
M20 PERSON^L COMPUTER

CBASIC-86 Language
Reference Manual

olivetti

M20 PERSON^L COMPUTER

CBASIC-86 Language
Reference Manual

olivetti

PREFACE

This manual is intended for persons using CBASIC-86 Language in the
Olivetti M20 Professional Computer. 1t is reprinted by permission of
Digital Research, developers of the CP/M-86® Operating System and the
CBASIC® 1anguage.

CBASIC® runs under the CP/M-86 0perating System, which requires that an
APB-1086 Alternative Processor Board be installed in your M20.

References to CBASIC® (as opposed to CBASIC-86) and to microprocessors
other than the lntel® 8086 which appear in this manual do not apply to
the M20 and should be disregarded.

REFEF{ENCES

Professional Computer Operating System (PCOS) - User Guide
Code 4008980 G(0)

CP/M-86 0perating System - User Guide
Code 3984700 P(0)

Distribution: General

First Edition: November 1983

Release: Version 1.20, Rev. 3.00, October 21,1983 (Digital Research)

CBASIC. CP/11. CP/M-86, and CP/NET are registered

:;;::m:::SMp;i86"agrtctat[ndRec:er.krscho.f o::::::-::;ea:::: PUBL ICATloN ISSUE0 BY :
Z80 is a regiscered tradenurk of Zilog lnc. 1ntel
is d registered Crademark of lntel Corporation.

Copyright © 1983, by Digital
Research

lng. C. 01ivetti & C„ S.p.A.

Direzione Documentazione
77, Via Jervis -10015 lvREA (1taly)

3984710 C

Foreword

CBASIC® is a comprchensivc and vcrsatilc programming language for dcvcloping
professional microcomputcr softwarc. Softwarc dcvelopcrs worldwide have sclccted
CBASIC for its capacity to quickly produce reliable, maintainablc programs in an
cnhanccd programming environmen.. CBASIC combines the powcr of a structurcd,
high-level language with the simplicity of BASIC to provide a serious development .ool
that is easy to learn and easy to use.

If you are a newcomer to data processing, read an introductory text on BASIC firs..
All you need is an undcrstanding of elcmentary programming concepts and a familiarity
with BASIC terminology to learn CBASIC.

Thc CBASJC L4#gw4gc Re/crc#cc M4nw4/ covers CBASIC and CBASIC-86" .

• CBASIC runs under thc CP/M®, MP/MT., and CP/NET® operating systems for
computers based on the lntel® 8080, 8085 or the Zilog Z80® microprocessor.

• CBASIC-86 runs undcr the CP/M-86® or MP/M-86" operating systcms for
computers bascd on thc lntel 8086 microprocessor.

Scction 6 discusses the minor differences between thc two versions of CBASIC.

At thc end of Section 1 is a demonstration program that you can compilc and run by
following a few simplc s.cps. Thc rcs. of thc manual covcrs three main topics: CBASIC
languagc defini.ion, machinc depcndcncics, and thc Compilcr and ln.erprcter.

• Scctions 2, 3, and 4 definc thc CBASIC language.
• Section 5 covers input and output.
• Section 6 discusses assembly language interfacing and othcr machine-dependent

topics.
I Scction 7 discusscs the Compilcr, run-timc lnterpreter, and Cross-rcferencc Listcr.

111

Table of Contents

1 Gctting started with cBASIC

1.1 CBASIC components
1.2 Program structure
1.3 A Demonsiration program

Namcs, Numbcrs, and Exprcssions

Identificrs
Strings
Numbcrs
Variables and Array Variables
Expressions

3 Statemcnts and Functions ..

4 Dcfining and using Functions

4.1 Function Names
4.2 Function Definitions

4.2.1 Single-Statemeni Functions
4.2.2 Multiple-Statement Functions

4.3 Function References

Input and Output

Console lnput and Output
Prin'ing
Formatted Printing
5.3.1 S.ring character Ficlds
5.3.2 Fixed-Lcngth string Fields
5.3.3 Variablc-Length string Ficlds
5.3.4 Numeric Data Ficlds
5.3.5 Escapc charactcrs

Table of Contents (continued)

5.4 File organization
5.4.1 S'equential Files
5.4.2 Relative Files

5.5 Maintaining Files

Machine l.anguage lntcrfacc

Memory Allocation
Internal Data Representation
Assembly Language lnterface
CBASIC 8-bit (8080) Demonstration Program
CBASIC 16-bit (8086) Demonstration Program

Compiling and Running CBASIC Programs

Compiler Directives
Listing Control
°/o|NCLUDE Directivc
°/oCHAIN Directive

CBASIC Compilc-time Toggles
Compiler Output
TRACE Option
Cross-Refcrence Lister

Appendixes

Vl

A Compilcr Enor Messagcs

8 Run-timc Error Mcssagcs

C CBASIC Kcy words

D Dccimal-ASCII-Hcx Table

E Glossary

TABLE 0F CONTENTS

Table of Contents (continued)

List of Tables
Hicrarchy of Opcrators
Compilc-timc Toggles
Cross-referencc Lister Togglc Functions
File Systcm and Mcmory Space Errors
Compilation Error Codes
CBASIC Warning Mcssages
CBASIC Warning Codes
CBASIC Error Codes
Convcrsion Table

Sequential Filc
Relative File

List of Figures

CP/M Mcmory Allocation
Real Number Storage
Integer Storage

Yll

143-144
144-148

150-154
157-158

Vul

1. GETTING STARTED WITH CBASIC

Section 1
Getting Started With CBASIC

1.1 CBASIC components

The CBASIC system has two main components: the Compiler and thc run-time
lnterpreter. CBASIC also provides a Cross-reference Lister.

• The CBASIC Compiler translates a source program into intcrmediatc code.
Source programs must be in .BAS files. The intcrmediate files are .INT files.

• The run-time lntcrpreter executes the .INT file that the Compiler generates.
• The Cross-reference Lister produces an alphabctized list of identifiers used in

your CBASIC program. The Cross-refcrcnce Lister is a utility program provided
as a convenience. It does not affect your programs.

1.2 Program stmcture

CBASIC has features found in high-level languages, such as structured statements,
functions, complex expressions, and data types. Some other CBASIC features are paramcter
passing, local and global variables, easy access to the operating system, and chaining
between programs.

CBASIC requires no line numbers and allows the free use of commas, spaces, and
tabs to make your programs more readable. A statement numbcr or labcl is nceded
only when the statement is referenced from another location in the program. CBASIC
allows integers, decimal fractions and exponential numbers as statement labels, as in
the following cxamples:

1 PRINT ''THESE ARE UALID LINE NUMBERS"

0 INPUT '.ENTER A NUMBER:";N

100 G0 T0 100.0

100.0 END

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 1

1.2 Program structure CBASIC Language Rcference Manual

21.543 AS = NAME$

7920E12 Y = Z.O * X

CBASIC statement labels do not have to be sequential. The Compiler treats the labels
as strings of characters, not as numeric quantities. For cxamplc, the two labels 100
and 100.0 are distinct CBASIC statement labels. The maximum length for a statement
label is 31 characters.

CBASIC statements can span more than one line. Use the backslash character, \, to
continue a CBASIC statcmcnt on the next linc. The Compiler ignores any character
that follows a backslash on the same line. Thc backslash does not work as a continuation
charac.er if used within a string constant. The following examplc demonstrates the
continuation character:

IF X = 3 THEN \

PRINT "THE UALUE§ ARE EOUAL" \

ELSE \
GO§UB 1000

In most cases, you can write multiplc statements on the same line. Use a colon, :,
to scparate each command that appears on one line. However, thc statements DIM,
IF, DATA, and END cannot appear on one line with others. The following example
demonstrates multiple statements on one line:

PRINT TAB(10)i"X"= READ *1;NAMES: GOT01000

Usc comments or remarks freely to document your programs. The REM statement
allows unlimited program notation. Also, usc spaces frcely to enhance rcadability of
your programs. Comments, long variable names, and blank spaccs do not affect the
size of your compiled program.

1.3 A Demonstration program

The following demonstration program should help you get over the initial hurdle of
compiling and running your first CBASIC program. You should already be familiar
with CP/M and a text editor. The following instructions are for CBASIC on a CP/M-
based systcm with two floppy-disk drivcs.

2 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Rcfercncc Manual 1.3 A Dcmonstration program

Make a back-up copy of your master CBASIC disk. Place your operating systcm
disk into drive A and a copy of your CBASIC disk into drive 8.

1. Write the program.

Using your text cditor, crcatc a file named TEST.BAS on your CBASIC disk
in drive 8. Enter the following program into TEST.BAS exactly as it appcars
below:

PRINT
FOR IZ = 1 T0 10

PRINT Izi "TE§TING CBASIC!"
NEXT IZ

PRINT

PRINT "FINISHED"
END

2. Compile the program.

To start thc CBASIC Compiler, enter the following command. Bc sure drivc 8
is the default drive.

B>CBAS TE§T

The Compiler assumcs a filctypc of .BAS for thc file you speci¢ in the Compiler
command. A sign-on messagc, a listing of your sourcc program, and sevcral
diagnostic mcssages display on your terminal. The messagc NO ERRORS
DETECTED indicates a successful compilation. The Compiler creates an inter-
mediate file for the TEST.BAS program. The dircctory for disk 8 should have
the new file TEST.INT.

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESLARCI1 3

1.3 A Demonstration program CBASIC Languagc Reference Manual

3. Run the program.

To start the run-time lnterprcter, enter the following command. Be sure drive
8 is thc dcfault drive.

B>CRUN TEST

Thc following output should appear on your terminal:

[RUN Uer. 2.XX Serial No.OOO-OOOO0 Copyright (c)

1982 Digital Research. Inc. All right5 reserved

1 TESTINC; CBA§IC!

2 TE§TING [BASIC!
3 TE§TING [BA§I[!
4 TE§TINC; CBASIC!

5 TE§TING t:BA§IC!

6 TE§TING CBA§I[!
7 TESTING [BA§I[!
8 TE§TING CBA5IC!

9 TE§TING CBA§I[!
10 TE§TINC; CBA§IC!

FINISHED

Minor differences appear in thc sign-on message for the different versions of
CBASIC.

End of Section 1

4 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

2. NAMES, NUMBERS, AND EXPRESSIONS

Section 2
Names, Numbers, and

Expressions

CBASIC has three principal data types: integers, real numbcrs, and strings. CBASIC
also supports dynamic, multidimensional arrays of all three data typcs. Each data type
has a distinct form for identifiers. Numeric constants can be written in sevcral forms.

CBASIC has a large set of operators for building cxpressions with variables, constants,
and functions of the three data types. By converting from one type to another, where
nccessary, CBASIC allows real numbers to be mixcd with intcgers in most expressions.

2.1 Identifiers

An identifier can be any length, as long as it fits on one line. Only the first thirty-
one characters are meaningful for distinguishing one name from another. The first
character must be a letter, the remaining charactcrs can be letters, numcrals, or periods.
The final character in an identifier determines which data type it represents.

• Identifiers ending with S are for strings.
• Idcntifiers ending with % are for integers.
• Identifiers without a S or °/o are for real numbers.

The Compiler converts lower-casc letters to upper-case letters unless toggle D is set.

Namcs for variables cannot begin with the letters FN. Names for uscr-dcfined func-
tions always begin with FN.

The following are examples of valid CBASIC identifiers.

A%.

NEW ' §uM

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 5

2.1 Identifiers

f i l e l2 . names

Pay ro l l . I dent i f i cat i on . Numbe rz

CBASIC Language Reference Manual

2.2 Strings

String constants are delimited by quotes. A string constan-t can haive zero or more

printing characters, as long as thc string fits on a single line. The \ character has no
special meaning inside a string constant. Two adjacent quotes represent onc printed
quote in the string.

For example, thc string constant

"'"Hello."' 5aid Tom."

is stored internally as the string:

"Helloi" said Tom.

Although string constants cannot contain control charactcrs and must fit on one
line, string variables are more flexible. Internally, a string can have from 0 to 255
characters. Each character takcs up onc bytc. The first byte in the string data area
contains the length of the string. To build long strings, or to embed control characters
in strings, use string expressions, as described later in this section, and string functions,
as dcscribed in Section 3.

The following are examples of valid CBASIC string constants:

"July 4t 1776"

"Enter your name plea5e:"

"'"\"' has no special meanin9 inside a 5trin9."

" " - the null string

6 ALL INFORMATION PRESENTED HERE IS PROPR]ETARY TO DIGITAL RESEARCH

CBASIC Language Rcfcrencc Manual 2.3 Numbcrs

2.3 Numbers

Two types of numcric quantities arc supported by CBASIC: real and integer. A real
constant is writtcn in cithcr fixcd format or exponcntial notation. In bo.h cascs, it
contains from one to fourtccn digits, a sign, and a decimal point. In exponential
notation, the exponent is of the form Esdd, whcre s, if prcsent, is a valid sign, + , -,
or blank, and where dd is one or two valid dirits. The sign is thc cxponent sign and
should not be confuscd with the optional sign of the mantissa. Thc numbers range
from 1.OE-64 to 9.9999999999999E62. Although only fourteen significant digits are
maintaincd internally by CBASIC, more digits can be includcd in a real constant. Rcal
constants are rounded to fourteen significant ditits.

A constant is .rcatcd as an integer if thc cons.ant does no. contain an cmbcdded
decimal point, is not in exponential notation, and ranges from -32768 to +32767.

Integer constants can also bc cxprcsscd as hexadecimal or binary constants. The
letter H terminates a hexadccimal constant. Thc letter 8 tcrminates a binary constant.
The first digit of a hexadecimal constant must be numeric. For examplc, 255 in hex-
adecimal is OFFH, not FFH. FFH is a valid idcntificr.

Hexadecimal and binary constants do not contain a decimal poini. The value rctaincd
is the sixteen least-significant bits of {he number specificd.

In this manual, the terms real number and floating-point numbcr arc intcrchangcablc.
The tcrm numeric applies to either a real or intcgcr quantity.

Examples of valid numbers arc:

1.1.0. -99.123458.789

1.993. .01. 4E12i l,77E-9

1.5E+3 isequivalentto 1500.0

|.5E-3 iscquivalentto .00i5

laboHi 101111108. OFFFFH

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 7

2.4 Variables and Anay variables CBASIC Language Reference Manual

2.4 Variables and Array variables

A variable in CBASIC rcpresents an integer, real number, or a string, depending on
the type of the identifier.

Each variable has a value always associated with it during program execution. A
string variable does not have a fixed length associated with it. Rather, as different
strings are assigned to the variable, the storagc is dynamically allocated. The maximum
length allowed in a string variable is 255 characters. Numeric variables are initialized
to 0. String variables are initialized to the null string.

A variable takes the general form:

identifier | (subscript list)]

The following are examples of variables:

)(S

PAYMENT

d a y . o f . d e p o 5 i t '#.

Array variables look like regular variables with an added subscript list. CBASIC
arrays can hold strings, integers, or reals. As with regular v-ariables, the type of identifier
specifies the type of array. The subscripts speci4 which element in the array to reference.

A subscript takes the general form:

expression { , expression }

The following examples show array variablcs:.

y S (i '%, ' J '%. , k %, , 1 '%.)

CD§T (3 '5)

P t] § .%, (X A X I § '% . Y A X I § %,)

I N C 0 M E (A M T (C L I E N T '%,) i C U R R E N T . M tJ N T H '%,)

8 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Refercnce Manual 2.4 Variablcs and Amy variablcs

The expressions in a subscript list must bc numeric. Access to array clements is more
efficient if intcger e±pressions are used in subscript lists. If the expression is real, the

:ha:Uvea':,:3renfse:nt°a:[:yn::rr::tbi:t:::r]bncdf,°crae,:sS'#fchhc:[ae[:Ce.nToefstuhbcs::'rpaty]£::f[enr:'nccact.CS

Whcn subscripts are calculated, a chcck ensures that the elemcnt sclectcd rcsides in
the refcrenced array. A run-time error occurs if the element does not reside in the
referenced array. The run-timc check cnsures that the location calculatcd is included
in the physical storage area of the array.

Before an array variable is rcfcrcnccd in a program, it must bc dimensioned using
the DIM statement. Thc DIM statcment specifies the upper-bound of each subscript
and allocates storage for the array. Section 3 describes the DIM statement.

An array must bc dimensioned explicitly; no default options are provided. Arrays
are stored in row-major ordcr.

The subscript list is used to speci4 the number of dimensions and the extent of cach
dimension of the array bcing dcclared. Thc subscript list cannot contain a refercnce to
the array being dimensioned. All subscripts have an implied lower-bound of zero.

The same idcntifier can name both a variablc and an array variable in the samc
program, although that is not a recommendcd practice.

2.5 Expressions

The following arc examples of exprcssions:

cost + ouerhead t[percent

a*b/c (1.2+xyz)

1a5t.names + ". " + first.nameS

index%, + 1

Expressions consist of algebraic combinations of function refercnces, variablcs, con-
stants and operators. Exprcssions cvaluate to an intcger, real, or string value. Table
2-1 givcs the hierarchy of operators.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9

2.5 Expressions CBASIC Language Refercncc Manual

Table 2-1. Hierarchy of operators

Hierarchy Operator Definition

1 () balanced parentheses
2 powcr operator

Arithmetic Operators

3 *, / multiply, divide
4 +, - plus, minus

Relational Operators

LT (lcss than)
LE (less than/equal to)
GT (greater than)
GE (greater than/equal to)
EQ (equal to)
NE (not equal)

Logical Operators

NOT
AND
OR

XOR

Arithmetic and relational operations work with intcgers and rcal numbers. An integer
value convcrts to a rcal numbcr if the operation combines a real and integer value.
The operation then uses the two real values, resulting in a real value. This is mixed-
mode arithmetic.

Mixed-mode opcrations require more time to execute because thc Compiler generates
morc code. A mixed-mode expression always evaluates to a real value.

The power operator calculates the logarithm of the number bcing raised to the power
if real values are used. A warning results when the numbcr to the left of the operator
is ncgative because the logarithm of a negative number is undefined. The absolute
value of the negative quantity calculatcs the result. Thc exponent is positive or negative.

10 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 2.5 Expressions

lf both values used with the powcr operator are either integer constants or integer
variables, the rcsult is calculated by successive multiplication. This allows a negative
integer number to be raiscd to an integer power. With integers, if the exponent is
negative, the result is zero. In all cases, 0 ^ 0 is 1 and 0 ^ X, where X is not equal to
0' is 0.

If the exponent is an integer but thc basc is rcal, thc integer is convertcd to a real
valuc before calculating thc result. Likcwisc, if thc exponent is real but the base is an
integer quantity, the result is calculated using real values.

String variables can only bc opcrated on by the rclational operators and thc concatena-
tion opcrator +. Mixed string and numeric operations are not permittcd. The mncmonic
relational operators (LT, LE, etc.) arc inierchangeable with the corresponding algebraic
opcrators (<, <=, ctc.).

Relational operators result in integcr values. A 0 is false and a -1 is true. Logical
operators AND, NOT, OR, and XOR operate on integer values and rcsult in an integer
number. If a rcal valuc is used with logical operators, it is first convertcd to an integer.

If a numeric quantity exceeds the range from 32,767 to -32,768, it cannot bc rep-
resented by a 16-bit two's complement binary number. Logical operations on such a
number produce unpredictable results.

These are results of logical operations:

12 AND 3 =0 11008 AND 01018 =4

NOT -1 =0 NOT 3H =-4

12 0R 3 =|5 0[H t]R 5H =13

12.4 XOR 3.2 =|5 12.4 XOR 3,7 =8

Efficiency is increased by using integer expressions for relational tests and logical
operations. Programs written in Version 1 of CBASIC should be converted to usc
integcr variables wherever possible.

Note: if a series of digits contains no dccimal point or ends in a decimal point, CBASIC
attempts to store it as an integer. If the resulting number is in the range of CBASIC

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 11

2.5 Expressions CBASIC Language Reference Manual

integers, it is treated as an integer. If the constant is thcn required in an expression as
a rcal number, the constant converts to a real number at run-time. For example,

X - X + 1.

causcs thc integer constant 1. to be converted to a real value before adding it to X.
To eliminate this extra conversion, embed the decimal in the number as shown below:

X - X + 1.0

Actually, there is very little difference in execution speed. A similar situation exists
in the following statement:

Y% - X% + 1.0

In this case, the X% is convcrted to a real number before adding it to the real constant.
Thc result is then converted back to an integer prior to assignment to Y°/o.

Generally you should avoid mixed-mode cxprcssions whenever possible, and not use
real constants with intcger variables. Most whole numbers used in a program are stored
as integers. This provides the most effective execution.

If an overflow occurs during an operation bctween real values, a warning is printed.
Execution continues, with the rcsult of the opcration sct to the largest real number.

In the casc of integcrs, no checking for overflow is performed because this rcduces the
cfficiency of intcgcr operations. The calculated valuc returns a ncgative numbcr if thc
rcsults of an integer operation fall outside thc rangc of integer values, greater than 32767
and less than -32767.

End of Section 2

|2 ALL INFORMATI0N PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH

3. STATEMENTS AND FUNCTIONS

Section 3
Statements and Functions

This section uses the following typographical conven.ions to highlight the various
elements that make up each statement and function.

• CAPS indicate CBASIC keywords.
• Lower-case letters idcntify variables.
• Italics indicate syntactic items, such as expressions.
• Items encloscd in square brackets [] are optional.
• Items encloscd in braces { } arc optional and can be repeated.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 13

ABS Function CBASIC Language Reference Manual

ABS Function

The ABS(x) function returns thc absolute valuc of the exprcssion x.

Syntax:

y -- ABS (numeric expression)

Explanation:

The ABS function returns a floating-point number. If the expression is an integer,
CBASIC converts it to floating point. If the expression is positive or zero, the function
returns the value unchanged. Othcrwise, the function returns the negative of the value.

Examples:

DISTANCE = AB§(§TART -FINI§H)

IF ABS(DELTA.X) <= LIM THEN §TOP

14 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Rcfercnce Manual ASC Function

ASC Function

The ASC(as) function returns the ASCIl decimal valuc of thc first character in the
string argument.

Syntax:

x% -- A;SC (string expression)

Explanation:

Thc function argument must bc a string that is at least one character long, otherwisc
the function produces a mn-time crror.

Scc also the CHRS function, which is the inverse of ASC.

Examples:

IF A§C(DIGITS)>47 AND A§[(DIGITS)<5B THEN

PRINT "UALID DIGIT"

OUT TAPE.PORT%. A§C("*")

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 15

ATN Function CBASIC Language Reference Manual

ATN Function

The ATN(x) function returns the arc tangent of x.

Syntax:

y -- Ä:TN (numeric expression)

Explanation:

The result of ATN(x) is the anglc, expressed in radians, whose tangent is x. The
result is a floating-point number.

Examples:

RADIAN§ = ATN(X)

IF ATN(N) < PI/2.il THEN\

PRINT "ANGLE LESS THAN 90 DEGREE§"

16 ALL INFORMATION PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH

CBASIC Languagc Rcfcrcncc Manual

CALL Statement

The CALL statement links to a machine languagc subroutine.

Syntax:

CÄLL numeric expression

Explanation:

CALL Statement

The statement calls the machine language subroutine address spccified by the expres-
sion. If the value is a real number, CBASIC rounds it to the nearest integer.

Section 6 discusses machine language interfacing and addressing on different micro-

processors.

Examples:

See Section 6.5 for examples of the CALL statement.

