
PERSONAL COMPUTER

PCOS
System Programmer's Guide

.n

M20 PERSON^L COMPUTEFL

PCOS
System Programmer's Guide

PREFACE

This book describes the architecture and design concepts of the Profes-
sional Computer Operating System (PCOS). Moreover, it provides informa-
tion on how to customize PCOS for particular installations or applica-
tions .

The book is directed at system programmers, system analysts, and, in
parts of the book, interested non-programmers. Some parts of the book
assume knowledge of assembly language concepts.

The book comprises three parts.

Part 1 provides a general overview of the software components that make
up PCOS, and of the hardware options that PCOS manages.

Part 11 contains deJ.ailed descriptions of the software modules that make
up PCOS, and of how those modules relate to the hardware.

Part 111 provides information that enables the user to customize PCOS.

REFERENCES :

PCOS (Professional Computer Operating System) User Guide
Code 3985280 D

Assembler User Guide
Code 3987670 L

DISTRIBUTI0N: General (G)

EDITION: December 1983

RELEASE: 3.0

Trie toiiowing iro tradem).k§ ®t lno. C. 0lim«l & C.. S,p A :

ollcoM 6Tl. oLITERM olnAtoRo. ollNUM, ollsTAT, ollTUTOA
0LIEN"Y. OLISOF[T, 0llMASTEFl, 0113275

MULTipiAN i. . r.oisi.i.a tria.mark ol MICROSOFl lnc.

MS.DOS ind MS-PASCAL .i. liad.m.ik! ol MICROSOFT lnc

CP/M ano CP/M-86 .i. r.oisti.®d lr.d®marks ol Diü!.l
Ae,®,'ct' 'nc.

CBASIC-86 is a lrao.mark ol Oigit.l fl®!.arcl` lnc.

Copyright © 1983, by Olivetti
A11 rights reserved

PUBLICAT10N ISSUED BY:

1ng. C. 01ivetti & C., S.p.A.

Direzione Documentazione

77, Via Jervis -10015 IVßEA (ltaly)

CONTENTS

PA6E

1-1 1.1NTRODUCTI0N

1 -1 0VERVIEW

1 -1 THIS MANUAL

1-2 FEATURES OF PCOS

2-1 2. SYSTEM 0VERVIEW

2-1 0VERVIEW

2-1 INTRODUCT10N

2-2 coMmND LINE INTERPRETER

2-2 cor.lANos AND uTILITIEs

2-3 SYSTEM CALL INTERFACE

2-4 DRIVERS

2-5 PCOS KERNEL ANl) MEMORY MANAGEMENT

3-1 3. CorMAND ovERvlEw

3-1 0VERVIEW

3-2 PROGRA"1N6 T00ls

3-3 PCOS CONF16URING Col.lANDS

3-3 sET SvsTEM GLOBAL comNDs

3-4 KEYB0ARI)-RELATED C0l.lANDS

3-5 FILE MANA6EMENT COMMANDS - VOLIME HANDLING

3-6 FILE MANAGEMENT col.lANDs - FILE rlANDLING

3-7 STANDARI) 1NTERFACE HANOLING COM"DS

3-7 PCOS GlmpHIC FACILITy COMMANDS

3-8 USER AIDS

PAGE

3-8 TV ADAPTOR CO"DS (*)

4-1 4. HARDlilARE CONF16URAT10N 0PTIONS

4-1 0VERVIEW

4-1 MINIMIM CONFIGURATION

4-1 KEYBOARI)

4-1 DISPLAY SCREEN

4-2 DISK DRIVES

4-3 MEMORY

4-4 PRINTERS

4-4 AUXIL IARY INPUT/OUTPUT

4-4 RS232

4-4 IEEE

4-4 ALTERNATE PROCESSOR B0ARl)

4-5 TRADEOFFS

4-5 SYSTEM PRINTERS AVAILABLE

4-5 l)OT MATRIX IMPACT

4-6 SPARK INK JET

4-7 THERMAL

4-7 DAISY WHEEL

5-1 5. OVERVIEW

5-1 GENERAL OVERVIEW

5-1 DETAILEl) CONTENTS

5-1 COIMAND LINE INTERPRETER

5-1 COMMANDS AND UTILITY PROGRAMS

5-1 MEMORY CONF16URATION

5-2 MEMORY MANA6EMENT

5-2 SYSTEM CALLS

PCOS SYSTEM PROGRAMMER'S GUIDE

PA6E

5-2 DEVICE REROUTING

5-2 THE KEYB0ARD 0RIVER

5-2 VIDEO DISPLAY DRIVER

5-3 DISK DRIVER ANI) FILE MANA6EMENT

5-3 0THER DRIVERS

5-3 THE PRINTER DIUVER AND PRINTER MANA6EMENT

5-3 GRAPHICS SUBSYSTEM

6-1 6. COMMAND LINE INTERPRETER

6-1 0VERVIElil

6-1 THE ComlAND LINE

6-1 COMMAND LINE SOURCES

6-1 THE BASIC CALL STATEM=NT

6-2 COMMANI) LINE PARSIN6

6-2 l)EVICE REROUTING

6-2 PARAMETERS

6-2 REROUTING DIRECTIVES

6-3 STRINGS

6-3 NUMBERS

6-3 NULL PARAMETERS

6-3 MAXIMUM COUNT

6-4 FILENAMES AND EXTENsloNS

6-4 PASSIN6 PARAMETERS

6-4 COMMAND EXECUTI0N

6-5 RELATIONSHIP 0F THE CLI AND CALL USER (77)

6-5 SPECIAL CHARACTERS

7-1 7. COMMANDS AND UTILITY PROGRAMS

7-1 0VERVIEW

PA6E

7-1 BACKGROUN0 1NFORMAT10N

7-1 RELATED SECT10NS

7-1 C0li.lAND NAMES

7-2 COMMAND LINE INTERPRETER

7-2 COMMAND SUFFIXES

7-2 .ciiid and .sav

7-3 . bas

7-3 PUNLOAD EXCEPT10NS

7-3 EXCEPT10N LIST

7-3 THE .sav EXTENS10N

7-3 LEGAL FILENAMES

7-4 cot.lANl) NArE AVAILABIL ITV

8-1 8. MEMORY CONF16URAT10N

8-1 0VERVIEW

8-1 PHysICAL rEMORy BLOCKS

8-2 Z8001 MEMORY CONCEPTS

8-3 LOGICAL-TO-PHYSICAL MEMORY DECODIN6

8-5 L06ICAL AODRESSES

8-5 SEGMENT USA6E

8-5 R" (REAl) oNLV MErK}Rv)

