
Syntax:

IF variable THEN statement list
[ELSE statement list)

IF variable THEN stmt number

Explanation:

An IF statement expression is usually a logical expression evaluating to either true
(-1) or false (0). However, CBASIC accepts any numeric expression of type integer,
treating a value other than zero as true. This reduces both execution time and inter-
mediate file size generated by the Compiler. If the expression is real, the value is rounded

and converted to an integer. A string expression results in an error.

A statement list is composed of one or more statements where a colon separates
each pair of statements. The colon is not required after the THEN, nor is it required

before or after the ELSE; it only separates statements.

An IF statement must be the first statement on a line; it cannot follow a colon.

Therefore, IF statements cannot be nested.

Examples:

IF ANSWER$="YES" THEN GOSUB 500

IF DIMENSIONS,.WANTEDZ THEN PRINT LENGTH, HEIGHT

IF VALIDZ THEN \
PRINT MSG$(CURRENT.MSGZ) =\

GOSUB 200 :\ UPDATE RECORD
GOsSuB 210 :\ WRITE RECORD
NO.OF .RECORDS%Z=NO.0OF .RECORDS%Z+1 :\
RETURN

IF X >3 THEN X = 0 3 ¥ = 0 ¢ Z2 = 0

IF YESZ = TRUEZ THEN PRINT MSG$(1) \
ELSE PRINT MSG$(2)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

43

IF Statement CBASIC Language Reference Manual

IF TIME > LIMIT THEN \
PRINT TIME.OUT.MSG$:\
BAD.RESPONSESZ = BAD.RESPONSESZ+1 :\
QUESTIONZ = QUESTIONZ + 1 \

ELSE
PRINT THANKS.MSG$:\
GOSuUB 1000 =\ ANALYSE RESPONSE

ON RESPONSEZ GOSUB \
2000, 2010 2020, 2030, 2040 :\
RETURN

In the preceding examples, the colon separates statements in a statement list, and
the backslash continues a statement onto another line.

Because the Compiler ignores anything on or following the same line with the back-
slash, comments can be inserted without using the keyword REM.

If the value of the expression is not zero, the statements in the first statement list
are executed. Otherwise, the statement list following ELSE is executed, if present, or
the next sequential statement following the IF statement is executed.

In the second example of the IF statement, when the expression is not equal to zero,
an unconditional branch to the statement number occurs. This form of the IF statement
does not have an ELSE clause. This variation is included in CBASIC for compatibility
with previous versions of Basic.

44 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual IF END Statement

‘ IF END Statement

The IF END statement allows you to process an end-of-file condition on an active
file.

Syntax:
IF END # file number THEN stmt number
Explanation:

When an end-of-file is detected, one of two actions takes place. If an IF END
statement is executed for the file, control transfers to the statement labeled with the
statement number following THEN. If an IF END statement was not executed, a run-
time error occurs.

The IF END statement must be the only statement on a line; it cannot follow a colon
or be part of a statement list.

Any number of IF END statements can appear in a program for a given file. The
most recently executed IF END is the one in effect. However, if a DELETE or CLOSE
statement is executed, any IF END statement associated with the identification number
is no longer effective.

The file number must be in the range of 1 to 20. Real numbers are converted to
integers.

When a condition causes the transfer of control to the statement associated with an
IF END statement, the stack is restored to the condition that existed before the statement
causing activation of the IF END statement.

Thus if the statement that resulted in transfer was in a subroutine, a return must be
executed after processing the end-of-file condition.

An IF END statement can be executed before assigning the file number to a file. A

subsequent OPEN on a file that does not exist causes execution to continue as if an
end-of-file were encountered.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 45

IF END Statement CBASIC Language Reference Manual

In the following example, if the file MASTER.DAT does not exist on drive B, control
transfers to statement 500.5. After a successful OPEN, an end-of-file during a READ
continues execution with statement 500:

IF END #MASTER.FILE.NOXZ THEN 500.5

OPEN "B:MASTER.DAT" AS MASTER.FILE.NOX BUFF 6 RECS
128

IF END # MASTER.FILE.NOZ THEN 500

An IF END statement can also be used when writing to a file. In this case, control
transfers to the statement associated with the IF END when an attempt is made to
write to the file and there is no disk space available. Part of the record created is
written to the file. When using fixed files, the last record is rewritten after more space
is freed.

Examples:
IF END # 7 THEN 500

IF END # FILE.NOZ THEN 100.1

46 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual INITIALIZE Statement

INITIALIZE Statement

The INITIALIZE statement allows the changing of diskettes during program exe-
cution without restarting the operating system.

Syntax:
INITIALIZE

Explanation:

INITIALIZE must execute after making the diskette change. Be sure never to change
diskettes while any files are open.

Examples:
350 INITIALIZE

INITIALIZE

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 47

INP Function CBASIC Language Reference Manual

INP Function

INP returns the value input from the CPU I/O port specified. This function is useful
for accessing peripheral devices directly from the CBASIC program. .

Syntax:

y% = xINP (numeric exp.)
Explanation:

The argument must be numeric. For the results to be meaningful, the argument must
range from 0 to 255 for the 8-bit version, and from 0 to 65535 for the 16-bit version.
If it is a string, an error occurs. A real value is rounded to the nearest integer.
Examples:

PRINT INP(ADDRY)

IF INP(235) > 0 THEN PRINT CHR%$(7)

ON INP(INPUT.DEVICE.PORTZ) GOSUB \
100, 200, 300+ 400 400, 400, 500

48 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual INPUT Statement

INPUT Statement

INPUT statements accept data from the console and assign the data to program
variables.

Syntax:

INPUT [prompt string ;]
variable {, variable}

Explanation:

If a prompt string is present in an INPUT statement, CBASIC prints it on the console;
otherwise, a ? is output. In both cases, a blank is then printed and a line of input data is
read from the console and assigned to the variables as they appear in the variable list.

The variables can be either simple or subscripted string, or numeric.

The maximum number of characters that can be entered in response to an INPUT
statement is 255. If 255 or more characters are entered, inputting automatically ends
and the first 255 characters are retained. Additional characters are lost. The 255
characters include all characters entered in response to an INPUT statement, no matter
how many variables appear in the variable list.

All CP/M line editing functions, such as CTRL-U and DELETE, are in effect. A
CTRL-C terminates the program without closing open files. If a CTRL-Z is the first
character entered in response to an INPUT statement, the program ends in the same
manner as if a STOP statement was executed.

The data items entered at the console must be separated by commas and are ended
by a carriage return. Strings enclosed in quotation marks allow commas and leading
blanks to be included in the string.

The prompt string must be a string constant. If it is an expression or a numeric
constant, an error occurs.

If the value entered for assignment to an integer is real, the number entered is

truncated to the integer portion of the real number. If the value of a number assigned
to an integer variable is outside the range of integers, an incorrect value is assigned.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 49

INPUT Statement CBASIC Language Reference Manual

If a real number exceeds the range of CBASIC real numbers, the largest real number
is assigned to the variable, and a warning is printed on the console.

If too many or too few data items are entered, a warning is printed on the console,
and the entire line must be reentered.

Examples:

INPUT AMOUNT1 ., AMOUNTZ: AMOUNT3

INPUT "WHAT FILEs PLEASE?"IiFILE.NAMES®

INPUT "YOUR PHONE NUMBER PLEASE:" 3§ PHONE.N$
INPUT ""5ZIP,.CODEX

A special type of INPUT statement is the INPUT LINE. The general form of this

statement is:

INPUT [prompt string ;]
LINE variable

Some examples are:
INPUT "ENTER ADDRESS" iLINE ADDR$
INPUT "TYPE RETURN TO CONTINUE"SFLINE DUMMYS$

The INPUT LINE statement functions as described above with the following excep-
tion: only one variable is permitted following the keyword LINE. It must be string.
Any data entered from the console is accepted and assigned to this variable. The data
is terminated by a carriage return.

A null string is accepted by responding to a INPUT LINE statement with a carriage
return. If the variable specified to receive the input is not string, an error occurs.

Prompt strings are directed to the console even when a LPRINTER statement is in
effect (See Section 4.3).

50 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual INT Function
INT Function

INT(x) returns the integer part of the argument x; the fractional part is truncated.

Syntax:
y = INT(x)
Explanation:

The value returned by INT is a floating-point number. The argument should be
numeric. If x is an integer, CBASIC converts it to a real number.

Examples:
TIME=INT(MINUTES)+INT(SECONDS)

IF (X/2)-INT(X/2)=0 THEN PRINT \
"EVEN" ELSE PRINT "ODD"

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 51

INT% Function CBASIC Language Reference Manual

INT% Function
INT%(x) converts the argument x to an integer value.
y% = INT%(x)
Explanation:

The argument should be numeric. If x is an integer, it is first converted to a real
number, and then converted back to an integer.

Examples:
JZ = INTZ(REC.NO)

WIDTHZ = DIMEN.,1%Z + INTZ(DIMEN.2)

52 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual LEFT$ Function

LEFT$ Function
LEFTS$ returns a string consisting of the first i% characters of a$.
b$ = LEFT$(a$,i%)
Explanation:

If i% is greater than the length of a$, LEFT$ returns the entire string. If i% is zero,
a null string is returned. If 1% is negative, a run-time error occurs.

a$ must be a string; otherwise, an error occurs. 1% should be numeric. If 1% is real,
CBASIC converts it to an integer. If i% is a string, an error occurs.

Examples:

PRINT LEFT$(INPUT.DATA%:25)

IF LEFT$(IN$,1) = "Y" THEN GOSUB 400

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 53

LEN Function CBASIC Language Reference Manual

LEN Function
LEN returns the length of a$.
i% = LEN(a$)
Explanation:
If a$ is a null string, LEN returns zero.
The value returned by LEN is an integer. If the argument is numeric, an error occurs.
Examples:

IF LEN(TEMPDRARY$) > 25 THEN \
TOO.LONGY = TRUEX

FOR INDEXZ = 1 TO LEN(OBJECTS)

NUMZ(INDEXZ) = ASC(MID$(OBJECT$sINDEX%Z 1))
NEXT INDEX%

54 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual LET Statement

LET Statement
The LET statement assigns a value to a variable.
[LET] variable = expression
Explanation:

The expression is evaluated and assigned to the variable appearing on the left side
of the =. The variable and expression must both be string or numeric type.

If the variable and expression are both numeric but one is integer and the other is
real, an automatic conversion to the type of the variable on the left of the = is
performed.

Examples:

100 LET A =8B + C

X(3sPOINTERXL) = 7.32 *# Y + X(2,3)

SALARY = (HOURS.WORKED * RATE) - DEDUCTIONS
date$ = month$ + " " + dav$ + ", " + vear$

INDEX%Z = INDEXZ + 1

REC.NUMBER = OFFSETX + NEXTRECX

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 55

LOG Function CBASIC Language Reference Manual

LOG Function

LOG(x) returns the natural logarithm of x.
y = LOG(x)
Explanation:

The natural or Naperian logarithm of the argument x is the Base e inverse of the EXP
function.

The value returned by LOG is real. If x is an integer, CBASIC converts it to a real
- number.

Examples:
BASE.TEN,.LOG = LOG(X)/LOG(10)

PRINT "LOG OF X IS "3 LOG(X)

56 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual LPRINTER Statement

LPRINTER Statement
LPRINTER sends output to the printer or list device.
LPRINTER [WIDTH numeric exp.]
Explanation:

After execution of the LPRINTER statement, all PRINT statement output, usually
directed to the console, is output onto the list device.

The list device is the physical unit currently assigned to LST: by CP/M. The WIDTH
clause is optional. If present, the expression is used to set the line width of the list
device.

If the console cursor position is not 1, a carriage return and line-feed is output to
the console. In this context, the cursor position is the value returned by the POS function

before executing the LPRINTER statement.

The expression should return an integer. If it is real, the value is rounded to an
integer. If the expression is string, an error occurs.

If the WIDTH clause option is not present, the most recently assigned width is used.
Initially the width is set to 132. A width of 0 results in an infinite line width. With a
zero width in effect, carriage returns and line-feeds are never automatically output to
the printer as a result of exceeding the line width.

Examples:
500 LPRINTER
IF HARDCOPY.WANTEDZ THEN LPRINTER WIDTH 120

LPRINTER WIDTH REQWUESTED.WIDTHXZ

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 57

MATCH Function CBASIC Language Reference Manual

MATCH Function

MATCH returns the position of the first occurrence of a$ in b$ starting with the
character position given by the third parameter. A zero is returned if no MATCH is
found.

j% = MATCH(a$, b$, i%)
Explanation:
The following pattern-matching features are available:

® # matches any digit (0-9).

® ! matches any upper- or lower-case letter.

® ? matches any character.

B \ serves as an escape character indicating the following character does not have
special meaning. For example, a ? signifies any character is a MATCH unless
preceded by a \.

a$ and b$ must be strings. If either of these arguments are numeric, an error occurs.
If i% is real, it is converted to an integer. If i% is a string, an error occurs. If i% is
negative or zero, a run-time error occurs. When 1% is greater than the length of b$,
zero is returned. If b$ is a null string, a 0 is returned. If b$ is not null, but a$ is null,
a 1 is returned.

The following program experiments with the MATCH function:

TRUEZ = -1
FALSEY = O
edit$ = " The number of occurrences is #ss"

WHILE TRUEYZ
INPUT "enter obJect string" § LINE obdect$
INPUT "enter ardument string"” § LINE args
GOsSuB 620
PRINT USING edit$) occurrence?

WEND

58 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual MATCH Function

620 rem----- count OocCCUrrences----------
location% = 1
occurrence% = O
WHILE TRUEX
locationX = MATCH(arg$,obdJect$srlocationi)
IF locationX = 0 THEN RETURN
occurrence? = occurrence? + 1
location% = location% + 1
WEND
END

Examples:
MATCH("is" y"Now is the" 1) returns 5
MATCH("##" y"0October 8y 1976" +1) returns 12

MATCH("a?"s"character" »4) returns 5

MATCH("\&#" ,"123%#45" ,1) returns 4
MATCH("ABCD" »"ABC" »1) returns O

The third example returns a § instead of a 3 because the starting position for the
MATCH is position 4. In example four, the \ causes the # to MATCH only another
#. Without the \ a 1 is returned.

The next example is a more complicated statement using the \:

MATCHC"\#1INN\?" ,"1#1\?28" 1) returns 2

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 59

MIDS$ Function CBASIC Language Reference Manual

‘MID$ Function

MIDS$ returns a string consisting of the j% characters of a$ starting at the i%
character.

Syntax:
b$ = MID$(a$,i%,j%)
Explanation:

If 1% is greater than the length of a$, a null string is returned. If j% is greater than
the length of a$, all characters from i% to the end of a$ are returned. If either i% or
% is negative, an error occurs. If i% is zero, a run-time error occurs. A zero value of
j% returns a null string.

a$ must be a string expression; otherwise, an error occurs. i% and j% must be
numeric. If i% or j% are real, they are converted to integers; if either i% or j% are
strings, an error occurs.

Examples:

DIGIT$ = MID$(OBJECT$,P0OS% 1)

DAY$ = MID$("MONTUEWEDTHUFRISATSUN" ;DAYZ%#3-2,3)

60 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual NEXT Statement

NEXT Statement

A NEXT statement denotes the end of the closest unmatched FOR statement.

Syntax:
NEXT [identifier {,identifier})

Explanation:

If the optional identifier is present, it must match the index variable of the terminated

FOR statement.

The list of identifiers allows terminating multiple FOR statements. The statement
number of a NEXT statement appears in an ON or GOTO statement, discussed later
in this section, where execution of the FOR loop continues with the loop variables

assuming their current values.
Examples:

FOR IZ = 1 70O 10
FOR J% = 1 TO 20
XTI »J%) = 1% + J%
NEXT J¥% s IX

FOR LOOPZ = 1 TO ARRAY.SIZEYX
GosuB 200
GOSuB 3060

NEXT

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

61

ON Statement CBASIC Language Reference Manual

ON Statement
The ON statement transfers execution to one of a number of labels.
Syntax:

ON numeric exp GOTO
stmt number {, stmt number}

ON numeric exp GOSUB
stmt number {, stmt number}

Explanation:

In an ON statement, the expression is used to select the statement number where
execution continues. If the expression evaluates to 1, the first statement number is
selected, and so forth. However, with an ON. . .GOSUB statement, the address of the
statement following the ON statement is saved on the return stack. If the expression
is less than one or greater than the number of statement numbers in the list, a run-
time error occurs.

The expression must be numeric. A string expression generates an error. Integer

expressions improve execution speed. If a real value is used, it is rounded to the nearest
integer before selecting the statement number in which to branch.