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 17

CmlN Statcment CBASIC Languagc Rcferencc Manual

CHAIN Statcmcnt

The CHAIN statemem transfers control to another program.

Syntax:

CHAL" filespec

Explanation:

The CHAIN statement transfers control to the program specified in the string expres-
sion. The expression must evaluate to a file specification. Thc drive name is optional;
thc default is the currently logged-in drive. Thc file must be of type INT. Even if a
different file typc is specified, the statemcnt only recognizes type INT files.

Examples:

CHAIN "B:PAYRtJLL"

CHAIN §EGMENTS

|8 ALL INFORMATION PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH

CBASIC Language Rcfcrencc Manual CHRS Function

CHRS Function

The CHRS(x) function returns thc characicr whosc ASCIl decimal valuc is x.

Syntax:

as = CHRS (Mwmcri.c expressi.o#)

Explanation:

Thc rcsul. of CHRS is a singlc-character string, whosc ASCIl value is cqual to the
valuc of thc input expression. If the expression is in floating point, CBASIC converts it to
an in.eger.

Appendix D lists .he character sct and thcir ASCIl values. Usc CHRS to scnd control
characters to an output device, as shown in the cxamples below.

Examplcs:

PRINT CHRS(7) REM BEEP THE TERMINAL

PRINT CHRS(LINEFEED%.)

IF [HRS(INP(IN.PORT%)) = "A" THEN GO§UB 100

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 19

CLOSE Statement

CLOSE Statement

The CLOSE statcmcnt deactivates open files.

Syntax:

CLOSE file number {,file nurnber}

Explanation:

CBASIC Language Refcrence Manual

The CLOSE statcmcnt deactivates an open file. This means that the file is no longer
available for input or output. The specified file must have been activated by a CREATE,
FILE, or OPEN statement before using CLOSE.

Each expression refers to the identification number of an active filc. The expression
must be an integer ranging from 1 to 20. CBASIC converts real numbers to integers.

The CLOSE statcment closcs the file, releases the file number, and reallocatcs all
buffcr space used by the file. IF END statements assigned to closed files have no further
effect.

A STOP s¢atement automatically closes all active files. A CTRL-Z entered in response
to an INPUT statement closes all active filcs. A CTRL-C does not close active files.
Run-time crrors do not close active files.

Examples:

[LDSE FILE.N0%,

CLDSE NEW.MASTER.FILE%,i OLD.MASTER.FILE.%,. UPDATE.812'%,

F°R X.%' = :L::EÜ!.;,DF.WDRK.FILES`#,

NEXT X.J.

20 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Referencc Manual COMMANDS Function

COMMANDS Function

The COMMANDS function returns a string containing the parametcrs from the
command line that startcd the program.

Syntax:

as = COMMANDS

Explanation:

COMMANDS returns the command linc from thc operating system, minus the
program namc. The word TRACE and any associated line numbers are not included
in the string if the TRACE option is in the command line.

COMMANDS removes leading blanks and converts alphabctic characters to upper-
case. The maximum length of thc returned string is 50 charactcrs.

Use the COMMANDS function anywhere in the program, any number of times,
and with any program loaded by a CHAIN statement.

Section 7 discusses command lines in more dctail.

Examples:

IF [OMMANDS = '''' THEN §TOP

lf any of thc following commands starts a CBASIC program,

CRUN PAYROLL NOCHECHS TOTALS

CRUNSG FiEiyi`cill nocheol(s totEils

CRUNBG pEiyroll trace nochecks totEils

thc resulting string from COMMANDS is:

NOCHE[K§ TOTALS

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 2|

COMMON Statemcnt CBASIC Language Refercnce Manual

COMMON Statement

The COMMON statement specifies variables that are common to thc main program
and all programs executed through CHAIN statements.

Syntax:

COMMON L;4ri.4b/c { , y4ri.4b/c }

Explanation:

A COMMON statement is a noncxecutable statcment that specifies thc listed var-
iables common to the main program, and all programs executed through a CHAIN
statcmcnt. If present, COMMON statements must be the first statements in a program.
However, blank lines and REM statements can precedc COMMON statements.

If the main program contains COMMON statements, each chained program must
have COMMON statements that match those in the main program. Matching means
that therc are the same number of variables in cach COMMON statement, and that
the type of cach variable in the COMMON statement of .hc main program matches
the typc of each variable in the COMMON statement of the chained program. Also,
dimensioned variables must have the same numbcr of subscripts in each program.

Specify array variables by placing the number of subscripts in parentheses aftcr the
array name.

Examples:

[ÜMMDN Xi Y. A(3) i BS(2)

This s[atcment specifies that X and Y are nonsubscripted real variables, common to all
chaincd programs. A and BS are arrays accessiblc by all programs. A has three subscripts,
while BS has two. The COMMON statemcnt docs not indicate thc size of any subscript.

Notc: the specification of an array in a COMMON statcment is not generally the same
as the spccification in a DIM statemcnt (see Section 2.4).

Ct]MMt]N A(3)

can be used with

22 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Rcfcrence Manual COMMON Statemcnt

DIM A(20.30.20)

Howevcr, an crror occurs if you use COMMON A(3) wiih:

DIM A(3)

Notc: the array must be created using the DIM statcmcnt bcfore accessing an clcmcn.
in an array in COMMON.

The first program that requircs access to the array mus. ensure that a DIM statemcnt,
which specifies the desired rangc for each subscript, is executed. Subsequcnt programs
can access this array with thc data remaining unchanged through the chaining proccss.
If a subscquent program executes a DIM statement for this array, the data in the array
is los.; in other words, the array is rcinitialized. However, with string arrays, elemcnts
in the array arc not releascd from memory.

You should set elements of string arrays to null strings bcforc cxccuting a sccond
DIM statement for thc array.

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 23

CONCHAR°/o Func.ion CBASIC Language Rcferencc Manual

CONCHAR°/o Function

CONCHAR% reads one charac{er from the console device.

Syntax:

i% = CONCHAR°/o

Explanation:

The value returned is an integcr. The low-order eight bits of the returned value are
the binary reprcsentation of the ASCIl character input. The high-order eight bits are
Zero.

Examples:

i'%, = [ONCHAR'%,

CHAR'J. = C)

IF Ct]NSTAT'%, THEN\

[HAR.%, = CONCHAR'J,

IF CHAR.%. = STOP[HAR'%. THEN\

RETURN

24 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual CONSOLE S.atement

CONSOLE Statement

The CONSOLE statement restores printed output to the console.

Syntax:

CONSOLE

Explanation:

The console is the physical unit currently assigncd to CON: by CP/M.

If the list device print position is not 1, a carriage return and linc-feed are output
{o the list device.

The width of the console device is changed with the POKE statement. The console
width is one byte at location 272 base 10, or 110H. The new console width becomes
effective at the next execution of a CONSOLE statement. The console line width is
initially set to 80, 50H.

A width of zero results in an infinite width. With a zero width in effect, carriage
returns and line-fecds are never automatically output to the console as a result of
exceeding the line width.

Examples:

490 CONSOLE

IF END.OF.PAGE.%. THEN\

CÜNSOLE : \

PRINT USING "#*i*#* WORDS THIS PAGE";WDRD§.%,:\

INF'UT "IN5ERT NEW PAGEi THEN [R";LINE NIJLL.STRINGS

LPRINTER

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 25

CONSTAT°/o Function CBASIC Languagc Refercnce Manual

CONSTAT°/o Function

CONSTAT% returns thc console status as a boolean integcr value.

Syntax:

i% = CONSTAT%

Explanation:

If the console device is ready, a logical true, -1, is returned, otherwise a logical false,
0, is returned.

Examples:

IF [ON§TAT% THEN\
GO§UB 100 REM PROCES§ OPERATOR INTERRIJPT

WHILE Nt]T [t]NSTAT%
WEND

26 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Reference Manual

COS Function

COS(x) retums thc cosinc of x.

Syntax:

y - COS (x)

Explanation:

COS Function

The argument x is expressed in radians. The value returned by COS is real. If x is
an integer, CBASIC converts it to a rcal number.

Examples:

IF [0§(ANGLE) = 0.0 THEN UERTICALZ = TRUEZ

PRINT CON§TANT * CO§(Rt]TATI0N)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 27

CREATE Statemcnt CBASIC Language Reference Manual

CREATE Statement

The CREATE statement is identical to an OPEN statement except that a new file is
created on the selected drive.

Syntax:

CREATE /i./cspec {RECL rec /e#gfb}\
ALS file number {PiuFF number of sectors\
RECS sj.zc o/ sccfor}

Explanation:

When a filc with the same name is present, the existing file is erascd before the new
file is creatcd.

The CREATE statement has no effcct on any IF END statement currently in effect
for the ider`tification number assigned to the new file.

Examples:

12t:)0 [REATE "NEW.FIL" A§ 19 BUFF 4 RE[S 128

[REATE At:C.MA§TERS RE[L M.REC.LEN'%. AS ACC.FILE.NÜ.J,

CREATE ''8:" + NAMES + "." + LEFTS(§TRS([lJRRENT.Wt]RK.%.) i3)

AS [lJRRENT.WORK'%.

28 ALL INFORMATION PRESENTED HERE IS PROPRIETARY T0 I)IGITAl. RESEARCH

CBASIC Languagc Referencc Manual DATA Statement

DATA Statement

DATA statements are nonexecutable statcmcnts that define string, real, and integer
constants assigned to variables using the READ statement. Any numbcr of DATA
statcments can occur anywherc in a program.

Syntax:

DATA co#sf4#f {, co#s£c}#f}

Explanation:

The constants are stored consecutively in a data area as they appear in the program
and are not syntax checked by the Compiler. Strings can be enclosed in quotation
marks or optionally delimited by commas.

A DATA statement must be thc only statement on a line; it cannot be continued
with a continuation character. However, all DATA statements in a program are treated
collectively as a concatcnated list of constants separated by commas.

If a real constant is assigned to an integer variable with a READ statement, the
constant is rounded off to the integer portion of the real numbcr. If the value of a
number assigned to an integer is outside the range of CBASIC integers, incorrect values
arc assigned. If a real numbcr exceeds the range of real numbers, an overflow warning
occurs and the largest CBASIC number is used in its place.

Examples:

400 DATA 332.33. 43.0089E5. "ALGDRITHM"

DATA 0NE. TWO. THREE. 4i 5. 8

ALL l,\'roRMATION' PRESENTLD HER£ IS PRopRiLrAR\ TO DiGiTAL Rtsi.ARm 29

DEF Statement CBASIC Language Reference Manual

DEF Statement

Use the DEF statement to define both single- and multiple-statement functions.

Syn'ax,

Single: DEF FN /w#cf!.o#.#4mc[(dummy arg list)] = expression

Multiple: DEF FN /##cfi.o#.#4mc[(dummy arg list)]
CBASIC statements

RETURN
FEND

Explanation:

A function definition must occur in a program before making a function refcrence. To
dcf ine a function, the kcyword DEF must preccde thc function name. CBASIC supports
two types of function definitions: single-statement and multiple-statement. Refer to
Scction 4 for more information.

Examples:

Singlc: DEF FN.CAL[= RND *25.0

Multiple: DEF FN.WRITE DUTPUT (OUTPUT.ND%)
PRINT* OUTPUT.N0%; [U§TNDZ.AMOUNT

RETURN

FEND

30 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Rcfercnce Manual DELETE Statement

DELETE Statement

Thc DELETE statement removcs the refcrenccd files from thcir rcspcctivc dircctorics.

Syntax:

DELE:TE fiLe number {,file number}

Explanation:

Each expression must be in the range of 1 to 20. If thc number is not currcntly
assigned to an active file, a run-time error occurs. The exprcssion must be numeric.
Real numbers are convcrtcd to integcrs. A string valuc results in an crror.

If an IF END statement is currcntly associatcd with the identification numbcr for
thc file bcing deleted, thc IF END is no longer in effcct.

Examples:

DELETE I

DELETE FILE.NOZ. OUTPUT.FILE.NOZ

IZ=0
WHILE IZ < NO.OF.WORKFILE§Z

IZ = 1% + 1

DELETE IZ
WEND

ALL INFORMATI0N PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH 31

DIM Sta.emcnt CBASIC Language Rcfcrence Manual

DIM Statement

The DIM statement dynamically allocates space for an array.

Syntax:

DIM identifier (subscript list)

{,identifier (subscript list)h

Explanation:

A DIM statement is an cxecutable statement; each execution allocates a new array.
Before CBASIC references an array variable in a program, the variable must bc dimen-
sioned using the DIM statement. The DIM statement specifies the upper-bound of each
subscript and allocates storage for the array.

The DIM statement dynamically allocates space for numeric or string arrays. If the
array contains numeric data, the previous array is deleted bcfore allocating space for
a new array. If the array is string, each element must be set to a null string before
reexecuting the DIM statement to regain the maximum amount of storage.

Elcments of string arrays are any length up to 255 bytes, and change in length as
different values are assumed. Initially, numeric arrays are sct to zero and all elements
of string arrays are null strings.

Examples:.

DIM A(10)

DIM A[COUNT§S(1t)Ci) .ADDRE§SS(100) .NAMES(1C)C))

DIM B'%.(2.5ilci) . SALE5.PER§ON'Z,(§TAFF.§IZE%,)

D I M X (A .%. (I %,) i M %, i N `J.)

32 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual

END Statement

The END statement terminates a source program.

Syntax:

END

Explanation:

END Statemcnt

The END statement is a directive ¢o the Compiler indicating an end to the source

program. The Compiler ignorcs any statements that follow an END statcmcnt.

An END statement cannot appear on the same line with other statements.

Examples:

5C)O END

END

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 33

EXP Function CBASIC Language Reference Manual

EXP Function

EXP returns the value of the irrational constant e, raised to the power given by x.

Syntax:

y - EXP(x)

Explanation:

The value returned by EXP is real. If x is an integer, CBASIC converts it to a real
number.

Examples:

Y = A * EXP(BX%.)

E=EXP(l) REM CON§TANT E = 2.7182

34 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Rcfcrcncc Manual FEND Statcmcnt

FEND Statement

FEND is the multiple-line, user-defined function terminator statement.

Syntax:

FEND

Explanation:

FEND must appcar only once, at the end of the function definition.

The run-time lnterpreter detccts an crror condition and aborts the program if thc
interpreter executes a FEND statement. Therefore, always placc a RETURN statement
in a function definition.

Examplcs:

350 FEND

FEND

ALL INFORMATION PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH 3 5

FILE Statement CBASIC Languagc Reference Manual

FILE Statement

A I`ILE statement opens an cxisting file for reading or updating. If thc file does not
exist, the FILE statement creates it.

Syntax:

FILE /f./csPcc [(rcc /cMgfb)]

{, filesi}ec [(rec length)i}

F.xplanation:

The filespec contains the name of the file to be accessed. As each file is activated,
the file is assigncd thc next unused file number starting with 1. If all 20 numbers are
assigned, an error occurs.

The record length must be a numeric expression. Rcal numbcrs are converted to
integers. A string value causes an error.

The variable must not be subscripted, and it must be string. It cannot be literal or
an expression.

Examples:

FILE NAMES

FILE FILE.NAMES(REt:,LEN%.)

36 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Reference Manual

FLOAT Function

FLOAT(i%) converts the argument i°/o to a rcal value.

Syntax:

y = FLOAT(io/o)

Explanation:

FLOAT Function

The argument should be numeric. If i% is real, CBASIC first converts it to an integer,
and then back to a real number.

Examples:

AMOUNT = FLOAT([Ü5T%.)

PO§ITI0N = §IN(FLOAT(ANG%)) * OFF§ET

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 37

FOR Statement CBASIC Languagc Rcference Manual

FOR Statement

The FOR statcment controls a FOR/NEXT loop.

Syntax,

FOR index -- numeric exp. TO
##"cri.c cxP [STEP ##mcri.c cxP.]

Explanation:

Exccution of all statements between the FOR statement and its corresponding NEXT
statement repeats until the indexing variable, incremented by the STEP exprcssion aftcr
each iteration, reaches the exit criteria.

If the STEP expression is positive, the loop exit criteria is met when the index excceds
the value of the TO expression. If the STEP expression is negative, the index must be
less than the value of the TO exprcssion for the exit criteria to be satisfied.

The index cannot be an array variable initially set to the value of thc first expression.
Both the TO and STEP expressions are cvaluated on each loop; all variables associated
with these exprcssions can change in the loop.

Also, the index can be changed during execution of the loop. The typc of the index
can be real or integer, but all expressions must be the same. If any of the cxpressions
are string, an error occurs. Particular care should be taken to ensure proper matching
of the expression types. For example,

Ft]R IZ = 1 T0 DONE

generates unnecessary code because DONE is real, but 1°/o and 1 are integers. Here is
a more subtle example,

FC]R I = 1. TC] DONE

wherc 1 and DONE are real, but 1. is an integer.

Thc.re is one situation when a FOR statcment, which appears valid, generates Com-

piler error FE. This occurs if thc type of the expression following the TO is not the
same as the type of thc loop index variable.

38 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Refercncc Manual FOR Sta.cmcnt

For examplc,

FOR I = 1 T0 13 §TEP 3

rcsults in an FE crror bccause the index variable 1 is real, bu. thc value following thc
TO is an integer. Changing the index to 1% eliminates the error.

If you omit the STEP clause. a default value of onc is assumcd. Thc typc of the SIEP
expression in this case is the same as the type of the index.

The statements within a FOR loop are always cxecutcd at lcast oncc.

If you want a step of onc, omit thc STEP clausc. Thc execution is much fastcr bccausc
fewcr run-time checks are made. Also, less intermcdiatc codc is produccd. Exccution
speed also substantially improves if all thc expressions are integer.

Examples:

FDR INDEX% = 1 T0 10

SUM = SUM + UECTOR(INDEXZ)

NEXT INDEXZ

FOR PO§ITI0N=MARGIN+TAB§ T0 PAPER.WIDTH §TEP TAB§

PRINT TAB(PO§ITI0N) i§ET.TABsi
NEXT PÜ§ITI0N

Notc: In the CP/M-86 implemcntation of CBASIC, the upper limit for an intcge[
index variablc in a FOR loop is 32766. A largcr value causes an infini[e loop.

ALL INFORMATI0N PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH 39

FRE Function CBASIC Languagc Reference Manual

FRE Function

FRE returns the number of bytes of unused space in the free storage area.

Syntax:

y - FRE

Explanation:

The value returned by FRE is a floating-point number.

Examples:

X=FRE

IF FRE < 500.0 THEN GO§UB 10 REM PRINT WARNING

40 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Rcfcrencc Manual GOSUB Statemcnt

GOSUB Statement

The GOSUB statement transfers statemcnt exccution to a statement specified by a
reference to a label.

Syntax:

GOSUB sfmf ##mbcr

GO SUB sfmf ##mber

Explanation:

In a GOSUB or GO SUB statemcnt, CBASIC saves thc location of the next sequential
instruction on thc rcturn stack. Control thcn transfers to the statement labelcd with the
statcment number following .he GOSUB. A subroutine call can bc nestcd 20 deep. See
thc RETURN statement for more information.

Examples:

GC]SUB 700

PRINT '.BEFt]RE TABLE"

GDSUB 200 REM PRINT THE TABLE

PRINT ''AFTER TABLE"

STOP

200 REM PRINT THE TABLE

FOR INDEX.%, = 1 T0 TABLE.SIZE%.

PRINT TABLE(INDEX.J.)

NEXT INDEX./,

RETURN

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY T0 DIGITAL RESEARCH 41

GOTO Statcmcnt CBASIC Languagc Reference Manual

GOT0 Statement

Thc GOTO statemcnt transfcrs execution to a s.atemcnt idcntified by a statement
number.

Syntax:

GC)TO stmt number

GO TO stmt number

Explanation:

Following a GOTO or GO TO statemcnt, execution continucs at thc statement
labelcd with the statemcnt number. If the statement number branched to is not an
executable statement, execution continues with the next executable statement after the
statement number.

If control is transferred to a nonexisting statement number, an error occurs.

Examples:

80 G0 TO 35

GOTÜ 100.5

42 ALI. I\'FORMATIO\. PRESE\.TED HER£ IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC hnguagc Refcrencc Manual

IF Statement

Syntax:

lF uariable THEN statement list
[ELSE sf4femc#f /i.sf]

lF uariable THEN stmt number

Explanation:

IF Statemcnt

An IF statement cxpression is usually a logical cxpression cvaluating to eithcr true
(-1) or false (0). However, CBASIC accepts 4My numeric expression of typc integer,
trcating a value other than zcro as truc. This reduces both exccution timc 4nd inter-
mediate file sizc generated by the Compilcr. If the expression is real, thc value is rounded
and converted to an integer. A string expression rcsults in an error.

A statemcnt list is composed of onc or more statcments where a colon separates
each pair of statements. The colon is not required aftcr thc THEN, nor is it required
before or after the ELSE; it only separates statements.

An IF statement must be the first statcment on a linc; it cannot follow a colon.
Thereforc, IF statements cannot bc nestcd.

Examples:

IF AN§WERS="YES" THEN GO§UB 500

IF DIMENSI0NS.WANTED% THEN PRINT LENGTH. HEIGHT

IF UALID% THEN \

PRINT M§GS(CURRENT.M§G%) :\

GO§UB 200 :\ UPDATE RECC]RD

GOSUB 210 :\ WRITE RECORD

NO.OF.RE[tJRD§%.=ND.OF.RECORD§%+1 :\

RETURN

IF X > 3 THEN X = 0 : Y = 0 : Z = 0

IF YE§% = TRUE% THEN PRINT M§GS(l) \

EL§E PRINT M§GS(2)

ALL INFOR.\l^TION PRF.SENTED HERE IS PROPFIETARY TO DIGITAL RESEARCH 43

IF Statement CBASIC Language Reference Manual

IF TIME > LIMIT THEN \

PRINT TIME.OUT.M§GS =\

BAD.RESPÜN§E§%. = BAD.RE§PONSE§Z+1 :\

OUESTI0N%. = OUE5TI0N% + 1 \

ELSE \
PRINT THANKS.M§GS =\

Gt]SUB 1000 :\ ANALY§E RE§PON§E
C]N RE§PON§E%. GO§UB \

2000i 2010. 2020. 2030. 2040 :\
RETURN

ln the preccding cxamples, the colon separates statements in a statement list, and
the backslash continues a statement onto another line.

Bccause .hc Compiler ignores anything on or following the same line with the back-
slash, comments can be inserted without using the keyword REM.

If the value of the expression is not zero, the statements in the first statement list
are exccuted. Otherwisc, the statement list following ELSE is executed, if present, or
the next sequential statement following the IF statement is executed.

In the second examplc of the IF statemen., when the cxprcssion is not equal to zero,
an unconditional branch to the statement number occurs. This form of the IF statement
does not have an ELSE clause. This variation is included in CBASIC for compatibility
with previous versions of Basic.

44 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Rcfcrcnce Manual IF END Statcment

IF END Statement

The IF END statcment allows you to process an end-of-filc condition on an active
file.

Syn'ax:

IF END # /j./e ##mbcr THEN sfmf ##mber

Explanation:

When an cnd-of-file is detectcd, one of two actions takes place. If an IF END
statement is executed for the file, control transfers to the statement labelcd with the
statement number following THEN. If an IF END statement was not executed, a run-
time error occurs.

The IF END statement must bc the only statement on a line; it cannot follow a colon
or be part of a statement list.