8-6 SCREEN BIT mp

8-6 PCOS BLOCKS

8-6 LANGUAGE BLOCKS

8-6 uTILITV AND ASSErßLv PRo6RAMS

8-6 Z8001 BACK6ROUND INFORMAT10N

8-7 SYSTEM Mot)E AND NORMAL MODE

8-7 SE6MENTED MODE AND NON-SE6MENTED MODE

PCOS SYSTEM PROGRAMMER'S GUIDE

PAGE

8-8 THE SEVEN FUNDAMENTAL CONFIGURAT10NS

8-8 0VERVIEW

8-9 CONF16URATI0N 1 :

8-10 CONF16URAT10N 2:

8-11 CONF16URATI0N 3:

8-12 CONF16URATloN 4:

8-13 CONFIGURAT10N 5:

8-14 CONFIGURATI0N 6:

8-15 CONF16URAT10N 7:

9-1 9. MEMORY MANA6EMENT

9-1 0VERVIEW

9-1 PCOS MEMORY CONCEPTS

9-1 1MPLEMENTAT10N OF MEMORY MANAGEMENT

9-2 WARNING 0N BUFFER USE

9-3 PCOS NUCLEUS

9-3 PCOS STARTUP

9-3 0BSOLETE STORA6E ALLOCATI0N CALLS

9-4 STORAGE ALLOCAT10N CALLS

9-4 Dispose (34)

9-4 New (120)

9-4 BrandNewAbsolute (121)

9-5 NewLargeBlock (122)

9-5 Stickyllew (123)

10-1 10. SYSTEM CALLS

10-1 0VERVIEW

10-1 TYPES OF CALLS

10-2 NIMBERIN6 AND LABELS

PAGE

10-2 FURTHER INFORMAT10N

10-2 BYTESTREAM 1/O CALLS

10-2 6ENERAL

1o-3 FILE IDENTIFIER (FID) NlmERs

10-3 FILE AND DEVICE P01NTERS

10-3 BYTESTREAM 1/O CALL OVERVIEW

10-3 LookByte (9)

10-4 GetByte (10)

10-4 PutByte (11)

10-4 ReadBytes (12)

10-4 WriteBytes (13)

10-5 ReadLine (14)

10-5 Eof (16)

10-5 ResetByte (18)

10-5 Close (19)

10-6 SetcontrolByte (20)

10-6 GetstatusByte (21)

10-6 0penFile (22)

10-6 Dseek (23)

10-7 D6etLen (24)

10-7 DGetposition (25)

10-7 BYTESTREAM CALLS AND APPLICABLE DEVICES

10-8 DEVICE REROUTIN6

10-8 RS232 DEVICE DRIVER

10-9 BLOCK TRANSFER CALLS

10-9 6ENERAL

10-9 BLOCK TRAl\lsFER CALL 0VEIWIEW

PCOS SYSTEM PROGRAMMER'S GUIDE

PAGE

10-9 Bset (29)

10-9 BWset (30)

10-9 Bclear (31)

10-10 BMove (32)

10-10 STORAGE ALLOCATloN CALLS

10-10 GENERAL

10-10 LIST OF CALLS

10-10 DATA MANIPULAT10N CALLS

10-10 GENERAL

10-11 NIMERIC DISPLAY CALL 0VERVIEW

10-11 DHexByte (91)

10-11 DHex (92)

10-11 l)HexLong (93)

10-11 DNumw (94)

10-12 DLong (95)

10-12 STRIN6 HANDLIN6 CALL 0VERVIEW

10-12 Dstring (89)

10-12 CrLf (90)

10-12 StringLen (105)

10-13 TIME AND DATE CALLS

10-13 SetTime (73)

10-13 SetDate (74)

10-13 6etTime (75)

10-14 GetDate (76)

10-14 USER CALL T0 PCOS

10-14 Calluser (77)

10-14 SYSTEM MANA6EMENT

PA6E

10-14 SYSTEM MANA6EMENT CALl OVERVIEW

10-14 BExit (0)

10-15 Error (88)

10-15 Bmtsystem (107)

10-15 Setsysseg (108)

10-15 SearchDevTab (109)

10-16 KbsetLock (114)

10-16 EXPLANAT10N

10-16 FILE MANA6EMENT

10-16 GENERAL

10-16 EXPLANATI0N

10-17 1EEE-488 CALLS

10-17 6ENERAl

10-17 SlmlARy OF IEEE SysTEM CALLS

10-18 0BSOLETE CAILS

10-18 Newsa.esegiient (33)

10-18 Maxsize (99)

10-18 TopFree (100)

10-19 ProtRead (101)

10-191nitHeap (103)

10-19 NewAbsolute (104)