62 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual ON Statement

Examples:
ON I% GOTO 10, 20, 30

ON J% - 1 GO SsuB 12.10, 12,20+ 12,30, 12.40

WHILE TRUEX

GOSuUB 100 REM ENTER PROCESS DESIRED
Gosue 110 REM TRANSLATE PROCESS TD NUMBER
IF PROCESS.DESIREDZ = O THEN RETURN
IF PROCESS.DESIREDY < 6 THEN\

ON PROCESS.DESIREDXZ GOSUB \

1000y \ ADD A RECORD

1010, ©\ ALTER NAME

1020 UPDATE QUANTITY

1030y DELETE A RECORD

1040, \ CHANGE COMPANY CODE

1050, \ REM GET PRINTOUT

4

ELSE GOSUB 400 REM ERRDR - RETRY
WEND

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 63

OPEN Statement CBASIC Language Reference Manual

OPEN Statement
The OPEN statement activates an existing file for reading or updating.
Syntax:

OPEN “‘filespec”” [RECL rec length]\
AS file number [BUFF number of sectors)\
RECS size of sectors

Explanation:

The first expression represents the filename on disk. The name can contain an
optional drive reference. If the drive reference is not present, the currently logged drive
is used. The filename must conform to the CP/M format for unambiguous filenames.
Lower-case letters used in filenames are converted to upper-case. The expression must
be string; if it is numeric, an error occurs. The following examples are valid filenames:

ACCOUNT .MST
CBASBE.CMD

B8: INVENTORY.BAK
The third example shows a reference to a file on drive B.

The directory on the selected drive is searched and the named file is opened. If the
file is not found in the directory, it is treated as if an end-of-file was encountered during
a READ. When you specify a drive, it is your responsibility to ensure that the drive is
available on your system.

When the optional RECL expression is present, the file consists of fixed length
records. If the record length is negative or zero, a run-time error occurs. A file is
accessed randomly or sequentially when a record length is specified; otherwise, only
sequential access is allowed. The RECL expression must be numeric; real numbers are
converted to integers. A string value causes an error.

The AS expression assigns an identification number to the file being opened. This
value is used in future references to the file. Each active file must have a unique number
assigned to it. If the expression is not between 1 and 20, a run-time error occurs. The
expression must be numeric; real numbers are converted to integers. A string value
causes an error. :

64 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual OPEN Statement

The BUFF and RECS expressions are optional. If used, both must be present. The
expression following BUFF specifies the number of disk sectors from the selected file
to maintain in memory at one time.

If the expression is omitted, a value of one is assumed. The expression following
RECS must be present when the BUFF expression is used, but the value of the expression

is ignored. The value should be the size of a disk sector, usually 128 bytes.

If random access is used with a file, the BUFF expression must evaluate to 1; other-
wise, a run-time error occurs.

Both expressions must be numeric; if it is a string value, an error occurs. Real numbers
are converted to integers.

Twenty files can be active at once. Buffer space for files is allocated dynamically.
Therefore storage space is saved by opening files as required and closing them when

no longer needed.

Examples:

555 OPEN "TRANS.FIL" AS 9

OPEN FILE.NAME$ AS FILE.NO% BUFF 26 RECS 128

OPEN WORK.FILE.NAME®$(CURRENT.FILE%Z) \
RECL WORK.LENGTHY AS CURRENT.FILE% BUFF BSX RECS 128

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 65

OUT Statement CBASIC Language Reference Manual

OUT Statement

The OUT statement sends the low-order eight bits of the second expression to the
CPU output port selected by the low-order eight bits of the first expression.

OUT i% , j%
Explanation:
Both arguments must be numeric; they must be in the range of 0 to 255 for the

results to be meaningful. If either expression is string, an error occurs. Real values are
converted to integers before performing an OUT instruction.

<

Examples:

ouT 1,58

OUT FRONT.PANELZ,» RESULTZ

IF X% > 5 THEN OUT 9 ((X*X)-1,)/2,
OUT TAPE.DRIVE.CONTROL.PORT% s REWINDZ

OUT PORTZ(SELECTEDZ)» ASC("$")

66 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual PEEK Function

PEEK Function

PEEK returns the contents of the memory location specified by an absolute address.
1% = PEEK (numeric exp.)

The value returned is an integer ranging from 0 to 255. The memory location must
be within the address space of your computer for your results to be meaningful.

The expression must be numeric. If a string expression is specified, an error occurs.
Real values are rounded to the nearest integer.

Examples:
100 MEMORYZ=PEEK (1)
FOR INDEXZ = 1 TO PEEKXZ(BUFFERX)

IN.BUFFER$ (INDEXZ) = CHR$(PEEKZ(BUFFERX+INDEXX))
NEXT INDEXZ

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 67

POKE Statement CBASIC Language Reference Manual

POKE Statement

POKE stores the low-order byte of a specified variable into memory at a specified
absolute address.

Syntax:
POKE numeric exp , j%
Explanation:

The first expression must evaluate to an absolute address for your results to be
meaningful.

Both expressions must be numeric. If a string expression is specified, an error occurs.
Real values are rounded to the nearest integer.

Arguments are passed to machine language subroutines with the PEEK and POKE
instructions.

Examples:
750 POKE 1700,ASC("¢")
FOR LOCZ = 1 TO LEN(DUT.MS5G%)

POKE MSG.LOC%+LOC%Z, ASC(MID$(OUT.M5G$,LOCY%,1))
NEXT LOC%

|
|
|
68 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual POS Function

POS Function

POS returns the next position to be printed on the console or the line printer. This
value ranges from 1 to the line width currently in effect.

i=POS
Explanation:
If a LPRINTER statement is in effect, POS returns the next position to be printed

on the printer. POS returns the actual number of characters sent to the output device.

If cursor control characters are transmitted, they are counted even though the cursor
is not advanced.

Examples:

PRINT "THE PRINT HEAD IS AT COLUMN: "3 POS

IF (WIDTH.LINE - POS) < 13 THEN PRINT

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 69

PRINT Statement CBASIC Language Reference Manual

PRINT Statement
The PRINT statement outputs the value of each expression to the console.
Syntax:

PRINT expression delim
{ expression delim }

Explanation:

If an LPRINTER statement is in effect, the output is directed to the list device. If
the length of the numeric item results in the line width being exceeded, the number to
be printed begins on the next line. Strings are output until the line width is reached
and then the remainder of the string, if any, is output onto the next line.

The delimiter between expressions can be either a comma or a semicolon. The comma
causes automatic spacing to the next column that is a multiple of 20. If this spacing
results in a print position greater than the currently specified width, printing continues
onto the next line. A semicolon outputs one blank after a number, and no spacing
occurs after a string.

A carriage return and a line-feed are automatically printed when the end of a PRINT
statement is encountered, unless the last expression is followed by a comma or a
semicolon. These partial lines are not terminated until one of the following conditions
occur:

® Another PRINT statement, whose list does not end in either a comma or semi-
colon, is executed.

® The line width is exceeded.

® A LPRINTER or CONSOLE statement is executed.

® The program executes a STOP statement.

A PRINT statement with no expression list causes a carriage return and a line-feed
to be printed.

If execution of a program is ended due to an error, a carriage return and a line-feed
are output.

70 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual PRINT Statement

Examples:
PRINT AMOUNT.PAID

PRINT QUANTITY, PRICE: QUANTITY * PRICE

PRINT "TODAY’'S DATE IS: " iMONTH$i" "iDAYX3s" "SYEARX

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 71

PRINT # Statement CBASIC Language Reference Manual

PRINT # Statement
The PRINT # statement outputs data to a disk file.
PRINT#filespec,[rec specl;variable{,variable}
Explanation:

Data is written to the file designated by the filespec. You can specify a particular
number in the rec spec for files with a fixed record length only. Otherwise, data is
written sequentially. Refer to Section § for more information on file input and output.
Examples:

PRINT#CLIST.STOiA%B$CS

PRINT#2 335G sHYL » T s % 4K

72 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual PRINT USING Statement

PRINT USING Statement

PRINT USING allows formatting of printed output using a format string. PRINT
JSING # sends formatted data to a disk file.

Syntax:

PRINT USING [#] format string;
[filespec) expression list

Explanation:

A format string is composed of data fields and literal data. Data fields are numeric
»r string. Any character in the format string, that is not part of a data field is a literal
character.

A format string can be any string expression. This allows the format to be determined
during program execution. If the format string is numeric, an error occurs. If the
expression evaluates to a null string, a run-time error occurs.

The expression list consists of expressions separated by commas or semicolons. The
comma does not cause automatic tabbing as it does with the unformatted print. Each
expression in the list is matched with a data field in the format string. If there are more
expressions than fields in the format string, the format string is reused starting at the
beginning of the string.

While searching the format string for a data field, the type of the next expression
n the list, either string or numeric, determines which data field is used. For example
f a numeric data field is encountered while outputting a string, the characters in the
aumeric data field are treated as literal data. An error occurs if there is no data field
in the format string of the type required.

A PRINT USING statement without the file reference causes an output line to be
written to the console or the line printer. The console is selected unless a LPRINTER
statement is in effect. If the file reference is present, the line is composed as if the output
is printed on a list device. The entire line is then written as a record in the selected
file. Refer to Section S for more information.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 73

RANDOMIZE Statement CBASIC Language Reference Manual

RANDOMIZE Statement

The RANDOMIZE statement initializes or seeds the random number generator.

Syntax:

RANDOMIZE

Explanation:

Operator time taken to respond to an INPUT statement is used to set the seed
(see Section 4.2). This time varies with each execution of a program. Therefore, for
RANDOMIZE to work correctly, it must be preceded by an INPUT statement.
Examples:

450 RANDOMIZE

RANDOMIZE

74 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual READ Statement

READ Statement

The READ statement assigns items listed in a DATA statement sequentially to the
variables listed in the READ statement.

Syntax:

READuvariable,{variable}
Explanation:
READ statements can contain mixed DATA types as long as each type corresponds
positionally to each type listed in the DATA statement. See DATA statement for more
information.

Examples:

READ A%, BX%, C%
DATA 14 » 256 +» 73

READ A% BL, C
DATA "Fridavy"y» 25 +» 4.28

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 75

READ # Statement CBASIC Language Reference Manual

READ # Statement

The READ # statement reads sequentially from the file specified by the first expres:
sion. The file is read, field-by-field, into the variables, until every variable is assignec
a value. Fields are integer, floating point, or string values, and are delimited by commas.

Syntax:

READ # expression ; variable
{, variable}

Explanation:

There are four forms of the READ # statement that access data from disk files. Each
of the four statements are discussed, then general comments follow about reading from
disk files. The first two types of the READ # statement access files similar to using
the INPUT statement to access data from the console. The last two forms are similar
to the INPUT LINE statement.

The expression, which selects the file, must be numeric. Real values are converted
to integer. A string value causes an error. Also, the value must refer to an active file;
otherwise, a run-time error occurs.

A variation of the READ # statement takes the general form:

READ # expression , expression ;
[variable {, variable})

The following is an example of this variation of the READ # statement:

READ = FILE.NOX,REC.COUNTZS NAME$,» PAY, HOURS: \
TERM.,OF .EMPLOY sSSN$

The second expression selects the record to be read. A random record specified by
the second expression is read from the disk file specified by the first expression. The
fields in the record are assigned to the variables in the variable list. If there are more
variables than fields in the record, an error occurs. To use this form of READ #, the
file must be activated with the RECL option specified.

76 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual READ # Statement

The second expression must be numeric. If the value is a string, an error occurs.
Real values are converted to integers. The record number cannot be zero; if it is, a
run-time error occurs. The expression is treated as a 16-bit unsigned binary number.
This allows record numbers to range from 1 to 65,535.

A random READ #, with no variables specified, positions the file to the selected
record. A subsequent sequential READ # accesses the selected record.

The following two forms of the READ # statement treat files as lines of text. The
sequential variant takes the general form:

READ # expression ; LINE variable

This statement sequentially reads all data from the specified file until it encounters
a carriage return followed by a line-feed. All the data read up to, but not including,
the carriage return and line-feed is assigned to the single string variable specified in
the READ LINE statement. If the variable is not string, an error occurs.

The random variant of the READ LINE has the following general form:

READ # expression , expression ;
LINE variable

Some examples are:
READ # 12 5 LINE NEXTL.LINE,OF.TEXT$
READ # INPUT.FILEXZ, RECORDZYZ3 LINE NEXT,ONE%$

The final variation reads the record specified by the expression, from the file specified
by the first expression. The data is assigned to the string variable as described for the
previous form of the READ LINE statement.

The READ LINE statement permits CBASIC to access records containing ASCII data
in any format on a line-by-line basis. For example, any file created using text editor
can be read a line at a time. In the following example,

READ # 123 LINE in.string$

all characters in the next record are read until a carriage return followed by a line-
feed is encountered.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 77

READ # Statement CBASIC Language Reference Manual

Examples:
READ # 735 STRINGS$, NUMBER

READ # FILE.MASTERXS NAME$:, ADDRESS$.:CITY$.:STATE$

78 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual REM Statement

REM Statement

The REM statement documents a program.

Syntax:

REM (string terminated with CR]

REMARK (string terminated with CR]

Explanation:

REM statements do not affect the size of the program compiled or executed. When
the Compiler ignores a REM statement, compilation continues with the statement
following the next carriage return. A continuation character causes the next line to be
part of the remark. An unlabeled REM statement can follow any statement on the

same line. The statement number of a remark can be used in a GOSUB, GOTO, IF,
or ON statement.

Examples:
REM THIS IS5 A REMARK

remark this is also a remark

TAX = 0.15 # INCOME REM LOWEST TAX RATE REM \
THIS SECTION CONTAINS THE
TAX TABLES FOR CALIFORNIA

The last example shows a REM statement on the same line with another statement.
When using the REM statement in this manner, the colon is optional between the two
statements. In all other cases involving multiple statements on the same line, the colon
must separate the statements. If the REM statement is used on the same line with other
statements, it must be the last statement on the line. All statements after a REM are
ignored.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 79

RENAME Function CBASIC Language Reference Manual

RENAME Function

The RENAME function changes the name of the file specified by b$ to the name
given by a$. Renaming a file to a name that already exists produces a run-time error.

Syntax:
1% = RENAME(a$,b$)
Explanation:

The RENAME function returns an integer value. A true (1) is returned when the
RENAME is successful, and a false (0) is returned when the RENAME fails. For
example, false is returned if b$ does not exist.

A file must be closed before it is renamed; otherwise, when CBASIC automatically
closes files at the end of processing, it attempts to close the renamed file under the
name with which it was opened. This causes a run-time error because the original
filename no longer exists in the CP/M file directory.

Both arguments must be string. If either a$ or b$ is numeric, an error occurs.
The RENAME function allows you to use the following back-up convention:

1. The output file is opened with a filetype of $$$, indicating it is temporary.

2. Any file with the same filename as the output file, but with a filetype BAK, is

deleted.

Data is written to the temporary file as the program is processed.

At the end of processing, the program renames any file with identical filename

and filetype as the output file to the same filename, but with the filetype BAK.

5. The program renames the temporary output file to the proper filename and
filetype.

> o

Examples:
DUMMYZ = RENAME("PAYROLL.MST" »"PAYROLL.$%$%$")

IF RENAME(NEWFILE$;OLDFILE®) THEN RETURN

80 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual RESTORE Statement

RESTORE Statement

A RESTORE statement allows rereading of the constants contained in DATA state-
ments.

Syntax:
RESTORE

Explanation:

A RESTORE statement repositions the DATA statement pointer to the beginning of

the DATA area. A RESTORE statement is executed when a CHAIN statement is
present.

Examples:

500 RESTORE

IF END.DF.DATAZL THEN RESTORE

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 81

RETURN Statement CBASIC Language Reference Manual

RETURN Statement
The RETURN statement sends control from a subroutine back to the main program.
RETURN

Explanation:

The RETURN statement causes the execution of a program to continue at the location
on top of the return stack. The call might be a GOSUB statement, an ON. . .GOSUB

statement, or a multiple-line function call. (See Section 4.2.2 for a discussion of multiple-
line functions.)

If a return is executed without previously executing a GOSUB, ON...GOSUB, or
multiple-line function call, a run-time error occurs.

Examples:
500 RETURN

IF ANSWER.VALIDZ THEN RETURN

82 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual RIGHTS$ Function

RIGHT?$ Function
RIGHTS returns a string consisting of the i% rightmost characters of a$.
b$ = RIGHT$(a$,i%)
Explanation:

If i% is negative, a run-time error occurs. If 1% is greater than the length of a$, the
entire string is returned. If i% is zero, a null string is returned.

a$ must evaluate to a string; otherwise, an error occurs. i% must be numeric. If i%
is real, it is converted to an integer. If i% is a string, an error occurs.