Any numbcr of IF END statements can appear in a program for a given file. The
most recently executed IF END is the one in effect. However, if a DELETE or CLOSE
statcment is executed, any IF END statement associatcd with the idcntification number
is no longer cffective.

The file number must be in the range of 1 to 20. Real numbers are converted to
integers.

When a condition causes the transfcr of control to the statement associatcd with an
lF END statcment, the stack is rcstored to the condition that cxisted before the statement
causing activation of the IF END statement.

Thus if the statement that resulted in transfer was in a subroutine, a return must be
exccutcd aftcr processing the end-of-file condition.

An lF END statement can be executed before assigning the file number to a file. A
subsequent OPEN on a file that does not exist causes execu.ion to continue as if an
end-of-filc wcre encountered.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO I)lGITAL RESEARCH 45

IF END Statement CBASIC Languagc Referencc Manual

In the following example, if the file MASTER.DAT does not exist on drive 8, control
transfers to statcmen. 500.5. After a successful OPEN, an end-of-file during a READ
continucs cxecution with statement 500:

IF END *MA§TER.FILE.Nt]% THEN 500.5
ÜPEN "B:MA§TER.DAT" A§ MA§TER.FILE.N0% BUFF 8 REC§

128
IF END * MA§TER.FILE.NOZ THEN 500

An lF END statement can also be used when writing to a file. In this case, con.rol
transfcrs to the statement associated with thc IF END when an attempt is made to
write to thc file and there is no disk space available. Part of the record created is
written to the file. When using fixed files, thc last rccord is rewritten after more space
is freed.

Examples:

IF END 3 7 THEN 500

IF END * FILE.NÜZ THEN 100.1

46 ALL INFORMATION PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH

CBASIC Languagc Rcfcrence Manual INITIALIZE Statcment

INrl-IALIZE Statcment

Thc INITIALIZE statcmcnt allows thc chanting of diskettes during program cxc-
cution without rcstarting the opcrating systcm.

Syntax:

INITIALIZE

Explanation:

INITIALIZE must cxccute after making the diskette change. Be sure ncvcr to changc
diskettes whilc any files are open.

Examples:

350 INITIALIZE

INITIALIZE

ALI I\I OR.\t.\TION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 47

INP Function CBASIC Languagc Reference Manual

INP Func.ion

INP returns the value input from the CPU 1/0 port specified. This function is useful
for accessing peripheral devices dircctly from the CBASIC program.

Syntax:

y°/o = xlNP /#wmcrj.c cxP/

Explanation:

The argument must bc numeric. For the results to be mcaningful, the argument must
range from 0 to 255 for the 8-bit version, and from 0 to 65535 for the 16-bit version.
lf it is a string, an error occurs. A real value is rounded to the nearest integer.

Examples:

PRINT INP(ADDR.%.)

IF INP(255) :> 0 THEN PRINT [HRS(7)

ON INP(INPIJT.DE`JICE.PDRT%.) GO§UB \

100i 200. 300t 400. 400t 400t 500

48 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Refcrence Manual INPUT Statement

INPUT Statement

INPUT statements accept data from the console and assign the data to program
variablcs.

Syntax:

INPUT Ürompf sfrf.#g ;]
uariable {, uariable}

Explanation:

If a prompt string is present in an INPUT statement, CBASIC prints it on the console;
otherwise, a ? is ouipu.. In both cases, a blank is then prin.ed and a line of input data is
read from the console and assigned to the variables as ihey appear in thc variablc list.

The variables can bc either simple or subscripted string, or numeric.

Thc maximum number of characters that can be en.ered in response to an INPUT
statement is 255. If 255 or more characters are entered, inputting automatically ends
and the first 255 characters arc retaincd. Additional characters are lost. The 255
characters include all characters entered in response to an INPUT statement, no mattcr
how many variables appcar in thc variable list.

All CP/M line cditing functions, such as CTRL-U and DELETE, are in effect. A
CTRL-C terminatcs the program without closing open files. If a CTRL-Z is thc f irst
character entered in response to an INPUT statement, the program ends in the same
manner as if a STOP statement was execu.ed.

The data items entered at the console must be separated by commas and are ended
by a carriage return. Strings enclosed in quotation marks allow commas and leading
blanks to bc included in thc string.

The prompt string must be a string constant. If it is an expression or a numcric
constant, an error occurs.

If the value entered for assignment to an integer is real, the number cntered is
truncated to the integer portion of thc real number. If the value of a numbcr assigned
to an integer variable is outside the range of integers, an incorrect value is assigned.

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 49

INPUT S.atement CBASIC Language Reference Manual

If a real number exceeds the rangc of CBASIC real numbcrs, the largest real number
is assigncd to thc variable, and a warning is printed on the console.

If too many or too few data items are entered, a warning is printed on the console,
and thc entire line must be reentered.

Examples:

INPUT AMOUNT1. AMOUNT2i AMOUNT3

INPUT "WHAT FILE. PLEA§E?";FILE.NAMES

INPUT "YtJUR PHt]NE NUMBER PLEA§E:"; PHONE.NS

INPUT "';ZIP.Ct]DE%

A special type of INPUT statement is the INPUT LINE. The general form of this
statement is:

INPUT [Prompf sfri.#g ;]
LINE v4ri.4b/c

Some examples are:

INPUT "ENTER ADDRE§§"iLINE ADDRS

INPUT "TYPE RETURN TÜ [DNTINUE";LINE DUMMYS

The INPUT LINE statement functions as dcscribed abovc with thc following cxccp-
tion: only one variablc is permitted following the kcyword LINE. It must be string.
Any data entcred from the consolc is acccpted and assigned to this variable. The data
is terminated by a carriage rcturn.

A null string is acccpted by responding to a INPUT LINE statement with a carriage
rcturn. If the variablc specified to receive the input is not string, an error occurs.

Prompt strings are directed to the console even when a LPRINTER statcmcnt is in
cffect (Sec Scction 4.3).

50 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Rcfcrcncc Manual INT Function

INT Function

INT(x) retums the integcr part of thc argumcnt x; thc fractional part is truncatcd.

Syntax:

y - INT(x)

Explanation:

Thc value rcturncd by INT is a floating-point number. The argument should bc
numeric. If x is an integcr, CBASIC convcrts it to a rcal number.

Examples:

T I ME = I NT (M I NUTE§) + I NT (§ECOND§)

IF (X/Z)-INT(X/2)=O THEN PRINT \
''EUEN" EL§E PRINT "ODD"

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 51

INT% Function CBASIC Language Rcfercncc Manual

|NT°/o Function

INT%(x) converts the argument x to an integer value.

Syntax:

yo/o - INT%(x)

Explana{ion:

The argument should be numeric. If x is an integer, it is first converted to a real
number, and then converted back to an integer.

Examples:

J7. = INT%.(REC.NO)

WIDTH% = DIMEN.1% + INT%,(DIMEN.2)

52 ALL INFORMATION PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual LEFTS Function

LEFTS Function

LEFTS returns a string consisting of the first i°/o characters of as.

Syntax:

bs = LEFTS(as,i%)

Explanation:

If i°/o is greater than the length of as, LEFTS returns the entire string. If i% is zero,
a null string is rcturned. If i% is negative, a run-time error occurs.

as must be a string; otherwise, an error occurs. i°/o should bc numcric. If i°/o is rcal,
CBASIC converts it to an integer. If i°/o is a string, an error occurs.

Examples:

PRINT LEFTS(INPUT.DATAS.25)

IF LEFTS(INsil) = "Y" THEN GO§UB 400

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 53

LEN Function

LEN Function

LEN returns the length of as.

Syntax:

i% - LEN(as)

Explanation:

CBASIC Language Rcference Manual

If as is a null string, LEN returns zero.

The value returned by LEN is an integer. If thc argumcnt is numeric, an error occurs.

Examples:

IF LEN(TEMPDRARYS) > 25 THEN \

TOC).Lt]NG% = TRUE%

FtJR INDEX%. = 1 TD LEN(OBJECTS)

NUMZ(INDEXZ) = A§[(MIDS(ÜBJECTS.INDEX%.1))

NEXT INDEX%.

54 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Rcfcrcncc Manual

LET Statement

The LET statement assigns a value to a variablc.

Syntax:

[LET] tJ4r!.c}b/c = cxprcssi.o#

Explanation:

LET Statement

The c#PrcssJ.o# is evaluatcd and assigned to the variable appearing on thc left side
of the = . The v4ri.4b/e and cxprcssi.o# must both be string or numcric type.

If the variable and cxprcssj.o# are both numcric but one is integer and the other is
real, an automatic conversion to thc typc of the variable on the left of the = is

performed.

Examplcs:

100 LET A = B + C

X(3.P0INTERZ) = 7.3Z * Y + X(2.3)

§ALARY = (HOUR§.WORKED * RATE) -DEDUCTI0NS

dates = months + " " + days + ". " + yearS

INDEXZ = INDEX% + 1

RE[.NUMBER = OFF§ET% + NEXTREC%

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 55

LOG Func.ion

LOG Function

LOG(x) returns the natural logarithm of x.

Syntax:

y - LOG(x)

Explanation:

CBASIC Language Rcference Manual

The natural or Naperian logarithm of the argument x is the Base e inversc of the EXP
function.

The value returned by LOG is real. If x is an integer, CBASIC converts it to a real
number.

Examples:

BASE.TEN.LOG = LDG(X)/LOG(10)

prtlNT "LOG oF){ Is "; L0G(X)

56 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

U

CBASIC Language Rcferencc Manual

LPRINTER Statement

LPRINTER scnds output to the printcr or list devicc.

Syntax:

LPRINTER [WIDTH #wmer!.c exp.]

Explanation:

LPRINTER Statcmcnt

After execution of the LPRINTER statement, all PRINT statement output, usually
dirccted to the console, is output onto the list device.

The list device is the physical unit currently assigned to LST: by CP/M. The WIDTH
clause is optional. If present, the expression is used to set the linc width of the list
device.

If the console cursor position is not 1, a carriage return and line-feed is output to
the console. In this context, the cursor position is the value returned by the POS function
before exccuting the LPRINTER statcment.

The expression should return an integer. If it is real, thc valuc is rounded to an
integer. If the expression is string, an error occurs.

If the WIDTH clause option is not present, the most recently assigned width is used.
Initially the width is set to 132. A width of 0 results in an infinite line width. With a
zero width in effect, carriage returns and line-feeds are never automatically output to
the printer as a result of exceeding the line width.

Examples:

500 LPRINTER

IF HARD[OPY.WANTED% THEN LPRINTER WIDTH IZO

LPRINTER WIDTH REtJUESTED.WIDTH.J,

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 57

hMTCH Function CBASIC Language Rcference Manual

mTCH Function

MATCH returns the position of the first occurrencc of as in bs starting with [h€
charac.er position given by the third parameter. A zero is returncd if no MATCH is
found.

Syntax:

j% = MATCH(as, bs, i%)

Explanation:

The following pattcrn-matching features are available:

• # matches any digit (0-9).
• ! matches any upper- or lower-case letter.
• ? matches any character.
• \ serves as an escape character indicating the following charactcr does not have

special meaning. For example, a ? signifies any character is a MATCH unless
preceded by a \.

as and bs must be strings. lf either of these arguments are numeric, an error occurs.
If i°/o is real, it is converted to an integer. If i°/o is a string, an error occurs. If i% is
negative or zero, a run-time error occurs. When i°/o is grcater than the length of bs,
zero is returned. If bs is a null string, a 0 is returned. If bs is not null, but as is null,
a 1 is returned.

Thc following program experiments with the MATCH function:

TRIJE% = -1

FAL§E% = 0
edits = " The nuMber of occurrences is ***"
WHILE TRUE%.

INPUT "enter obJect 5tring" ; LINE obJects
INPUT "enter argument 5tring" i L.INE argS
GÜ§UB 820
PRINT U§ING editsi occurrence%,

WEND

58 ALL INFORMATION PRESENTED HEBE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Refercnce Manual hMTCH Function

820 rem ----- count ciccurpence5 ----------
locationz = 1
occurren€ez = 0
WHILE TRIJEZ

locationz = MATCH(argstobJectstlocationz)
IF locationz = 0 THEN RETURN
occuri`encez = occurrencez + 1
1ocation% = 1ocationz + 1

WEND

END

Examples:

MATCH("i5"i"Now i5 the" tl) returns 5

MATCH("ti*'. i"October 8.1976" il) returns 12

MATCH("a?"i"character"i4) rcturns 5

MATCH("\®"."123ti45".1) returns 4

MATCH("AB[D"."AB[" .1) returns 0

The third example returns a 5 instead of a 3 because the starting position for the
MATCH is position 4. In examplc four, the \ causes the # to MATCH only another
#. Without the \ a 1 is returned.

The next examplc is a more complicatcd statement using the \:

MATCH("\C1\\\?'' i"181\?28"tl) returns 2

ALL INFORMATI0N PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH 59

MIDS Function CBASIC Language Rcfcrcncc Manual

MIDS Function

MIDS returns a string consisting of the j% characters of as starting at the i%
charactcr.

Syntax:

bs = MIDS(as,i%,j°/o)

Explanation:

If i°/o is greater than thc length of as, a null string is returned. If j°/o is greater than
the length of as, all characters from i% to the cnd of as are returned. If eithcr i% or
j% is ncgative, an error occurs. If i°/o is zero, a run-timc crror occurs. A zero value of
j°/o returns a null string.

as must be a string expression; otherwise, an crror occurs. i°/o and j% must be
numeric. If i°/o or j°/o are real, they are converted to integers; if either i°/o or j°/o are
strings, an error occurs.

Examples:

DIGITS = MIDS(OBJECTS.Pt]S%.1)

DAYS = MIDS("MONTUEWEDTHUFRI§AT§UN".DAY%*3-2i3)

60 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Refcrcncc Manual NEXT Statcment

NEXT Statement

A NEXT statement denotes the end of the closest unmat-ched FOR statcment.

Syntax:

NEXT [!.de#£j/j.er {,!.de#fj/j.cr}]

Explanation:

If the optional idcntifier is present, it must match the indcx variable of thc terminated
FOR statement.

Thc list of identifiers allows terminating multiplc FOR statements. Thc statement
number of a NEXT statement appears in an ON or GOTO statement, discussed later
in this section, where execution of the FOR loop continues with the loop variables
assuming their current valucs.

Examples:

FOR 1%, = 1 T0 lc)

FOR J'%, = 1 TO 20

X(I.J',J'%') = 1'%' + J'%.

NEXT J.%'' I.J'

FOR Loop'j. = 1 To Ar{r<Ay.slzE.%,

GOSUB 20C)

G05UB 3t-JC]

NEXT

ALL n\'FORMATloN PRESENTED HERE IS pRopRIETARy TO DIGITAL RESEARCH 61

ON Statemcnt CBASIC Languagc Reference Manual

ON Statement

Thc ON statement transfers execution to onc of a number of labels.

Syntax:

ON #wmcri.c cxP GOTO
stmt number {, stmt number}

ON ##mcrJ.c cxP GOSUB
stmt number {. stmt number}

Explanation:

In an ON statcment, the expression is used to select the statement number where
cxecution continucs. If the expression evaluates to 1, thc first statement number is
selected, and so forth. However, with an ON. . .GOSUB statement, the address of the
statement following the ON statement is saved on the return stack. If the expression
is lcss than onc or greater than the number of statement numbers in the list, a run-
time error occurs.

The cxpression must be numeric. A string expression generates an error. Integer
expressions improve exccution speed. If a real value is uscd, it is rounded to the nearest
integer before selecting the statement number in which to branch.

62 ALL INFORMATI0N PRESENTED I]ERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Rcfcrencc Manual

Examples:

ON Statcmcnt

ON IZ GOT010. 20. 30

0N JZ -1 GO §UB 12.10.12.20.12.30.12.40

WHILE TRUE%

C;DSUB 100 REM ENTER PROCES§ DESIRED

GO§UB 110 REM TRAN§LATE PROCES§ Tt] NUMBER

IF PRO[E§§.DE§IREDZ = 0 THEN RETURN

IF PROCE§§.DE§IRED7, < 6 THEN\

ON PROCE§§.DE§IREDZ GO§UB \

1000 '
1010 ,
1020 ,
1030 ,

ADD A RECORD

ALTER NAME

UPDATE 0UANTITY

DELETE A RECORD

1040i \ [HANGE C011PANY CODE

1050. \ REM GET PRINTOUT

ELSE GDSUB 400 REM ERROR - RETRY

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 63

WEND

OPEN Statcment CBASIC Language Rcfcrcnce Manual

OPEN Statement

Thc OPEN statement activates an existing file for reading or updating.

Syntax:

OPEN "filespec" [RECL rcc /e#gfb]\
AS file number LB;UFF number of sectorsT\
R:ECS size of sectors

Explanation:

The first exprcssion represents the filenamc on disk. The namc can contain an
optional drive reference. If the drive reference is not present, thc currently logged drive
is uscd. The filename must conform to the CP/M format for unambiguous filenames.
Lower-casc letters used in filenamcs arc converted to upper-case. The expression must
be string; if it is numeric, an error occurs. The following examplcs are valid filenames:

ACCOUNT . MST

CBA§BB . CMD

8 : INUENTORY . BAK

The third examplc shows a referencc to a file on drivc 8.

The directory on the selected drive is searched and the named file is opened. If the
file is not found in the directory, it is treated as if an end-of-file was encountered during
a READ. When you specib a drive, it is your responsibility to ensure that the drive is
available on your system.

Whcn the optional RECL expression is present, the file consists of fixed length
records. If the record length is ncgativc or zcro, a run-time error occurs. A filc is
accessed randomly or sequentially when a record length is specificd; otherwise, only
sequential access is allowed. The RECL expression must be numcric; real numbers are
convcrted {o intcgers. A string valuc causes an error.

The AS expression assigns an identifica.ion numbcr to the filc being opened. This
valuc is uscd in future references to the file. Each active file must have a unique number
assigned to it. If the expression is not betwcen 1 and 20, a run-time error occurs. The
cxprcssion must be numeric; real numbers are converted to intcgers. A string value
causes an error.

64 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual OPEN Statcmcnt

The BUFF and RECS expressions arc optional. If used, both must be prescnt. The
exprcssion following BUFF specifies the number of disk sectors from the selected file
to maintain in memory at one time.

If the expression is omitted, a value of one is assumed. The expression following
RECS must be present when thc BUFF cxpression is used, but the value of the cxpression
is ignored. Thc value should be the sizc of a disk scctor, usually 128 bytes.

If random access is used with a file, the BUFF expression must evaluate to 1; other-
wise, a run-time error occurs.

Both expressions must be numeric; if it is a string value, an error occurs. Real numbers
are converted to integers.

Twenty files can be active at once. Buffer space for files is allocated dynamically.
Therefore storage space is saved by opening files as requircd and closing them when
no longer needed.

Examples:

555 0PEN "TRAN§.FIL" AS 9

0PEN FILE.NAMES AS FILE.NÜ%. BIJFF 28 RECS 128

DPEN WORK.FILE.NAMES(CIJRRENT.FILE7,) \

RE[L WDRK.LENGTH%, AS CURRENT.FILE'%. BUFF BS'%. RE[S 128

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 65

OUT Statcment CBASIC Languagc Refcrence Manual

OUT Statement

The OUT statement sends the low-ordcr eight bits of thc second expression to th€
CPU output port sclected by the low-order eight bits of the first exprcssion.

Syntax:

OUT ,'% , '%

Explanation:

Both arguments must be numeric; they must be in the range of 0 to 255 for the
results to be meaningful. If either expression is string, an crror occurs. Real values arc
convcrtcd to intcgers before performing an OUT instruction.

Examples:

OUT 1,58

C]UT FRONT,PANEL%. RESULT%

IF X% > 5 THEN t]UT 9. ((X*X)-1.)/2.

OUT TAPE.DRIUE.[tJNTROL.PORT7.. REWIND%

OUT Pt]RTZ(§ELECTEDZ) . A§C("S")

66 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Refcrencc Manual PEEK Function

PEEK Function

PEEK returns the contents of the memory loca.ion specified by an absolute address.

Syntax,

i°/o = PEEK (#wmcri.c cxP.)

Explanation:

The value returned is an integer ranging from 0 to 255. The memory location must
be within thc address space of your computer för your results to be mcaningful.

The expression must be numeric. If a string expression is specified, an error occurs.
Real valucs arc rounded to the nearest integer.

Examples:

100 MEMORY%=PEEK(1)

FOR INDEX% = 1 T0 PEEKZ(BUFFER%)

IN.BUFFERS(INDEXZ) = CHRS(PEEK%(BUFFER%+INDEXZ))

NEXT INDEXZ

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 67

POKE Statcment CBASIC Language Reference Manual

POKE Statement

POKE stores the low-order byte of a specified variable into memory at a specified
absolute address.

Syntax:

POK:E numeric exp , jc7{o

Explanation:

The first expression must evaluatc to an absolute address for your results to bc
meaningful.

Both expressions must be numeric. If a string exprcssion is specified, an error occurs.
Real values are rounded to the nearest integer.

Arguments are passed to machine language subroutines with the PEEK and POKE
instructions.

Examplcs:

750 PDKE 1700.A§C("S")

FOR Lt][Z = 1 TD LEN(DUT.M§GS)

PDKE M§G.LO[Z+LÜC%. A§C(MIDS(ÜUT.M§GS.Lt][%.l))

NEXT LOC%

68 ALL INFORMATloN PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Rcfcrencc Manual POS Function

POS Function

POS returns the next position to be printed on thc console or the linc printer. This
value ranges from 1 to the line width currently in effcct.

Syntax:

i = POS

Explanation:

If a LPRINTER statement is in effect, POS returns the next position to be printed
on the printer. POS returns the actual number of characters sent to the output device.
If cursor control characters are transmitted, they are counted even though the cursor
is not advanced.

Examples:

PRINT "THE PRINT HEAD 1§ AT [OLUMN: "; PC)§

IF (WIDTH.LINE -POS) < 15 THEN PRINT

ALL INFORMATloN PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 69

PRIM Statement CBASIC Language Refercnce Manual

PRINT Statement

The PRINT statement outputs the value of each expression to the console.

Syntax:

Pi+INT expression delim
{ expression delim }

Explanation:

If an LPRINTER statement is in effect, the output is directed to the list device. If
the length of the numeric item results in thc line width being exceeded, the numbcr to
be printed begins on the next line. Strings are output until the line width is reached
and then the remainder of the string, if any, is output onto thc next line.

The delimiter between expressions can be either a comma or a semicolon. The comma
causes automatic spacing to the next column that is a multiple of 20. If this spacing
results in a print position greater than the currently spccified width, printing continues
onto the next line. A semicolon outputs one blank after a number, and no spacing
occurs after a string.

A carriage return and a line-feed are automatically printed when the end of a PRINT
statement is encountered, unless the last expression is followed by a comma or a
semicolon. These partial lines are not terminatcd until one of the following conditions
OCcur:

• Another PRINT statement, whose list does not end in either a comma or semi-
colon, is executed.

• The line width is exceeded.
• A LPRINTER or CONSOLE statement is executed.
• The program executes a STOP statement.

A PRINT statement with no expression list causes a carriage return and a line-feed
to be printed.

If execution of a program is endcd due to an error, a carriagc rcturn and a line-feed
are output.