10-19 6RAPHICS CALLS

10-20 SIMARY 0F 6RAF'lJICS CALLS

10-21 SYSTEM CALL LABELS

10-21 THE MASTER TABLE

11-1 11. DEVICE REROUTIN6

11 -1 0VEfwIEW

PCOS SYSTEM PROGRAMMER'S 6UIDE

PAGE

11-1 LOCAL AND GL0BAL DEVICE REROUTING

11 -1 REROUTING PARAMETERS

11 -3 l)EVICE NAMES

11-3 FILE NAMES

11 -3 REROUTIN6 EXAMPLES

11-5 DEVICE REROUTING FROM A BASIC PR06RAM

11 -6 1MPLEMENTATI0N

11-6 USE 0F DEVICE REROUTING

12-1 12. THE KEYB0ARD I)luvER

12-1 0VERVIEW

12-1 RELAT10NSHIP 0F KEYBOARD DRIVER ANI) VIDE0 DISPLAY DRIVER

12-1 KEYB0ARI) DRIVER INTERNAL L061C

12-2 WHAT THE KEYB0ARI) DRIVER DOES

12-3 RAW CODES

12-4 THE CONTROL CHARACTERS

12-5 THE KEYSTROKE UTILITIES

12-5 THE SLAN6 UTILITY

12-6 THE CKEY UTILITY

12-6 THE PKEY UTILITY

12-6 THE LTERM UTILITY

12-6 SLANG UTILITY

12-6 0VERVIEW

12-6 USE 0F THE SLANG UTILITY

12-7 CHANGE KEY UTILITY

12-7 0VERVIEW

12-7 USER INTERFACE DESCIUPTION

12-9 THE PKEY UTILITY

PAGE

12-9 0VERVIEW

12-9 l)EFINE KEY

12-10 DELETE KEY

12-10 DELETE ALL

12-11 DISPLAY KEYS

12-11 THE USA AScll KEYBOARD

12-13 NATI0NAL KEYB0ARD DIFFERENCES

12-13 SYSTEM CALLS

13-1 13. VIDE0 DISPLAY

13-1 0VEFWIEW

13-1 DRIVER FLAICTIONS

13-1 DISPLAY SCREEN

13-2 SCREEN BIT-MAPS AND COLOR

13-3 SCANLINE SKIPPIN6

13-3 DISPLAY FONT AND CHARACTER FONT

13-4 FONT TABLES

13-4 READ AND WRITE FONT UTILITIES

13-5 RFONT

13-5 RFONT FILE STRUCTURE

13-7 WFONT

13-7 RFONT AND WFONT -INTERNAL INFORMATION

13-8 SYSTEM CALLS

13-8 TEXT

13-8 GRAPHICS CALLS

13-8 6ENERAL

13-9 CLEAR WINDOW (SCREEN)

13-9 CURSORS

PCOS SYSTEM PROGRAMMER'S GUIDE

PAGE

13-9 WINDOWS

13-10 GRAPHICS ACCIMIJLATOR

13-11 PAINT GRAPHICS CALLS

13-11 COLOR

13-12 0VERVIEW 0F 6RAPHICS CALLS

13-12 Cls (35)

13-12 Chgcuro (36)

13-12 Chgcurl (37)

13-12 Chgcur2 (38)

13-12 Chgcur3 (39)

13-13 Chgcur4 (40)

13-13 Chgcur5 (41)

13-13 Readcuro (42)

13-13 Readcurl (43)

13-14 Selectcur (44)

13-14 Grflnit (45)

13-14 Paletteset (46)

13-14 Definewindow (47)

13-15 Selectwindow (48)

13-15 Readwindow (49)

13-15 Chgwindow (50)

13-15 Closewindow (51)

13-16 ScalexY (52)

13-16 MapxYC (53)

13-16 MapcxY (54)

13-16 Fetchc (55)

13-17 Storec (56)

PA6E

13-17 UpC (57)

13-17 I)ownc (58)

13-17 Leftc (59)

13-17 Rightc (60)

13-17 SetAtr (61)

13-18 Setc (62)

13-18 Readc (63)

13-18 Nsetcx (64)

13-18 NsetcY (65)

13-18 NRead (66)

13-19 Nwrite (67)

13-19 Pntlnit (68)

13-19 TDolnc (69)

13-20 TUPC (70)

13-20 ScanL (71)

13-20 ScanR (72)

13-20 CloseAllwindows (113)

13-21 ClearText (115)

13-21 ScrollText (116)

14-1 14. DISK DRIVER AND FILE MANA6EMENT

14-1 0VERVIEW

14-1 DISK DRIVER AN0 FILE MAl\lA6EMENT FUNCT10NS

14-1 I)lsK DRIVER CAPABILITIES

14-2 DISKETTE AND HARD DISK CHARACTERISTICS

14-2 l)1SKETTES

14-2 HARD DISK

14-3 INTERFACE DESCRIPTIONS

PCOS SYSTEM PROGRAMMER'S GUIDE

PA6E

14-3 DRIVER INITIALIZATI0N

14-4 ASSEMBLY IAN6UA6E INTERFACE

14-4 Cq"NDS

14-4 VERIFY AFTER WRITE FLAG OPTI0N

14-5 FLOPPY DISK ERROR CODES

14-5 HARD t)ISK ERROR CODES

14-5 CONCEPTS AND BACK6ROL"D INFORMATI0N

14-5 L061CAL BLOCK NIMBERS

14-7 wRITE PREComEllsATI0N

14-8 DISK FORMATS

14-8 Ecm coM.ATIBILITv

14-9 MSDOS, CPM-86, AND IBM PC DISK FORMATS

14-9 SYSTEM INTERFACE DESCRIPTloN

14-9 INITIALIZATI0N

14-10 FloppY DISK ERROR RECOVERY

14-11 HARD DISK ERROR RECOVERY

14-11 MISCELLANEOUS INFORMATloN

14-11 ROM REQUIREMENTS

14-12 HARDWARE CONF16URAT10NS AND VERS10NS

14-12 VALID OPERATloNS

14-13 FILE MAl\IA6Eru=NT OVERVIEW

14-13 L061CAL BlocKS

14-13 CONTROL TRACK

14-13 VOLmE DESCRIPTOR BLOCK

14-14 ALLOCATION 0F BLOCKS

14-15 FILE DIRECTORY

14-15 THE DIRECTORY ENTRY

PA6E

14-15 FILENAME HANDLIN6

14-15 FILE DESCRIPTOR BLOCK

14-16 ovERvlEw oF FILE mNA6EMENT uTILITIES

14-18 SYSTEM CALL OVERVIEW

14-18 DISK BYTESTREAH l/O CALLS

14-19 FILE MAl\lA6EMENT CALLS

14-19 DRemve (26)

14-19 DRenaiie (27)

14-19 DDirectory (28)

14-20 DisectNa.e (96)

14-20 Checkvol" (97)

14-20 Search (98)

14-20 Setvol (102)

14-21 DiskFree (106)

15-1 15. OTHER DIUVERS

15-1 0VERVIEW

15-1 RS-232-C DEVICE DRIVER

15-1 USE

15-1 DESCRIPTloN

15-2 HANDSHAKE

15-2 DEVICE PARAMETER TABIE

15-2 1NPUT ERROR MNDLIN6

15-2 SYSTEM CALLS

15-3 1EEE-488 DEVICE DRIVER

15-3 USE

15-3 DESCRIPTI0N

15-3 IEEE MAILB0X

PCOS SYSTEM PROGRAMMER'S GUIDE

PA6E

15-4 1EEE SYSTEM CALLS

15-4 IBsroo (78)

15-5 1Bsro1 (79)

15-5 IBPoll (80)

15-5 IBIset (81)

15-5 IBRset (82)

15-5 lBprnt (83)

15-6 IBWByt (84)

15-6 IBlnpt (85)

15-6 IBLinpt (86)

15-7 1BRByt (87)