Examples:

IF RIGHT$ (ACCOUNT.NO%,1) = "O" THEN \
TITLE.ACCTX = TRUEZ

NAME$ = RIGHT$(NAME$ LEN(NAMES$)-LEN(FIRST.NAMES$))

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 83

RND Function CBASIC Language Reference Manual

RND Function

RND generates a uniformly distributed random number between 0 and 1. The value

returned by RND is a real number.

Syntax:

x = RND

Explanation:

To avoid identical sequences of random numbers each time a program is executed,

the RANDOMIZE statement is used to seed the random number generator.

Examples:

DIEZ=INTZ(RND*G6.,)+1

IF RND > .5 THEN \

HEADSZ = TRUEZ \

ELSE ©

84

TAILSZ

TRUEZ

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual SADD Function

SADD Function

SADD returns the address of the string assigned to the argument a$.
i% = SADD$(a$)
Explanation:
The first byte is the length of the string followed by the characters in the string. The
length is stored as an unsigned binary integer. Therefore, if the string is TOTAL, the

SADD function returns the address of a byte containing a binary 5.

The value returned by SADD is an integer. If a$ is not a string, an error occurs.
When the parameter evaluates to a null string, a zero is returned.

The SADD function, with PEEK and POKE, passes a string to an assembly language
routine for processing.

Examples:

The following statements place the address of STRINGS into the address stored in
PARM.LOC%:

POKE PARM.LOCX :SADD(STRING$) AND OFFH
POKE PARM.LOC%+1,SADD(STRING$) /256

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 85

SAVEMEM Statement CBASIC Language Reference Manual

SAVEMEM Statement

The SAVEMEM statement reserves space for a machine language subroutine and
loads the specified file during execution. Only one SAVEMEM statement can appear
in a program.

Syntax:
SAVEMEM constant | filespec
Explanation:

The constant must be an unsigned integer specifying the number of bytes of space
to reserve for machine language subroutines. The space is reserved in the highest address
space of the CP/M Transient Program Area. The beginning address of the reserved
area is calculated by taking the constant specified in the SAVEMEM statement and
subtracting it from the 16-bit address stored by CP/M at absolute address ¢ ind 7.
However, for the 8086 version of CBASIC, the load address is rounded down to the
nearest 16-byte paragraph boundary.

The expression must be string, and can specify any valid unambiguous filename.
The selected file is loaded into memory starting with the address calculated above.
Records are read from the file until either an end-of-file is encountered, or the next
record to be read overwrites a location above the Transient Program Area.

If the constant specifies less than 128 bytes to be saved, nothing is read, but the
space is still reserved. If the expression is a null string, space is saved but no file is
loaded.

If a main program has a SAVEMEM statement, any chained program having a
SAVEMEM statement must reserve the same amount of space. Each chained program
loads a new machine language file or uses the file loaded by a previous program. The
space reserved by the main program is not reclaimed by a subsequent program.

It is your responsibility to ensure the machine language routines are assembled to
execute at the proper address. Also, the location where a program is loaded depends
on the size of the CP/M system used.

The CALL statement accesses routines loaded by SAVEMEM. The CALL statement
loads the data, code, and extra segment registers to the base of the SAVEMEM area.

86 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual

Examples:
SAVEMEM 256+ "SEARCH.CMD"

SAVEMEM 512+ DR$+ "CHECK."

+ ASSY$

SAVEMEM Statement

(FN.CPM.SIZEX)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 87

SGN Function CBASIC Language Reference Manual

SGN Function
SGN (x) returns an integer value representing the algebraic sign of the argument.
1% = SGN(numeric exp)
Explanation:
SGN returns a -1 if x is negative; a 0 if x is zero, and a + 1 if x is greater than zero.

x can be integer or real. Integer values of x are converted to real numbers. The
argument should be numeric. SGN always returns an integer.

Examples:

IF SGN(BALANCE) <> O THEN \
OUTSTANDINGBALZ = TRUEZ

IF SGN(BALANCE)
OVERDRAWNY

-1 THEN \
TRUEZ

88 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual SIN Function

SIN Function

SIN(x) returns the sine of x.

Syntax:
y = SIN(x)
Explanation:

The argument x is expressed in radians. The value returned by SIN is real. If x is
an integer, it is converted to a real number.

ixamples:
FACTOR(Z) = SIN(A - B/C)

IF SIN(ANGLE/ (2,0 % PI)) = 0,0 THEN \
PRINT "HORIZONTAL"

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 89

SIZE Function CBASIC Language Reference Manual

SIZE Function
SIZE returns the size in 1 kilobyte blocks of the file specified by a$.
1% = SIZE(a$)
Explanation:

If the file is empty or does not exist, zero is returned. a$ is any CP/M ambiguous
filename.

The argument must be a string expression. If the argument is numeric, an erro
occurs. The SIZE function returns an integer.

The SIZE function returns the number of blocks of disk space used by the file or
files referred to by the argument. When the operating system allocates disk space to a
file, it does so in one block increments. A file of 1 character occupies a full block of
space. This means the SIZE function returns the amount of space reserved by the file
rather than the size of the data in the file.

This function is useful in a program that duplicates or constructs a file on disk. If
the program creates a file of a given size, dependent on the size of its input file, it first
determines whether or not there is sufficient free space on the disk before building the
new file.

Consider a program that reads a file named INPUT from drive A, processes the data,
and then writes a file named OUTPUT to drive B. Assume the size of OUTPUT is
125% of INPUT. The following routine ensures space is available on disk B before
processing:

rem------ test for enoudh room------
size.of.outpPut?% = 1,25 *# size("A:INPUT")
free.blocks¥% = 241 - size("B:%,%")
if free.srpace? < size.of.outpPut? then\
enough,room% = FALSEZ\
else enough,room% = TRUEY
return

90 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual SIZE Function

Examples:

SIZE("NAMES .BAK")

SIZE(COMPANY$ + DEPTS$ + ",NEW")
SIZE("B:ST?RTR?K,*")
SIZE("*,%")

SIZE("#,BAS")

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

91

SQR Function CBASIC Language Reference Manual

'SQR Function
SQR (x) returns the square root of the argument x.
y = SQR(x)
Explanation:

If x is negative, a warning message is printed and the square root of the absolute
value of the argument is returned.

The value returned by SQR is real. If x is an integer, it is converted to a real number.
Examples:
HYPOT = SQR((SIDE1"2.0)+(SIDEZ2"2,0))

PRINT USING \
"THE SQOR ROOT OF X IS: #sass,ss"j SOR(X)

92 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual STOP Statement

STOP Statement
A STOP statement terminates program execution.
STOP

Explanation:

All open files are closed, the print buffer is emptied, and control returns to the host

system. Any number of STOP statements can appear in a program.
Examples:
400 STOP

IF STOP.REQUESTED THEN STOP

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

93

STR$ Function CBASIC Language Reference Manual

STR$ Function

STR$ (x) returns the character string representing a numeric value specified by x.

Syntax:
a$ = STR$(x)
Explanation:

If x is a string, an error occurs.
Examples:
PRINT STR$(NUMBER)

IF LEN(STR$(VALUE)) >S5S THEN ED$="s#uusuus"

94 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual TAB Function

TAB Function

TAB causes the cursor or list device print head to be positioned at a location specified
by the value of the expression. The TAB function is only used in PRINT statements.

Syntax:
TAB (numeric exp)
Explanation:

If the value of the expression is less than or equal to the current print position, a
carriage return and line-feed are output then TAB is executed.

The TAB predefined function is implemented by outputting blank characters until
the desired position is reached. If cursor or printer control characters are output, the
cursor or print head might be positioned incorrectly.

The expression must be numeric. If a string expression is specified, an error occurs.
If the expression is real, it is first rounded to an integer. An error occurs if the expression
is greater than the current line width.

Examples:

PRINT TAB(15) i"X"

PRINT "THIS IS COL. 1"3TAB(SO)3i"THIS IS COL. 50"
PRINT TAB(XZ+YZ/Z%)i"!"3iTAB(POSX+0FFSETL)}

PRINT TAB(LEN(STR$(NUMBER)));"#"

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 95

TAN Function CBASIC Language Reference Manual

TAN Function

TAN (x) returns the tangent of the argument x.

Syntax:
y = TAN(x)
Explanation:

The argument x is expressed in radians. The value returned by TAN is real. If x is
an integer, it is converted to a real number.

Examples:
POWER.FACTOR = TAN(PHASE.ANGLE)

QUIRK = TAN(X - 3.0 * COS(Y))

96 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual UCASE$ Function

UCASES$ Function
UCASES$ translates lower-case characters to upper-case.
b$ = UCASES$(a$)
Explanation:

UCASES$ returns a string where the lower-case characters in the argument a$ are
translated to upper-case; other characters are not altered. A$ remains unchanged unless
1§ is set equal to UCASES$(a$).

The value returned by UCASES$ is a string. If a$ is numeric, an error occurs.

Examples:

IF UCASE%(ANS$) = "YES" THEN\
RETURN \

ELSE STOP

NAME$ = UCASE%(NAME$%)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 97

VAL Function CBASIC Language Reference Manual

VAL Function

VAL converts a numeric character string into a real number.

Syntax:
x = VAL(a$)
Explanation:

VAL converts the argument a$ into a floating-point number. Conversion continues
until a character is encountered that is not part of a valid number, or until the end of
the string is encountered.

If a$ is a null string, or the first nonblank character of a$ is not a +, -, or digit, a
zero is returned.

The argument must be a string; otherwise, an error occurs.
Examples:
PRINT ARRAY$(VAL(IN.STRINGS$))

ON VAL(PROG.SEL%) GOSUB 10, 20, 30: 404+ SO

98 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual VARPTR Function

VARPTR Function

VARPTR returns the storage location assigned to the variable by the run-time mon-
itor.

Syntax:
i% = VARPTR (variable)
Explanation:

With an unsubscripted numeric quantity, this is the actual location of the variable
in question. For string variables, the value returned by- VARPTR is the address of a
16-bit pointer to the referenced string. Because strings are dynamically allocated the
actual location of the string varies, but the value returned by VARPTR remains unchanged
during program execution. If the variable is in common, the location returned by
VARPTR remains unchanged after chaining.

If the variable is subscripted, the value returned by VARPTR is the address of a
pointer to the array dope vector in the free storage area. The array follows the dope
vector. The first byte of the dope vector is the number of dimensions followed by n-
1, n is the number of dimensions, 16-bit offsets into the array. The final 16-bit quantity
in the dope vector is the number of entries in the array. The array follows in row-
major order.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 99

WEND Statement CBASIC Language Reference Manual

WEND Statement
A WEND statement denotes the end of the closest unmatched WHILE statement.
WEND
Explanation:
A WEND statement must be present for each WHILE statement in a program.

Branching to a WEND statement is the same as branching to its corresponding
WHILE statement.

Examples:

WHILE -1
PRINT "X"
WEND

WHILE X > Z
PRINT X
X =X -1.,0
WEND

TIME = 0.0
TIME.EXPIREDZ = FALSEZ
WHILE TIME < LIMIT
TIME = TIME + 1.0
IF CONSTATZ THEN \

RETURN REM ANSWERED IN TIME
WEND ’

TIME.EXPIREDX = TRUEX
RETURN

WHILE ACCOUNT.IS.ACTIVEZ
GOSuUB 100 REM ACCUMULATE INTEREST
WEND

100 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual WEND Statement

WHILE FILE.EXISTS%
‘ WHILE TRUEZ
IF ARG$ = ACCT$ THEN \
\ ACTIVITYZ = TRUEZ :\
| RETURN
IF ARG$ < ACCT$ THEN \
ACTIVITYZ = FALSEZL =\

RETURN
GOSUB 3000 REM READ ACCT$ REC
WEND
\ WEND
| ACTIVITY% = FALSEZ
RETURN

WHILE TRUEZ

INPUT LINE STRINGS
IF STRING$ = CONTINUE$ THEN RETURN
WEND

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 101

WHILE Statement CBASIC Language Reference Manual

WHILE Statement

The WHILE statement loops program control until the specified expression evaluates
to zero.

Syntax:
WHILE expression
Explanation:

Execution of all statements between the WHILE statement and its corresponding
WEND are repeated until the value of the expression, in the WHILE section, is zero.
If the value is zero initially, the statements between the WHILE and WEND are not
executed. Variables used in the WHILE expression can change during execution of the
loop.

The expression should be integer. This reduces execution time and also reduces the

intermediate code generated by the Compiler. If the expression is real, the value is
rounded and converted to an integer. A string expression results in an error.

End of Section 3

102 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

4. DEFINING AND USING FUNCTIONS

Section 4
Defining and Using Functions

Functions are useful when the same routine or computation is needed in a number
of locations in a program. Once defined, a function can be referenced or called any
number of times in the program.

All CBASIC functions return a value. Any routine that results in a value, either string
or numeric, can be defined as a function. Functions can pass values and parameters
for use at each invocation.

4.1 Function Names

Function names are defined with the letters FN followed by any combination of
numbers, letters, or periods. Any number of characters can be used in a function name;
however, only the first 31 characters, including the FN, distinguish one name from

another. A function name cannot contain spaces.

The type of function name determines the type of value that the function passes
back to the main program.

® Names for string functions end with $.
® Names for integer functions end with %.

® Names for real number functions do not end with $ or %.

You must use a function name to define a function and to reference a function from
another location in a program. The following examples are valid function names:

FN.PROPER.FUNCTION.NAMES
FN.TRUNCATES

FN31234%

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 103

4.2 Function Definitions CBASIC Language Reference Manual

4.2 Function Definitions

A function definition must occur in a program before making a function reference. To
define a function, the keyword DEF must precede the function name. CBASIC supports
two types of function definitions: single-statement and multiple-statement.

4.2.1 Single-Statement Functions

Single-statement function definitions use an equal sign followed by an expression.
The expression contains the actual process that the single-statement function is coded
to perform. The data types used in the expression must correspond to the data type
used in the function name. Use the following format when defining single-statement
functions:

DEF FNfunction.name [(dummy arg list)] = expression
A dummy argument holds a place for a variable that is specified in a function
reference. A dummy argument is either a string variable or a numeric variable; it is
never a constant. The dummy argument must have the same data type as the variable
used in the function reference. However, the data type for the dummy argument is
independent of the function name type. CBASIC considers dummy arguments local to
the function. Local variables are independent of the rest of 2 program. CBASIC param-

eters are passed by value.

The following examples show single-statement function definitions:

DEF FN25 = RND * 25,0

100 DEF FN.HYPOT(SIDE1,SIDE2)= \
SOR((SIDEY * SIDE1) + (SIDE2 % SIDE2))

DEF FN.LEFT.JUSTIFY$(A%$,LENZ)=LEFT$(A$+BLNKS$ LENYZ)

104 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 4.2 Function Definitions

4.2.2 Multiple-Statement Functions

Multiple-statement function definitions use a series of CBASIC statements preceded
by a DEF statement and terminated with a FEND statement. Also,a RETURN statement
is placed at some point in the body of the function. The RETURN statement ends
function execution and sends control back to the main program. Use any number of
RETURN statements, but be sure a FEND statement is the last statement that appears
in a multiple-statement function. Use the following format when defining multiple-
statement functions:

DEF FNfunction.name [(dummy arg list)]
CBASIC Statements

RETURN
FEND

The following two examples show multiple-statement function definitions:

DEF FN.READ.INPUT(INPUT.NO%)
READ # INPUT.NOX3i CUSTNOXZ. AMOUNT

RETURN

FEND

200 DEF FN,COUNTZ(INDEX1Z)
COUNTZ = 0

FOR IZ = 1 TO INDEX1Z
COUNTX = COUNTXZ + ARRAY(IZ)
NEXT I%
FN.COUNTZ = CDUNTXZ
RETURN
FEND

The following rules apply to multiple-statement functions:

® DEF and COMMON statements cannot appear in a function definition.

B GOTO statements that reference a line outside of the function are not allowed.

® The DIM statement allocates a new array upon each execution of a function.
Data stored in an array from a previous execution is lost. Arrays in multiple-
statement functions are global to an entire program.

® Functions cannot be nested. However, a function can be called from within
another function.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 105

4.3 Function References CBASIC Language Reference Manual

4.3 Function References

User-defined functions can be referenced in any CBASIC statement or expression.
Be sure to specify the same number of parameters in the function reference that are
specified in the function definition. The function substitutes the current value of each
expression in the reference statement for the dummy argument in the function defi-
nition. The following are examples of function references:

300 PRINT FN.A(FN.B(X))

IF FN.LENZ("INPUT DATA" :X$:Q) < LIMITZ THEN
Gosus 3000

WHILE FN.ALTITUDE(CURR.ALTZ) > MINIMUM,SAFE

CURR.ALTZ=INP(ALT,.PORTX)
WEND

End of Section 4

106 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

5. INPUT AND OUTPUT

Section 5
Input and Output

CBASIC uses the operating system to control input and output for interaction between
programs, terminals or console devices, printers, and disk drives.