70 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Refcrencc Manual

Examplcs:

PRINT Statcmcnt

PRINT AMÜUNT.PAID

PRINT 0UANTITY. PRICE. OUANTITY * PRICE

PRINT "TODAY'§ DATE IS: ";MONTHS;" ";DAY%;" ";YEARZ

ALL INFORJvlATION PRESENTLD HERE IS PROPRIETARY TO DIGITAL RESEARCH 71

PRINT # Statement CBASIC Language Referencc Manual

PRINT # Statement

The PRINT # statement outputs data to a disk file.

Syntax:

PRLNT # filespec,|rec spec|.,uariable{,uariable}

Explanation:

Data is written to the file designated by the /f./espec. You can specify a particular
number in the rcc spcc for files with a fixed record length only. Otherwise, data is
written sequentially. Refer to Section 5 for more information on file input and output.

Examples:

PR I NT#[L I 5T . STt] ; ASBSCS

P R I N T 8 2 i 3 ; G %, t H '%. . I t J %. . K

72 ALL INFORMATION PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH

CBASIC Language Refercnce Manual PRINT USING Statemcnt

PRINT USING Statement

PRINT USING allows formatting of printed output using a format string. PRINT
JSING # sends formatted data to a disk file.

Syntax:

PRINT USING [#] /orm4f sfrJ.#g;
Lfilespec] expression list

Explanation:

A format string is composed of data fields and literal data. Data ficlds are numeric
)r string. Any character in thc format string, that is not part of a data field is a literal

i`haracter.

A format string can be any string expression. This allows the format to be detcrmined
during program execution. If the format string is numeric, an error occurs. If the
cxpression evaluates to a null string, a run-time error occurs.

The expression list consists of expressions separated by commas or semicolons. The
comma does not cause automatic tabbing as it does with the unformatted print. Each
expression in the list is matched with a data field in the format string. If there are more
expressions than fields in the format string, the format string is reused starting at the
beginning of thc string.

While searching the format string for a data field, thc type of the next cxpression
n the list, either string or numeric, determines which data field is used. For example
f a numeric data ficld is encountered whilc outputting a string, the characters in the
_iumeric data field are treatcd as literal data. An error occurs if thcre is no data field
in thc format string of the type required.

A PRINT USING statement without the file reference causes an output line to be
writtcn to the console or thc line printer. The console is selected unless a LPRINTER
statement is in effect. If the file reference is present, the line is composcd as if the ou¢put
is printed on a list device. The entire linc is thcn writtcn as a rccord in thc sclected
file. Rcfer to Section 5 for more information.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 73

RANDOMIZE Statement CBASIC Language Rcfcrence Manual

RANDOMIZE Statement

The RANDOMIZE statement initializes or seeds the random number generator.

Syntax:

RANDOMIZE

Explanation:

Operator time taken to respond to an INPUT statement is used to set the seed
(see Scction 4.2). This time varies with each execution of a program. Therefore, for
RANDOMIZE to work correctly, it must be preceded by an INPUT stacement.

Examples:

450 RANDOMIZE

RANDOMIZE

74 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Refercnce Manual READ Statement

BEAD Statement

The READ statement assigns items listcd in a DATA statcment sequentially to the
variables listed in the READ statcmcnt.

Syntax:

READuariable,{uariable}

Explanation:

READ statements can contain mixed DATA types as long as each typc corresponds
positionally to each typc listed in the DATA statement. See DATA statement for more
information.

Examples:

READ Azi B%. CZ

DATA 14 . 256 . 73

READ AS. 8%i [

DATA "Friday". 25 . 4.Z8

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 75

READ # Statcment CBASIC Language Rcference Manual

READ # Statement

The READ # statement reads sequentially from the file specified by thc first expres.
sion. The file is read, field-by-field, into thc variables, until every variable is assignec,
a value. Fields are integcr, floating point, or string values, and are delimited by commas.

Syntax:

T`EAD # expression ., uariable

{, uariable}

Explanation:

Thcre are four forms of the READ # statement that access data from disk files. Eacli
of the four statements are discussed, thcn gencral comments follow about reading from
disk files. The first two types of the READ # statement access files similar to using
the INPUT statement to access data from the console. The last two forms are similar
to the INPUT LINE statement.

The expression, which selects thc filc, must be numeric. Real values are converted
to integer. A string value causes an crror. Also, the value must refcr to an active file;
otherwisc, a run-time error occurs.

A variation of thc READ # statemcnt takcs the general form:

F{EA.D # expression , expression .,

[vczri.4b/c {, u4rf.4b/c}]

The following is an example of this variation of the READ # statement:

READ t. FILE.NÜZ.RE[.Ct]UNT%; NAMESi PAYi HtJUR§. \

TERM . OF . EMPLDY .§§NS

The second expression selects the record to be read. A random record specified by
the sccond expression is read from the disk file specified by the first expression. The
ficlds in thc record are assigned to the variables in the variable list. If there arc more
variables than fields in the record, an crror occurs. To use this form of READ #, the
file must bc activated with the RECL option specified.

76 ALL INFORMATI0N PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH

CBASIC Language Referencc Manual READ # Statement

The second expression must be numeric. If the value is a string, an error occurs.
Real values are converted to integers. The record number cannot be zero; if it is, a
run-time error occurs. Thc expression is treated as a 16-bit unsigned binary number.
This allows record numbers to range from 1 to 65,535.

A random READ #, with no variables specified, positions the file to the sclected
record. A subsequent sequential READ # accesses the selected record.

The following two forms of the READ # statement treat files as lines of text. The
sequcntial variant takes the general form:

READ # c#Prcssj.o# : LINE t/4rj.4b/c

This statement scquentially reads all data from the specified file until it encounters
a carriage return followed by a line-feed. All the data read up to, but not including,
the carriage return and line-feed is assigned to the single string variable specified in
the READ LINE statement. If thc variable is not string, an error occurs.

The random variant of the READ LINE has the following general form:

R`EA\D # expression , expression .,
LINE u4rf.4b/c

Some examplcs are:

READ ® 12 ; LINE NEXT.LINE.ÜF.TEXTS

READ ® INPUT.FILE%,. RECDRD7,; LINE NEXT.ONES

The final variation reads the record specified by the expression, from the file specified
by the first expression. The data is assigned to the string variable as described for the

previous form of the READ LINE statement.

The READ LINE statement permits CBASIC to access records containing ASCIl data
in any format on a line-by-line basis. For example, any file created using text editor
can bc read a linc at a time. In the following example,

READ ® 12; LINE in.5trin9S

all characters in the next record are read until a carriage return followed by a line-
feed is encountered.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 77

READ # Statcment

Examples:

CBASIC Language Reference Manual

READ * 7; §TRINGS. NUMBER

READ * FILE.MA§TER%i NAMES. ADDRE§§S.CITYS.§TATES

78 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Rcfcrencc Manual

REM Statement

The REM statement documents a program.

Syntax:

REM |string terminated uiith CR|

REMARK [sfrf.#g fcrmi.#4fcd zt;f.fA CR]

Explanation:

REM Statemcnt

REM statcments do not affect the size of the program compiled or executed. When
the Compilcr ignorcs a REM statement, compilation continues with thc statement
following the next carriage return. A continuation character causes thc next line to be

part of the remark. An unlabeled REM statemcnt can follow any statcmcnt on the
same line. Thc statement number of a remark can be used in a GOSUB, GOTO, IF,
or ON statement.

Examples:

REM THI§ IS A REllARK

remark this i5 also a remark

TAX = 0.15 * INCOME REM LOWE§T TAX RATE REM \

THI§ §ECTIDN CDNTAIN§ THE \

TAX TABLE§ FOR CALIFt]RNIA

Thc last example shows a REM statement on the same linc with anothcr statemcnt.
Whcn using the REM statcment in this manner, thc colon is optional betwccn thc two
statements. In all other cases involving multiplc statemcnts on thc samc linc, the colon
must separate the statements. If the REM statement is used on the same line with other
statements, it must be the last statement on the line. All statements after a REM are
ignored.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 79

RENAME Function CBASIC Languagc Refcrencc Manual

RENALME Function

Thc RENAME function changcs the name of the file specified by bs to the name

given by as. Renaming a file to a namc that already exists produces a run-time error.

Syntax:

io/o = RENAME(as,bs)

Explanation:

The RENAME function returns an integer value. A true (-1) is returned when the
RENAME is successful, and a false (0) is rcturned when the RENAME fails. For
example, false is returned if bs does not exist.

A filc must be closed beforc it is renamed; otherwise, when CBASIC automatically
closes files at the end of processing, it attcmpts to close thc renamed file under the
namc with which it was opened. This causes a run-time error because the original
filename no longer exis.s in the CP/M file directory.

Both arguments must bc string. If cither as or bs is numeric, an error occurs.

The RENAME function allows you to use the following back-up convention:

i. The output file is opened with a filetype of SSS, indicating it is tcmporary.
2. Any file with the same filename as the output file, but with a filetype BAK, is

dcleted.
3. Data is written to the temporary file as the program is processed.
4. At thc end of processing, the program renames any file with identical filename

and filetype as the output file to the same filename, but with the filetype BAK.
5. Thc program renames the temporary output file to the propcr filename and

filctypc.

Examples:

DUMMYZ = RENAME("PAYROLL.M§T"."PAYROLL.SSS")

IF RENAME(NEWFILES.OLDFILES) THEN RETURN

80 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Rcference Manual RESTORE Statement

RESTORE Statcment

A RESTORE statemcnt allows rereading of the constants contained in DATA statc-
ments.

Syntax:

RESTORE

Explanation:

A RESTORE statement repositions the DATA statcment pointer to the beginning of
the DATA area. A RESTORE statement is executed when a CHAIN statcmcnt is
Prcsent.

Examplcs:

500 RE§TORE

IF END.OF.DATA% THEN RE§TORE

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 81

RET~ Statement CBASIC Languagc Refercncc Manual

RETURN Statement

The RETURN statemcnt scnds control from a subroutine back to thc main program.

Syntax:

RETURN

Explanation:

The RETURN statement causcs thc execution of a program to continue at .hc location
on top of the return stack. The call might be a GOSUB statement, an ON. . .GOSUB
statement, or a multiple-line function call. (See Section 4.2.2 for a discussion of multiple-
line functions.)

If a retum is executed without previously cxecuting a GOSUB, ON...GOSUB, or
multiple-line function call, a run-timc error occurs.

Examples:

500 RETURN

IF AN§WER.UALID% THEN RETURN

82 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Refcrcnce Manual RIGHTS Function

RJGHTS Function

RIGHTS returns a string consisting of the i°/o rightmost characters of as.

Syntax:

bs = RIGHTS(as,io/o)

Explanation:

If i°/o is negative, a run-time error occurs. If i% is grcater than thc length of as, the
entire string is returned. If i% is zero, a null string is returned.

as must evaluatc to a string; otherwise, an error occurs. i% must bc numcric. If i°/o
is real, it is converted to an integer. If i°/o is a string, an crror occurs.

Examples:

IF RIGHTS(ACCOUNT.Nt]S.l) = "0" THEN \

TITLE.ACCTZ = TRUEZ

NAMES = RIGHTS(NAMES.LEN(NAMES)-LEN(FIR§T.NAMES))

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 83

RND Function CBASIC Languagc Reference Manual

RND Function

RND gencrates a uniformly distributed random number between 0 and 1. The value
returned by RND is a rcal numbcr.

Syntax:

x - RND

Explanation:

To avoid identical sequences of random numbers each time a program is executed,
the RANDOMIZE statcment is used to seed the random number generator.

Examples:

D I EZ= I NTZ (RND*6 .) + 1

IF RND > .5 THEN \
HEAD§Z = TRUEZ \

ELSE \
TAIL§Z = TRUEZ

84 ALL INFORMATION PRESENTED HEBE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual SADD Function

SADD Function

SADD rcturns the address of the string assigned to the argument as.

Syntax:

i% - SADDS(as)

Explanation:

The first byte is thc lcngth of the string followed by the characters in thc string. The
lcngth is stored as an unsigned binary integer. Therefore, if the string is TOTAL, the
SADD function returns the addrcss of a byte containing a binary 5.

The value returned by SADD is an integer. If as is not a string, an error occurs.
When the parameter evaluatcs to a null string, a zero is returned.

The SADD function, with PEEK and POKE, passes a string to an assembly language
routine for processing.

Lxamples:

The following statements place the address of STRINGS into the address stored in
PARM.LOC°/o:

POKE PARM.LOCZ.§ADD(§TRINGS) AND OFFH

PDKE PARM.LDC%.+1.§ADD(§TRINGS)/256

ALL INFO"ATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 85

SAVEMEM Statement CBASIC Language Reference Manual

SAVEMEM Statement

The SAVEMEM statement reserves spacc for a machinc languagc subroutine and
loads the specified filc during execution. Only one SAVEMEM statement can appear
in a program.

Syntax:

SANEME:M constant , filespec

Explanation:

The constant must be an unsigned integer specifying thc number of bytes of space
to reserve for machine language subroutines. The space is reserved in the highest address
space of the CP/M Transient Program Area. The beginning address of the reserved
area is calculated by taking the constant specified in the SAVEMEM statement and
subtracting it from the 16-bit address stored by CP/M at absolute address 6 `ti`i 7.
However, for the 8086 version of CBASIC, the load address is rounded dt)wii tt) the
nearest 16-byte paragraph boundary.

The cxpression must bc string, and can specift any valid unambiguous filename.
The selected file is loadcd into memory starting with the address calculated above.
Records are read from the file until either an end-of-file is encountered, or the next
record to be read overwrites a location above the Transient Program Area.

If the constant specifies less than 128 bytcs to be saved, nothing is read, but the
space is still reserved. If the expression is a null string, space is saved but no file is
loaded.

If a main program has a SAVEMEM statement, any chained program having a
SAVEMEM statement must reserve the same amount of space. Each chained program
loads a new machinc language file or uses the file loaded by a previous program. The
space reserved by the main program is not reclaimed by a subscquent program.

It is your responsibility to ensure the machine languagc routines are assembled to
cxecutc at the propcr address. Also, the location where a program is loaded depends
on the size of the CP/M system used.

The CALL statement accesses routines loaded by SAVEMEM. The CALL statement
loads the data, code, and extra segment registers to the basc of the SAVEMEM area.

86 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Rcfcrence Manual

Examples:

SAVEMEM Statcmcnt

§AVEMEM 256. "§EAR[H.CMD"

SAUEMEM 512. DRS+ "[HECK." + A§SYS (FN.CPM.SIZEZ)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 87

SGN Function CBASIC Language Reference Manual

SGN Function

SGN (x) returns an integer value representing the algebraic sign of the argument.

Syntax:

i% = SGN(numeric cxp)

Explanation:

SGN rcturns a -1 if x is negative, a 0 if x is zero, and a + 1 if x is greater than zero.

x can be intcger or real. Integer values of x are converted to real numbers. The
argument should bc numeric. SGN always returns an integer.

Examples:

IF SGN(BALAN[E) <> 0 THEN \

OUTSTANDINGBAL% = TRUE%

IF SGN(BALANCE) = -1 THEN \

Ol/ERDRAWN% = TRUE%,

88 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Refercnce Manual

SIN Function

SIN(x) returns the sine of x.

Syntax:

y - SIN(x)

Explanation:

SIN Function

The argument x is expressed in radians. The value returned by SIN is real. If x is
an integer, it is converted to a real number.

1xamples:

FA[TOR(Z) = §IN(A -B/C)

IF §IN(ANGLE/(2.O * PI)) = 0,0 THEN \
PRINT "HORIzt]NTAL"

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 89

SIZE Function CBASIC Language Reference Manual

SIZE Function

SIZE rcturns the size in 1 kilobyte blocks of the file specified by as.

Syntax:

i% - SIZE(as)

Explanation:

If thc file is empty or does not exist, zero is returned. as is any CP/M ambiguous
filename.

Thc argument must be a string expression. If the argument is numcric, an erroi
occurs. The SIZE function returns an integer.

The SIZE function returns the number of blocks of disk space used by the file or
files referred to by the argument. When the opcrating system allocates disk space to a
file, it does so in one block increments. A filc of 1 character occupies a full block of
space. This means the SIZE function returns the amount of space reserved by thc file
rather than the size of the data in the file.

This function is uscful in a program that duplicates or constructs a file on disk. If
thc program crcates a file of a given size, dependcnt on the size of its input file, it first
determines whethcr or not there is sufficient frec spacc on the disk before building thc
new file.

Consider a program that rcads a file named INPUT from drive A, processes the data,
and thcn writes a filc named OUTPUT to drivc 8. Assume the size of OUTPUT is
125% of INPUT. The following routine ensures space is available on disk 8 before
processing:

rem ------ test for enough room ------
size.of .output% = 1.25 * size("A:INPUT")
f ree.block5% = 241 -5ize("B:*.*")
if f ree.space.%. < size.of .output% then\

enough.room% = FAL§E%\

el5e enough.room% = TRUE%

return

90 ALL INFORMATI0N PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH

CBASIC Languagc Refcrence Manual

Examples:

§ I ZE (" NAME§ . BAK ")

§IZE(COMPANYS + DEPTS + ".NEW")

§ I ZE (" 8 = §T?RTR?K . * '')

§ I ZE (`' * .1 '')

§ I ZE ('' * , BA§ ")

SIZE Function

ALL INFO"ATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9 |

SQR Function CBASIC Languagc Refcrence Manual

\SQR Function

SQR (x) returns the square root of the argument x.

Syntax:

y - SQR(x)

Explanation:

If x is ncgative, a warning message is printed and the square root of the absolute
valuc of the argument is rcturned.

The value returned by SQR is real. If x is an integer, it is converted to a real number.

Examples:

HYPÜT = §OR((SIDEl^2.O)+(§IDE2^Z.O))

PRINT U§ING \
"THE SOR Rt]tJT 0F X 1§: ***#.*."i SOR(X)

92 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Refcrencc Manual

STOP Statement

A STOP statement terminates program execution.

Syn'ax:

STOP

Explanation:

STOP Statement

All open files are closed, the print buffer is cmptied, and control returns to the host
system. Any numbcr of STOP statements can appear in a program.

Examples:

400 §TOP

IF STOP.REOUESTED THEN §TOP

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 93

STRS Function CBASIC Languagc Refcrence Manual

STRS Function

STRS (x) returns the character string representing a numeric value specified by x.

Syntax:

as - STRS(x)

Explanation:

If x is a string, an error occurs.

Examples:

PRINT §TRS(NUMBER)

IF LEN(§TRS(UALUE))>5 THEN EDS=''S®*****"

94 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Rcfcrcnce Manual TAB Function

TAB Function

TAB causcs the cursor or list device print head to be positioncd at a location specified
by the value of the expression. The TAB function is only used in PRINT statemcnts.

Syntax:

TAB (#wmcri.c cxP)

Explanation:

If the value of the exprcssion is lcss than or equal to thc current print position, a
carriage rcturn and line-fced are output then TAB is exccutcd.

The TAB predefined function is implemented by outputting blank characters until
the desired position is reached. If cursor or printcr control characters arc output, the
cursor or print head might be positioned incorrectly.

Thc expression must be numeric. If a string cxpression is specified, an error occurs.
If the expression is real, it is first rounded to an integer. An error occurs if the expression
is greater than the current linc width.

Examples:

PRINT TAB(15);"X"

PRINT "THI§ 1§ [OL.1";TAB(50);"THI§ IS [C]L. 50"

PRINT TAB(X%,+YZ/ZZ) ; " ! " ;TAB(PO§Z+DFF§ETZ) ;

PRINT TAB(LEN(STRS(NullBER))) i"*"

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 95

TAN Function CBASIC Language Refercnce Manual

TAN Function

TAN (x) rcturns the tangent of .hc argument x.

Syntax,

y - TAN(x)

Explanation:

1lm argument x is cxpresscd in radians. Thc value returned by TAN is real. If x is
an integer, it is converted to a real number.

Examples:

PDWER.FACTOR = TAN(PHASE.ANGLE)

OUIRK = TAN(X -3.0 * [0§(Y))

96 .\LL i\roRMATloN PRESENTED HERE IS PROPRJtTAR\' TO L>iGiTAL RtsEARCH

CBASIC Language Reference Manual

UCASES Function

UCASES translates lower-case characters to upper-case.

Syntax:

bs = UCASES(as)

Explanation:

UCASES Function

UCASES returns a string where the lower-case charactcrs in the argument as are
translated to upper-case; other characters are not altered. AS remains unchanged unless
is is set equal to UCASES(as).

The value returned by UCASES is a string. If as is numeric, an error occurs.

Examples:

IF UCA§ES(AN§S) = ''YE§" THEN\
RETURN \

EL§E §TOP

NAMES = UCA§ES(NAMES)

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 97

VAL Function CBASIC Language Rcfercncc Manual

VAL Function

VAL converts a numeric character string into a real number.

Syntax,

x - VAL(as)

Explanation:

VAL converts the argument as into a floating-point number. Convcrsion continues
until a character is encountered that is not part of a valid number, or until the end of
thc string is encountered.

If as is a null string, or the first nonblank charactcr of as is not a + , -, or digit, a
zero is returned.

The argument must be a string; otherwise, an error occurs.

Examples:

PRINT ARRAYS(UAL(IN.STRINGS))

t]N UAL(PROG.§ELS) Gt]§UB 10i 20. 30. 40. 50

98 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Referencc Manual VARPTR Function

VARPTR Function

VARPTR returns the storage location assigned to the u4ri.4b/c by the run-time mon-
itor.

Syntax:

i°/o = VARPTR (v4ri.4b/e)

Explanation:

With an unsubscripted numeric quantity, this is the actual location of thc variable
in question. For string variables, the valuc returned by-VARPTR is the address of a
16-bit pointer to the refcrenccd string. Bccause strings are dynamically allocated the
actual location of the string varies, but the value retumed by VARPTR remains unchangcd
during program execution. If the variablc is in common, the location returned by
VARPTR remains unchanged after chaining.

If the v4ri.4b/e is subscripted, the valuc rcturncd by VARPTR is the address of a

pointer to the array dope vector in thc frec storage area. The array follows the dope
vector. The first byte of the dope vector is thc number of dimcnsions followed by n-
1, n is the number of dimensions,16-bit offscts into thc array. The final 16-bit quantity
in the dope vcctor is thc number of cntrics in the array. Thc array follows in row-
major order.

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 99

VVEND Statement CBASIC Languagc Reference Manual

WND Statement

A WEND sta.emcnt denotcs the end of the closest unmatched WHILE statement.

Syntax:

WEND

Explanation:

A WEND statement must be present for each WHILE statement in a program.

Branching to a WEND statement is the same as branching to its corresponding
WHILE statement.

Examples:

WHILE -1

PRINT „X„

WEND

WHILE X > Z

PRINT X

X = X -1,0

WEND

TIME = 0.0

TIME.EXPIRED% = FAL§E%,

WHILE TIME < LIMIT

TIME = TIME + 1.0

IF [t]NSTAT% THEN \
RETURN REM AN§WERED IN TIME

WEND

TIME.EXPIRED%, = TRUE%

RETURN

WHILE AC[DUNT.I§.ACTIUEZ

GC]SUB 100 REM ACCUMULATE INTERE§T

WEND

100 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Referencc Manual

WHILE FILE.EXI§T§%.