15-7 ERROR HANDLIN6

16-1 16. THE PRINTER DRIVER AND PRINTER MAl\lA6EMENT

16-1 0VERVIEW

16-1 PRINTER I)RIVER DESCRIPTION

16-2 PRINTER OUTPUT

16-2 PRINTING TEXT

16-3 PRINTING GRAPHICS

16-4 USIN6 SFORM TO SET THE PRINTIN6 ENVIRONMENT

16-5 SUPPORTING TWO PRINTERS

16-6 CONNECTIN6 0THER DEVICES TO THE DIUVER

16-6 PRINTING SCREEN TEXT WITH THE LSCREEN UTILITY

16-6 USING LSCREEN

16-7 1MPLEMENTATI0N 0F LSCREEN

16-7 PRINTING TEXT ANl) GRAPHICS WITH THE SPRINT UTILITY

16-8 SPRINT PARAMETERS

16-8 SPRINT IMPLEMENTATI0N

PAGE

16-10 CORRECT10N T0 PRESERVE ASPECT RATI0

16-10 PRINTING COLOR 6RAPHICS

16-11 PRINTER SYSTEM CALLS

17-1 17. 6RAPIIICS SUB-SYSTEM

17-1 0VERVIEW

17-1 DESCRIPTION 0F TM= M20 6RAPHICS PACKA6E

17-3 CONF16URATIONS AND VERS10NS

17-3 11ARDWARE

17-3 SOFTWARE

17-3 FIWCTI0NAI FLOW DIA6RAMS

17-4 6RAPHICS LIBRARY ROUTINES

17-4 1rpLEMENTATION LAN6UA6E

17-5 6ENERAL APPLICATION INFORMATloN

17-5 STEPS IN MODULE DEVELOPMENT

17-6 ENTERIN6 THE 6RAPHICS PROGRAM

17-6 DEFININ6 C00RDINATES

17-7 POSITION LOCATORS

17-9 FURTHER REFERENCES

17-10 6RAPHICS LIBRARY FUNCTIONS : SPECIFICATI0NS

17-10 LIST OF ROUTINES

17-11 0UTPUT 6ENERATION FUNCT10NS

17-11 LIMEABS(x,y)

17-12 LINEREL(dx,dy)

17-13 POLYLINE(#oints, Xarray, Yarray)

17-14 MARKERABS(x,y)

17-15 M^RKERREL(dx,dy)

17-16 POLYMARKER(#oints,Xarray,Yarray)

PCOS SYSTEM PROGRAMMER'S GUIDE

PAGE

17-17 TEXTCURSOR(colimn,rol)

17-18 GRAPHPOSABS(x,y)

17-18 6RAPHPOSREL(dx,dy)

17-19 GRAPHCURSORABS(x,y)

17-20 GRAPHCURSORREL(dx,dy)

17-21 PIXEL ARRAY(Xwdth,Yht,arrayname)

17-22 GDP(functionmbr ,niinberofpoints ,Xarray,Yarray,datarec)

17-22 CIRCLE

17-23 ELLIPSE

17-24 0UTPUT ATTRIBUTE SETTIN6 FUNCTloNS

17-25 SET LINE CLASS(classnmbr)

17-25 SET TEXTLINE(chrwdth,txtlineht)

17-26 SELECT CURSOR(selectnmbr)

17-27 SET TEXT CURSOR BLINKRATE(rate)

17-27 SET GRAPHICS CURSOR BLINKRATE(rate)

17-28 SET TEXT CURSOR SHAPE(arraynai")

17-29 SET GRAPHICS CURSOR SHAPE(arrayname)

17-30 SET COLOR REPRESENTATI0N(indx#,colr#)

17-31 SELECT GRAPHICS COLOR(nmbr)

17-32 SELECT TEXT COLOR(FGnmbr,BGnmbr)

17-33 SET COLOR LOGIC(operatornmbr)

17-35 TRANSFORMATION AND CONTROL FUNCT10NS

17-35 0PEN GRAPHICS

17-36 CLOSE 6RAPHICS

17-36 SET WORLl) C00RDINATE SPACE(xfor#,xO,yo,xl ,yl)

17-37 DIVIDE VIEW AREA(div/orient,divpt,xform#)

17-39 SELECT VIEW TRANSFORMATI0N(xform#)

PA6E

17-40 CLOSE VIEW TRANSFORMAT10N(xfor#)

17-41 CLEAR VIEW AREA(xform#,err)

17-42 ESCAPE(functionnmbr, recordname)

17-44 INQUIRY FUNCT10NS

17-44 lNQ VIEW AREA(err,bytei.dth,scanliruht,chrwdth,txtlineht)

17-45 INQ WORLD COORDINATE SPACE(err,xO,yo,xl,yl)

17-451NQ cmRENT TRANSFORM^T10N N"BER(err,xforh#)

17-46 INQ ATTRIBUTES(err,grcolr,fgcolr,bgcolr,logop,1ineclass)

17-47 lNO TEXTCURSOR(err,colimn,row,blinkrate)

17-48 INQ GRApmos(err,x,y)

17-48 INQ 6RAPLX:URSOR(err,x,y,blinkrate)

17-49 INQ PIXEL ARRAY(Xwdth,Yht,err,invalidvals,arrayna.e)

17-51 1NQ PIXEL C00RDINATES(Xworld,World,err,Xpxlcoord,Ypxlcoord)

17-52 INQ PIXEL(x,y,err,pxlcolrnmbr)

17-53 ERROR INOUIRY(errorcode)