5.1 Console Input and Output

CBASIC reads input from the console one line at a time instead of one character at
a time. Therefore, all CP/M line-editing functions, such as CTRL-U and DELETE,
remain in effect. CTRL-C entered from the keyboard terminates a program but does
not close files being accessed. CTRL-Z entered in response to an INPUT statement
terminates program execution like a STOP statement. The following statements and
predefined functions are used to input data from a console device. Refer to Section 3
for more detailed descriptions of statements and functions.

® INPUT statements query the user for information during program execution.
Any number of input values can be entered with an INPUT statement. A prompt
message can be displayed if desired.

® INPUT LINE works like an INPUT statement, but accepts only one variable
for data to be entered. All characters entered in response to INPUT LINE are
interpreted as one string.

® READ statements assign values from DATA statements to specified variables.

® DATA statements define a list of string, real, and integer constants assigned to
variables by a READ statement.

@ RESTORE statements prepare the list of constants in a DATA statement to be
reread by repositioning a pointer to the beginning of the list.

B CONSTAT% is a predefined function that determines console status. The func-
tion returns a logical true value (-1) if a character is ready at the console, and
a logical false value (0) if a character is not ready.

8 CONCHAR% is a function that waits for an entry from the keyboard and
returns an eight-bit ASCII representation of the character entered. Only printing
characters can be used with CONCHAR%.

® INP is a function that returns an integer value from a specified input/output
port.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 107

5.1 Console Input and Qutput CBASIC Language Reference Manual

The following CBASIC statements and predefined functions control console output.

® The CONSOLE statement restores printed output to the console device.

B The predefined function TAB moves the console cursor to a specified position
on the screen. TAB also works with printers.

B The POS predefined function returns the next available position on the console
screen to be printed.

5.2 Printing
CBASIC provides two statements to control output to a line printer device.

® LPRINTER directs all PRINT statement output to the line printer or list device.
m PRINT USING allows formatting of printed output.

5.3 Formatted Printing

The PRINT USING statement allows you to specify special formats for output data.
Formatted data is directed to the console or line printer. The PRINT USING # variation
directs formatted output to a disk file. A PRINT USING statement is written as follows.

PRINT USING format string [file number] expression list

The format string is a model for the output. A format string contains data fields and
literal data. Data fields can be numeric- or string-based. Any character in the format
string that is not part of a data field is a literal character. Format strings must be
nonnull string expressions. The following characters have special meanings in format
strings:

! single-character string field

& variable-length string field

! fixed-length string field delimiter
numeric field

** asterisk fill in numeric field

$$ puts $ in numeric field

* exponential format

\ escape character

108 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 5.3 Formatted Printing

The expression list tells which variables hold the data to be formatted. Each variable
is separated by a comma or a semicolon. The comma does not cause automatic tabbing
as it does with unformatted printing. Each variable in the list is matched with a data
field in the format string. If there are more expressions than there are fields in the
format string, execution is reset to the beginning of the format string.

While searching the format string for a data field, the type of the next expression
in the list, either string or numeric, determines which data field is used. For example,
if a numeric data field is encountered while outputting a string, the characters in the
numeric data field are treated as literal data. An error occurs if there is no data field
in the format string of the type required.

5.3.1 String Character Fields

A one-character string data field is specified with an !. The first character of the
next expression in the PRINT statement list is output.

For example,

F.NAME$="Lynn":tM.NAME$ = "Marion":L.NAME$= "Kobi"
PRINT USING "!, t, &"§ F.NAME$:M.NAMES L. .NAME$

outputs:

L+ M, Kobi

In this example, the period is treated as literal data. Because there are two expressions
in the list, the format string is reused when processing the second expression.

5.3.2 Fixed-Length String Fields

A fixed-length string field of more than one position is specified by a pair of slashes
separated by zero or more characters. The width of the field is equal to the number
of characters between the slashes, plus two. Place any character between the slashes;
these fill characters are ignored.

A string expression from the print list is left-justified in the fixed field and, if nec-

essary, padded on the right with blanks. A string, which is longer than the data field,
is truncated on the right.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 109

5.3 Formatted Printing CBASIC Language Reference Manual

For example,

FOR1$ = "THE PART REQUIRED IS /44 sDes s s0s0esd/"
PART.DESCRP$ = "GLOBE VALVE» ANGLE"

PRINT USING FOR1%3 PART.DESCRP$

outputs:

THE PART REQUIRED IS GLOBE VALVE: ANG

Using periods and numbers between the slashes makes it easy to verify that data
field is 16 characters long. Periods and numbers do not effect the output.

5.3.3 Variable-Length String Fields

A variable-length string field is specified with an ampersand, &. This results in a
string output exactly as defined.

For example,

COMPANY$ = "SMITH INC."
PRINT USING "& &"3§ "THIS REPORT IS FOR",COMPANYS$

outputs:
THIS REPORT IS FOR SMITH INC.

A string can be right-justified in a fixed field using the variable string field. The
following routine shows how this is done.

FLD.,S% = 20
BLK$ = " "
PHONE$ = "408B-649-3896"

PRINT USING "#&"§j RIGHT$(BLK$ + PHONES$. FLD.S%)
outputs:
s 408-649-3896

In the preceding example, because the print list contains only a string expression,
the # is used as a literal character. A # can also indicate a numeric data field.

110 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 5.3 Formatted Printing

5.3.4 Numeric Data Fields

A numeric data field is specified by a # to indicate each digit required in the resulting
number. One decimal point can also be included in the field. Values are rounded to
fit the data field. Leading zeros are replaced with blanks. When the number is negative,
a minus sign is printed to the left of the most significant digit. A single zero is printed
on the left of the decimal point if the number is less than 1, and a position is provided
in the data field.

The following example illustrates the use of numeric data fields:

X = 123.7546
Y = -21.0
FOR$ = "#san, suse sun, 8 sug

PRINT USING FOR$3 X» X» X
PRINT USING FOR$%3 Y. Y» Y

Execution of the above program produces the following printout:

123.7546 123.8 124
-21,0000 -21.0 -21

Numbers are printed in exponential format by appending one or more up
arrows, , to the end of the numeric data field.

For example, the following program segment,

X = 12,345

PRINT USING "#, s#us"" "5 X -X
outputs:

1.235E 01 -+123E 02

The exponent is adjusted so all positions that the up arrow represents are used.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 111

5.3 Formatted Printing CBASIC Language Reference Manual

For example,
PRINT USING "s#s#s.ss""""j5 17,887

results in:

179.87E-01

Four positions are reserved for the exponent regardless of the number of up arrows
used in the field.

If one or more commas appear embedded within a numeric data field, the number
is printed with commas between groups of three digits before the decimal point.

For example,

PRINT USING ‘"su#,sss "5 100, 1000, 10000
prints:
100 1,000 10,000

Each comma appearing in the data field is included in the width of the field. Thus,
although one comma is required to obtain embedded commas in the output, it is clearer
to place commas in the data field in the positions of appearance on the output.

For example, the following data fields produce the same results, except that the
width of the first field allows only nine digits to be output. Using the second field, ten
digits are output:

BHRRRARNBUEBEN
B H8uN B8 ,888

If the exponent option is used, commas are not printed; when commas occur in the
field, they are treated as #.

Asterisk fill of a numeric data field is accomplished by appending two * to the
beginning of the data field. A floating $ is obtained by appending two $ to the field
in a similar manner. Exponential format is not used with either * fill or the floating
$. The pair of * or $ are included in the count of digit positions available for the field,
and appear in the output if there is sufficient space for the number and * or $. The §
is suppressed if the value printed is negative.

112 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 5.3 Formatted Printing

For example,

COST = B742937.56
PRINT USING "*### ,suss8%,88 "
PRINT USING "$¢s#,susuus, 88 "

COST: -COST
COST: -COST

prints:

*%8,742,937.58 *#-8,742,937.58
$8,742,937.586 -8,742,937.56

A number is output with a trailing sign instead of the leading sign if the last character
in the data field is a minus sign. When the number is positive, a blank replaces the
minus sign in the printed result.

For example,

PRINT USING ‘"###- sss""""_ "5 10, 10, -10, -10

outputs:

10 100E-01 10- 100E-01-

If a minus sign is the first character in a numeric data field, the sign position is fixed
as the next output position. When the number printed is positive, a blank is output;
otherwise, a minus sign is printed.

The following example demonstrates this feature.

PRINT USING "-suus "§ 10, -10
outputs:
10 - 10

Anytime a number does not fit within a numeric data field without truncating digits
before the decimal point, a % is printed, followed by the number in the standard
format.

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY 1O DIGITAL RESEARCH 113

5.3 Formatted Printing CBASIC Language Reference Manual

For example,

K = 132.71
PRINT USING ‘"s##.% #e,.8"5 XX

outputs:

4 132.71 132.7

5.3.5 Escape Characters

At times you might want to include a character as literal data which, following the
above rules, is part of a data field. This is accomplished by escaping the character. A
\ preceding any character causes the next character after the \ to be treated as a litera,
character. This allows, for example, a # to precede a number, as shown in the following
example.

ITEM.NUMBER = 31
PRINT USING "THE ITEM NUMBER IS \s#=s#"35 ITEM.NUMBER

outputs:

THE ITEM NUMBER IS %31

An escape character following an escape character causes a backslash to be output as
a literal character. If an escape character is the last character in a format string, a run-
time error occurs.

5.4 File Organization

CBASIC organizes information on a disk surface into three levels: files, records and
fields.

® FILES consist of one or more records.

® RECORDS are groups of fields. Each record is delimited by a carriage return
and line feed.

@ FIELDS are the individual data items. Each field within a record is delimited
by a comma.

CBASIC supports two types of data files on disk: sequential and relative.

114 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 5.4 File Organization

5.4.1 Sequential Files

Sequential or stream organization is performed on a strict field-by-field basis. The
PRINT # statement writes each field to the disk in a continuous stream. Each data
item uses only as much space as needed. Each PRINT # statement executed creates a
single record. Each variable used in the PRINT # statement creates a single field.
Individual record lengths vary according to the amount of space occupied by the fields.

There is no padding of data space. The following diagram shows a sequential file
composed of three records.

RECORD 1| “FIELD ONE”,“FIELD TWO”,“FIELD THREE”cr/If

FILE.1 | RECORD 2| “Field 1”,*Field 27, “cr/lf

RECORD 3| 111,222,3.3,444,5.5cr/If

-«+——Record length§ vary >

Figure 5-1. Sequential File

Field three in record two is a null string. Commas serve as delimiters, but are
considered string characters when embedded in a pair of quotation marks. Quotation

marks are also considered string characters when embedded in a pair of quotation
marks.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 115

5.4 File Organization CBASIC Language Reference Manual

The following CBASIC program creates the sequential file diagrammed above.

CREATE "FILE.1" AS 1
At = "FIELD ONE"
B$ = "FIELD TWO"
C$ = "FIELD THREE"
D$ = "FIELD 1"
E$ = "FIELD 2"
F$ = nn
GL = 111
WL = 222
I = 3,3
J% = 444
K = 5.5
PRINT #135 A%, B$, C%
PRINT #1535 D$, E$y» F$
PRINT #13 GX%Xs HZ, I, JZs K
CLOSE 1
END

The three PRINT statements correspond to the three records and each variable
corresponds to a field.

When sequential files are accessed, each field is read consecutively one at a time
from the first to the last. The READ # statement considers a field complete when it
encounters a comma or a carriage return and line-feed. The following program reads
the fields in FILE.1 sequentially and prints them on the console screen.

IF END #19 THEN 100
OPEN "FILE.1" AS 19
FOR I% =1 70O 11
READ #1935 FIELDS$
PRINT FIELDSS$
NEXT I%
100 END

Any type of variable can be used in the READ # statement in a sequential access.
Executing the preceding program outputs the following display on the screen.

FIELD ONE
FIELD TWO

116 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 5.4 File Organization

FIELD THREE
FIELD 1
FIELD 2

111
222
3.3
444
5.5

5.4.2 Relative Files

Relative files offer the advantage of random access, which is the ability to access
any record in a file directly. Record lengths are fixed. Data space between the end of
the last field and the carriage return line-feed is padded with blanks. The carriage
return and line-feed occupy the last two bytes of the record. The number of bytes
occupied by the fields, field delimiters, and the carriage return line-feed cannot exceed
the specified record length. The following diagram shows a relative file composed of
three records.

RECORD 1 | “FIELD ONE” “FIELD TWO” “FIELD THREE”cr/If

FILE.2 } RECORD 2 | “FIELD 1”,“FIELD TWQ* « cr/if
RECORD 3 |111,222,3.3,444,5.5 cr/lf
-4———— Record lengths fixed >

Figure 5-2. Relative File

The same rules regarding commas, quotation marks, and null strings in sequential
files apply to relative files. The following program creates the relative file diagrammed
above.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 117

5.4 File Organization

CREATE

PRINT
PRINT
PRINT
CLOSE
END

A%
B¢
Cs
Ds
ES
F&
G%
H%
I

JL
K

#2415
#2425
#2 4,35

2

CBASIC Language Reference Manual

FILE.2 RECL 40 AS 2

"FIELD ONE"
"FIELD TWO"
"FIELD THREE"
"FIELD 1
“"FIELD 2

111

222

3.3

444

9+5

A%, Bs,y C%
D$s E$+ F$
G4+ HXL» I, J%» K

Random access to a relative file is accomplished by specifying a relative record
number. The relative record number is entered in all PRINT # and READ # statements
after the file identification number. The two numbers are separated with a comma. In
the following example, § is the relative record number.

PRINT #2,537 VARIABLEL1XZ:, VARIABLEZY

CBASIC locates each record on a randomly accessed file by taking the relative record
number, subtracting 1, and multiplying that difference by the record length. The result
is a byte displacement value for the desired record measured from the beginning of the
file. The record to be accessed must be specified in each READ # or PRINT # statement
executed. Each READ # and PRINT # statement executed accesses the next specified
record. The following program reads the first three fields from record three in FILE.2.

IF END %20

OPEN

200 END

118

THEN 200

"FILE.2" RECL 40 AS 20
READ #20,35 FIELD1%$,» FIELD2%, FIELD3
PRINT FIELD1$, FIELD2%, FIELD3

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 5.4 File Organization

The data types of the variables in the READ # statement must match the data
contained in the fields being read. Executing the above program outputs the following
display on screen.

111 222 3.3

5.5 Maintaining Files

CBASIC uses the operating system file accessing routines to store and retrieve data
in disk files. All data is represented in character format using the ASCII code. Programs
can create, open, read, write, and close data files with the following CBASIC statements.
Each statement is described in more detail in Section 3.

® CREATE originates a new data file on disk. The CREATE statement erases a
preexisting file of the same name before creating the new file.

B OPEN procures an existing file for reading or updating. If the file does not
exist, the program processes an end-of-file condition.

m FILE procures an existing file for reading or updating. If the file does not exist,
the FILE statement creates it.

8 READ # accesses a specified file and assigns the data sequentially, field by field,
into specified variables. Data can also be accessed from a specified record.
m PRINT # outputs data to a specified file and assigns the data sequentially into
fields from specified variables. Data can also be output to a specified record.
® PRINT USING # outputs data to a specified file using formatted printing
options.

® CLOSE deactivates a file from processing. The specified file is no longer available
for input or output until reopened.

® DELETE deactivates a file from processing and erases it from the disk surface.

End of Section 5§

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 119

End of Section 5 CBASIC Language Reference Manual

120 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

6. MACHINE LANGUAGE INTERFACE

Section 6
Machine Language Interface

CBASIC’s machine level environment is somewhat advanced. To understand this
section, you should have a working knowledge of CP/M, assembly language, and a
familiarity with elementary computer architecture. Differences between CBASIC’s 8-bit

and 16-bit formats are most visible at the machine level.

5.1 Memory Allocation

The operating system loads the CBASIC run-time interpreter into the Transient
Program Area (TPA) to execute CBASIC programs. The memory available in the TPA
is partitioned into six areas of varying size. The following diagram shows memory
allocation in the the CP/M TPA. For the 8-bit (8080) version, addresses are absolute.
In the 16-bit (8086) version, addresses are offsets from either the code or data segments.

FFFFH
CP/M Operating System

Free Storage Area (FSA)

Computational Stack Area (CSA)

Variable Storage Area (VSA)

Intermediate Code Area (ICA)
(compiled source program)

Real Constant Area (RCA)

CRUN
(runtime interpreter)

100H

Area reserved for CP/M

OH
Figure 6-1. CP/M Memory Allocation

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 121

6.1 Memory Allocation ‘ CBASIC Language Reference Manual

The area extending from the base of memory up to hexadecimal address 100H
is reserved for CP/M.