WHILE TRUE%,

IF ARGS = ACCTS THEN \
ACTIUITY% = TRUE'#, :\

RETURN

IF ARGS < A[CTS THEN \

ACTIUITY%, = FAL§E'#. :\

RETURN

GO§UB 3000 REM READ A[[TS RE[
WEND

WEND

ACTIUITY%, = FAL§E'%

RETURN

WHILE TRUE%,

INPUT LINE §TRINGS
IF §TRINGS = [ONTINUES THEN RETURN

WEND

WND Statement

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH |0|

VmlLE Statement CBASIC Language Reference Manual

WHILE Statement

The WHILE statemcnt loops program control until the specified expression evaluates
to zero.

Syntax:

WHILE cxpressj.o#

Explanation:

Execution of all statcments between the WHILE statement and its corresponding
WEND are repeated until the value of the expression, in the WHILE section, is zero.
If the value is zero initially, the statements between the WHILE and WEND are not
executed. Variables used in the WHILE expression can change during execution of the
loop.

The expression should be intcger. This reduces exccution time and also reduces the
intermediate code generated by the Compiler. If the expression is real, the value is
rounded and converted to an integer. A string expression results in an error.

End of Section 3

102 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

4. DEl:lNING AND USING FUNCTIONS

Section 4
Defining and Using Functions

Functions are uscful whcn the samc routine or computation is needed in a number
of locations in a program. Once defined, a function can be rcferenced or called any
numbcr of timcs in the program.

All CBASIC functions return a value. Any routine that results in a value, either string
or numeric, can be defined as a function. Functions can pass values and parame.ers
for usc at each invocation.

4.1 Function Names

Function names arc defined with the letters FN followcd by any combination of
numbers, letters, or periods. Any number of characters can be used in a function name;
however, only the first 31 characters, including the FN, distinguish one namc from
anothcr. A function name cannot contain spaces.

The type of function name detcrmines the type of valuc that the function passes
back to the main program.

• Names for string functions end with S.
• Names for integcr functions cnd with %.
• Names for real number functions do not cnd with S or °/o.

You must use a function name to define a function and to refercnce a function from
another location in a program. The following examplcs are valid function names:

FN . PROPER . FUN[T I 0N . NAME§

FN . TRUNCATES

FN51234%

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 103

4.2 Function Dcfinitions CBASIC Language Reference Manual

4.2 Function Definitions

A f unction def inition must occur in a program before making a function reference. To
definc a function, the keyword DEF must prccedc the function name. CBASIC supports
two typcs of function definitions: single-statement and multiple-statement.

4.2.1 Singlc-Statemcnt Functions

Single-statement function definitions use an equal sign followed by an expression.
The expression contains the actual process that the single-statement function is coded
to perform. The data types used in the expression must corrcspond to the data type
used in thc function name. Use the following format when defining single-statement
functions:

DEF FN/zmcff.o#.#4mc [(dummy arg list)] = cxprcssJ.o#

A dummy argument holds a place for a variable that is specified in a function
reference. A dummy argument is either a string variable or a numeric variable; it is
never a constant. Thc dummy argument must have the same data type as the variable
used in the function reference. However, the data type for the dummy argument is
independent of the function namc type. CBASIC considers dummy arguments local to
the function. Local variables are independent of the rest of a program. CBASIC param-
cters are passed by value.

The following examples show single-statemcnt function definitions:

DEF FN25 = RND * 25.0

100 DEF FN.HYPDT(§IDEli§IDE2)= \

§OR((SIDE1 * §IDE1) + (§IDE2 * §IDE2))

DEF FN.LEFT.JU§TIFYS(AS.LEN%)=LEFTS(AS+BLNK§S.LEN%)

104 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL Rl,SL\R(`[I

CBASIC Languagc Refercnce Manual 4.2 Function Definitions

4.2.2 Multiplc-Statement Functions

Multiple-statement function definitions usc a series of CBASIC statemcnts preccded
by a DEF statement and tcrminated with a FEND statcment. Also, a RETURN statemcnt
is placed at some point in the body of the function. The RETURN sta.emen. ends
function exccution and sends control back to the main program. Use any number of
REllJRN statements, but bc surc a FEND statemcnt is thc last staiement that appcars
in a multiple-statement function. Usc the following format when defining multiple-
statemcnt functions:

DEF FN/##cfi.o#.#4me [(dummy arg list)]
CBASIC Statcmcnts

RETURN
FEND

The following two examples show multiple-statement function definitions:

DEF FN.READ.INPUT(INPUT.N0%)

READ . INPUT.ND%; CU§TN0%. AMOUNT

RETURN

FEND

200 DEF FN.COLJNT%(INDEX1%)

COUNT% = 0

FOR 1% = 1 T0 INDEXIZ

[OUNTZ = COUNT% + ARRAY(IZ)

NEXT IZ

FN.CÜUNT% = [ÜUNT%

RETURN

FEND

Thc following rules apply to multiplc-statement functions:

• DEF and COMMON statements cannot appcar in a function definition.
• GOTO statements that referencc a line outside of the function are not allowed.
• The DIM statcment allocates a new array upon each cxecution of a function.

Data stored in an array from a previous exccution is lost. Arrays in multiple-
statemcnt functions are global to an entirc program.

• Functions cannot be ncsted. Howcver, a function can bc called from within
another function.

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RtsLARcii 105

4.3 Function Rcfcrences CBASIC Languagc Refcrence Manual

4.3 Function Refercnces

User-defincd functions can bc referenced in any CBASIC statement or expression.
Be sure to specift the same numbcr of parameters in the function refcrencc that are
specified in the function definition. The function substitutes the currcnt value of each
expression in the reference statcment for the dummy argument in the function defi-
nition. The following are examples of function refercnces:

300 PRINT FN.A(FN.B(X))

IF FN.LENZ("INPUT DATA".XS.O) < LIMITZ THEN
GO§UB 3000

WHILE FN.ALTITUDE(CURR.ALTZ) > MINIMUM.§AFE

CURR . ALTZ= I NP (ALT . PORTZ)
WEND

End of Section 4

106 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

5. INPUT AND OUTPUT

Section 5
Input and Output

CBASIC uscs the operating system ¢o control input and output for in{eraction bctween
programs, terminals or consolc Jeviccs, printers, and disk drivcs.

5.1 Console lnput and output

CBASIC reads input from the console one line at a time instead of one character at
a time. Thereforc, all CP/M line-editing functions, such as CTRL-U and DELETE,
remain in effect. CTRL-C entcred from the keyboard terminates a program but does
not close files being accessed. CTRL-Z entered in response to an INPUT statement
terminates program execution like a STOP statement. The following statemcnts and
predefined functions are used to input data from a console devicc. Refer to Section 3
for more detailed descriptions of statements and functions.

• INPUT statcments query the user for information during program execution.
Any number of input values can be entered with an INPUT statement. A prompt
mcssage can be displayed if desired.

• INPUT LINE works like an INPUT statement, but acccpts only one variable
for data to be entered. All characters entered in response to INPUT LINE are
interprcted as one string.

• READ statements assign values from DATA statements to specified variables.
• DATA statements define a list of string, real, and integer constants assigned to

variables by a READ statement.
• RESTORE statements prepare the list of constants in a DATA statement to be

reread by repositioning a pointer to the beginning of the list.
• CONSTAT% is a predefined function that determines console status. The func-

tion returns a logical true value (-1) if a character is ready at the console, and
a logical false value (0) if a character is not ready.

• CONCHAR% is a function that waits for an entry from thc keyboard and
rcturns an eight-bit ASCIl represcntation of the character entered. Only printing
characters can be used with CONCHAR%.

• INP is a function that returns an integer value from a specified input/output

Port.

ALL INFORMATI0N PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH 107

5.1 Console lnput and output CBASIC Language Reference Manual

The following CBASIC statements and predefined functions control console output.

• The CONSOLE statement restores printed output to the console device.
• The predefined function TAB moves the console cursor to a specified position

on the screen. TAB also works with printers.
• The POS predefined function returns thc next available position on the console

screen to be printed.

5.2 Printing

CBASIC provides two statements to control output to a line printer device.

• LPRINTER directs all PRINT statement output to the line printer or list device.
• PRINT USING allows formatting of printed output.

5.3 Fomatted printing

The PRINT USING statement allows you to specify special formats for output data.
Formatted data is directed to the consolc or line printer. The PRINT USING # variation
directs formatted output to a disk file. A PRINT USING statement is written as follows.

PF(INT USING format string |file number] expression list

The format string is a model for the output. A format string contains data fields and
literal data. Data fields can be numeric- or string-based. Any character in the format
string that is not part of a data field is a literal character. Format strings must be
nonnull string expressions. The following characters have special meanings in format
strings:

single-character string field
variable-length string field
fixed-length string field delimiter
numeric field
asterisk fill in numeric field

puts S in numeric field
exponential format
escape character

108 ALL INFORMATION PRESENTED HERE IS PROPBIETARY T0 DIGITAL RESEARCH

CBASIC Language Referencc Manual 5.3 Formattcd printing

The expression list tells which variables hold the data to be formatted. Each variable
is separated by a comma or a semicolon. The comma does not cause automatic tabbing
as it does with unformatted printing. Each variable in the list is matched with a data
field in the format string. If there are morc expressions than thcre are ficlds in the
format string, execution is resct to the beginning of the format string.

While searching thc format string for a data field, the type of the next expression
in the list, either string or numeric, determines which data field is used. For example,
if a numcric data field is encountered whilc outputting a string, the characters in the
numeric data field are treated as literal data. An error occurs if there is no data field
in the format string of the type required.

5.3.1 String charactcr Ficlds

A one-character string data ficld is specified with an !. The first character of the
next expression in the PRINT statement list is output.

For example,

F.NAMES="Lynn":M,NAMES = "Marion"=L.NAMES= "Kobi"

PRINT U§ING "!. !. &"i F.NAMES.M.NAMEsiL.NAMES

Outputs:

L. M. Kobi

ln this example, the pcriod is treated as literal data. Because there arc two exprcssions
in the list, the format string is reused when processing the second expression.

5.3.2 Fixed-Lcngth string Ficlds

A fixed-length string field of more than onc position is specified by a pair of slashes
separated by zero or more characters. The width of the field is equal to the number
of characters between the slashes, plus two. Place any charactcr between thc slashes;
these fill characters are ignored.

A string expression from the print list is left-justificd in the fixed field and, if ncc-
essary, paddcd on the right with blanks. A string, which is longcr than thc data field,
is truncated on the right.

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH |09

5.3 Fomattcd printing CBASIC Language Rcferencc Manual

For example,

FORIS = "THE PART REOUIRED 1§ /...5 0 5/"
PART.DE§CRPS = ''GL0BE UALUE. ANGLE"
PRINT U§ING Ft]RISi PART.DE§CRP$

Outputs:

THE PART REOUIRED 1§ GL0BE UALVE. ANG

Using periods and numbers bctween the slashes makes it easy to verift that data
field is 16 characters long. Pcriods and numbers do not effect the output.

5.3.3 Variable-Lcngth string Ficlds

A variablc-length string field is specificd with an ampersand, öc. This results in a
string output exactly as defined.

For example,

Ct]MPANYS = "§MITH INC."

PRINT U§ING "& &"; "THI§ REPCIRT 1§ FDR".COMPANY$

Outputs:

THI§ REPORT IS FOR §MITH INC.

A string can be right-justified in a fixed ficld using the variable string field. The
following routine shows how this is done.

FLD.§% = 20
BLKS = „ "

PHONES = "408-849-3896"
PRINT U§ING "t.&"; RIGHTS(BLKS + PHDNES. FLD.§Z)

Ou{Puts:

* 408-649-3896

In the preceding example, because thc print list contains only a string expression,
the # is used as a literal character. A # can also indicate a numeric data field.

110 ALL INFORMATI0N PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 5.3 Fomatted printing

5.3.4 Numcric Data Ficlds

A numeric data field is specified by a # to indicate each digit required in thc resulting
number. One decimal point can also be included in the ficld. Values are roundcd to
fit the data field. Leading zcros are replaced with blanks. When the number is ncgativc,
a minus sign is printed to the left of the most significant digit. A singlc zcro is printcd
on the left of thc decimal point if thc number is less than 1, and a position is provided
in the data field.

The following example illustrates the use of numcric data fields:

X = 123.7546
Y = -21.0
FORS = „«***,**** ***.« ***,,
PRINT U§ING FÜRS; X. X. X

PRINT U§ING FORS; Y. Y. Y

Execution of the above program produces thc following printout:

123.7548 123.8 124
-21.0000 -21.0 -21

Numbers are printcd in exponential format by appending one or morc up
arrows, ^, to the cnd of the numeric data field.

For cxample, the following program segmcnt,

X = 12.345
PRINT U§ING " ^^ "; Xi -X

Outputs:

1.235E 01 -.123E 02

The exponent is adjusted so all positions that .he up arrow rcpresents are uscd.

ALL INFORMATI0N PRESENTED HEBE IS PROPRIETARY TO DIGITAL RESEARCH 111

5.3 Fomattcd printing CBASIC Language Rcference Manual

For example,

PRINT USING ".8®.*.^^"'; 17.987

results in:

179.87E-OI

Four positions are reserved for thc exponent rcgardless of the number of up arrows
used in the field.

If onc or more commas appear embedded within a numeric data field, the number
is printed with commas between groups of three digits before the decimal point.

For example,

PRINT USING "...S*. "; 100i 1000.10000

prints:

100 1.000 10.000

Each comma appearing in the data field is included in thc width of the field. Thus,
although one comma is requircd to obtain cmbedded commas in the output, it is clearer
to place commas in the data field in the positions of appcarance on thc output.

For example, thc following data fields producc the samc results, except that the
width of the first ficld allows only nine digits to be output. Using the second field, ten
digits are output:

* '****8****
« '«** ,*** ,***

If the cxponent option is used, commas arc not printcd; whcn commas occur in thc
field, they are treated as #.

Asterisk fill of a numeric data field is accomplished by appending two * to thc
beginning of the data field. A floating S is obtaincd by appcnding two S to the field
in a similar manner. Exponential format is not used with cither * fill or the floating
S. The pair of + or S are includcd in the count of digit positions availablc for the field,
and appcar in the output if therc is sufficient space for the number and * or S. Thc S
is supprcssed if thc valuc printed is negative.

112 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Rcfcrencc Manual 5.3 Fomatted printing

For example,

CO§T = 8742937.58
PRINT USING "****.S.S®S*.3ti "; CO§T. -[0§T
PRINT U§ING "SS®*..®®***.S® "i CO§T. -[0§T

prints:

**8.742.937.58 *-8.742.937.58
SB.742.937.56 -8.742.937.56

A numbcr is output with a trailing sign instcad of the leading sign if the last character
in the data ficld is a minus sign. Whcn the number is positive, a blank replaces the
minus sign in the printed result.

For example,

PRINT USING ''***-*®*^^^^-"i 10.10. -10i -10

0utputs:

10 100E-01 10-100E-Ol-

If a minus sign is thc first character in a numcric data field, the sign position is fixed
as the next output position. When thc number printed is positive, a blank is output;
otherwise, a minus sign is printed.

The following example demonstrates this fcature.

PRINT USING ''-S®ti® "; 10. -10

0utputs:

10 - 10

Anytimc a number docs not fit within a numeric data field without truncating digits
before the decimal point, a °/o is printed, followed by the number in the standard
format.

ALL INFORMATION. PRESLNTl=D llLRL IS PRol'RILIAR\ l o DIGl lAL RESLAR(`ll 113

5.3 Formatted printing CBASIC Languagc Rcfcrcncc Manual

For examplc,

X = 132.71
PRINT U§ING "**.* ® "; X.X

Outputs:

7. 132.71 132.7

5.3.5 Escapc charactcrs

At times you might want to include a character as literal data which, following th{
above rules, is part of a data field. This is accomplished by escaping the character. A
\ preceding any character causes the neit character after the \ to be treated as a literal
character. This allows, for example, a # to precede a number, as shown in the following
example.

ITEM.NUMBER = 31

PRINT U§ING "THE ITEM NUMBER 1§ \..®"i ITEM.NUMBER

Outputs:

THE ITEM NUMBER 1§ *31

An escape character following an escape character causes a backslash to be output as
a literal character. If an escape character is the last character in a format string, a run-
timc error occurs.

5.4 File organization

CBASIC organizes information on a disk surface into three levels: files, records and
fields.

• FILES consist of one or morc records.
• RECORDS are groups of fields. Each record is delimited by a carriage return

and line fecd.
• FIELDS are the individual data items. Each field within a record is delimited

by a comma.

CBASIC supports two types of data files on disk: sequential and relative.

114 ALL lr`i`oRMATioN PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Refercncc Manual 5.4 File organization

5.4.1 Scqucntial Files

Sequential or stream organization is pcrformed on a strict field-by-field basis. The
PRINT # statement writcs cach field to the disk in a continuous stream. Each data
item uses only as much space as nceded. Each PRINT # statement executed creates a
single record. Each variablc used in the PRINT # statement creates a single field.
Individual record lengths vary according to the amount of spacc occupicd by thc fields.
Thcrc is no padding of data space. The following diagram shows a sequential file
composed of threc rccords.

RECORD 1 "FIELD ONE","FIELD TWO","FIELD THREE"cr/lf

RECORD 2 "Field 1","Field 2"," "crflf

RECORD 3 111,222,3.3,444,5.5crflf

Record lcngths vary

Figure 5-1. Scquential Filc

Field three in record two is a null string. Commas scrve as delimiters, but are
considered string characters when embcdded in a pair of quotation marks. Quotation
marks are also considered string characters when cmbedded in a pair of quotation
marks.

ALL INFORMATI0N PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH

5.4 Filc organization CBASIC Language Reference Manual

The following CBASIC program creates the sequential file diagrammcd above.

CREATE .'FILE.1" A§ 1

AS = "FIELD ÜNE"

BS = "FIELD TWO"

[S = "FIELD THREE"
DS = ''FIELD 1"

ES = "FIELD 2"
FS = ''''

G%.

H%,

I
J%
K

PRINT *1i AS'

PRINT *1i DS'

PRINT *1i G%'

CLDSE I

END

J%,K

The three PRINT statements correspond to the three records and each variable
corresponds to a field.

When scquential files are accessed, each field is read consecutively one at a time
from the first to the las.. The READ # statement considers a field complete when it
encounters a comma or a carriage rcturn and line-feed. The following program reads
the fields in FILE.1 sequen{ially and prints thcm on the consolc screen.

IF END *19 THEN 100
tJPEN "FILE.1" A§ 19

FOR 1%, = 1 T011

READ *19; FIELD§S
PRINT FIELD§S

NEXT 1%

100 END

Any typc of variable can bc used in the READ # statement in a sequential access.
Executing the preccding program outputs thc following display on the scrcen.

FIELD 0NE
FIELD TWO

116 ALL INFORMATI0N PRESENTED HEBE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 5.4 File organization

5.4.2 Relativc Files

Relative files offer the advantage of random access, which is the ability to access
any record in a file directly. Record lengths are fixed. Data space between the end of
the last field and the carriage return line-feed is padded with blanks. The carriage
return and line-feed occupy the last two bytes of the record. The number of bytes
occupied by the fields, field delimiters, and the carriage return line-feed cannot exceed
the specified record length. The following diagram shows a relativc filc composed of
three records.

RECORD 1 "FIELD ONE","FIELD TWO",``FIELD THREE"cr/lf

RECORD 2 "FIELD 1","FIELD TWO"," " cr/lf

RECORD 3 111,222,3.3,444,5.5 cr/lf

Record lengths fixed

Figure 5-2. Relative File

The same rules regarding commas, quotation marks, and null strings in sequential
fil€s apply to relative files. The following program creates the relative file diagrammed
above.

ALL INFO"ATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 117

5.4 File organization

CREATE FILE.2 RE[L 40 A§ 2
AS = "FIELD 0NE"

BS = "FIELD TWO"

[S = "FIELD THREE"
DS = "FIELD I
ES = "FIELD 2
FS = 1"'
G'%. = 111

H%. = Z2Z

I = 3.3
J%. = 444
K = 5.5

PRINT ti2il; Asi

PRINT $2.2; DS.
PRINT ti2.3; G%..

CLO§E 2
END

CBASIC Language Reference Manual

Random access to a rclative file is accomplished by specifying a relative record
number. The relative record number is entered in all PRINT # and READ # statemen[s
after the file identification number. The two numbers are separated with a comma. In
the following example, 5 is the relative record number.

PRINT *2i5; UARIABLE1%i UARIABLE2%

CBASIC locates each record on a randomly accessed file by taking the relativc rccord
numbcr, subtracting 1, and multiplying that difference by thc record length. The result
is a byte displacement value for the desired record measured from the beginning of the
file. Thc record to be accessed must be specified in each READ # or PRINT # statement
executed. Each READ # and PRINT # statement executed accesses the next spccified
rccord. The following program reads the first thrce fields from record three in FILE.2.

IF END *20 THEN Z00
0PEN "FILE.2" RE[L 40 A§ Z0

READ #20i3; FIELDIsi FIELD2S. FIELD3
PRINT FIELDIS. FIELD2S. FIELD3

200 END

118 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Rcfcrence Manual 5.4 File orgänization

Thc data types of the variables in the READ # statement must match the data
contained in the fields being read. Executing the above program outputs the following
display on screen.

111 222 3.3

5.5 Maintaining Filcs

CBASIC uscs the operating system file accessing routines to store and retrieve data
in disk files. All data is represented in character format using the ASCIl codc. Programs
can create, opcn, read, write, and close data filcs with the following CBASIC statements.
Each statement is described in morc detail in Section 3.

• CREATE originates a new data file on disk. The CREATE statement erases a

preexisting file of the same name before creating the new file.
• OPEN procures an existing file for reading or updating. If the file does not

cxist, the program proccsses an end-of-file condition.
I FILE procures an existing file for reading or updating. If thc file docs not exist,

the FILE statemcnt creates it.
I READ # accesses a specified file and assigns the data sequentially, field by field,

into specified variables. Data can also bc acccssed from a spccificd record.
• PRINT # outputs data to a spccified file and assigns the data sequentially into

fields from specificd variables. Data can also be output to a specified record.
• PRINT USING # outputs data to a spccified file using formatted printing

options.
1 CLOSE deactivates a file from processing. The specified file is no longer availablc

for input or output until reopened.
• DELETE deactivates a file from processing and erases it from the disk surface.

End of Section 5

ALL INFORMATI0N PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH 119

End of Scction 5 CBASIC Language Reference Manual

120 ALL INFO"ATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

6. MACHINE LANGUAGE INTERFACE

Section 6
Machine Language lnterface

CBASIC's machine level environment is somewhat advanced. To understand this
scction, you should have a working knowledge of CP/M, assembly language, and a
familiarity with elcmcntary computcr architecture. Diffcrences betwecn CBASIC's 8-bit
and 16-bit formats are mos. visible at the machine level.

5.1 Memory Allocation

The operating system loads the CBASIC run-timc interpreter into the Transicnt
Program Area (TPA) to executc CBASIC programs. The memory availablc in thc TPA
is partitioned into six arcas of varying size. The following diagram shows mcmory
allocation in the thc CP/M TPA. For the 8-bit (8080) version, addresses are absolutc.
In the 16-bit (8086) version, addresscs are offsets from cither the code or data segments.

FFFFH
CP/M Operating System

Free Storage Area (FSA)

Computational Stack Area (CSA)

Variable Storage Area (VSA)

Intermediate Code Area (ICA)
(compilcd source program)

Real Constant Area (RCA)

CRUN
(runtime interpreter)

Area reserved for CP/M

Figurc 6-1. CP/M Memory Allocation

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 121

6.1 Mcmory Allocation CBASIC Language Refcrencc Manual

• The area extending from the base of memory up to hexadecimal address 100H
is reserved for CP/M.