17-54 REFERENCES

17-54 LAN6UA6E BINDINGS

17-55 CONCORDANCE BETWEEN BASIC AND PCOS 3.0 6RApl+1CS PACKA6E

18-1 18. OVERVIEW

18-1 1NFORMAT10N IN PART 3

18-1 BRIEF DESCRIPTI0N OF CONTENTS

18-1 CREATING M20 SYSTEM UTILITIES

18-1 SYSTEM CONF16URATloN

18-1 PCOS ENVIRONMENT ANl) 610BAI CO..lANDS

18-2 CUSTOMIZIN6 A PCOS SYSTEM

18-2 l)ATA PASSIN6 MEcl+ANISM

18-2 LAN6UAGE SUPPORT

PCOS SysTEM PROGRAMMER'S GUIDE

PAGE

18-2 INSTALLIN6 PCOS 0N A HARD DISK

18-2 AScll

18-2 PCOS ERROR CODES

18-2 GLOSSARY

19-1 19. CREATING M20 SYSTEM UTILITIES

19-1 0VERVIEW

19-1 0BJECT COI)E FORMAT

19-1 CODEFILE FORMAT

19-2 BANNERS

19-3 EXTERNAL REFERENCING

19-4 PARAMETER PASSING

19-6 ERROR HANDLING

19-7 EXAtpLE UTILITY

20-1 20. SYSTEM CONFIGURATloN

20-1 0VEIWIEW

20-1 RELAT10NSHIP 0F CONFIGURAT10N AND ENVIRONMENT

20-2 PCOS

20-3 BASIC

20-3 0THER LAN6UA6ES

20-3 MODIFYINC TllE PCOS ENVIR0l\lMENT

20-3 SoFTWARE RE-CoNF16uRATloN oF mRDUARE

20-3 PRINTERS

20-4 DISK FORMATS

21 -1 21. PcoS ENvlRONMENT AND 6LOBAL cor.AANDS

21 -1 PCOS ENVIRONMENT

21 -1 6L0BAL COMMANDS

21 -1 6L0BAL COMMANO 0VERVIEW

PA6E

21 -3 PSAVE AND DEFAü.T OPT10NS

21-4 1NTERACTION 0F BASIC AND 6L0BAL COMMANl)S

21 -4 SBASIC

21-4 SSYS (SET SYSTEM) AN0 DISPLAY MODE

22-1 22. CUSTOMIZIN6 A PCOS SYSTEM

22-1 SOFTWARE CONF 16URAT10N

22-1 STANDARD INITIALIZATI0N

22-2 NON-STANI)ARD INITIALIZAT10N

22-2 CUST"IZIN6 THE KEYBOARl)

22-2 CKEY

22-2 PKEY

22 -3 6ENERAL

22-3 CUSTOMIZIN6 FONT CHARACTERS

22-3 SET SYSTEM 6LOBAL COMMANDS

22-4 1NCORPORATIN6 TRANSIENT COMMANDS

22-4 SAVING THE RECONF16URED SYSTEM

22-4 PSAVE

22-4 THE PCOS.SAV STANDARI) FILE

22-5 THE PSAVE PROCEI)URE

22-5 PSAVE AND MEMORY EXPANS10N

22-5 B00T BLOCK UPDATIN6

22-6 A PCOS BO0TABLE FILE

22-6 B00TSTRAP BACK6R0lMD INFORMATION

22-6 BOOT ROM 1.0

22-6 BO0T ROM 2.0

22-6 TllE PRUN COMMAND

22-7 StJ"RY

PCOS SYSTEM PROGRAMMER'S GUIDE

PA6E

23-1 23. DATA PASSING MECHANISM

23-1 0VERVIEW

23-1 USE 0F THE STACK

23-2 FORMAT 0F l)ATA ITEMS

23-2 NULL PARAMETERS AND DEFAULT VALUES

23-3 INTEGER PARAMETERS

23-3 LONG INTEGER PARAMETER

23-3 STRIN6 PARAMETER

23-4 SINGLE-PRECISI0N FLOATING P0INT PARAMETER

23-4 DOUBLE-PRECISI0N FLOATING P0INT PARAMETER

23-5 SEGMENT B0UNl)AIUES ANl) P01NTERS

24-1 24. LANGUAGE SUPPORT

24-1 0VERVIEW

24-1 DATA PASSING

24-1 AVAILABLE REPRESENTAT10NS

24-2 LON6 INTEGER EXCEPTI0N

24-2 SYSTEM CALLS vs MASTER TABLE

24-2 lNTERNAL SYSTEM RESOURCES

24-2 INPUT/OUTPUT

24-2 PCOS ANI) LAN6UA6E MEMORY ALLOCATI0N

24-3 BASIC

24-4 COMPILED LAN6UA6ES

24-4 NlmERICAL REPRESENTATION

24-5 1NTERNAL REPRESENTATI0N

24-5 REPRESENTATI0N LAYOUTS

24-6 EXPONENT BIASING

24-6 ROUNDING

PA6E

24-6 PRECIS10N

24-7 1EEE STANDARD LIMITATloNS

25-1 25. 1NSTALLING PCOS 0N A HARD DISK

25-1 0VERVIEW

25-1 NEW INSTALLATI0N

25-1 LOADING PCOS INT0 THE SYSTEM

25-1 FORMATTIN6 THE HARt) DISK DRIVE

25-1 LOADING PCOS ONT0 THE HARD DISK

25-2 COPY PCOS COMMANDS 0NT0 HARD DISK

25-2 UPDATE INSTALLATloN

25-2 CONFIGURING THE NEW PCOS

26-1 26. AScll

26-1 0VERVIEW

26-1 BACK6ROUNI)

26-1 ASCIl and pcos

26-2 ASCII CONTROL CHARACTERS

26-3 I)1SPLAYABLE AScll cHARACTERS

27-1 27. PCOS ERROR C0I)ES

27-1 0VERVIEW

27-1 COMPREHENSIVE PCOS 3.0 ERRORS

27-3 CROSS-REFERENCE ERROR TABLES

27-4 ERROR Col)E CHAN6ES

27-5 SU66ESTIONS TO THE PR06RAMMER

27-5 SETTING AND I)1SPIAYIN6 ERROF{S

27-5 ERROR CODE SYMBOLIC NAMES

28-1 28. 6LOSSARY

28-1 GLOSSARY OF TERMS

PCOS SYSTEM PROGRAMMER'S GUIDE

PART I

1. lNTRODUCTION

AB0UT THIS CHAPTER

This chapter provides an introduction to the manual and to the major
features of PCOS.

CONTENTS

OVERVIEW

THIS MANUAL

FEATURES 0F PCOS

1NTRODUCT10N

OVERVIEW

This section provides an introduction to this manual and to the major
features of PCOS.

THIS MANUAl

This manual is intended to serve as a complete reference to PCOS for the
system designer or system programmer who needs detailed knowledge of the
internal functioning of the system. The information contained herein
should enable a qualified person to modify the system so as to adapt or
enhance its performance for a particular user environment or particular
application. The manual provides a functional description of the overall
system, its component parts, and the relationships among the parts. This
information is different from that in the User Guide, but because some
topics overlap, this manual can also be useful to systems analysts, and
some parts to non-programmers.