CP/M loads the run-time Interpreter at the base of the TPA starting at 100H.
The rest of the TPA is partitioned into five areas used by the run-time Interpreter
during program execution.

The Real Constant Area (RCA) holds all real numbers defined as constants in
a CBASIC program. If a constant is used more than once in a program, it
appears only once in the RCA. Real constants require eight bytes of storage
space.

The Intermediate Code Area (ICA) stores the intermediate code generated by
the Compiler. The Interpreter fetches the actual computer instructions from the
ICA during program execution.

The Variable Storage Area (VSA) reserves space to store the current value of
each variable in the program. The VSA contains all variables passed through
COMMON statements to chained programs. COMMON variables always appeat
first in the VCA. The VCA reserves eight bytes of storage space for each variable,
regardless of the data type. For array and string variables, the actual value of
the variable is stored in the Free Storage Area. The value stored in the VSA
points to the actual value in the FSA.

The Computational Stack Area (CSA) is fixed at 160 bytes of memory. The
CSA evaluates expressions and passes parameters to CBASIC predefined and
user-defined functions. There is room to place 20 eight-byte real numbers on
the stack.

The Free Storage Area (FSA) stores arrays, strings and file buffers. Variably
sized blocks of memory are allocated from the FSA as required and returned
when no longer needed.

The CP/M operating system tracks occupy the very top of memory. A 16-bit
address at 0006H and 0007H points to the beginning of CP/M.

The starting and ending address for each partition in the TPA varies for different
programs. Once allocated however, the amount of memory occupied by each partition
remains fixed during program execution.

122

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 6.2 Internal Data Representation

6.2 Internal Data Representation

CBASIC machine level representation varies somewhat for real numbers, integers,
strings, and arrays.

® REAL NUMBERS are stored in binary coded decimal (BCD) floating-point
form. Each real number occupies eight bytes of memory, as shown in the fol-
lowing diagram. The high-order bit in the first byte (byte 0) contains the sign
of the number. The remaining seven bits in byte 0 contain a decimal exponent.
Bytes 1 through 7 contain the mantissa. Two (BCD) digits occupy each of the
seven bytes in the mantissa. The number’s most significant digit is stored in
high-order four bits of byte 7. The floating decimal point is always situated to
the left of the most significant digit.

14 BCD DIGIT MANTISSA

l

XX XX XX XX XX XX XX XX
BYTES 0 1 2 3 4 5 6 7

exponent

o]

XXXXXXXX
01234567

L> exponent’s

number’s
sign bit

L & BITS

Figure 6-2. Real Number Storage

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 123

6.2 Internal Data Representation CBASIC Language Reference Manual

8 INTEGERS are stored in two bytes of memory space with the low-order byte
first, as shown in the following diagram. Integers are represented as 16-bit two’s
complement binary numbers. Integer values are limited to plus or minus 32767.

LOW-ORDER BYTE HIGH-ORDER
STORED FIRST BYTE
X X X X X XXX XXX XX XXX
B[TS?T910111213141501234567
SIGN
BIT

Figure 6-3. Integer Storage

® STRINGS are stored as a sequential list of ASCII representations. The length
of a string is stored in the first byte, followed by the actual ASCII values. The
maximum number of characters in a string is 255

® ARRAYS, both numeric and string, are allocated space in the Free Storage Area
as required. Eight bytes are reserved for each element of an array containing
real numbers and two bytes for each element of an integer array. String arrays
are allocated three bytes for each entry. A dope vector precedes each array. The
dope vector consists of one byte to indicate the number of dimemsions, and
two additional bytes per dimension to indicate an offset value.

6.3 Assembly Language Interface

CBASIC supports statements and functions that enable assembly language routines
to be executed from CBASIC programs.

® CALL statement

B SAVEMEM statement
® PEEK function

8 POKE statement

B SADD function
VARPTR function

124 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 6.3 Assembly Language Interface

The assembler linkage process for both 8-bit and 16-bit environments consists of
four steps.

1. Write and debug an assembly language routine.

2. Configure the routine for use with CBASIC. Create a .COM file for 8080
routines, or a .CMD file for 8086 routines.

3. Load the routine using the proper SAVEMEM parameters.
4. Write a CBASIC program to CALL the assembly routine.

There are differences in the architecture of 8-bit and 16-bit microprocessors. There-
fore, procedures for linking to assembly language routines differ in the two systems.
The following demonstration programs for both versions link to assembly routines to
perform three simple operations.

B Input a character string from the keyboard.
® Pass the address of the string to an assembler routine.
8 Print the string using a BDOS function call.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 125

6.4 CBASIC 8080 Program CBASIC Language Reference Manual

6.4 CBASIC 8-bit (8080) Demonstration Program

Enter the following 8080 assembly language program into a file named 8080.ASM.

ORG
CONS$OUT
PRINTS$
BDOS
i

JMP
PARAM DW

START:
LHLD
MOV
INX
MOV
XCHG
MOV
INX

i

PRINT$LOOP:
MOV
INX
MUI
PUSH
PUSH
CALL
POP
POP
DCR
JINZ

LXI
MVUI
CALL
RET
CR$LF DB

END

OE786H
EQU 2
EQU 9
EQU 5
START
0 i ADDRESS IS POKED HERE
PARAM i POINTER TO ADDRESS OF VARIABL
EM
H
DM iMOVE ADDRESS TO0 DE
iADDRESS OF VARIABLE IN HL
AM iGET LENGTH OF STRING
H sPOINT TO FIRST CHARACTER
EM iGET CHARACTER
H
C+CONsOUT iSET UP FOR BDOS CALL
H iSAVE H REGISTER
PSW iSAVE A REGISTER
BDOS
PSW
H iRESTORE REGISTERS
A IiDECREMENT COUNTER
PRINT$LOOP iLOOP TILL OUT OF CHARACTERS
D/CRS$LF sADDRESS OF CR$LF SEQUENCE
C+PRINTS FPRINT STRING
BDOS

iRETURN TO CBASIC
ODH:OAH % ‘

126 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 6.4 CBASIC 8080 Program

The ORG address in 8080.ASM might not be correct for your particular system,
because the address at the top of the Transient Program Area (TPA) varies for different
sized configurations of CP/M. The SAVEMEM statement in a CBASIC program reserves
the specified amount of memory space for an assembler routine, then loads the routine
in that space at the top of the TPA. The SAVEMEM statement calculates the load
address by subtracting the size of the routine from the address at the top of the TPA.
SAVEMEM does not reveal the load address to you. You must calculate it yourself
and specify it in the ORG statement in the assembler routine and in the CALL statement
in the CBASIC program. Therefore, you must determine the top of the TPA in your
system. CP/M stores that address at 06H and 07H. Use the following CBASIC program
to determine the top of your TPA and calculate the load address for your system.

REM PROGRAM TO DETERMINE TOP OF TPA’

INPUT "ENTER SIZE OF ASSEMBLY ROUTINE.ROUND UP TO NEAREST)
128 BYTE INCREMENT. "iFILE.SZE

REM CALCULATE TOP OF TPA AND SUBTRACT FILE SIZE |

LOAD.ADDR=PEEK(7)#256+PEEK(B)+65536-FILE.SZE

PRINT: PRINT LOAD.ADDRS" = LOAD ADDRESS...CONVERT TO HEX.'

END

If the load address for your system differs from the ORG address in 8080.ASM, edit
the correct address into 8080.ASM and assemble the file to create 8080.HEX.

Convert the assembly routine into an object code file of type. COM using the CP/M
Dynamic Debugging Tool, DDT®™. DDT loads a HEX file and converts it to binary
format. The R command reads the file into memory starting at the ORG address.
However, to SAVE the memory image as a.COM file, the R command must contain
an offset value to load the file at 100H. Calculate the offset value using DDT.

A>DDT

DDT VERS X.X

-H100 E786 §SPECIFY 100, THEN THE LOAD ADDRESS
gE886 197A

The second number displayed by DDT (197A in this case) is the offset value. Use

the I command to specify the filename.

-18080.HEX

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 127

6.4 CBASIC 8080 Program CBASIC Language Reference Manual

Use the R command with the offset value to read the HEX file in at 100H.

-R1897A
NEXT PC
O11E 0000

The HEX file is converted to binary form. Now, SAVE the routine as a.COM file.

-°C
A>SAVE 1 8080.C0OM
a>

When calling or passing parameters to the assembler routine, addresses are absolute
memory locations. The CALL statement to start execution of 8080.COM is CALL
OE786H. To pass a parameter, information must be inserted into the routine using the
POKE statement. The VARPTR function is used to obtain a pointer to the address of
the string variable. The address is converted into a high and low byte, then POKEd
directly into the routine. The routine can access the string from CBASIC’s Free Storage
Area and print it on the console. The information in the string variable can be changed
but the length must remain constant. The following CBASIC program calls the 8080.COM
file.

REM RESERVE 128 BYTES AND LOAD ROUTINE
SAVEMEM 128, "8080.COM"
PROG.BASE=(PEEK(7)#256+PEEK(6)-128)
PARAM,.OFFSET=PROG.BASE+3
INPUT "ENTER STRING TO PRINT..."§i LINES
WHILE (LINE$ <> "DONE")
ADDR=VARPTR(LINES$)
BYTEZ2=INT(ADDR/256)
BYTE1=ADDR-(BYTEZ2#2586)
POKE PARAM.OFFSET:BYTE1 : POKE PARAM.OFFSET+1,BYTEZ2
CALL OE7BEH
INPUT "ENTER STRING TO PRINT..."§ LINES
WEND
END

128 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 6.5 CBASIC 8086 Program

6.5 CBASIC 16-bit (8086) Demonstration Program

Enter the following assembly language routine into a file named 8086.A86.

CSEG
CON_OUT EQU 2
PRINT_STRING EQU 9
BDOS EQU 224
9
ORG 100H
JMP START
PARAM DKW 0 iPOKE ADDRESS HERE

START:

i

iSAVE REGISTERS FROM CBASIC.
iDS POINTS TO CBASIC DATA AREA

PUSH SI
PUSH BP
i

MOV SI;CS:PARAM iGET POINTER
iTO ADDRESS
i0OF VARIABLE

Mav SI:[SI] iGET ADDRESS
iOF VARIABLE

XOR AXAX

LODSB iGET STRING
iLENGTH

MOV CXAX

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 129

6.5 CBASIC 8086 Program CBASIC Language Reference Manual

PRINT_LOOP:

PUSH CX

LoDSB iGET CHARACTER

PUSH SI

MOV DL :AL iSET UP FOR
iBDOS CALL

MOV CLCON_OUT

INT BDOS

POP SI

POP CX

LDOP PRINT_LOOP

9
MOV DX:CS:0FFSET CR_LF

iDS MUST POINT TO PROGRAM SEGMENT ON BDOS
iCALL ELSE+ DX REFERENCES AN AREA IN CBASIC

iDATA AREA
3
PUSH DS iSAVE DS FOR CBASIC
MOV AXCS
MOV DSAX iNOW DS POINTS TO
iSEGMENT FOR CR_LF
i
MOV CLsPRINT_STRING
INT BDOS

iRESTORE REGISTERS HERE

]

3
iRETURN

CR_LF

130

POP DS iDS POINTS TO CBASIC
iDATA AREA

POP BP

POP SI

TO CBASIC WITH FAR RETURN

RETF

DB ODH»OAH s"$"

END

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 6.5 CBASIC 8086 Program

Use GENCMD to convert 8086.H86 to a.CMD file. Now, the assembly routine is
ready to be called from the following CBASIC-86 program.

SAVEMEM 512, "BO8BG6.CMD"
REM CALCULATE TOP OF TPA, SUBTRACT FILE SIZE
REM AND ROUND DOWN TO 16 BYTE BOUNDARY
PROG.BASE=(PEEK(7)*256+PEEK(B)-512) AND OFFFOH
REM ADD OFFSET WITHIN ROUTINE
PARAM.OFFSET=(PROG.BASE+103H)
INPUT "ENTER STRING TO PRINT..."35 LINES$
WHILE (LINE$<> "DONE")
REM GET POINTER TDO STRING 'VARIABLE
ADDR=VARPTR(LINES%)
REM CALCULATE HIGH BYTE QF ADDRESS
BYTEZ2=INT(ADDR/256)
REM CALCULATE LOW BYTE OF ADDRESS
BYTE1=ADDR-(BYTEZ2#2586)
REM POKE BYTES IN LOW: HIGH ORDER
POKE PARAM.OFFSET, BYTE1l: \
POKE PARAM,OFFSET + 1.,BYTEZ2
REM CALL ROUTINE, START AT BEGINNING

CALL 100H
INPUT "ENTER STRING TO PRINT..."iLINES$
WEND

END

In CBASIC-86, the CALL address is an offset from the beginning of the routine code
segment. Specify the offset in the routine. When passing parameters with the POKE
and PEEK statements, the address used is an offset from the base of the CBASIC-86
data segment. You must determine the address of the routine in the CP/M-86 TPA.

To calculate the program base offset value, use the address at 06H and 07H. Subtract
the size of the file and round down to a 16 byte paragraph boundary. Once the program
base is determined, add the offset value for the data area that you want to access.

When control is transferred to the assembly routine, the following rules apply:

8 The DS, SS, BP and SI registers must be saved, then restored prior to returning
to the CBASIC-86 program.

® If a routine must reference data in its data segment, the DS register must be
initialized in the routine.

® Return to the CBASIC-86 program with a far return.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 131

6.5 CBASIC 8086 Program CBASIC Language Reference Manual

VARPTR generates a pointer to access a string in the CBASIC-86 string space. The
information in the string can be changed but the length must remain constant. Before
passing an address to the routine, convert the address into two bytes transferrable with
the POKE statement.

End of Section 6

132 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

7. COMPILING AND RUNNING
CBASIC PROGRAM

Section 7

Compiling and Running CBASIC

Programs

7.1 Compiler Directives

Compiler directives are special commands that control the processing action of the
compiler. All compiler directives are preceded by a percent sign, % that must be entered
in column one. CBASIC supports six Compiler directives.

%LIST
%NOLIST
%PAGE
%EJECT
%INCLUDE
%CHAIN

The Compiler ignores characters following a directive on the same line.

7.2 Listing Control

Four compiler directives control the listing of Compiler messages.

The %LIST directive turns the Compiler listing on. %LIST can be placed any-
where in a program, and can be used any number of times in conjunction with
%NOLIST. This allows selected portions of a program to be listed. Both direc-
tives can affect listings to a console, printer, or disk file.

The %NOLIST directive turns the Compiler listing off.

The %PAGE directive sets the page length that is output to a printer. A constant
enclosed in parentheses must be specified following the directive. For example,
%PAGE(45) sets the page length to 45 lines. Initially, the page length is set at
64 lines. The constant must be a positive integer value greater than zero. Any
number of %PAGE directives can be used in a program.

The %EJECT directive positions the printer to list Compiler messages at th:
top of the next blank page of paper. The directive sends a form feed to the
printer.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 133

7.3 %INCLUDE Directive CBASIC Language Reference Manual

7.3 %INCLUDE Directive

The %INCLUDE directive allows a specified CBASIC program to be compiled and
executed from within another CBASIC program. %INCLUDE directives can specify
only one file on a line, and directives cannot reference themselves. However, %INCLUDE
directives can be nested up to six deep. The filename specified can contain a drive
reference as in the following example. The Compiler assumes a .BAS filetype.

ZINCLUDE B:PROGRAM

The example includes the file PROGRAM.BAS on drive B into the compilation and
execution of the original program.

Because the files incorporated with %INCLUDE directives are of filetype .BAS, they
can be compiled separately. It is easier to debug large programs if they are composed
of small, individually tested routines. Routines to be included by the %INCLUDE
directive must not contain an END statement.

The %INCLUDE directive allows you to build a library of common routines, thus
reducing programming time. System standards, such as /O port assignments, can be
put in included routines. If the programs are moved from one system to another, the
INCLUDE routine is changed, and the programs must be recompiled.

Commonly used procedures, such as searches, validation routines, or input routines,
are candidates for INCLUDE files. All file access commands, such as READ, PRINT,
or OPEN, can be set up as separate INCLUDE files if certain files are accessed fre-
quently.

You may notice that a program segment can be compiled without errors when
compiled separately, but when combined with other routines can cause Compiler errors.
These errors are usually quite obvious. They often result from using the same line
number in more than one module.