• CP/M loads the run-time lnterpreter at the base of the TPA starting at 100H.
Thc rest of thc TPA is partitioned into five areas used by the run-time lnterpretei
during program execution.

• Thc Real Constant Area (RCA) holds all real numbers defined as constants in
a CBASIC program. If a constant is used more than once in a program, it
appears only once in the RCA. Real constants require eight bytes of storage
Spacc.

• The lntcrmediate Code Area (ICA) stores the intermediate code generated by
the Compilcr. The lnterpretcr fetches the actual computer instructions from the
ICA during program execution.

• The Variable Storagc Area (VSA) reserves space to store the current value ol
each variable in the program. Thc VSA contains all variables passcd througli
COMMON statements to chained programs. COMMON variables always appeai
first in the VCA. The VCA reserves eight bytes of storage space for each variable,
regardless of the data type. For array and string variables, the actual value of
the variable is stored in the Free Storage Area. The value stored in the VSA.

points to the actual value in the FSA.
• The Computational Stack Area (CSA) is fixed at 160 bytes of memory. The

CSA evaluatcs cxprcssions and passes parameters to CBASIC predefined and
uscr-defined functions. There is room to placc 20 eight-byte real numbers on
the stack.

• The Frec Storage Area (FSA) stores arrays, strings and file buffers. Variably
sized blocks of mcmory are allocated from the FSA as required and rcturned
when no longcr needed.

• Thc CP/M operating system tracks occupy the very top of memory. A 16-bit
address at 0006H and 0007H points to the bcginning of CP/M.

The starting and ending address for each partition in the TPA varies for different

programs. Once allocated however, the amount of memory occupied by cach partition
remains fixed during program execution.

|22 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Rcfcrence Manual 6.2 In.cmal Data Rcprcsentation

6.2 Intemal Data Reprcsentation

CBASIC machine levcl representation varies somewhat for real numbers, integcrs,
strings, and arrays.

• REAL NUMBERS arc stored in binary coded decimal (BCD) floating-point
form. Each real number occupies eight bytes of memory, as shown in the fol-
lowing diagram. The high-order bit in thc first byte (byte 0) contains thc sign
of the number. The remaining seven bits in bytc 0 contain a dccimal exponent.
Bytes 1 through 7 contain the mantissa. Two (BCD) digits occupy each of thc
seven bytes in the mantissa. The number's most significant digit is stored in
high-order four bits of byte 7. The floating decimal point is always situated to
the lcft of the most significant digit.

14 BCD DIGIT MANTISSA

xx xx xx xx xx xx xx xx
BYTES OLJ:ITS3 4567

exp0nent

T_1xxxxxxxx
01234567

__=
exponent's

' = numbcr's
sign bit

Figure 6-2. Rcal Numbcr storagc

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH |23

6.2 Intemal Data Represcntation CBASIC Language Rcference Manual

• INTEGERS are stored in two bytes of memory space with the low-order byte
first, as shown in the following diagram. Integers are represented as 16-bit two's
complement binary numbers. Integer values are limited to plus or minus 32767.

LOW-ORDER BYTE
STORED FIRST

X
BITS s

i

SIGN
BIT

HIGH-ORDER
BYTE

Figure 6-3. Integer storage

• STRINGS are stored as a sequential list of ASCIl representations. The length
of a string is stored in the first byte, followed by the actual ASCIl values. The
maximum number of characters in a string is 255

• ARRAYS, both numeric and string, are allocated space in thc Frce Storage Area
as required. Eight bytcs are reserved for each element of an array containing
real numbers and two bytes for each element of an integer array. String arrays
are allocated three bytcs for each cntry. A dope vcctor precedes each array. The
dope vector consists of one byte to indicate thc number of dimemsions, and
two additional bytes per dimension to indicatc an offset value.

6.3 Assembly Language lnterface

CBASIC supports statements and functions that enable assembly language routines
to be cxecuted from CBASIC programs.

- CALL statement
• SAVEMEM statement
• PEEK function
• POKE statement
• SADD function
• VARPTR function

124 ALL INFORMATloN PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 6.3 Assembly Languagc lntcrfacc

The assembler linkage process for both 8-bit and 16-bit environments consists of
four steps.

1. Write and debug an assembly language routine.

2. Configure the routine for use with CBASIC. Create a .COM file for 8080
routines, or a .CMD file for 8086 routincs.

3. Load the routine using the proper SAVEMEM paramcters.

4. Write a CBASIC program to CALL the assembly routine.

There are differcnces in the architecture of 8-bit and 16-bit microprocessors. There-
fore, procedures for linking to assembly language routines differ in the two systcms.
The following demonstration programs for both versions link to asscmbly routincs to

perform three simple operations.

• Input a character string from the keyboard.
• Pass the addrcss of the string to an asscmbler routine.
• Print the string using a BDOS function call.

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 125

6.4 CBASIC 8080 Program CBASIC Language Refcrencc Manual

6.4 CBASIC 8-bit (8080) Demonstration Program

Entcr thc following 8080 asscmbly language program into a file named 8080.ASM.

ORG 0E78BH
CON$OUT EOU

PRINTS EOU

BDO§ EOU

JMP §TART

PARAM DW 0

START :

PR I NTSLÜÜP :

MOU E'M

INXH

MUI CicoNSÜUT

PUSH H

PU§H P§W

CALL BDOS

POP PSW

POPH

DERA

END

126

; ADDRE§§ 1§ POKED HERE

; P0INTER T0 ADDRE§§ OF UARIABL

;MOUE ADDRES§ Tt] DE

;ADDRE§§ OF UARIABLE IN HL

;GET LENGTH 0F §TRING
;P0INT TD FIR§T [HARACTER

;GET CHARACTER

;SET UP FOR BDD§ CALL

i§AUE H REGI§TER
i§AUE A REGI§TER

PRINTSLDOP

D ,CRSLF
C ,PRINTS

BDÜ§

ODH 'OAH ' \ S ,

;RE§TORE REGI§TER§
;DECREMENT COUNTER

;L00P TILL 0UT t]F CHARACTER§

;ADDRE§S 0F CRSLF §EOUENCE
ipRINT §TRING

;RETURN T0 CBA§I[

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Rcference Manual 6.4 CBASIC 8080 Program

The ORG address in 8080.ASM might not be correct for your particular systcm,
because thc address at the {op of the Transiem Program Arca (TPA) varies for diffcrcnt
sized configurations of CP/M. The SAVEMEM statement in a CBASIC program rcserves
thc specificd amount of memory space for an assemblcr routine, then loads the routinc
in that space at the top of the TPA. The SAVEMEM statement calculates the load
address by subtracting the size of the routine from the address at thc top of the TPA.
SAVEMEM does not rcveal the load address to you. You must calculate it yourself
and specify it in the ORG statement in the assembler routine and in the CALL s.atcmcnt
in the CBASIC program. Thereforc, you must determinc the top of the TPA in your
systcm. CP/M stores that address at 06H and 07H. Usc the following CBASIC program
to determine the top of your TPA and calculate the load address for your systcm.

REM PRt]GRAM Tt] DETERMINE TOP DF TPA

INPUT "ENTER §IZE tJF A§§EMBLY ROUTINE.ROUND UP T0 NEAREST\

128 BYTE INCREMENT. ";FILE.SZE
REM [ALCULATE TOP t]F TPA AND SUBTRACT FILE §IZE '

::::+?D::;::E::Z;:Z:::;EE:(::::5:::;E::F::::NUERT To HEX.'\

1

If the load address for your system differs from the ORG address in 8080.ASM, edit
thc correct address into 8080.ASM and assemble the file to create 8080.HEX.

Convert the assembly routine into an object code file of typc.COM using the CP/M
Dynamic Debugging Tool, DDT®. DDT loads a HEX file and converts it to binary
format. The R command reads the file into memory starting at the ORG address.
However, to SAVE thc memory image as a.COM file, the R command must contain
an offset value to load the file at 100H. Calculate the offset value using DDT.

A > 00 r
DDT UERS X.X

-H100 E786 ispECIFY 100i THEN THE LOAD ADDRESS

E886 197A

The second number displaycd by DDT (197A in this case) is the offset value. Usc
the 1 command to specify the filename.

-ISO80 . HEX

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 127

6.4 CBASIC 8080 Program CBASIC Languagc Refcrcncc Manual

Usc the R command with the offsct value to read the HEX file in at 100H.

- fi' J 9 7A

NEXT PC

01lE 0000

The HEX file is convcrted to binary form. Now, SAVE the routinc as a.COM filc.

-^C

A>SAUE I BOBO.COH

A>

When calling or passing parameters to the asscmblcr routine, addresses are absolutc
memory locations. The CALL statement to start execution of 8080.COM is CALL
0E786H. To pass a parameter, information must be inserted into the routine using the
POKE statcment. The VARPTR function is used to obtain a pointer to the address of
the string variablc. Thc address is converted into a high and low byte, then POKEd
directly into the routine. The routine can access the string from CBASIC's Free Storage
Area and print it on the console. The information in the string variable can be changcd
but the lcngth must rcmain constant. The following CBASIC program calls the 8080.COM
file.

REM RE§ERUE 128 BYTE§ AND LOAD ROUTINE

§AUEMEM 128. "BO80.[DM"
PROG . BA§E= (PEEK (7) *256+PEEK (6) -128)
PARAM . OFF§ET= PROG . BA§E+3

INPUT "ENTER §TRING T0 PRINT...`'; LINES

WHILE (LINES <> "DONE")

ADDR=UARPTR (L I NES)

BYTE2= I NT (ADDR/25B)
BYTE 1 =ADDR-(BYTE2*256)
POKE PARAM.DFF§ETiBYTEl : PDKE PARAM.OFF§ET+1.BYTE2

CALL OE786H
INPUT "ENTER STRING T0 PRINT..."; LINES

WEND

END

128 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Reference Manual 6.5 CBASIC 8086 Program

6.5 CBASIC 16-bit (8086) Demonstration Program

Enter the following assembly language routine into a file namcd 8086.A86.

C§EG
[ON 0UT EOU 2
PRINT §TRING EOU 9
BDt]§ EOU 224

ORG IOOH

JMP §TART
PARAM DW 0 ;P0l{E ADDRES§ HERE

§TART :

i§AUE REGI§TER§ FROM CBA§IC.

;D§ P0INT§ TO [BA§IC DATA AREA

Pu§H SI
PUSH BP

'
MOU §I.[§:PARAM

Mt]U §1,[§1]

Xt]R AX.AX

LOD§B

MOU CxiAX

;GET P0INTER
iT0 ADDRE§S

;t]F UARIABLE

;GET ADDRESS

ioF UARIABLE

iGET §TRING

iLENGTH

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 129

6.5 CBASIC 8086 Program

PRINT L00P:
PUSH

LODSB

PU§H

MOU

MDU

INT

POP

PC]P

L00P

MOU

X

§1

DL 'AL

CL.CON 0UT

BDOS

SI
IX
PRINT L00P

CBASIC Languagc Rcference Manual

;GET CHARA[TER

i§ET UP FOR
iBDO§ CALL

Dxic§:OFFSET [R LF
'
iDS MIJST P0INT T0 PROC;RAM §EGMENT 0N BDO§

icALL EL§Ei DX REFERENCE§ AN AREA IN CBA§IC

;DATA AREA

PU§H D§ isAUE D§ FOR CBA§I[
AX ,C§

D§.AX ;NOW D§ P0INT§ TO

;§EGMENT FOR [R LF

CL.PRINT STRING

BDO§

'
;RESTORE REGI§TER§ HERE

iJ

POP D§ ;DS P0INT§ TD [BASI[
iDATA AREA

POP BP

POP §1

;RETURN TD CBA§IC WITH FAR RETURN

'
RETF

CR LF DB

END

ODH 'OAH ' „S„

130 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Rcfercnce Manual 6.5 CBASIC 8086 Program

Use GENCMD to convert 8086.H86 to a.CMD filc. Now, the assembly routine is
ready to bc called from the following CBASIC-86 program.

SAUEllEM 512. "8086.CMD"

REM CALCULATE TOP 0F TPA. §UBTRACT FILE 5IZE

REM AND ROUND DOWN T0 16 BYTE B0UNDARY

PROG.BA§E=(PEEK(7)*256+PEEK(B)-512) AND 0FFFOH

REM ADD 0FF§ET WITHIN ROUTINE

PARAM . OFFSET= (PROG . BASE+ 103H)

INPUT "ENTER §TRING T0 PRINT..."i LINES

WHILE (LINES<> "DONE")

REM GET PDINTER TtJ STRING.UARIABLE

ADDR=UARPTR (L I NES)

REM CALCULATE HIGH BYTE ÜF ADDRES§

BYTE2= I NT (ADDR/ Z5B)

REM CALCULATE LOW BYTE 0F ADDRE§S

BYTE 1 =AI)DR-(BYTE2*256)

REM PDKE BYTE§ IN LOW. HIGH 0RDER

POKE PARAM.OFFSET. BYTE1= \

POKE PARAM.DFF§ET + 1iBYTE2

REM CALL RÜUTINEi START AT BEGINNING

CALL IO0H

INPUT "ENTER §TRING T0 PRINT...";LINES

WEND

END

ln CBASIC-86, the CALL address is an offset from the bcginning of the routine codc
segment. Specify the offset in the routine. Whcn passing parameters with the POKE
and PEEK statemcnts, the address used is an offset from the base of the CBASIC-86
data segment. You must determine the address of thc routine in thc CP/M-86 TPA.

To calculate the program basc offsct value, usc the address at 06H and 07H. Subtract
the sizc of the file and round down {o a 16 bytc paragraph boundary. Once the program
base is determined, add the offset value for the data area that you want to access.

When control is transferred to the assembly routine, the following rules apply:

• The DS, SS, BP and Sl registers must bc saved, then restored prior to returning
to the CBASIC-86 program.

• If a routine must reference data in its data segment, thc DS register must be
initializcd in the routine.

• Return to the CBASIC-86 program with a far return.

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 131

6.5 CBASIC 8086 Program CBASIC Language Referencc Manual

VARPTR gcneratcs a pointer to access a string in the CBASIC-86 string space. The
information in the string can be changcd but the length must remain cons{ant. Before

passing an address to the routine, convert the address into two bytes transferrable with
thc POKE statement.

End of Section 6

132 ALL INFORMATION PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH

7. COMPILING AND RUNNING
CBASIC PROGRAM

Section 7
Compiling and Running CBASIC

Programs

7.1 Compiler Directives

Compiler directives are special commands that control the processing action of the
compilcr. All compiler directivcs arc preceded by a percent sign, % that must be entered
in column one. CBASIC supports six Compiler directives.

1 %LIST
| o/oNOLIST
I O/oPAGE
1 O/oEJECT
| o/oiNCLUDE
1 %CHAIN

The Compiler ignores characters following a directive on the same line.

7.2 Listing control

Four compiler directives control the listing of Compiler messages.

• The °/oLIST directive turns the Compiler listing on. %LIST can be placed any-
where in a program, and can be used any number of times in conjunction with
°/oNOLIST. This allows selected portions of a program to be listed. Both direc-

tives can affect listings to a console, printer, or disk file.
• The °/oNOLIST directive turns the Compiler listing off.
• The %PAGE directive sets the page length that is output to a printer. A constant

enclosed in parentheses must be specified following the directive. For example,
°/oPAGE(45) sets the page length to 45 lines. Initially, the page length is set at

64 lines. The constant must be a positive integer value greater than zero. Any
number of °/oPAGE directives can be used in a program.

• The °/oE]ECT directive positions the printer to list Compiler messages at thi
top of the next blank page of paper. The directive sends a form feed to the

printer.

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 133

7.3 %INCLUDE Directive CBASIC Language Referencc Manual

7.3 %INCLUDE Directive

The °/olNCLUDE directive allows a specified CBASIC program to be compiled and
executed from within another CBASIC program. °/olNCLUDE directives can specify
only one file on a line, and directives cannot reference themselves. However, °/olNCLUDE
directives can be nested up to six deep. The filename specified can contain a drive
reference as in the following example. The Compiler assumes a .BAS filetype.

'%.INCLUDE B=PRt]GRAM

Thc example includes the file PROGRAM.BAS on drive 8 into the compilation and
execution of the original program.

Bccause the files incorporated with °/olNCLUDE directives are of filetypc .BAS, they
can be compiled separately. It is easier to debug large programs if they are composed
of small, individually tested routines. Routines to be included by the °/olNCLUDE
directive must not contain an END statement.

The °/olNCLUDE directive allows you to build a library of common routines, thus
reducing programming time. System standards, such as 1/0 port assignments, can be
put in included routines. If the programs are moved from one system to another, the
INCLUDE routine is changcd, and the programs must b€ recompiled.

Commonly used procedures, such as searches, validation routines, or input routines,
are candidates for INCLUDE files. All file access commands, such as READ, PRINT,
or OPEN, can be set up as separate INCLUDE files if certain files are accessed fre-

quently.

You may notice that a program segment can be compiled without errors when
compiled separately, but when combined with other routines can causc Compiler errors.
These errors are usually quite obvious. They often result from using the same line
number in more than one module.

7.4 %CHAIN Directive

The °/oCHAIN dircctive determines the maximum size of the constant, code, data,
and variable areas to be used for a series of chained programs. This ensures that a
chained program does not overwrite a portion of the data area passed by a previously

134 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Refercnce Manual 7.4 %CHAIN Directive

executed program. The four areas correspond to four constants specified aftcr the
%CHAIN dircctive. The four constants are separated by commas, as in the following
example.

Z[HAIN 10i70B.0.B

The Compiler sets each of the four areas to the values specified in the %CHAIN
directive. Each constant must be an unsigncd positive integer.

1 The first constant is the size of the area reserved for real constants.
• The second constant is thc size of the code area.
• The third constant is the area that stores values from data statements.
• The fourth constant is the size of the area that stores variables.

The constants can bc expressed as hexadccimal numbers by appending an H to thc
numbcr. Areas greater than 32,767 must be written as hexadecimal values.

The values used in the °/oCHAIN directive are determincd by compiling each of thc.

programs to be chained and using the largest value of each arca. The Compiler list`
the size of each area at the end of a compilation. For example, if three programs arc
to be chained and the CODE SIZE for the programs are 789,1578, and 4917 bytc.s,
the second constant in the °/oCHAIN directive is 4917.

The °/oCHAIN directive is only required in the main or first program executcd.

7.5 CBASIC compile-time Toggles

Enter a Compiler command line using the following syntax.

CBAS fJ./c#cimc [dJ.sk rcfl [Sfogg/c {fogg/c}]

The .INT file is written to the drive specified in the cJi.sk rc/ parameter. If you d()
not specify a cJj.sk rc/, the .INT file is written to the drive containing the source file.

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY T0 DIGITAL RESEARCH

7.5 CBASIC compilc-time Toggles CBASIC Language Rcferencc Manual

The following examples show usc of CBASIC Compiler toggles.

[BAS A[[OUNT3 SBGF

B:CBA§ A:[tJMPARE SGEC

CBAS PAYRÜLL SB

CBAS B:llALIDATE SE

Compiler toggles are a series of switches that can be set when compiling a program.
The toggles are sct by typing a S followed by the letter designations of the desired
tt]ggles, starting one space or more after the program namc. Toggles are only set for
thc. Compiler. CBASIC supports six compile-time toggles.

Table 7-1. Compile-timc Toggles

Toggle Function

Togglc 8 Suppresses the listing of {he program on the console during compi-
lation. If an error is detected, the error message is printed cven if
toggle 8 is set. Toggle 8 does not affect listing to the printcr (toggle
F) or disk file (toggle G). Initially, toggle 8 is off.

Toggle c Suppresses the generation of an lNT file. Because the first compilation
of a large program is likely to have errors, this toggle provides an
initial syntax check without the overhead of writing the intermediate
file. Initially, toggle C is off.

Toggle D Suppresses translation of lower-case letters to upper-case. For exam-

ple, if togglc D is on, AMOUNT does not refer to the same variable
as amount. If toggle D is set, all kcywords must be capitalized. Ini-
tially, toggle D is off.

Toggle E Useful when debugging programs. If this toggle is set, it causes thc
run-time program to accompany any error messages with the CBASIC
line number where the error occurred. Toggle E increases the size of
thc resukant INr file and, therefore, should not be used with debugged

programs. Toggle E must be sct for the TRACE option to be in effect.
Initially, toggle E is off.

136 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Referencc Manual 7.5 CBASIC compile-timc Toggles

Table 7-1. (continucd)

Toggle Funct ion

Toggle F Causes the compiled output listing to bc printcd on the list device
and the console. This provides a hard copy of the compiled program.
Even if toggle 8 is set, a completc listing is provided if togglc F is
set. Each page of the listing has a title and numbered pagcs. Form-
feeds are uscd to advance to the top of a page. Initially, toggle F is
off.

Toggle G Causes thc compiled output listing to be written to a disk file. The
file containing the compiled listing has the same name as the source
file, and a filetypc of LST. If toggles G and 8 are specified, only
errors arc output at the console, but a disk file of the complete
program is produccd.

Usually the disk listing is pl.aced on the same drive as the source file. The operator
can select another drive by specifying thc desired drive, enclosed in parcntheses, fol-
lowing toggle G as shown below:

[BAS B:TAX SG(A:)

Initially, toggle G is off.

7.6 Compiler output

CBASIC does not require each statemcnt of a program to be assigned a statement
number. The only statements that must be givcn a statement number arc those that
have control passed to them by the GOTO, GOSUB, ON, or IF statements. During
compilation, CBASIC assigns a sequential number to each line independent of the

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 137

7.6 Compiler output CBASIC Language Referencc Manual

statement number you used. The CBASIC assigned line number is the one referred to
in error messages (if toggle E is specified) and when using the TRACE option. The lin
numbcr takes one of three forms,

n:

Or,

n*

Or,

n=

where n is the number assigned. Usually, the colon follows the number. Thc * is useL
whcn thc statement contains a user-assigned statement number that is not referenced
anywhcrc in the program. The = is printed when the statement is read in from a disk
file with a %INCLUDE directive.

For example:

1: print "start"
2: names="FRED"
3* 10 gosub 40
4: stop

rem print, name

5:
G:%.include printrtn i`em rtn to pririt
7= 40 i`em ----- rtn tc) print -----------
8= print name$
9= return

10: END

ln the preccding examplc, statement 3 has an * bccause the 10 is not referenced
anywhere in the program. This can be useful during debugging, or to help understand
large programs written in other Basic dialects. When all unreferenced line numbers are
removed, it is easicr to see the logic of the program.

138 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual 7.6 Compiler output

When an error is detected, the Compiler prints a two-lctter crror code, the line
number where the error occurred, and the position of the error rclativc to the beginning
of the source line. The position assumes tab characters have been expanded.

7.7 TRACE 0ption

The TRACE option is used for run-time debugging. It prints the line numbcr of each
statement as it is executed. The output is directed to the consolc even when a LPRINTER
statement is in effect. The line number printed is the number the Compiler assigned
to each statement. The TRACE option syntax is as follows:

CRUN /i./e#4me [TRACE [1#1 [,1#2]]]

Consider the following program:

AMOUNT = 1Z.13

TIME = 45.0
PRINT TIME * AMOUNT

lf the preceding program is compiled using the following command,

CBA§ TEST SE

and then executed with the TRACE option,

CRUN TE§T TRA[E 1.3

the following output is produced:

AT LINE 0001
AT LINE 0002
AT LINE 0003

545 . 85

The TRACE option functions only if the togglc E is set during compilation of the

Pr08ram.