Whereas the User Guide provides details on each command, the System
Programmer's Guide differs in that it gives information and strategy on
the use of commands in general approaches. For example, it explains how
set+.ings within the commands Set System (SSYS) and Set BASIC (SBASIC)
int:€.i-ract and how the two commands interract together. With the wrong
settings in SBASIC for memory and files, it is possible to run out of
memory, although PCOS has plenty of memory available. These interrac-
tions are outside the scope of the User 6uide.

The System Programmer's Guide is in three major parts: Part 1 gives a
conceptual overview of PCOS, Part 2 gives an extended functional descrip-
tion, and Part 3 provides additional information on PCOS and gives refer-
ence information in a convenient form.

The contents of Part 1 provide the following information:

-The lntroductiongivesan overview of the manual and the ma].or
features of PCOS

- The System Overview explains the relationship of PCOS to other major
elements of M20 software, and describes the major modules within PCOS

- The Command Overview lists the PCOS commands in functional groups

- The Hardware Configuration Options section gives a concise descrip-
tion of M20 standard configurations, options, and enhancements.
1nformation is given from a programmer's viewpoint, in terms of sys-
tem functions and capacities.

iEi:

FEATURES OF PCOS

Because PCOS was developed for the existing, well-defined M20 computer
system, its design resulted in an integrated and very flexible operating
system .

Flexibility for programmers and users is assured by built-in commands
that permit custom tailoring for specific installation or for specific
applications. Configuration is easily accomplished by non-programmers.
Commands required for a particular task can be loaded and saved, then
written to diskette, so that a customized PCOS system can be used for a
particular application.

Commands can be loaded from diskette into memory and retained so that
they are readily available without the need for reloading each time they
are required.

New commands and utilities are easily developed and configured into the
system. Commands can be developed in assembly language or in BASIC.

PCOS provides internal consistency and design economy. The system, as
supplied, supports 16 national keyboards, and has a built-in mechanism
which permits design of new keyboards and displays. 1nterpretation of
key codes, display of characters, and printing of characters are all con-
trolled by common tables; therefore, a programmer can design a particular
set of characters for use throughout the system. The national keyboards
use the Roman or Greek alphabet plus any exclusive characters such as
German umlauts and French accents. The system can also provide support
for keyboards which have Cyrillic, Semitic, and Katakana (Japanese) sym-
bols.

Similarly, the use of graphics is well integrated into the system.
Graphics are supported by the monochrome and color monitors and by the
thermal printer and some dot-matrix printers. The fundamental graphics
capabilities, which are extensive, can be interfaced by the novice or
non-programmer through BASIC and by the programmer through the system
calls. A graphics package for PASCAL is also available. The package can
be used separately with Assembly Language.

PCOS system design also provides drivers for extending system capabili-
ties. The RS232-C driver supports communication with remote devices, and
allows interfacing of peripherals or equipment using a serial bus. An
lEEE driver supports interfaces with instrumentation for use in labora-
tory and engineering environments, and requires a parallel bus.

Certain internal system parameters can be adjusted by use of the set sys-
tem global commands. Non-programmers can use these commands to make use-
ful system modifications. These modifications can be temporary or can be
made permanent.

The PCOS system provides extensive data protection, in addition to physi-
cal write-protection of diskettes. PCOS provides write protection of
files and volumes of files on diskettes or the hard disk. 1n addition,
files and volumes can be password-protected against being read or copied.

1-2 PCOS SYSTEM PR06RA"ER'S GUIDE

1^-t

2. SYSTEM OVERVIEW

AB0UT THIS CHAPTER

This chapter provides an overview of the ma].or elements of M20 software
and the major functional modules of the Professional Computer Operating
System (PCOS).

CONTENTS

OVERVIEW

INTRODUCTI0N

COMMAND LINE INTERPRETER

COMMANDS AND UTILITIES

SYSTEM CALL INTERFACE

DRIVERS

PCOS KERNEL AND MEMORY

MANAGEMENT

2-1

2-1

2-2

2-2

2-3

2-4

2-5

SYSTEM 0VERVIEW

OVERVIEW

This section provides an overview of the major elements of M20 software
and the major functional modules of the Professional Computer Operating
System (PCOS).

INTRODllcT10N

Relationships of M20 software elements are illustrated by Figure 2-1.

Fig. 2-1 Relationship of Software Elements

Users enter lines of text, which may be PCOS commands, BASIC program
lines, assembly language statements, or text input to an editor program.
PCOS commands are fundamental. The BASIC interpreter, the assembler, and
the text editor are each brought into action by being executed as a PCOS
command that is processed by the command line interpreter before execu-
tion. This manual describes the ramifications of PCOS commands, how they
are entered and processed, and how they are supported by the operating
system.

COMMAND LINE INTERPRETER

The command line interpreter examines a line of text input and interprets
it as a command that may be followed by parameters that provide addi-
tional information for use in execution. The command line interpreter
breaks up the line into the name of a command and its optional parame-
ters, which are edited into a standard form for use by the command rou-
tine. The interpreter then checks for the presence of the named command
routine in system memory or in the system directory for its diskettes
optional hard disk. This command routine is a program, usually written
assembly language but possibly in BASIC. lf the command routine
available, the command line interpreter turns system control over to
lf not, it gives an error message.

A secondary function of the command line interpreter is to edit input
lines. The control functions of backspace,1ine delete, etc., are taken
care of . The command rQutine receives edited parameters rather than raw
input.

From a user's viewpoint, a command is an instruction to the system to
perform some action. The command may be the only entry on the line or it
may have additional information. From the system viewpoint, a command is
a module that may accept user-specified parameters and that calls on
lower-1evel system elements to perform the desired action.

A unique feature of PCOS is the integration of BASIC with the PCOS sys-
tem. 1f the command line interpreter sees a command file that is imple-
mented in BASIC (shown by the .bas extension) then the command line
interpreter will check for the presence of BASIC and load it if necessary
before turning control over to the command routine.

Also, PCOS commands can be executed from a BASIC program through the use
of the "EXEC" and "CALL" commands.

coml)S AND uTILITIES

1n general data-processing usage, the term "command" typically refers to
a built-in general-purpose system operation and the name "utility" to
some useful special-purpose routine or program.

1n PCOS9 no distinction is made between ''commands" and "utilities." The
system design allows the user to configure the system, incorporating
those commands needed for their specific "utility."

Commands are divided into two categories, "resident" and "transient."
Resident commands are within the operating .system and are always avail-
able. A transient command or utility is on a disk file and is available
when the disk is present in the system.