7.4 %CHAIN Directive

The %CHAIN directive determines the maximum size of the constant, code, data,
and variable areas to be used for a series of chained programs. This ensures that a
chained program does not overwrite a portion of the data area passed by a previously

134 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 7.4 %CHAIN Directive

executed program. The four areas correspond to four constants specified after the
%CHAIN directive. The four constants are separated by commas, as in the following
example.

LZCHAIN 10,708,048

The Compiler sets each of the four areas to the values specified in the %CHAIN
directive. Each constant must be an unsigned positive integer.

B The first constant is the size of the area reserved for real constants.

B The second constant is the size of the code area.

B The third constant is the area that stores values from data statements.
B The fourth constant is the size of the area that stores variables.

The constants can be expressed as hexadecimal numbers by appending an H to the
number. Areas greater than 32,767 must be written as hexadecimal values.

The values used in the % CHAIN directive are determined by compiling each of the
programs to be chained and using the largest value of each area. The Compiler lists
the size of each area at the end of a compilation. For example, if three programs are
to be chained and the CODE SIZE for the programs are 789, 1578, and 4917 bytes,
the second constant in the % CHAIN directive is 4917.

The %CHAIN directive is only required in the main or first program executed.

7.5 CBASIC Compile-time Toggles
Enter a Compiler command line using the following syntax.
CBAS filename [disk ref] [$toggle {toggle}]

The .INT file is written to the drive specified in the disk ref parameter. If you do
not specify a disk ref, the .INT file is written to the drive containing the source file.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 135

7.5 CBASIC Compile-time Toggles CBASIC Language Reference Manual

The following examples show use of CBASIC Compiler toggles.

CBAS ACCOUNT3 $BGF

B:CBAS A:COMPARE $GEC

CBAS PAYROLL 4B

CBAS B:VALIDATE $E

Compiler toggles are a series of switches that can be set when compiling a program.
The toggles are set by typing a $ followed by the letter designations of the desired
toggles, starting one space or more after the program name. Toggles are only set for
the Compiler. CBASIC supports six compile-time toggles.

Table 7-1. Compile-time Toggles

Toggle

Function

Toggle B

Toggle C

Toggle D

Toggle E

Suppresses the listing of the program on the console during compi-
lation. If an error is detected, the error message is printed even if
toggle B is set. Toggle B does not affect listing to the printer (toggle
F) or disk file (toggle G). Initially, toggle B is off.

Suppresses the generation of an INT file. Because the first compilation
of a large program is likely to have errors, this toggle provides an
initial syntax check without the overhead of writing the intermediate
file. Initially, toggle C is off.

Suppresses translation of lower-case letters to upper-case. For exam-
ple, if toggle D is on, AMOUNT does not refer to the same variable
as amount. If toggle D is set, all keywords must be capitalized. Ini-
tially, toggle D is off.

Useful when debugging programs. If this toggle is set, it causes the
run-time program to accomparny any error messages with the CBASIC
line number where the error occurred. Toggle E increases the size of
the resultant INT file and, therefore, should not be used with debugged
programs. Toggle E must be set for the TRACE option to be in effect.
Initially, toggle E is off.

136

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 7.5 CBASIC Compile-time Toggles

Table 7-1. (continued)

Toggle Function

Toggle F Causes the compiled output listing to be printed on the list device
and the console. This provides a hard copy of the compiled program.
Even if toggle B is set, a complete listing is provided if toggle F is
set. Each page of the listing has a title and numbered pages. Form-
feeds are used to advance to the top of a page. Initially, toggle F is

off.

Toggle G Causes the compiled output listing to be written to a disk file. The

file containing the compiled listing has the same name as the source
file, and a filetype of LST. If toggles G and B are specified, only
errors are output at the console, but a disk file of the complete
l program is produced.

Usually the disk listing is placed on the same drive as the source file. The operator
can select another drive by specifying the desired drive, enclosed in parentheses, fol-
lowing toggle G as shown below:

CBAS B:TAX $G(A:)

Initially, toggle G is off.

7.6 Compiler Output

CBASIC does not require each statement of a program to be assigned a statement
number. The only statements that must be given a statement number are those that
have control passed to them by the GOTO, GOSUB, ON, or IF statements. During
compilation, CBASIC assigns a sequential number to each line independent of the

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 137

7.6 Compiler Output CBASIC Language Reference Manual

statement number you used. The CBASIC assigned line number is the one referred to
in error messages (if toggle E is specified) and when using the TRACE option. The lin
number takes one of three forms,

n:
or,

n *
or,

n=

where n is the number assigned. Usually, the colon follows the number. The * is usec.
when the statement contains a user-assigned statement number that is not referenced
anywhere in the program. The = is printed when the statement is read in from a disk
file with a %INCLUDE directive.

For example:

1: print "start"

23 name$="FRED"

3% 10 gosub 40 rem Print name
4z stoP

S:

B:%include Printrtn rem rtn to Print
7= 40 rem----- rtn to Print-----------

8= Print name$

9= return

10: END

In the preceding example, statement 3 has an * because the 10 is not referenced
anywhere in the program. This can be useful during debugging, or to help understand
large programs written in other Basic dialects. When all unreferenced line numbers are
removed, it is easier to see the logic of the program.

138 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 7.6 Compiler Output

When an error is detected, the Compiler prints a two-letter error code, the line
number where the error occurred, and the position of the error relative to the beginning
of the source line. The position assumes tab characters have been expanded.

7.7 TRACE Option

The TRACE option is used for run-time debugging. It prints the line number of each
statement as it is executed. The output is directed to the console even when a LPRINTER
statement is in effect. The line number printed is the number the Compiler assigned
to each statement. The TRACE option syntax is as follows:

CRUN filename [TRACE [1n1 [,152])]
Consider the following program:

AMOUNT = 12,13
TIME = 45.0
PRINT TIME * AMOUNT

If the preceding program is compiled using the following command,

CBAS TEST $E

and then executed with the TRACE option,

CRUN TEST TRACE 1,3

the following output is produced:

AT LINE 0001

AT LINE 0002

AT LINE 0003
545.85

The TRACE option functions only if the toggle E is set during compilation of the
program.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 139

7.7 TRACE Option CBASIC Language Reference Manual

The first number, 111, is specifing the line number where the trace begins. The second
number, 112, specifies where the trace is to stop. If no line numbers are included in
the command, the entire program is traced; if only the first line number is present,
tracing starts at this line number and continues for all line numbers greater than the
first number 1n1.

7.8 Cross-Reference Lister

Besides a Compiler and an Interpreter, a Cross-reference Lister is supplied with
CBASIC. The XREF file produces a disk file containing an alphabetized list of all
identifiers used in a CBASIC program. The identifier usage (function, parameter, or
global) is provided, and a list of each line where that identifier is used.

The listing places all functions first, parameters and local variables associated with
a function immediately follow. The functions are listed alphabetically. The output is
usually directed to the same disk as the source file. The file created has the same name
as the CBASIC source file and is of type XREF. The standard output is 132 columns
wide.

The following command is used to invoke XREF:
XREF filename [disk ref] [$toggles] [title’]

The filename must be a CBASIC source program with a filetype of BAS. The disk
reference is optional and specifies on which disk to place the cross-reference file. If the
disk reference is not present, the listing is placed on the same drive as the source. It is
specified as A, B, etc.

For example,
XREF PAYROLL A:

places the cross-reference listing for PAYROLL.BAS on drive A. At least one blank
must separate the filename and the disk reference.

Toggles can alter the standard output of XREF. A, B, C, D, E, F, G, and H are valid
toggles. They can be lower- or upper-case letters. At least one blank must separate the
$ from the portion of the command line to the left. The toggles follow the $. The
Cross-reference Lister ignores any other characters that follow the $, and precede the
title field or end of the command line.

140 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 7.8 Cross-Reference Lister

The following is a list of the Cross-reference Lister toggles and their functions:

Table 7-2. Cross-reference Lister Toggle Functions

Toggle Function
A Causes a listing to be output to the list device and to a disk file.
B Suppresses output to the disk. If only the B toggle is specified, no output

is produced.

C Suppresses the output to the disk and permits output to the list device.
The C toggle has the same effect as specifying both the A and B toggles.

D Causes the output to be produced 80 columns wide instead of using
132 columns.

E Produces output with only the identifiers and their usage. No line num-
bers are printed. The E toggle helps document a program. You write
the use of each identifier on the listing provided by XREF. The file
created by XREF is edited and made into a large remark with comments
pertaining to each variable name. By including this file with the source
program, more documentation is provided.

F Allows you to change the default page length of 60 lines per page. The
desired number of lines per page is enclosed in parentheses and must
follow the F toggle. Embedded blanks are not allowed. Form-feed char-
acters position the printer, and are also placed in disk files.

G Suppresses printing of the heading lines and suppresses all form-feeds.
This toggle is used when building a disk file to be printed by a user
utility.

H Suppresses translation of lower-case letters to upper-case. This allows

using XREF with programs compiled with compiler toggle D.

The following command:
XREF ACCT$REC B: $EAF(40) .

creates a disk file on drive B and a listing on the list device of all the identifiers and
their usage. No line numbers are provided. Pages are limited to 40 lines.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 141

7.8 Cross-Reference Lister CBASIC Language Reference Manual

The optional title field must be the last field in the command line. All characters
following the first apostrophe on the command line up to the second apostrophe, or
until the end of the command line, become the title. The title is printed on the heading
line of each page of output. The title is truncated to 30 characters if the listing is 132
columns wide, or to 20 characters if the D toggle is specified.

The following command demonstrates the title field:

XREF NAMES B: $AD ‘version 2: 1 AUG 78°

End of Section 7

142 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

A. COMPILER ERROR MESSAGES

Appendix A
Compiler Error Messages

The compiler prints the following messages when a file system error or memory
space error occurs. In each case, control returns to the operating system.

Table A-1. File System and Memory Space Errors

Error Meaning

NO SOURCE FILE: filename.BAS

The compiler cannot locate a source file on the specified disk. This file
was used in either the CBAS2 command or a %INCLUDE directive.

OUT OF DISK SPACE

The compiler has run out of disk space while attempting to write either

the INT file or the LST file.
OUT OF DIRECTORY SPACE

The compiler has run out of directory entries while attempting to create
or extend either the INT file or the LST file.

DISK ERROR

A disk error occurred while trying to read or write to a disk file. This
message can vary slightly in form depending on the operating system
used. See the CP/M documentation for the exact meaning of this mes-
sage.

PROGRAM CONTAINS n UNMATCHED FOR STATEMENT(S)

There are n FOR statements for which a NEXT cannot be found.
PROGRAM CONTAINS n UNMATCHED WHILE STATEMENT(S)

There are n WHILE statements for which a WEND cannot be found.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 143

A Compiler Error Messages CBASIC Language Reference Manual

Table A-1. (continued)

Error Meaning

PROGRAM CONTAINS 1 UNMATCHED DEF STATEMENT

A multiple line function was not terminated with a FEND statement.
This causes other errors in the program.

WARNING INVALID CHARACTER IGNORED

The previous line contained an invalid character. The compiler ignores
the character; a question mark is printed in its place.

INCLUDE NESTING TOO DEEP NEAR LINE n

An INCLUDE statement near line n in the source program exceeds the
maximum level of nesting of INCLUDE files.

Other errors detected during compilation cause a two-letter error code to be printed
with the line number and position of the error. The error message usually follows the
line where the error occurred.

Table A-2. Compilation Error Codes

Code Error
BF A branch into a multiple line function from outside the function was
attempted.
BN An invalid numeric constant was encountered.
CF A COMMON statement must be in the first line.
ClI An invalid filename was detected in a % INCLUDE directive. The filename

cannot contain a ?, *, or : (except as part of a disk reference where a
colon can be the second character of the name).

CS A COMMON statement, that was not the first statement in a program,
was detected. Only a compiler directive such as % CHAIN, a REMARK
statement, or blank lines can precede a COMMON statement.

144 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual A Compiler Error Messages

Table A-2. (continued)
Code Error

Y An improper definition of a subscripted variable in a COMMON state-
ment was detected. The subscript count is possibly not a constant, or
there is more than one constant. Only one constant can appear in paren-
theses. It specifies the number of subscripts in the defined array.

DL The same line number was used on two different lines. Other compiler
errors can cause a DL error message to be printed even if duplicate line
numbers do not exist. Defining functions before use and, sometimes, if
the DIM statement does not precede all references to an array, results in
a DL error.

DP A variable dimensioned by a DIM statement was previously defined. It
either appears in another DIM statement or was used as a simple variable.

FA A function name appears on the left side of an assignment statement but
is not within that function. In other words, the only function name that
can appear to the left of an equal sign is the name of the function currently

compiled.
FD The same function name is used in a second DEF statement.
FE A mixed mode expression exists in a FOR statement that the compiler

cannot correct. Probably the expression following the TO is of a different
type than the index.

FI An expression is a subscripted numeric variable being used as a FOR
loop index.

FN A function reference contains an incorrect number of parameters.

FP A function reference parameter type does not match the parameter type

used in the function’s DEF statement.

FU A function was referenced before it was defined, or the function was
never defined.

IE An expression immediately following an IF statement evaluates to type
string. Only type numeric is permitted.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 145

A Compiler Error Messages CBASIC Language Reference Manual

Table A-2. (continued)

Code Error

IF A variable used in a FILE statement is of type numeric where type string
is required.

IP An input prompt string was not surrounded by quotes.

IS A subscripted variable was referenced before dimensioned.

IT An invalid compiler directive was encountered. A parameter required by
the directive can be out of range or missing, or the directive was mis-
spelled.

U A variable defined as an array in a DEF statement is used without sub-
scripts.

MC The same variable is defined more than once in a COMMON statement.

Each variable can appear in only one COMMON statement.

MF ° Anexpression evaluates to type string when an expression of type numeric
is required.

MM An invalid mixed mode was detected. Probably variables of type string
and type numeric were combined in the same expression.

MS A numeric expression was used where a string expression was required.

ND A FEND statement was encountered without a corresponding DEF state-
ment. This error could be the result of an improper DEF statement,

NI A variable referenced by a NEXT statement does not match the variable
referenced by the associated FOR statement.

NU A NEXT statement occurs without an associated FOR statement.
OF A branch out of a multiple line function from inside the function was
attempted.
146

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual A Compiler Error Messages

Table A-2. (continued)
Code Error

00 More than 40 ON statements were used in the program. CBASIC has an
arbitrary limit of 40 ON statements in a single program. Notify Digital
Research if this limit causes problems.

PM A DEF statement appeared within a multiple line function. Functions
cannot be nested.

RF A multiple line function cannot call itself.

SD A second SAVEMEM statement was encountered. A program can have
only one SAVEMEM statement.

SE The source line contained a syntax error. This means that a statement is
not properly formed or a keyword is misspelled.

SF A SAVEMEM statement uses an expression of type numeric to specify
the file to be loaded. The expression must be a string. Possibly, the
quotation marks were left off a string constant.

SN A subscripted variable contains an incorrect number of subscripts, or a
variable in a DIM statement was previously used with a different number
of dimensions.

SO The statement is too complex to compile; simplify it. Consider making
the expression into two or more expressions. Please send Digital Research
a copy of the source statement.

TO Symbol table overflow has occurred. This means that the program is too
large for the system being used. The program must be simplified or the
amount of available memory increased. Smaller variable names reduce
the amount of symbol table space used. Please inform Digital Research
if programs generate this error.

UL A line number that does not exist was referenced.

US A string was terminated by a carriage return rather than by quotes.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 147

A Compiler Error Messages CBASIC Language Reference Manual

Table A-2. (continued)
Code Error

VO Variable names are too long for one statement. This should not usually
occur. If it does, please send a copy of the source statement to Digital
Research. Reducing the length of variable names and reducing the com-
plexity of the expression within the statement can eliminate the error.

WE The expression immediately following a WHILE statement is not numeric.

WN WHILE statements are nested to a depth greater than 12. CBASIC has
an arbitrary limit of 12 for nesting WHILE statements,

WU A WEND statement occurred without an associated WHILE statement.

End of Appendix A

148 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

B. RUN-TIME ERROR MESSAGES

Appendix B
Run-time Error Messages

The following warning messages might be printed during execution of a CBASIC
program.

Table B-1. CBASIC Warning Messages

Error Meaning

NO INTERMEDIATE FILE:filename

A filename was not specified with the CRUN2 command, or no file

of type INT with the specified filename was found on the specified
disk.

IMPROPER INPUT - REENTER

This message occurs when the fields entered from the console do not
match the fields specified in the INPUT statement. This occurs when
field types do not match or the number of fields entered differs from
the number of fields specified. Following this message, all values required
by the INPUT statement must be reentered.