ALL INFORMATION PRESENTED HERE IS PROPFIETARY TO DIGITAL RESEARCH 139

7.7 TRACE Option CBASIC Languagc Rcfcrcnce Manual

Thc first numbcr,1 #1, is specifing the line number where the trace begins. The second
number,]#2, specifics where the trace is to stop. If no line numbers are includcd in
the command, the entire program is traced; if only the first line number is present,
tracing starts at .his line number and continues for all line numbers greater than the
first number 1#1.

7.8 Cross-Reference Lister

Bcsides a Compilcr and an lnterpreter, a Cross-reference Lister is supplied with
CBASIC. The XREF file produces a disk file containing an alphabctized list of all
identifiers used in a CBASIC program. The identifier usage (function, parameter, or

global) is provided, and a list of each line where that identifier is used.

The listing places all functions first, parameters and local variables associated with
a function immediatcly follow. The functions are listed alphabetically. The output is
usually directed to the same disk as the source file. The file created has the same name
as the CBASIC source file and is of type XREF. The standard output is 132 columns
wide.

The following command is used to invoke XREF:

XREF /j./c#4mc [disk ref] [Stoggles] ['ff.f/c']

The filename must be a CBASIC sourcc program with a filetype of BAS. The disk
reference is optional and specifies on which disk to place the cross-reference file. If the
disk reference is not present, the listing is placed on the samc drive as the source. It is
spccified as A, 8, etc.

For example,

XREF PAYROLL A:

places the cross-reference listing for PAYROLL.BAS on drive A. At least one blank
must separate the filename and the disk reference.

Toggles can alter the standard output of XREF. A, 8, C, D, E, F, G, and H are valid
togglcs. They can be lower- or upper-case letters. At least one blank must separate the
S from the portion of the command line to {he left. The toggles follow the S. The
Cross-refcrence Lister ignores any other characters that follow the S, and prccede the
title field or end of the command line.

140 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Refcrence Manual 7.8 Cross-Reference Lister

The following is a list of the Cross-reference Lister toggles and their functions:

Table 7-2. Cross-reference Lister Togglc Functions

Toggle Function

Causes a listing to be output to the list device and to a disk file.

Suppresses output to the disk. If only the 8 toggle is specified, no output
is produced.

Suppresses the output to the disk and permits output to the list device.
The C toggle has the same effect as specifying both thc A and 8 toggles.

Causes the output to be produced 80 columns wide instcad of using
132 columns.

Produces output with only the identifiers and their usage. No line num-
bers are printed. The E toggle helps document a program. You write
the use of each identifier on the listing provided by XREF. The file
created by XREF is edited and made into a large remark with comments

pertaining to each variable name. By including this file with the source
program, more documentation is provided.

Allows you to change the default page length of 60 lines per page. The
desired number of lines per page is enclosed in parentheses and must
follow the F toggle. Embedded blanks are not allowed. Form-feed char-
acters position the printer, and are also placed iri disk files.

Suppresses printing of the heading lines and suppresses all form-feeds.
This toggle is used when building a disk file to be printed by a user
utility.

Suppresses translation of lower-case letters to upper-case. This allows
using XREF with programs compiled with compiler toggle D.

The following command:

xr<EF A[[TSREc B= SEAF(4o)

creates a disk file on drive 8 and a listing on the list device of all the identifiers and
their usage. No line numbers are provided. Pages are limited to 40 lines.

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

7.8 Cross-Rcfcrcncc Lister CBASIC Languagc Rcference Manual

The optional title field must be the last field in the command line. All characters
following the first apostrophe on the command line up to the second apostrophe, or
until the end of the command line, become the title. The title is printed on the heading
linc of each page of output. Thc title is truncated to 30 characters if the listing is 132
columns wide, or to 20 charactcrs if the D togglc is spccified.

The following command demonstrates the title field:

XREF NAME§ 8: SAD `uer5ion 2: 1 AUG 78'

End of Section 7

142 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

A. COMPILER ERROR MESSAGES

Appendix A
Compiler Error Messages

The compiler prints the following messages when a file system error or memory
space crror occurs. In each case, control returns to the operating system.

Table A-1. File Systcm and Mcmory Spacc Errors

Error Meaning

NO SOURCE FILE: /j./c#4mc.BAS

The compiler cannot locate a source file on the specified disk. This file
was used in either the CBAS2 command or a °/olNCLUDE directive.

OUT OF DISK SPACE

The compiler has run out of disk space while attempting to write eithcr
the INT file or the LST file.

OUT OF DIRECTORY SPACE

The compiler has run out of dircctory entries while attempting to create
or extend either the INT file or thc LST filc.

DISK ERROR

A disk error occurred while trying to read or write to a disk filc. This
message can vary slightly in form depending on the operating system
used. See the CP/M documcntation for the cxact mcaning of this mes-
Sage.

PROGRAM CONTAINS n UNMATCHED FOR STATEMENT(S)

There are n FOR statements for which a NEXT cannot be found.

PROGRAM CONTAINS n UNMATCHED WHILE STATEMENT(S)

There are n WHILE statements for which a WEND cannot be found.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 143

A Compilcr Error Mcssagcs CBASIC Languagc Reference Manual

Table A-1. (continued)

Error Meaning

PROGRAM CONTAINS I UNMATCHED DEF STATEMENT

A multiplc line function was not terminated with a FEND statement.
This causes other errors in the program.

WARNING INVALID CHARACTER IGNORED

The previous line contained an invalid character. The compiler ignores
the character; a question mark is printed in its place.

INCLUDE NESTING TOO DEEP NEAR LINE n

An INCLUDE statement near line n in the source program exceeds the
maximum level of nesting of INCLUDE files.

Other errors detected during compilation cause a two-letter error code to be printed
with the line number and position of the error. The error message usually follows the
line where the error occurred.

Table A-2. Compilation Error codes

Code Error

BF A branch into a multiple line function from outside the function was
attempted.

BN An invalid numeric constant was encountered.

CF A COMMON statcment must be in the first line.

CI An invalid filename was detected in a °/olNCLUDE directive. The filename
cannot contain a ?, *, or : (cxcept as part of a disk reference where a
colon can be the second character of the name).

CS A COMMON statement, that was not the first statement in a program,
was detectcd. Only a compiler directive such as °/oCHAIN, a REMARK
statemcmt, or blank lines can precede a COMMON statement.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Rcfcrence Manual

Table A-2. (continued)

A Compilcr Error Messagcs

Code Error

An improper definition of a subscripted variable in a COMMON state-
ment was detected. The subscript count is possibly not a constant, or
there is more than one constant. Only one constant can appear in paren-
theses. It specifies the number of subscripts in the dcfined array.

The same line number was used on two different lines. Other compiler
errors can cause a DL error messagc to be printed even if duplicate line
numbers do not exist. Defining functions bcfore use and, sometimes, if
the DIM statement does not precede all references to an array, results in
a DL error.

A variable dimensioned by a DIM statement was previously defined. It
either appears in another DIM statement or was used as a simple variable.

A function namc appears on the left side of an assignment statcment but
is not within that function. In other words, the only function name that
can appear to the left of an equal sign is the name of the function currently
compiled.

The same function name is used in a second DEF statement.

A mixcd mode expression exists in a FOR statement that the compiler
cannot correct. Probably the expression following the TO is of a different
type than the index.

An expression is a subscripted numcric variable being used as a FOR
loop index.

A function reference contains an incorrect number of parameters.

A function rcference param.eter typc does not match the parameter type
used in thc function's DEF statement.

A function was referenced before it was defined, or the function was
ncver defined.

An expression immediatcly following an IF statemcnt evaluatcs to type
string. Only type numeric is permitted.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 145

A Compiler Error Messagcs CBASIC Languagc Refercnce Manual

Table A-2. (continucd)

Code Error

A variable used in a FILE statement is of type numeric where type string
is required.

An input prompt string was not surrounded by quotes.

A subscripted variable was rcferenced before dimensioncd.

An invalid compiler directive was encoun{ered. A parameter required by
the directive can be out of rangc or missing, or thc directive was mis-
spelled.

A variable defincd as an array in a DEF statement is used without sub-
scripts.

The same variable is dcfined more than once in a COMMON statement.
Each variable can appear in only one COMMON statement.

MF . An cxpression cvaluates to type stringwhen an expression oftype numeric
is requircd.

MM An invalid mixed mode was detected. Probably variables of type string
and type numeric were combined in thc same expression.

MS A numeric expression was used where a string expression was required.

ND A FEND statement was encountered without a corresponding DEF state-
ment. This crror could be the result of an improper DEF statement.

NI A variable refcrenced by a NEXT statcmcnt docs not match the variable
referenced by the associatcd FOR statement.

NU A NEXT statement occurs without an associated FOR statement.

OF A branch out of a multiple line function from inside the function was
attempted.

146 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Rcferencc Manual

Table A-2. (continucd)

A Compiler Error Messages

Co d e E,rror

00 More than 40 0N statcments wcre uscd in thc program. CBASIc has an
arbitrary limit of 40 0N statemcnts in a single program. Noti4 Digital
Research if this limit causes problems.

A DEF statement appeared within a multiple line function. Functions
cannot be ncsted.

A multiple line function cannot call itself.

A second SAVEMEM statement was encountered. A program can have
only onc SAVEMEM statement.

The source line contained a syntax error. This means that a statemcnt is
not properly formed or a keyword is misspelled.

A SAVEMEM statement uses an expression of type numeric to specift
the file to bc loaded. The expression must be a string. Possibly, the

quotation marks were left off a string constant.

A subscripted variable contains an incorrect number of subscripts, or a
variable in a DIM statement was previously used with a different number
of dimensions.

The statement is too complex to compilc; simplify it. Consider making
the expression into two or more expressions. Please send Digital Research
a copy of the source statement.

TO` Symbol table overflow has occurred. This means that the program is too
large for the system being used. The program must be simplificd or the
amount of available mcmory increascd. Smaller variable names reduce
the amount of symbol table space used. Please inform Digital Research
if programs generate this error.

A line number that does not cxist was referenced.

US A string was terminated by a carriage rcturn rather than by quotcs.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 147

A Compilcr Error Mcssages CBASIC Languagc Reference Manual

Table A-2. (continucd)

Code Error

VO Variable names are too long for one statemcnt. This should not usually
occur. If it does, please send a copy of the source statement to Digital
Rescarch. Reducing the length of variablc names and reducing the com-
plcxity of the expression within the statcment can eliminate the error.

WE The expression immediately following a wHILE statement is not numeric.

WN WHILE statcments are nested to a depth greater than 12. CBASIC has
an arbitrary limit of 12 for nesting WHILE statements.

WU A WEND statement occurrcd without an associated wHILE statement.

F.nd of APpendix A

148 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

8. RUN-TIME ERROR MESSAGES

Appendix 8
Run-time Error Messages

The following warning messages might be printed during execution of a CBASIC

Program.

Tablc B-1. CBASIC warning Messages

Error Meaning

NO INTERMEDIATE FILE:/!./c#4mc

A filename was not specified with the CRUN2 command, or no file
of type INT with the specified filename was found on the specified
disk.

IMPROPER INPUT - REENTER

This message occurs when the fields entered from the console do not
match the fields specified in the INPUT statement. This occurs whcn
field typcs do not match or the number of ficlds entered differs from
the number of fields specified. Following this messagc, all values required
by the INPUT statement must be reentered.

Run-time errors cause a two-letter code to be printed. If the code is preceded by thc
word WARNING, execution continues. If the code is preceded by the word ERROR,
execution terminates. If an error occurs with a code consisting of an * followed by a
letter such as *R, the CBASIC run-time package has failed. Please notift Digital Research
of the circumstances under which the error occurred.

ALL INFORMATION PRESENTED HEBE IS PROPRIETARY TO DIGITAL RESEARCH 149

8 Run-time Error Messages CBASIC Language Reference Manual

The following table contains valid CBASIC warning codes.

Tablc B-2. CBASIC waming codes

Code Error

A number was divided by zcro. The result is set to the largest valid
CBASIC number.

A field length greater than 255 bytes was encountercd during a READ
LINE statement. The first 255 characters of the record are retained; the
other characters are ignored.

The argument given in the LOG function was zcro or negative. The value
of the argument is returned.

A negative number was specified before the raise to a power operator.
The absolute value of the parameter is used in thc calculation. When
using real variables, a positive number can be raised to a negative power,
but a negative number cannot be raised to a power.

A calculation using real variables produced an overflow. The result is set
to the largest valid CBASIC rcal number. Overflow is not detected with
integer arithmetic.

A negative number was specified in the SQR function. The absolute value
is used.

The following table contains valid CBASIC error codes.

Table B-3. CBASIC Error codes

Code Error

AC The argument in an ASc function is a null string.

AE An attempt was made to access an array element before the array DIM
statcment was cxecuted.

BN The value following the BUFF option in an opEN or cREATE statement
is less than one or greater than 52.

150 ALL INFORMATION PRESENTED HERE IS PROPRIETARY T0 DIGITAL RESEARCII

CBASIC Language Rcfercncc Manual

Tablc B-3. (continucd)

8 Run-timc Error Messages

Code Error

A chained program's code area is larger than the main program's code
area. Use a %CHAIN directive in the main program to adjust the size
of the code area.

A chained program's data area is larger than thc main program's data
area. Use a %CHAIN directive in the main program to adjust the sizc
of the data area.

The file being closed cannot be found in the directory. This occurs if thc.
RENAME function has changcd the file.

A chained program's constant area is larger than the main program's
constant area. Use a °/oCHAIN directivc in the main program to adjust
the sizc of the constant area.

A chained program's variable storage area is larger than the main pro-

gram's variable storage area. Use a %CHAIN directivc in the main pro-
gram to adjust the size of the variable storage area.

A chained program reserved a different amount of memory, with a
SAVEMEM statement, than the main program.

A CLOSE statement specifies a file idcntification number that is not active.

An OPEN or CREATE statement uses a file identification number that
is already used.

A DELETE statement specifies a file identification number that is not
active.

The operating system reports that there is no disk or directory spacc
available for the file being written to, and no IF END statemcnt is in
effect for the file identification number.

An attempt is made to read past the end of a file, and no IF END statement
is in effect for the file identification number.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 151

8 Run-time Error Messages CBASIC Language Rcfcrence Manual

Tablc B-3. (continued)

Code Error

An attempt was made to write a record of length greater than the max-
imum record size specified in the OPEN, CREATE, or FILE statement
for this file.

An attempt was made to rcname a file to an existing filename.

An attempt was made to access a file that was not open.

A filcname was invalid. Most likely, an invalid character was found in
the filename. A colon can never appear embedded in thc name propcr. ?
and * can only appear in ambiguous filenames. This error also results if
thc filenamc was a null string.

A record number of zero was specified in a READ or PRINT statement.

An attempt was made to exccutc an INT file created by a version one
compiler. To use CRUN2, a program must be recompiled using the ver-
sion two compiler, CBAS2. This error also results from attcmpting to
execute an empty INT file.

A FEND statement was encountered before executing a RETURN state-
ment. All multiple line functions must exit with a RETURN statement.

The operating system reports an error during an attempt to create or
extend a file. Usually this means the disk directory is full.

The third parameter in a MATCH function was zero or negative.

The source program contains a real constant outside thc range of CBASIC
real numbers.

A file identification number is less than onc or greater than 20, or a FILE
statement was executed when 20 files were already active.

NM There wa§ insufficient memory to load the program.

NN An attempt to print a numeric expression with a pRINT USING statement
fails because there is not a numeric field in the USING string.

152 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Refcrcncc Manual

Tablc B-3. (continucd)

8 Run-timc Error Mcssages

Code Error

An attempt to print a string expression with a PRINT USING statemcnt
fails because there is not a string field in thc USING string.

A READ statement was executed, but there are no DATA statcments in
the program, or all data items in all DATA statements were already read.

An attcmpt was made to OPEN a file that does not exist and for which
no IF END statement was in effect.

The expression specified in an ON . . . GOSUB or an ON . . . GOTO
statement evaluated to a number less than one or greater than the number
of line numbers contained in the statement.

OM The program ran out of dynamically allocated memory during execution.
Space can be conservcd by closing files when no longer necded, and by
setting strings to a null string when no longer required. Also, by not using
DATA statements, but reading thc constant information from a filc, space
is saved. Large arrays can be dimensioncd with smallcr subscripts when
the array is no longcr required.

An attempt was made to print a string containing a quotation mark to
a file. Quotation marks can only be written to files when using the PRINT
USING option of the PRINT statement.

Random access was attempted to a file activated with the BUFF option
specifying more than one buffer.

An attempt was made to read past the end of a record in a fixed file.

A recursive function call was attemptcd; CBASIC does not support recur-
sion.

A RETURN statcmcnt occurrcd for which there was no GOSUB statc-
ment.

A random read or print was attempted to a stream file.

ALL INFORMATION PRESENTED IIF.RF IS PROPRIETARY TO DIGITAL RESEARCH 153

CBASIC Language Rcfcrencc Manual

Tablc B-3. (continucd)

8 Run-timc Error Mcssagcs

Code Erro r

An array subscript was uscd which cxceeds the boundaries for which the
array was defined.

A concatenation operation resulted in a string greater than the maximum
allowed string lcngth.

Thc filc specificd in a SAVEMEM statement cannot bc located on the
referenced disk. me expression specifting the filename must includc the
filetype if one is prcscnt. A filetypc of COM is not forced.

The sccond parameter of a MIDS function was zero or ncgative, or thc
last parametcr of a LEFTS, RIGHTS, or MIDS function was negative.

A TAB statement contains a parameter less than one.

A PRINT USING statcment was cxecuted with a null edit s.ring, or an
escape character is the last character in an edit string.

An attcmpt was madc to write to a stream filc after it was rcad, but
bcfore it was rcad to the end of the file.

End of APpendix 8

ALL INFORMATI0N PRESENTF.D HERE IS PROPRIETARY TO DIGITAL RESEARCH

C. CBASIC KEY WORDS

Appendix C
CBASIC Key Words

ABS

AND

AS

ASC

ATN

ELSE

END

EQ

EXP

FEND

BUFF FILE

CALL FLOAT

CHAIN FN *

CHRS FOR

CLOSE FRE

COMMANDS GE

COMMON GO

CONCHAR% GOSUB

CONSOLE GOTO

CONSTAT°/o GT

COS IF

LE PRINT STRS

LEFTS RANDOMIZE SUB

LEN READ

LET RECL

LINE RECS

LOG REM

LPRINTER REMARK

LT RENAME

MATCH RESTO RE

MIDS RETURN

NE RIGHTS

N EXT RND

NOT SADD

ON SAVEMEM

OPEN SGN

OR SIN

CREATE INITIALIZE OUT SIZE

TAB

TAN

THEN

TO

UCASES

USING

VAL

VARPTR

WEND

WHILE

WIDTH

XOR

o/oCHAIN

o/oE]ECT

o/oiNCLUDE

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 155

C CBASIC Kcy words CBASIC Languagc Referencc Manual

DATA INP PEEK SQR

D EF IN PUT PO KE STEP

DELETE INT POS STOP

DIM INT%

+For FN, see user-dcfined func.ions.

End of APpendix C

%LIST

o/oNOLIST

O/oPAGE

156 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

D. DECIMAL-ASCII-HEX TABLE

Appendix D
Decimal-ASCII-Hex Table

Tablc D-1. Convcrsion Tablc

DECIMAL ASCII HEX DECIMAL ASCII HEX DECIMAL ASCII HEX

157ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY T0 DIGITAL RESEARCH

D Decimal-ASCII-Hcx Table CBASIC Languagc Rcfcrcnce Manual

Tablc D-1. (continucd)

DECIML ASCII HEX DECIML AScll HEX DECIML AScll HE

32 SP 20 76 L 4C 120 X 78
33 ' 21 77 M 4D 121 y 79
34 22 78 N 4E 122 Z 7A
35 # 23 79 0 4F 123 t 78
36 S 24 80 P 50 124 1) 7C
37 O/o 25 81 Q 51 125 7D
38 & 26 82 R 52 126 7E
39 27 83 S 53 127 DEL 7F
40 (28 84 T 54
41) 29 85 U 55
42 + 2A 86 V 56
43 + 28 87 W 57

End of APpendix D

158 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

E. GLOSSARY

Appendix E
Glossary

address: Location in memory.

ambiguous ffle specification: File specification that contains either of the DiStal Research
wildcard characters, ? or +, in the filename or filetype or both. When you replace
characters in a file specification with these wildcard characters, you crcatc an ambiguous
filespec and can reference more than one filc in a single command line.

applications program: Program that needs an opcrating system to provide an cnvi-
ronment in which to cxecute. Typical applications programs are business accounting

packages, word processing, and mailing list programs.

argument: Variablc or expression value that is passed to a procedurc or function and
substituted for the dummy argument in the function. Samc as "actual argumcnt" or
"calling argument". Used interchangeably with "parameter".

array: Data type that is itself a collcction of individual data items of the same data
type. Term uscd to describe a form of storing and accessing data in memory, visualized
as matrices. Thc number of extents of an array is thc numbcr of dimensions of the
array. A onc dimensional array is esscntially a list.

ASCII: Acronym for American Standard Code for lnformation lnterchange. ASCIl is
a standard code for rcpresentation of the numbers, letters, and symbols that appear
on most keyboards.

asscmbler: Language translator that translates assembly language statements into
machine code.

assignment statcment: Statement that assigns thc value of an expression on the right
side of an equal sign to the variable name on the left side of thc equal sign.

back-up: Copy of a filc or disk madc for safe keeping, or the creation of the file or
disk.

binary: Base two numbering system containing the two symbols zero and onc.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 159

E Glossary CBASIC Languagc Referencc Manual

bit: Common contraction for "binary digit". "Switch" in mcmory that can bc sct to
on (1) or off (0). Eight bi.§ grouped togcther comprise a byte.

buffer: Area of memory that temporarily stores data during the transfer of infor-
ma(ion.

bytc: Unit of mcmory or disk storagc containing eight bits.

call: Transfcr of control to a computcr program subroutine.

chain: Transfer of control from thc currently executing program to another named
program without returning to the system prompt or invoking the run-time monitor.

code: Scquence of statemcnts of a given language that make up a program.

command: Instruction or request for the opcrating systcm or a systcm program to
perform a particular action. Generally, a Digital Research command line consists of a
command keyword, a command tail usually specifying a file to be processed, and a
carriage rcturn.

common: Variables used by a main program and all programs executed through a
chain statemcnt.

compilcr: Language translator that translates the text of a high levcl language into
machine codc.

compilcr dircctive: Rescrved words that modi¢ the action of the compiler.

compilcr crror: Error dctected by thc compilcr during compilation; usually cau§cd
by impropcr formation of languagc statcment.

compilcr toggle: "Switch" to modify the output of the compiler.

concatenatc: Join onc string to another or one file to another.

concatcnation opcrator: Symbol peculiar to a given language that instructs thc com-
pilcr to combine two unique data items into one.

consolc: Primary input/output device. The console consists of a lis.ing device such as
a screen and a keyboard through which the uscr communicates with the operating
system or thc applications program.