::n::;:r:ys:em:;n:e::::tde::t°fo:a:::::::i°:n:f`u:i::::::So:San:::::::: ::
order to have an appropriate set of commands and utilities available for
a particular task. Doing this copying may require some time and thought.

2-2 PCOS SYSTEM PROGRAMMER'S 6UIDE

SYSTEM 0VERVIEW

PCOS has unique features to solve this problem. Two special commands,
PLOAD and PSAVE allow any transient command or utility to be turned into
a resident command. Using PLOAD, command routines can be taken from a
diskette, loaded into memory, and retained by the system. The PLOADED
commands are then 'resident' until the system is rebooted.

1f the user so desires, this configuration can be PSAVED, which copies
PCOS onto a new diskette, providing a customized operating system when-
ever the new diskette is booted. The PSAVE command thus allows permanent
configuration of command sets. An extra value of this feature is that it
can be executed by someone who has no knowledge of system programming.

To ensure maximum user memory capacity, standard PCOS has only three
resident commands that are always loaded into memory during system ini-
tialization. They cannot be removed:

PLOAD loads transient commands into memory.
PUNLOAD removes PLOADed commands from memory.
LTERM, in BASIC programso differentiates among the

line-terminator keys /CR/, /S1/, and /S2/.

1n Part 3 of this manual a section titled "Creating A Utility" explains
how to write an assembly-language program that can be called on by the
command line interpreter and can be used as a utility or a command.

SYSTEM CALL INTERFACE

PCOS commands and user-written assembly-1anguage routines perform all
functions such as data input and output, file management, memory alloca-
tion, etc., by the use of system calls passed through a general module,
the system call interface. The interface is given the number of a system
call and, if applicable, parameters that provide additional information.

Assembly-language commands specifying physical port addresses could be
used for input/output functions such as reading from the keyboard and
writing to the printer. Using the system call interface, however, allows
the system to provide a common method for execution of such commands and
for error recovery. The system call interface obviates the need for
repetitious development of these functions and provides comprehensive
services with these functions. The system call interface also provides
internal scheduling in the handling of system functions.

The system call interface and system calls are described in part 2 of
this manual.

2-3

DRIVERS

System drivers control input/output functions such as reading keyboard
codes and writing files to a diskette or hard disk. Driver functions may
be divided into low-1evel, or physical, and high-1evel, or logical func-
tions. At the physical 1evel, drivers control details of device opera-
tion: at the logic level, drivers control general system functions.

For example, at the physical 1evel, the printer driver can cause the
printer to advance paper to the top of a fresh page in either of two
ways. 1f the printer is equipped with top-of-form capability, the physi-
cal driver can send the proper code to the printer to cause this action.
1f the printer does not have top-of-form capability, the physical func-
tion uses carriage returns to move the paper to the top of form a line at
a time. The driver must keep track of its location on the page and be
able to issue the correct count of carriage returns when called on by the
logical driver for the top-of-form function.

The logical function for the printer (or printers) is insulated from such
details of printer functioning. 1t deals with an idealized or abstract
printer. At the system level, the system call and associated parameters
are processed without regard for printer configuration.

The system call approach works at the logical functional level; the pro-
grammer is only concerned with identifying the device, the type of char-
acter, and certain control registers. The physical functional level is
handled by utilities, which identify the printer model (SFORM), or modify
the font (RFONT or SLANG), etc.

Similarly, the physical disk driver functions incorporating such informa-
tion as size of sectors, number of sectors per track, number of tracks
per surface, timing requirements to move from one part of the surface to
another, etc, are handled by the utility commands. At the logical-
driver level, with the appropriate system calls, the programmer merely
treats the hard disk or diskette as a group of sectors or blocks that can
be separately addressed.

Interaction among drivers is facilitated by logical design. For example,
the keyboard driver supports any of a number of national keyboards. Each
national keyboard has an associated table that gives the ASC11 character
for all keys and for combintations of keys. Combinations result from
pressing a shift or control key in combination with another. The screen
display driver, using the font table, produces the appropriate symbols.
The symbols are defined by font tables. These symbols are stored on the
disk file as standard ASC11 codes. The AScll code is associated with the
raw keyboard input by the conventional relationship between the keyboard
driver tables and the display driver. The keyboard tables and the font
tables are accessible by system utilities. By calling the appropriate
utility, existing keyboards can be modified, new keyboards can be
developed, new character fonts and graphic symbols can be developed.

2-4 PCOS SysTEM PROGRAmER'S GUIDE

SYSTEM 0VERVIEW

The printer driver can also interact with the display driver. Certain
printers can output graphic images as well as text. The design of the
drivers allows the printer driver to use screen-driver information.
Driver interaction of the type described in these examples ensures eff i-
cient coordination of system resources.

Part 2 of this manual discusses system drivers and lists their associated
system calls.

PCOS KERNEL AND MEMOFiY MAl\lAGEMENT

The PCOS kernel, so named because it is the nucleus or heart of the sys-
tem, is always resident. The kernel provides essential routines that
permit interpretation of commands, memory management, and essential
input/output. Other PCOS elements can be loaded as needed, but the ker-
nel is required to load those elements.

Memory management is part of the kernel. Memory management keeps track
of what system memory is in use and what is available. Other system rou-
tines call on memory management for memory space as needed and release
space to memory management when done. User programs call on memory
management by means of the appropriate system calls. Most system modules
also use these system calls. To optimize capacity, transient commands
are removed after execution, temporary PCOS tables are purged, and when a
command or user program stops executing its memory space is automatically
freed.

The assembly-language programmer accesses memory through memory manage-
ment rather than directly. A special utility, DCONFIG (®~ÜM option),
allows the programmer to find out the actual memory locations.

Part 2 of this manual provides more information on the system kernel and
on memory management.

2-5

3i COMMAND OVERVIEW

AB0UT THIS CHAPTER

This chapter lists PCOS commands in functional groups. Each command
is listed with its two-character short form, its full name, and a short
description of its function.

CONTENTS

OVERVIEW

PROGRAMMING T00LS

PCOS CONFIGURING COMMANDS

SET SYSTEM GL0BAL COMMANDS

KEYB0ARD-RELATED COMMANDS

FILE MANAGEMENT COMMANDS -

VOLUME HNDLING

FILE MANAGEMENT COMMANDS -

FILE HANDLING

STANDARD INTERFACE HANDLING

COMMANDS

PCOS GRAPHIC FACILITY

COMMANDS

USER AIDS

TV ADAPTOR COMMANDS (*)

3-1

3-2

3-3

3-3

3-4

3-5

3-7

3-7

COMMAND 0VERVIEW

OVERVIEW

This section lists PCOS commands in functional groups. Each command is
listed with its two-character short form, its full name, and a short
description of its function. A PCOS command can be invoked by entering
its first two letters or by entering more of its name. Only the first
two letters are needed for most commands in searching for the command
routine; the exceptions are FDISK, MSCOPY, and PLOT: for each of these at
least three letters are required.