Run-time errors cause a two-letter code to be printed. If the code is preceded by the
word WARNING, execution continues. If the code is preceded by the word ERROR,
execution terminates. If an error occurs with a code consisting of an * followed by a
letter such as *R, the CBASIC run-time package has failed. Please notify Digital Research
of the circumstances under which the error occurred.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 149

B Run-time Error Messages CBASIC Language Reference Manual

The following table contains valid CBASIC warning codes.

Table B-2. CBASIC Warning Codes

Code

Error

DZ

FL

LN

NE

OF

SQ

A number was divided by zero. The result is set to the largest valid
CBASIC number.

A field length greater than 255 bytes was encountered during a READ
LINE statement. The first 255 characters of the record are retained; the
other characters are ignored.

The argument given in the LOG function was zero or negative. The value
of the argument is returned.

A negative number was specified before the raise to a power operator.
The absolute value of the parameter is used in the calculation. When
using real variables, a positive number can be raised to a negative power,
but a negative number cannot be raised to a power.

A calculation using real variables produced an overflow. The result is set
to the largest valid CBASIC real number. Overflow is not detected with
integer arithmetic.

A negative number was specified in the SQR function. The absolute value
is used.

The following table contains valid CBASIC error codes.

Table B-3. CBASIC Error Codes

Code Error
AC The argument in an ASC function is a null string.
AE An attempt was made to access an array element before the array DIM
statement was executed.
BN The value following the BUFF option in an OPEN or CREATE statement
is less than one or greater than 52.
150 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual B Run-time Error Messages

Table B-3. (continued)
Code Error

CC A chained program’s code area is larger than the main program’s code
area. Use a % CHAIN directive in the main program to adjust the size
of the code area.

CD A chained program’s data area is larger than the main program’s data
area. Use a % CHAIN directive in the main program to adjust the size
of the data area.

CE The file being closed cannot be found in the directory. This occurs if the
RENAME function has changed the file.

CF A chained program’s constant area is larger than the main program’s
constant area. Use a % CHAIN directive in the main program to adjust
the size of the constant area.

Cp A chained program’s variable storage area is larger than the main pro-
prog g rger tha p
gram’s variable storage area. Use a % CHAIN directive in the main pro-
gram to adjust the size of the variable storage area.

CS A chained program reserved a different amount of memory, with a
SAVEMEM statement, than the main program.

Cu A CLOSE statement specifies a file identification number that is not active.

DF An OPEN or CREATE statement uses a file identification number that
is already used.

DU A DELETE statement specifies a file identification number that is not
active.

DW The operating system reports that there is no disk or directory space

available for the file being written to, and no IF END statement is in
effect for the file identification number.

EF An attempt is made to read past the end of a file, and no IF END statement
is in effect for the file identification number.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 151

B Run-time Error Messages CBASIC Language Reference Manual

Table B-3. (continued)

Code Error

ER An attempt was made to write a record of length greater than the max-
imum record size specified in the OPEN, CREATE, or FILE statement
for this file.

FR An attempt was made to rename a file to an existing filename.

FU An attempt was made to access a file that was not open.

IF A filename was invalid. Most likely, an invalid character was found in
the filename. A colon can never appear embedded in the name proper. ?
and * can only appear in ambiguous filenames. This error also results if
the filename was a null string.

IR A record number of zero was specified in a READ or PRINT statement.

v An attempt was made to execute an INT file created by a version one
compiler. To use CRUN2, a program must be recompiled using the ver-
sion two compiler, CBAS2. This error also results from attempting to
execute an empty INT file.

IX A FEND statement was encountered before executing a RETURN state-
ment. All multiple line functions must exit with a RETURN statement.

ME The operating system reports an error during an attempt to create or
extend a file. Usually this means the disk directory is full.

MP The third parameter in a MATCH function was zero or negative.

NC The source program contains a real constant outside the range of CBASIC
real numbers.

NF A file identification number is less than one or greater than 20, or a FILE
statement was executed when 20 files were already active.

NM There was insufficient memory to load the program.

NN An attempt to print a numeric expression with a PRINT USING statement
fails because there is not a numeric field in the USING string.

152 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual

Table B-3. (continued)

Code

Error

NS

oD

OE

0]

OM

QE

RE

RG

RU

An attempt to print a string expression with a PRINT USING statement
fails because there is not a string field in the USING string.

A READ statement was executed, but there are no DATA statements in
the program, or all data items in all DATA statements were already read.

An attempt was made to OPEN a file that does not exist and for which
no IF END statement was in effect.

The expression specified in an ON ... GOSUB or an ON ... GOTO
statement evaluated to a number less than one or greater than the number
of line numbers contained in the statement.

The program ran out of dynamically allocated memory during execution.
Space can be conserved by closing files when no longer needed, and by
setting strings to a null string when no longer required. Also, by not using
DATA statements, but reading the constant information from a file, space
is saved. Large arrays can be dimensioned with smaller subscripts when
the array is no longer required.

An attempt was made to print a string containing a quotation mark to
a file. Quotation marks can only be written to files when using the PRINT
USING option of the PRINT statement.

Random access was attempted to a file activated with the BUFF option
specifying more than one buffer.

An attempt was made to read past the end of a record in a fixed file.

A recursive function call was attempted; CBASIC does not support recur-
sion.

A RETURN statement occurred for which there was no GOSUB state-
ment.

A random read or print was attempted to a stream file.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

B Run-time Error Messages ‘

153

CBASIC Language Reference Manual B Run-time Error Messages

Table B-3. (continued)

Code Error

SB An array subscript was used which exceeds the boundaries for which the
array was defined.

SL A concatenation operation resulted in a string greater than the maximum
allowed string length.

SO The file specified in a SAVEMEM statement cannot be located on the
referenced disk. The expression specifying the filename must include the
filetype if one is present. A filetype of COM is not forced.

SS The second parameter of a MID$ function was zero or negative, or the
last parameter of a LEFT$, RIGHTS, or MID$ function was negative.

TL A TAB statement contains a parameter less than one.

UN A PRINT USING statement was executed with a null edit string, or an
escape character is the last character in an edit string.

WR An attempt was made to write to a stream file after it was read, but
before it was read to the end of the file.

End of Appendix B
154 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

C. CBASIC KEY WORDS

AND

AS

ASC

ATN

BUFF

CALL

CHAIN
CHRS$

CLOSE
COMMANDS$
COMMON
CONCHAR%
CONSOLE
CONSTAT%
COS

CREATE

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix C
CBASIC Key

ELSE
END
EQ
EXP
FEND
FILE

FLOAT

FOR
FRE
GE

GO
GOSUB
GOTO
GT

IF

INITIALIZE

LE
LEFTS$
LEN
LET
LINE
LOG
LPRINTER
LT
MATCH
MID$
NE
NEXT
NOT
ON
OPEN
OR

OouT

Words

PRINT
RANDOMIZE
READ
RECL
RECS

REM
REMARK
RENAME
RESTORE
RETURN
RIGHT$
RND
SADD
SAVEMEM
SGN

SIN

SIZE

STR$
SUB
TAB
TAN
THEN
TO
UCASES$
USING
VAL
VARPTR
WEND
WHILE
WIDTH
XOK
%CHAIN
%EJECT

%INCLUDE

155

C CBASIC Key Words CBASIC Language Reference Manual

" DATA INP PEEK SQR %LIST

DEF INPUT POKE STEP %NOLIST
DELETE INT POS STOP %PAGE
DIM INT%

*For FN, see user-defined functions.

End of Appendix C

156 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

D. DECIMAL-ASCII-HEX TABLE

Appendix D

Decimal-ASCII-Hex Table

Table D-1. Conversion Table

DECIMAL ASCHl HEX DECIMAL ASCIl HEX DECIMAL ASCII HEX

0 NUL 00 44 , 2C 88 X 58
1 SOH 01 45 - 2D 89 Y 59
2 STX 02 46 . 2E 90 Z SA
3 ETX 03 47 / 2F 91 [5B
4 EOT 04 48 0 30 92 \ 5C
5 ENQ 05 49 1 31 93] 5D
6 ACK 06 S50 2 32 94 " SE
7 BEL 07 51 3 33 95 _ SF
8 BS 08 52 4 34 96 60
9 HT 09 53 S 35 97 a 61
10 LF 0A 54 6 36 98 b 62
11 VT OB 55 7 37 99 C 63
12 FF 0C 56 8 38 100 d 64
13 CR 0D 57 9 39 101 e 65
14 SO OE 58 : 3A 102 f 66
15 SI OF 59 ; 3B 103 g 67
16 DLE 10 60 < 3C 104 h 68
17 DC1 11 61 = 3D 105 i 69
18 DC2 12 62 > 3E 106] 6A
19 DC3 13 63 ? 3F 107 k 6B
20 DC4 14 64 @ 40 108 | 6C
21 NAK 15 65 A 41 109 m 6D
22 SYN 16 66 B 42 110 n 6E
23 ETB 17 67 C 43 111 o 6F
24 CAN 18 68 D 44 112 p 70
25 CR 19 69 E 45 113 q 71
26 SUB 1A 70 F 46 114 r 72
27 ESC 1B 71 G 47 115 s 73
28 ES 1C 72 H 48 116 t 74
29 GS 1D 73 | 49 117 u 75
30 RS 1E 74] 4A 118 v 76
31 uUsS 1F 75 K 4B 119 w 77
L -
ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 157

D Decimal-ASCII-Hex Table CBASIC Language Reference Manual

Table D-1. (continued)

DECIMAL ASCIl HEX DECIMAL ASCIl HEX DECIMAL ASCH HEX]
32 SP 20 76 L 4C 120 x 78
33 ! 21 77 M 4D 121 y 79
34 " 22 78 N 4E 122 z 7A
35 # 23 79 (o) 4F 123 { 7B
36 $ 24 80 P 50 124 | 7C
37 % 25 81 Q 51 125 } 7D
38 & 26 82 R 52 126 7E
39 ! 27 83 S 53 127 DEL 7F
40 (28 84 T 54
41) 29 85 U 55
42 * 2A 86 \% 56
43 + 2B 87 w 57

End of Appendix D

158 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

E. GLOSSARY

Appendix E
Glossary

address: Location in memory.

ambiguous file specification: File specification that contains either of the Digital Research
wildcard characters, ? or *, in the filename or filetype or both. When you replace
characters in a file specification with these wildcard characters, you create an ambiguous
filespec and can reference more than one file in a single command line.

applications program: Program that needs an operating system to provide an envi-
ronment in which to execute. Typical applications programs are business accounting
packages, word processing, and mailing list programs.

argument: Variable or expression value that is passed to a procedure or function and
substituted for the dummy argument in the function. Same as ‘“‘actual argument” or
“calling argument”. Used interchangeably with “parameter”.

array: Data type that is itself a collection of individual data items of the same data
type. Term used to describe a form of storing and accessing data in memory, visualized
as matrices. The number of extents of an array is the number of dimensions of the
array. A one dimensional array is essentially a list.

ASCII: Acronym for American Standard Code for Information Interchange. ASCII is
a standard code for representation of the numbers, letters, and symbols that appear
on most keyboards.

assembler: Language translator that translates assembly language statements into
machine code.

assignment statement: Statement that assigns the value of an expression on the right
side of an equal sign to the variable name on the left side of the equal sign.

back-up: Copy of a file or disk made for safe keeping, or the creation of the file or

disk.

binary: Base two numbering system containing the two symbols zero and one.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 159

E Glossary CBASIC Language Reference Manual

bit: Common contraction for “binary digit”. “Switch” in memory that can be set to
on (1) or off (0). Eight bity grouped together comprise a byte.

buffer: Area of memory that temporarily stores data during the transfer of infor-
mation.

byte: Unit of memory or disk storage containing eight bits.
call: Transfer of control to a computer program subroutine.

chain: Transfer of control from the currently executing program to another named
program without returning to the system prompt or invoking the run-time monitor.

code: Sequence of statements of a given language that make up a program.

command: Instruction or request for the operating system or a system program to
perform a particular action. Generally, a Digital Research command line consists of a
command keyword, a command tail usually specifying a file to be processed, and a

carriage return.

common: Variables used by a main program and all programs executed through a
‘chain statement.

compiler: Language translator that translates the text of a high level language into
machine code.

compiler directive: Reserved words that modify the action of the compiler.

compiler error: Error detected by the compiler during compilation; usually caused
by improper formation of language statement.

compiler toggle: ““Switch” to modify the output of the compiler.
concatenate: Join one string to another or one file to another.

concatenation operator: Symbol peculiar to a given language that instructs the com-
piler to combine two unique data items into one.

console: Primary input/output device. The console consists of a listing device such as

a screen and a keyboard through which the user communicates with the operating
system or the applications program.

160 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual E Glossary

constant: String or numeric value that does not change throughout program execu-
tion.

control character: Nonprinting character combination that sends a simple command
to the operating system or applications program. To enter a Control character, press
the Control (CTRL) key on your terminal and strike the character key specified.

control statement: Language statement that transfers control or directs the order of
execution of instructions by the processor.

cursor: One-character symbol that can appear anywhere on the video screen. The
cursor indicates the position where the next keystroke at the console will have an effect.

data: Information; numbers, figures, names, and so forth.

data base: Large collection of information, usually covering various aspects of related
subject matter.

datafile: Nonexecutable file of similar information that generally requires a command
file to process it.

data structure: Mechanism, including both storage layout and access rules, by which
information can be stored and retrieved within a computer system. Data structures can
reside in memory or on secondary storage. System tables such as symbol tables, matrices
of numerical data, and data files are examples of data structures.

data type: Class or use of the data; for example, integer, real or string.
debug: Remove errors from a program.

default: Values, parameters or options a given command assumes if not otherwise
specified.

delimiter: Special characters or punctuation that separate different items in a com-
mand line or language statement.

dimension: Refers to the number of extents of an array. A one dimensional array is
essentially a list of the elements of the array. A two dimensional array can be visualized
as a matrix of rows and columns of storage space for the elements cof the array. A
three dimensional array can be thought of as a geometric solid having volume, and so
forth.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 161

E Glossary CBASIC Language Reference Manual

directory: Portion of a disk that contains entries for each file on the disk. In response
to the DIR command, CP/M and MP/M systems display the file specifications stored
in the directory.

disk, diskette: Magnetic media used to store information. Programs and data are
recorded on the disk in the same way that music is recorded on a cassette tape. The
term “diskette” refers to smaller capacity removable floppy diskettes. The term “disk”
can refer to a diskette, a removable cartridge disk, or a fixed hard disk.

disk drive: Peripheral device that reads and writes on hard or floppy disks. CP/M
and MP/M systems assign a letter to each drive under their control.

drive specification: Alpha character A-P followed by a colon that indicates the CP/
M or MP/M drive reference for the default or specified drive.

dummy argument: Argument used in the definition of a command or language state-
ment (especially a function) that holds a place that will later contain a usable “actual”
or “calling” argument that is passed to the function by a calling statement. Same as
“formal argument”.

editor: Utility program that creates and modifies text files. An editor can be used to
create documents or code for computer programs.

element: Individual data item in an array.

executable: Ready to run on the processor. Executable code is a series of instructions
that can be carried out on the processor. For example, the computer cannot “execute”
names and addresses, but it can execute a program that prints names and addresses
on mailing labels.

execute a program: Start a program running. When the program is executing, a
process is executing a sequence of instructions.

FCB: File Contro! Block. Structure used for accessing files on disk. Contains the drive,

filename, filetype and other information describing a file to be accessed or created on
the disk.

field: Portion of a record; length and type are defined by the programmer. One or
more fields comprise a record.