160 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Reference Manual E Glossary

constant: String or numeric value that does not change throughout program execu-
tion.

control character: Nonprinting character combination that sends a simple command
to thc operating system or applications program. To enter a Control character, press
the Control (CTRL) key on your terminal and strike the charactcr key specified.

control statcmen.: Language statement that transfers control or directs the order of
execution of instructions by the processor.

cursor: One-character symbol that can appear anywhcre on the video screcn. The
cursor indicates the position where the ncxt keystroke at the console will have an effcct.

data: Information; numbers, figures, names, and so forth.

data basc: Large collection of information, usually covcring various aspects of rclated
subjcct matter.

data file: Nonexecutable file of similar information that gcnerally rcquires a command
file to process it.

data structurc: Mechanism, including both storagc layout and access rules, by which
information can be stored and retrieved within a compu{er system. Data structures can
reside in memory or on secondary storage. System tables such as symbol tablcs, matrices
of numerical data, and data files are examples of data structures.

data typc: Class or usc of the data; for example, intcger, real or string.

dcbug: Remove errors from a program.

default: Valucs, parameters or options a givcn command assumes if not othcrwise
specified.

delimiter: Special characters or punctuation that separate different items in a com-
mand line or language statemcnt.

dimension: Refers to the number of extcnts of an array. A one dimensional array is
essentially a list of the elemcnts of the array. A two dimcnsional array can bc visualized
as a matrix of rows and columns of storagc space for thc elements of the array. A
three dimcnsional array can bc thought of as a geomctric solid having volumc, and so
forth.

ALL INFORMATION PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH 161

E Glossary CBASIC Language Rcfcrcncc Manual

dircctory: Portion of a disk that contains entries for cach filc on .hc disk. In rcsponse
to thc DIR command, CP/M and MP/M systcms display the filc specifications storcd
in (he directory.

disk, diskctte: Magnetic media used to storc information. Programs and data are
recorded on ihe disk in the same way that music is recorded on a cassette tapc. The
term "diskette" refers to smaller capacity removable floppy diskettes. The term "disk"
can rcfcr to a diskette, a rcmovable cartridge disk, or a fixed hard disk.

disk drive: Pcripheral dcvice that reads and writes on hard or floppy disks. CP/M
and MP/M systems assign a letter to each drive under thcir control.

drivc specification: Alpha character A-P followed by a colon .hat indicatcs the CP/
M or MP/M drive rcfcrcncc for the default or specified drivc.

dummy argumcnt: Argumcnt uscd in the definition of a command or language state-
men((especially a function) that holds a place that will latcr contain a usable "actual"
or "calling" argument that is passed to the function by a calling statcment. Same as
"formal argument".

cditor: Utility program that creatcs and modifics tcxt files. An edi.or can be used to
create documents or codc for computcr programs.

elcmcnt: Individual data itcm in an array.

cxccutablc: Ready to run on the processor. Executablc codc is a series of instructions
that can be carricd out on the proccssor. For example, the computer cannot "executc"
names and addresses, but it can cxecute a program that prints namcs and addresses
on mailing labcls.

cxecutc a program: Start a program running. When the program is exccuting, a
process is cxecuting a sequencc of instructions.

FCB: Filc control Block. Struc.ure used for accessing filcs on disk. Contains thc drivc,
filenamc, filetype and othcr information dcscribing a filc to bc accesscd or created on
the disk.

ficld: Portion of a record; lcngth and typc are dcfincd by the programmcr. One or
morc ficlds comprise a record.

162 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Rcferencc Manual E Glossary

filc: Collection of related records containing characters, instructions or data; usually
stored on a disk under a uniquc file specification.

filcname: Name assigned to a file. The filename can include 1-8 alpha, numeric
and/or some special characters. The filenamc should tell something about the file.

filctype: Extension to a filename. A filetype is optional, can contain from 0 to 3 alpha,
numeric and/or some special characters. The filetype must be separatcd from the file-
name by a period. Certain programs require that files to be processed have specific
filetypes.

file acccss: Refers to methods of entering a file to retrieve the information stored in
the file.

filc spccification: Unique file identifier. A Digital Research filc specification includes
an optional drive specification followed by a colon, a primary filename of 1-8 char-
acters, and an optional period and filetype of 0-3 characters. Some Digital Research
operating systems allow an optional semicolon and password of 1-8 characters fol-
lowing the filename or filetype. All alpha and numcric charactcrs and some special
characters are allowed in Digital Research file specifications.

fixed: Type of file organization used when data is to be accessed randomly-not in
sequential order. Refcrs generally to the nonvarying lengths of the records composing
the file.

floating point: Value expressed in decimal notation that can include exponential
notation; a re?l number.

floppy disk: Flexible magnetic disk used to s.ore information. Floppy disks are man-
ufactured in 5]/4 and s inch diamcters.

fiowchart: Graphic diagram that uses special symbols to indicate the input, output
and flow of control of part or all of a program.

flow of control: Order of the cxecution of statements within a program.

format: System utility that writes a known pattern of information on a disk so a

given hardware configuration can properly support reading and writing on that disk.

formatted printing: Output specifically designcd in a certain pattern and achieved
:hrough particular coded language statemcnts.

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 163

E Glossary CBASIC Language Refercnce Manual

hagmcntation: Division of storage arca in a way that causes areas to be wasted.

function: Subroutine to which you can pass valucs and which returns a value. Usefu]
when the same code is required repeatcdly, as the program can call the function at an}
time.

dobal: Relcvant throughout an cntire program.

hcx file: ASCII-printable reprcsentation of a code or data file in hexadecimal notation.

hexadccimal notation: Notation for thc basc 16 number system using the symbols 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, A, 8, C, D, E, and F to reprcscnt thc sixteen digits. Machine
code is often converted to hexadccimal notation because it can be more easily under.
stood.

high bound: Upper limit of one dimension of an array.

high-lcvel languagc: Set of special words and punctuation that allows a programmer
to code softwarc without being concerncd with internal memory management.

idcntifier: String of characters used to name elements of a program, such as variable
names, rescrved words, and user-dcfined function names. Commonly used synony-
mously with "variablc name".

includc: Call an extcrnal file into the code sequence of a program at the point where
the includc statement is executed.

initializc: Set a disk system or one or more variables to initial values.

1/0: Abbreviation for input/ouput.

input: Data entered to an executing program, usually from an operator typing at the
tcrminal or by thc program reading data from a disk.

instruction: Set of characters that dcfines an opcration.

intcger: Positive or negative nonexponential whole numbcr tha. does not contain a
decimal point.

intcrface: Objcct that allows two indcpcndent systems to communicate with cach
other, as an intcrface betwecn the hardware and software in a microcomputer.

164 ALL INFo"ATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Language Rcferencc Manual E Glossary

intermediate codc: Codc generated by the syntactical and semantic analyzer portions
of a compiler.

intcrpretcr: Computer program that translates and executes each source languagc
statement before translating and cxccuting thc next one.

ISAM: Abbreviation for lndexed Sequential Acccss Me.hod.

key: Particular ficld of a record on which the processing is performcd.

keyword: Reserved word with special meaning for statements or commands.

kilobyte: 1024 bytes dcnoted as lK. 32 kilobytes equal 32K. 1024 kilobtyes cqual
one megabyte, or over one million bytes.

linkcr: System software module that connccts previously assembled or compiled pro-

grams or program modules into a unit that can be loadcd into mcmory and executed.

linkcd list: Data structure in which each element contains a pointer to its predecc.ssor
or succcssor (singly linkcd list) or both (double linked list).

list device: Device such as a printer onto which data can bc listed or printcd.

listing: Output filc created by the compiler that lists the statements in thc sourcc

program, thc linc numbers it has assigned to them, and possibly othcr optional infor-
mation.

literal data: Verbatim translation of characters in the code, such as in screen prompts,
report titles and column headings.

load: To move code from storage into memory for execution.

local variable: Relevant only within a specific portion of a program, such as within
a function.

loggcd-in: Madc known to thc operating systcm, in refercncc to drives. A drive is
logged-in when it is selected by the user or an cxecuting process.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH |65

E Glossary CBASIC Languagc Rcfcrence Manual

Iogical: Representation of somcthing such as a console, memory or disk drive .hat
might or might not bc the same in its actual physical form. For cxample, a hard disk
can occupy one physical drive, and yet you can divide the availablc storagc on it to
appear to the user as if thcrc were several different drives. These apparent drives are
the logical drives.

logical dcvice: Rcfercnce to an 1/0 dcvice by thc name or number assigned to thc
physical devicc.

logical opcrator: NOT, AND, OR, and XOR.

lowcr bound: Lowcr limit of onc dimcnsion of an array.

machinc codc: Output of an assembler or compiler to be cxccutcd directly on the
target processor.

machinc language: Instructions directly cxccuiable by thc processor.

memory: Storage area within and/or attached to a computcr system.

microproccssor: Silicon chip that is the Central Processing Unit (CPU) of the micro-
computcr system.

mixcd modc: Combination of integer and real or numeric and s.ring valucs in an
expression. Mixcd string and numcric operations are gcncrally not allowed in high
lcvel languagcs.

mncmonic opcrator: Alphabetical symbol for algebraic operator: LT, LE, GT, GE,
NE, and EQ.

module: Section of software having well-dcfincd input and output that can be tested
indepcndcntly of othcr software.

multiple-line function: Function composcd of a function definition statemcnt and one
or morc additional statcmcnts.

numcric constant: Rcal or integer quantity that does not vary within thc program.

numcric variablc: Real or integer identificr to which varying numcric quantities can
be assigncd during program cxecution.

166 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Refcrcncc Manual E Glossary

null string: A string that contains no character; cssentially an empty string.

obicct codc: Output of an assembler or compilcr that executcs on thc target proccssor.

opcn: Systcm service that informs thc operating system of the manner in which a

given resource, usually a disk file, is intended to bc used.

operating system: Collection of programs that superviscs the cxccution of other pro-
grams and the managcment of computer resources. An operating system provides an
orderly input/output environment between the computer and its peripheral devices,
enabling user programs to execute safely.

operation: Execution of a piece of code.

option: One of a set of parameters that can bc part of a command or language
statemc.nt. Options are used to modify the output of an executing process.

output: Data that the processor sends to the console, printer, disk, or other storage
medla.

parametcr: Value supplied to a command or language statement that provides addi-
tional information for thc command or statemcnt. Used interchangeably with "argu-
ment." An actual parameter is a value that is substituted for a dummy or formal
argument in a given procedure or function when it is invoked.

peripheral device: Devices external to the CPU. For example, terminals, printcrs, and
disk drives are common peripheral devices that are not part of the processor, but are
used in conjunction with it.

pointcr: Data item whose value is the address of a location in memory.

primitive: Most basic or fundamental unit of data such as a single digit or letter.

process: Program that is actually executing, as opposed to being in a static state of
storage on disk.

program: Series of specially coded instructions that performs specific tasks when
executed on a computer.

prompt: Any characters displayed on the input terminal to help the user decide what
the next appropriate action is. A systcm prompt is a special prompt displayed by the
operating system, indicating to the uscr that it is ready to accept input.

ALL INFORMATION PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH 167

E Glossary CBASIC Language Rcfercncc Manual

random acccss: Method of entering a file at any record numbcr, not necessarily the
first rccord in the file.

random acccss filc: Filc structure in which data can bc acccsscd in a random manncr,
irrcspcctive of its position in the filc.

random number: Number sclectcd at random from a set of numbers.

rcal numbcr: Numcric value specified with a dccimal point; same as "floating point
notation.„

record: One or more fields usually containing associated information in numcrical
or tcxtual form. A filc is composed of one or morc records and gcncrally stored on
disk.

rccord numbcr: Position of a spccific record in a fixed-lcngth file, relative to record
number 1. A key by which a specific record in a fixed file is accesscd randomly.

rccursive: Code that calls itself.

rclational opcrator: Comparison opcrator. Thc following set of operators exprcssed
in algcbraic or mnemonic symbols: LT, LE, NE, EQ, GT, GE, EQ. A relational operator
statcs a relationship between two expressions.

rescrved word: Kcyword that has a special meaning to a given language or opcrating
System.

rctum valuc: Valuc rcturned by a function.

row-major order: Order of assignment of values to array elements in which the first
itcm of thc subscript list indicates the numbcr of "rows" in the array.

run a program: Start a program executing. When a program is running, the micro-
processor chip is executing a scries of insmctions.

run-timc error: Error occurring during program execution.

run-time monitor: Program that directly exccutes the codcd instructions generated
by a compilcr/intcrprcter.

|68 ALL INFORMATI0N PRESENTED HEBE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Languagc Refcrencc Manual E Glossary

sequential access: Type of file structure in which data can only bc accessed serially,
)ne record at a time`. Data can be added only to thc cnd of thc filc and cannot be
leleted. An example of a sequential access media is magnetic tape.

sourcc program: Text file that is an input file for a processing program, such as an
editor, text formatter, assembler or compiler.

statemcnt: Defined way of coding an instruction or data definition using specific
kcywords in a specific format.

storage: Place for keeping data temporarily in mcmory or permancntly on disk.

strcam organization: Type of file organization uscd when data is to be acccsscd
sequentially. Can contain variable length records.

string constant: Literal data, as in a screen prompt, column heading, or titlc of a
report.

string variablc: Identifier of type string to which varying strings can be assigned during
program execution.

subroutinc: Scction of code that performs a specific task, is logically separate from
the rest of the program, and can be prewritten. A subroutine is invokcd by another
statement and returns to the place of invocation aftcr executing. Subroutincs are useful
whcn the same sequence of code is used more than oncc in a program.

subscript: Integer cxpression that specifies the position of an element in an array.

subscript list: Numeric value appendcd to a variable namc that indicatcs the number
of elcments in each dimension in the array of that name. Each dimcnsion must have
a valuc in the subscript list indicating the number of elements for which to allocatc
storagc space.

syntax: Rules for structuring statements for an operating system or programming
language.

toggle: "Swjtch" enabled by a special code in the command line that modifics thc
output of the executing program.

trace: Option used for run-time debugging. The trace option generally lists each linc
of code as it executes to enablc the programmer to notc whcre a problem occurs.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 169

E Glossary CBASIC Language Rcference Manual

upward-compatible: Term meaning that a program creatcd for thc previously released
operating system or compiler runs under a later relcase of the same software program.

user-defined function: Set of statements creatcd and given a function namc by thc
user. The function performs a specific task and is called into action by rcfercncing the
function by name.

utility: Tool. Program or module that facilitates certain operations, such as copying,
erasing and editing files, or controlling the cursor positioning on the video screen from
within a program. Utilities are created for the convenience of programmers and appli-
cations operators.

valuc: Quantity exprcsscd by an integer or real number.

variable: Name to which the program can assign a numerical value or string.

variable length: Usually refers to records, whcre each rccord in a file is not nccessarily
the same length as another.

variable name: Same as variable.

wildcard charactcrs: Special charactcrs, ? and *, that can be included in a Digital
Research filenamc and/or filetype to identify more than one file in a single file speci-
fication.

End of APpendix E

|70 ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

INDEX

Index

A

ABS function, 14
algebraic operators, 9
AND Opcrator,11
array, 5, 8, 22, 124

physical storage area of , 8
referenccd, 8
variablcs, 8

AS expression, 28, 64
ASC function, 15
assemblcr linkagc proccss

16-bit, 125
8-bit, 125

asscmbly languagc, 68, 85
interfacc, 124

assigned linc number, 137
assignmcnt statements, 55
astcrisk fill,112

ATN function, 16

8

backslash, 2, 6
balanccd parenthcscs, 9
BAS filcs, 1, 134
base offset value, 131
binary constant, 7
bounds checking, 9
BUFF Expression, 65
byic displacement value, 118

C

CALL address 8086, 128
CALL s.atcmcnt, 17, 86

calling parameters, 128
capitalization,13
CBASIC-86, 131, 132
CBASIC key words, 155-156
CHAIN statemcn., 18, 21
CHRS function, 19
CLOSE statement, 20, 45, 119
CMD filc,131
colon, 2
COMMANDS function, 21
commas, embedded, 112
commcn[s, 2
COMMON statement, 22, 105
Compiler, 1

dircctives, 133
error codes, 144-148
error messages, 136
file system errors, 143-144
listing, 133
togglcs, 135-136
starting the, 3

Computational Stack Area, 121, 122
concatcnation operator, 11
CONCHAR°/o function, 24, 107
console device width, 25
console input and output, 107
console output, 108
CONSOLE sta.ement, 25, 70
constants, 5, 9
CONSTAT°/o function, 26, 107
continuation character, 2, 5, 29, 79
control characters, 6
COS function; 27
CP/M, 49, 57, 64, 80, 86
CREATE statemcnt, 28, 119
Cross-reference Lister, 1, 140
CTRL-C, 49

ALL INFORMATI0N PRESENTED HEBE IS PROPRIETARY TO DIGITAL RESEARCH
171

CTRL-U, 49
CTRL-Z, 49

D

data arca overwriting,134
data fields, 108
data files,

relativc,117
sequential,115

DATA statemcnt, 29, 81, 107
data typcs, 5
DDT, 127
Dccimal-ASCII-Hex Tablc, 157
DEF statemcnt, 30, 104, 105
DELETE statement, 31, 45,119
delimiters,115
DIM statement, 23, 32, 105
dimension, 9
dopc vector, 124
dummy argument, 104

E

ELSE statement, 43, 44
END statcmcnt, 33, 134
EQ opcrator, 10
escapc charactcrs, 114
EXP function, 34
exponcntial notation, 7
exprcssion list, 109
cxprcssions, 9

F

FEND statcmcnt, 35, 105
fields,114
file organization, 114
FILE statemen., 36, 119

files, 114
fixcd format, 7
fixed-length string field, 108
FLOAT function, 37
floating-point number, 7, 16
FN,5
FOR loop, 39
FOR statemcnt, 38, 61
format string, 73, 106
FRE function, 40
Free Storagc Area, 121
functions, 5, 103

definition, 104
names, 103
rcferences, 106

G

GE operator, 10
GENCMD,131
GO statcment, 41, 42
GOSUB statement, 41, 62, 79, 137
GOTO statemcnt, 42, 61, 105, 137
GT operator, 10

H

hcxadccimal constants, 7, 135
high-lcvel languagc featurcs, 1

I

idcntificr, 5-8, 61, 140
usage, 140

IF END statcmcnt, 20, 28, 31, 45
IF statement, 43-44
individual rccord lengths,115
ini,ializc, 8

INITIALIZE statement, 47

172 ALL i\'rtiR\t \TioN PRESENTED HERE is pRoPRIETARy TO DIGITAL RESEARC`H

INT file, 1
INP func.ion, 48, 107
INPUT statement, 49-50, 74-76, 107
INPUT LINE statemcnt, 76, 107
INT function, 51
iNT °/oFunction, 52
intcgers, 5-7, 123
Intermediate Code Area, 122
in.ermcdiate files, 1
Interpreter, 1
italics, 13

K

kcywords, 44, 50

L

LE operator, 10
lcading sign,113

LEFTS function, 53
LEN function, 54
LET statcment, 55
line numbers, 1
line-editing functions, 107
listing control, 133
literal charactcr,114
litcral data, 107
local variables, 104
LOG function, 56
logical operators,11
lowcr-casc lcttcrs, 13
LPRINTER, 108
LPRINTER statement, 50, 57, 69-70,

108, 139
LT opcrator, 10

M

machinc language subroutine, 17
machinc level cnvironment, 121
mantissa, 7
MATCH function, 58-59
ma.hematical opcrators, 10
mcmory allocation, 121
MIDS function, 60
minus sign, 113
mixcd-mode expression, 10
mncmonic relational operators,11
multiple statements, 2
multiple-statement function, 105

N

names, 5
variablc, 5
uscr-defined function, 5

NE operator, 10
nested functions, 105
NEXT statement, 38, 61
nonsubscripted variables, 22
NOT operator, 10,11
numbcrs,

intcgcr, 7
real, 7

numeric constants, 5, 12, 49
numeric data field,111-114

0
0N Statement, 62-63, 79, 137
0PEN statement, 28, 45, 64-65,119,

134
operators, hicrarchy of , 10
optional .i.le ficld, 140
0R operator,10-11
0RG address, 127

ALL INFORMATION PRESENTED HERE IS PROPBIETARY T0 DIGITAL RESEARCH

OUT prcdcfined function, 108
0UT statemcnt, 66
overflow, 12

P

passing parameters, 125
PEEK function, 67, 68, 85
POKE s[atcmcnt, 25, 68, 85, 128
POS function, 57, 69, 108

power operator,10-11
PRINT #,115,118,119
PRINT sia.emcni, 57, 70, 95, 108, 134
PRINT USING statemcnt, 73, 108,

115,119

variation, 108

printing, 108

Q

quotaiion mark, 6

R

random access files, 65
RANDOMIZE statemcnt, 74, 84
READ #, 76,116,118,119
READ LINE statcmen., 77
READ statement, 29, 75, 107, 134
Real Constant Arca, 121, 122
real constants, 7
real numbcrs, 7-12
RECL exprcssion, 28, 64, 76
rccords,114
relational opcrators, 10, 11
relative files,117

random acccss .o, 117
rcla.ive rccord numbcr,117
REM statement, 22, 79

REMARK sta.ement, 79
RENAME function, 80
RESTORE statement, 81, 107
RETURN statement, 35, 82, 105
RIGHTS function, 82
RND funciion, 84
run-time debugging,136
run-time lntcrpreter, 122

starting, 4
Run-time messages,

error codcs, 144-148
warning messages, 149
warning codes, 150

S

SADD func.ion, 85
SAVEMEM statcment, 86, 124
sequcntial files,115
SGN function, 88
SIN function, 89
single-statemcnt function, 104
SIZE function, 90
sourcc programs, 1
spaccs, 2
SQR Function, 92
statemcnt labcls, 1
statement numbcrs, 62
STEP expression, 38
STOP, 21
STOP statement, 49, 70, 93
STRS function, 94
stream organization, 115
strings, 6, 124
string constants, 6
string da.a ficld, 109
string lcngth, 6
string variables, 8-9, 77, 99
subroutincs, 41, 82
subscript, 9

| 74 ALL INFORMATION PRESENTED HERE IS PROPBIETARY TO DIGITAL RESEARCH

subscript list, expressions in, 9
subscrip.ed variablcs, 9, 23, 49, 99

T

TAB function, 95, 108
TAN function, 96
THEN statemcnt, 43, 45
TO expression, 38
TO statement, 42
toggles

A, 141
8, 136, 141
C, 136, 141
D, 136, 141
E, 136, 141
F, 136, 141
F, 137,141
functions, 135
G, 137, 141
H, 141

TRACE option, 21, 139
trailing sign, 113

Transicnt Program Area, 121
typographical conventions, 13

U

UCASES function, 97
unsubscripted variables, 36
up arrow,111
user-defined functions, 106

V

VAL funciion, 98
Variable Storage Area, 121
variable-length string field, 108

variables, 5-9, 49, 102
VARPTR func.ion, 99

W

WEND statement, 100, 102
WHILE statement, 100, 102
WIDTH cxpression, 57

X

XOR opera.or, 10, 11
XREF filc, 140

S, 5, 103
floa.ing,112

%, 5, 103, 133
°/oCHAIN Directive, 134
°/oCHAIN directive, 134
°/oE]ECT directivc, 133

%INCLUDE directive, 133
%INCLUDE Directive, 134
°/oL|ST Directive, 133

%NOLIST Directive, 133
%PAGE directivc, 133

ALL INFORMATI0N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Code 3984710 C (0)
Printed in ltaly

olivetti

Code 3984710 C (0)
Printed in ltaly

olEve[lE