162 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual E Glossary

file: Collection of related records containing characters, instructions or data; usually
stored on a disk under a unique file specification.

filename: Name assigned to a file. The filename can include 1-8 alpha, numeric
and/or some special characters. The filename should tell something about the file.

filetype: Extension to a filename. A filetype is optional, can contain from 0 to 3 alpha,
numeric and/or some special characters. The filetype must be separated from the file-
name by a period. Certain programs require that files to be processed have specific
filetypes.

file access: Refers to methods of entering a file to retrieve the information stored in
the file,

file specification: Unique file identifier. A Digital Research file specification includes
an optional drive specification followed by a colon, a primary filename of 1-8 char-
acters, and an optional period and filetype of 0-3 characters. Some Digital Research
operating systems allow an optional semicolon and password of 1-8 characters fol-
lowing the filename or filetype. All alpha and numeric characters and some special
characters are allowed in Digital Research file specifications.

fixed: Type of file organization used when data is to be accessed randomly—not in
sequential order. Refers generally to the nonvarying lengths of the records composing

the file.

floating point: Value expressed in decimal notation that can include exponential
notation; a regl number.

floppy disk: Flexible magnetic disk used to store information. Floppy disks are man-
ufactured in 5% and 8 inch diameters.

fiowchart: Graphic diagram that uses special symbols to indicate the input, output
and flow of control of part or all of a program.

flow of control: Order of the execution of statements within a program.

format: System utility that writes a known pattern of information on a disk so a
given hardware configuration can properly support reading and writing on that disk.

formatted printing: Output specifically designed in a certain pattern and achieved
‘hrough particular coded language statements.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 163

E Glossary CBASIC Language Reference Manual

fragmentation: Division of storage area in a way that causes areas to be wasted.
function: Subroutine to which you can pass values and which returns a value. Useful
when the same code is required repeatedly, as the program can call the function at any
time.

global: Relevant throughout an entire program.

hex file: ASCII-printable representation of a code or data file in hexadecimal notation.
hexadecimal notation: Notation for the base 16 number system using the symbols 0,
1,2,3,4,5,6,7,8,9, A,B, C, D, E, and F to represent the sixteen digits. Machine
code is often converted to hexadecimal notation because it can be more easily under-
stood.

high bound: Upper limit of one dimension of an array.

high-level language: Set of special words and punctuation that allows a programmer
to code software without being concerned with internal memory management.

identifier: String of characters used to name elements of a program, such as variable
names, reserved words, and user-defined function names. Commonly used synony-

mously with “variable name”.

include: Call an external file into the code sequence of a program at the point where
the include statement is executed.

initialize: Set a disk system or one or more variables to initial values.
I/0: Abbreviation for input/output.

input: Data entered to an executing program, usually from an operator typing at the
terminal or by the program reading data from a disk.

instruction: Set of characters that defines an operation.

integer: Positive or negative nonexponential whole number that does not contain a
decimal point.

interface: Object that allows two independent systems to communicate with each
other, as an interface between the hardware and software in a microcomputer.

164 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual E Glossary

intermediate code: Code generated by the syntactical and semantic analyzer portions
of a compiler.

interpreter: Computer program that translates and executes each source language
statement before translating and executing the next one.

ISAM: Abbreviation for Indexed Sequential Access Method.
key: Particular field of a record on which the processing is performed.
keyword: Reserved word with special meaning for statements or commands.

kilobyte: 1024 bytes denoted as 1K. 32 kilobytes equal 32K. 1024 kilobtyes equal
one megabyte, or over one million bytes.

linker: System software module that connects previously assembled or compiled pro-
grams or program modules into a unit that can be loaded into memory and executed.

linked list: Data structure in which each element contains a pointer to its predecessor
or successor (singly linked list) or both (double linked list).

list device: Device such as a printer onto which data can be listed or printed.
listing: Output file created by the compiler that lists the statements in the source
program, the line numbers it has assigned to them, and possibly other optional infor-

mation.

literal data: Verbatim translation of characters in the code, such as in screen prompts,
report titles and column headings.

load: To move code from storage into memory for execution.

local variable: Relevant only within a specific portion of a program, such as within
a function.

logged-in: Made known to the operating system, in reference to drives. A drive is
logged-in when it is selected by the user or an executing process.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 165

E Glossary CBASIC Language Reference Manual

logical: Representation of something such as a console, memory or disk drive that
might or might not be the same in its actual physical form. For example, a hard disk
can occupy one physical drive, and yet you can divide the available storage on it to
appear to the user as if there were several different drives. These apparent drives are
the logical drives.

logical device: Reference to an I/O device by the name or number assigned to the
physical device.

logical operator: NOT, AND, OR, and XOR.
lower bound: Lower limit of one dimension of an array.

machine code: Output of an assembler or compiler to be executed directly on the
target processor.

machine language: Instructions directly executable by the processor.
memory: Storage area within and/or attached to a computer system.

microprocessor: Silicon chip that is the Central Processing Unit (CPU) of the micro-
computer system.

mixed mode: Combination of integer and real or numeric and string values in an
expression. Mixed string and numeric operations are generally not allowed in high

level languages.

mnemonic operator: Alphabetical symbol for algebraic operator: LT, LE, GT, GE,
NE, and EQ.

module: Section of software having well-defined input and output that can be tested
independently of other software.

multiple-line function: Function composed of a function definition statement and one
or more additional statements.

numeric constant: Real or integer quantity that does not vary within the program.

numeric variable: Real or integer identifier to which varying numeric quantities can
be assigned during program execution.

166 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual E Glossary

null string: A string that contains no character; essentially an empty string.
object code: Output of an assembler or compiler that executes on the target processor.

open: System service that informs the operating system of the manner in which a
given resource, usually a disk file, is intended to be used.

operating system: Collection of programs that supervises the execution of other pro-
grams and the management of computer resources. An operating system provides an
orderly input/output environment between the computer and its peripheral devices,
enabling user programs to execute safely.

operation: Execution of a piece of code.

option: One of a set of parameters that can be part of a command or language
statement. Options are used to modify the output of an executing process.

output: Data that the processor sends to the console, printer, disk, or other storage
media.

parameter: Value supplied to a command or language statement that provides addi-
tional information for the command or statement. Used interchangeably with “argu-
ment.” An actual parameter is a value that is substituted for a dummy or formal
argument in a given procedure or function when it is invoked.

peripheral device: Devices external to the CPU. For example, terminals, printers, and

disk drives are common peripheral devices that are not part of the processor, but are
_ are common perip p P

used in conjunction with it.

pointer: Data item whose value is the address of a location in memory.

primitive: Most basic or fundamental unit of data such as a single digit or letter.

process: Program that is actually executing, as opposed to being in a static state of
storage on disk.

program: Series of specially coded instructions that performs specific tasks when
executed on a computer.

prompt: Any characters displayed on the input terminal to help the user decide what

the next appropriate action is. A system prompt is a special prompt displayed by the
operating system, indicating to the user that it is ready to accept input.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 167

E Glossary CBASIC Language Reference Manual

random access: Method of entering a file at any record number, not necessarily the
first record in the file.

random access file: File structure in which data can be accessed in a random manner,
irrespective of its position in the file. :

random number: Number selected at random from a set of numbers.

real number: Numeric value specified with a decimal point; same as ““floating point
notation.”

record: One or more fields usually containing associated information in numerical
or textual form. A file is composed of one or more records and generally stored on

disk.

record number: Position of a specific record in a fixed-length file, relative to record
number 1. A key by which a specific record in a fixed file is accessed randomly.

recursive: Code that calls itself.
relational operator: Comparison operator. The following set of operators expressed
in algebraic or mnemonic symbols: LT, LE, NE, EQ, GT, GE, EQ. A relational operator

states a relationship between two expressions.

reserved word: Keyword that has a special meaning to a given language or operating
system.

return value: Value returned by a function.

row-major order: Order of assignment of values to array elements in which the first
item of the subscript list indicates the number of “rows” in the array.

run a program: Start a program executing. When a program is running, the micro-
processor chip is executing a series of instructions.

run-time error: Error occurring during program execution.

run-time monitor: Program that directly executes the coded instructions generated
by a compiler/interpreter.

168 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual E Glossary

sequential access: Type of file structure in which data can only be accessed serially,
ne record at a time. Data can be added only to the end of the file and cannot be
leleted. An example of a sequential access media is magnetic tape.

source program: Text file that is an input file for a processing program, such as an
editor, text formatter, assembler or compiler.

statement: Defined way of coding an instruction or data definition using specific
keywords in a specific format.

storage: Place for keeping data temporarily in memory or permanently on disk.

stream organization: Type of file organization used when data is to be accessed
sequentially. Can contain variable length records.

string constant: Literal data, as in a screen prompt, column heading, or title of a
report.

string variable: Identifier of type string to which varying strings can be assigned during
program execution.

subroutine: Section of code that performs a specific task, is logically separate from
the rest of the program, and can be prewritten. A subroutine is invoked by another
statement and returns to the place of invocation after executing. Subroutines are useful
when the same sequence of code is used more than once in a program.

subscript: Integer expression that specifies the position of an element in an array.

subscript list: Numeric value appended to a variable name that indicates the number
of elements in each dimension in the array of that name. Each dimension must have
a value in the subscript list indicating the number of elements for which to allocate
storage space.

syntax: Rules for structuring statements for an operating system or programming
language.

toggle: ““‘Switch” enabled by a special code in the command line that modifies the
output of the executing program.,

trace: Option used for run-time debugging. The trace option generally lists each line
of code as it executes to enable the programmer to note where a problem occurs.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 169

E Glossary CBASIC Language Reference Manual

upward-compatible: Term meaning that a program created for the previously released
operating system or compiler runs under a later release of the same software program.

user-defined function: Set of statements created and given a function name by the
user. The function performs a specific task and is called into action by referencing the
function by name.

utility: Tool. Program or module that facilitates certain operations, such as copying,
erasing and editing files, or controlling the cursor positioning on the video screen from
within a program. Ultilities are created for the convenience of programmers and appli-
cations operators.

value: Quantity expressed by an integer or real number.

variable: Name to which the program can assign a numerical value or string.

variable length: Usually refers to records, where each record in a file is not necessarily
the same length as another.

vaniable name: Same as variable.
wildcard characters: Special characters, ? and *, that can be included in a Digital

Research filename and/or filetype to identify more than one file in a single file speci-
ficatjon.

End of Appendix E

170 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

INDEX

A

ABS function, 14
algebraic operators, 9
AND Operator, 11
array, 5, 8, 22, 124
physical storage area of, 8
referenced, 8
variables, 8
AS expression, 28, 64
ASC function, 15
assembler linkage process
16-bit, 125
8-bit, 125 ,
assembly language, 68, 85
interface, 124
assigned line number, 137
assignment statements, 55
asterisk fill, 112
ATN function, 16

B

backslash, 2, 6

balanced parentheses, 9

BAS files, 1, 134

bage offset value, 131

binary constant, 7

bounds checking, 9

BUFF Expression, 65

byte displacement value, 118

C

CALL address 8086, 128
CALL statement, 17, 86

Index

calling parameters, 128
capitalization, 13
CBASIC-86, 131, 132
CBASIC key words, 155-156
CHAIN statement, 18, 21
CHR$ function, 19
CLOSE statement, 20, 45, 119
CMD file, 131
colon, 2
COMMANDS$ function, 21
commas, embedded, 112
comments, 2
COMMON statement, 22, 105
Compiler, 1

directives, 133

error codes, 144-148

error messages, 136

file system errors, 143-144

listing, 133

toggles, 135-136

starting the, 3
Computational Stack Area, 121, 122
concatenation operator, 11
CONCHAR% function, 24, 107
console device width, 25
console input and output, 107
console output, 108
CONSOLE statement, 25, 70
constants, 5, 9
CONSTAT% function, 26, 107
continuation character, 2, 5, 29, 79
control characters, 6
COS function; 27
CP/M, 49, 57, 64, 80, 86
CREATE statement, 28, 119
Cross-reference Lister, 1, 140
CTRL-C, 49

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

171

CTRL-U, 49
CTRL-Z, 49

D

data area overwriting, 134
data fields, 108
data files,

relative, 117

sequential, 115
DATA statement, 29, 81, 107
data types, 5
DDT, 127
Decimal-ASCII-Hex Table, 157
DEF statement, 30, 104, 105
DELETE statement, 31, 45, 119
delimiters, 115
DIM statement, 23, 32, 105
dimension, 9
dope vector, 124
dummy argument, 104

E

ELSE statement, 43, 44
END statement, 33, 134
EQ operator, 10

escape characters, 114
EXP function, 34
exponential notation, 7
expression list, 109
expressions, 9

F

FEND statement, 35, 105
fields, 114

file organization, 114
FILE statement, 36, 119

files, 114
fixed format, 7
fixed-length string field, 108
FLOAT function, 37
floating-point number, 7, 16
FN, §
FOR loop, 39
FOR statement, 38, 61
format string, 73, 106
FRE function, 40
Free Storage Area, 121
functions, 5, 103

definition, 104

names, 103

references, 106

G

GE operator, 10

GENCMD, 131

GO statement, 41, 42

GOSUB statement, 41, 62, 79, 137
GOTO statement, 42, 61, 105, 137
GT operator, 10

H

hexadecimal constants, 7, 135
high-level language features, 1

I

identifier, 5-8, 61, 140

usage, 140
IF END statement, 20, 28, 31, 45
IF statement, 43-44
individual record lengths, 115
initialize, 8
INITIALIZE statement, 47

172 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

INT file, 1

INP function, 48, 107

INPUT statement, 49-50, 74-76, 107
INPUT LINE statement, 76, 107
INT function, 51

INT %Function, 52

integers, 5-7, 123

Intermediate Code Area, 122
intermediate files, 1

Interpreter, 1

italics, 13

K

keywords, 44, 50

L

LE operator, 10

leading sign, 113

LEFTS$ function, 53

LEN function, 54

LET statement, 55

line numbers, 1

line-editing functions, 107

listing control, 133

literal character, 114

literal data, 107

local variables, 104

LOG function, 56

logical operators, 11

lower-case letters, 13

LPRINTER, 108

LPRINTER statement, 50, 57, 69-70,
108, 139 '

LT operator, 10

M

machine language subroutine, 17
machine level environment, 121
mantissa, 7

MATCH function, 58-59
mathematical operators, 10
memory allocation, 121

MID$ function, 60

minus sign, 113

mixed-mode expression, 10
mnemonic relational operators, 11
multiple statements, 2
multiple-statement function, 105

N

names, 5

variable, 5§

user-defined function, §
NE operator, 10
nested functions, 105
NEXT statement, 38, 61
nonsubscripted variables, 22
NOT operator, 10, 11
numbers,

integer, 7

real, 7

_numeric constants, 5, 12, 49

numeric data field, 111-114

6

ON Statement, 62-63, 79, 137

OPEN statement, 28, 45, 64-65, 119,
134

operators, hierarchy of, 10

optional title field, 140

OR operator, 10-11

ORG address, 127

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 173

OUT predefined function, 108
QUT statement, 66
overflow, 12

P

passing parameters, 125

PEEK function, 67, 68, 85
POKE statement, 25, 68, 85, 128
POS function, 57, 69, 108
power operator, 10-11

PRINT #, 115, 118, 119

PRINT statement, 57, 70, 95, 108, 134

PRINT USING statement, 73, 108,
115, 119
variation, 108
printing, 108

Q

quotation mark, 6

v

R

random access files, 65
RANDOMIZE statement, 74, 84
READ #, 76, 116, 118, 119
READ LINE statement, 77
READ statement, 29, 75, 107, 134
Real Constant Area, 121, 122
real constants, 7
real numbers, 7-12
RECL expression, 28, 64, 76
records, 114
relational operators, 10, 11
relative files, 117

random access to, 117
relative record number, 117
REM statement, 22, 79

REMARK statement, 79
RENAME function, 80
RESTORE statement, 81, 107
RETURN statement, 35, 82, 105
RIGHTS$ function, 82
RND function, 84
run-time debugging, 136
run-time Interpreter, 122
starting, 4
Run-time messages,
error codes, 144-148
warning messages, 149
warning codes, 150

S

SADD function, 85
SAVEMEM statement, 86, 124
sequential files, 115

SGN function, 88

SIN function, 89
single-statement function, 104
SIZE function, 90

source programs, 1

spaces, 2

SQR Function, 92
statement labels, 1
statement numbers, 62
STEP expression, 38

STOP, 21

STOP statement, 49, 70, 93
STRS$ function, 94

stream organization, 115
strings, 6, 124

string constants, 6

string data field, 109

string length, 6

string variables, 8-9, 77, 99
subroutines, 41, 82
subscript, 9

174 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

subscript list, expressions in, 9
subscripted variables, 9, 23, 49, 99

T

TAB funcrion, 95, 108
TAN function, 96
THEN statement, 43, 45
TO expression, 38
TO statement, 42
toggles

A, 141

B, 136, 141

C, 136, 141

D, 136, 141

E, 136, 141

F, 136, 141

F, 137, 141

functions, 135

G, 137, 141

H, 141
TRACE option, 21, 139
trailing sign, 113
Transient Program Area, 121
typographical conventions, 13

U

UCASES$ function, 97
unsubscripted variables, 36
up arrow, 111
user-defined functions, 106

\Y

VAL function, 98
Variable Storage Area, 121
variable-length string field, 108

variables, 5-9, 49, 102
VARPTR function, 99

A\ %

WEND statement, 100, 102
WHILE statement, 100, 102
WIDTH expression, 57

X
XOR operator, 10, 11
XREF file, 140

$, 5,103
floating, 112

%, 5, 103, 133

%CHAIN Directive, 134
%CHAIN directive, 134
%EJECT directive, 133
%INCLUDE directive, 133
%INCLUDE Directive, 134
%LIST Directive, 133
%NOLIST Directive, 133
%PAGE directive, 133

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

175

Code 3984710 C (0)
Printed in Italy

Code 3984710 C (0)
Printed in Italy