The section "Commands and Utility Programs" in Part 2 .of this manual
briefly explains how PCOS processes a command. In Part 3, a section
called "Creating a Utility" explains how to develop new commands for
PCOS. For detailed information on individual commands, see the PCOS
0perating System User Guide, Section 13.

The three resident commands have no extensions. They are PLOAD, PUN-
LOAD, and LTERM. PLOAD loads commands with the .cmd extension into
memory without executing them. PUNLOAD removes PLOADED commands. Com-
mands with the .sav extension are SAVED the first time called, and stay
in memory. They cannot be PUNLOADED. LTERM is called only from BASIC,
and can be used to distinguish terminator values. This function can be
useful in data-entry applications.

A few commands have .bas extensions. These commands run under the BASIC
interpreter. When the user enters a .bas command, if BASIC is not
already in the system PCOS will 1oad BASIC to support execution of the
. ba s .

New PCOS commands and special PCOS utilities are continually being added.
The following information cannot remain in current, but does provide a
general overview of commands. For the most current commands, refer to
current release diskettes.

Commands that can be used with a TV adaptor are flagged with (*). See the
explanation at the end of the section.

3-1

PR06RAMMING T00LS

L±ywop_p___
1:883' `:X# COMMAND FUNCT10N

as ASM.CMD

ba sASIC.CMD
1

bk t BKEYB0ARD.BAS

bv BVOLUME. SAV

1

ed t EDIT.CMD

hd ' HDUMP.CMD

li LINK.CMD

ml ` MLIB.CMD

pd PDEBUG. SAV

te 1 TEXTDUMP.CMD

ci j cl.sAV

3-2

Runs the Assembler

Loads the BASIC interpreter

Enables BASIC verbs to be entered by using
single alpha key plus /COMMAND/

Allows BASIC to call specific subroutines

Loads the Video File Editor

Prints a file in hexadecimal notation

Runs the Linker

Creates a library of object files

Loads the Program Oebugger

Prints a text file

i (Provides BASIC interface to RS232-C driver
functions

PCOS SYSTEM PROGRAMMER'S GUIDE

COMMAND 0VERVIEW

PCOS CONFIGURING COMMANDS

KEYWORD

SHORT FULL

FORM NAME

pl PLOAD
(resident)

pr PRUN.CMD

ps PSAVE.CMD

pu PUNLOAD
(resident)

SET SYSTEM GL0BAL COMMANDS

KEYWORD

SHORT FULL
FORM NAME

sb SBASIC.CMD

sc SCOMM. CMD*

sd SDEVICE.CMD

sf SFORM.CMD*

sl SLANG. CMD*

ss SSYS.CMD*

COMMAND FUNCT10N

Loads commands from diskette or hard disk
into semipermanent memory

Reloads an operating system; used to load
an alternate version of PCOS

Saves the current configuration of PCOS in
memory to diskette or disk

Unloads commands that were PLOADed

COMMAND FUNCTloN

Sets the BASIC environment '1

::::r:::en:S232-C communications port ,(

Changes device names |(
1

Sets the printer environment t

:::: ::: :;::::a:n::::::::tlanguage ,(
__ _ _____ __ _________lj

3-3

KEYB0ARD-RELATED COMMANI)S

CKEY . CMD

LTERM

(resident)

PKEY.CMD*

Changes the ASC11 value of a key

Returns an integer (0,1, or 2) depending
on which of the three carriage return
keys (/CR/, S1, S2) was last used

Assigns a string to a key

The following utilities also relate to keyboards:

3-4

COMMAND FUNCT10N

Data file used by set language utility

For Katakana keyboards

Data file used by set language utility

PCOS SYSTEM PROGRAMMER'S GUIDE

COMMAN0 0VERVIEW

FILE MANA6EMENT COMMANDS - VOLUME HANDLIN6

KEYWORD

SHORT FULL

FORM NAME

bv BVOLUME. CMD

va VALPHA.CMD

vc VCOPY. CMD*

vd VDEPASS. CMD

vf VFORMAT.CMD*

vl VLIST.CMD*

vm VMOVE. SAV*

vn VNEW.CMD*

vp VPASS.CMD

vq VQUICK.CMD

vr VRENAME. CMD

vv VVERIFY. CMD*

COMMAND FUNCTloN

Searches the volume directory for file
name string, or returns free disk space,
or returns the name of the current volume
(f rom BASIC only)

Alphabetizes a directory

Copies a volume (drive to drive)

Removes a password from a volume

Formats a volume

Lists a volume directory (full form)

Copies a volume (using one drive)

initiaiizes a volLime

Assigns a password to a volume

Lists a volume directory (filename only)

Renames a volume

Checks the hard disk for faulty blocks

3-5

FILE MANAGEMENT COMMANDS - FILE HANDLINe

KEYWORD

SHORT FULL
i FOF" NAME

fc FCOPY. CMD*

fd FDEPASS.CMD

ff FFREE.CMD

fk FKILL.CMD

fl FLIST.CMD

fm FMOVE. CMD*

fn FNEW.CMD

fp FPASS.CMD

r

fr FRENAME. CMD

fu FUNPROT. CMD

fw , FWPROT.CMD

rk RKILL.CMD

fdi FDISK.CMD

msc MSCOPY. CMD

msd MDIR.CMD

COMMAND FUNCT10N

Copies a file

Removes a password from a file

Frees unused file blocks

Deletes a file

Lists ASC11 files, optionally lists hexa-
decimal files

Copies a file (disk to disk on single
drive system)

Creates a new file (reserves blocks)

Assigns a password to a file

Renames a file

Removes write-protection from a file

Assigns write-protection to a file

Recovers a killed file

Partitions the hard disk unit so it can be
shared by PCOS, MS-DOS, CP/M-86, and UCSD

p-system

Display a MS-DOS directory (f rom PCOS)

Copy a file from PCOS to MS-DOS, and vice
Versa

PCOS SYSTEM PR06RAMMER'S GUIDE

COMMAND 0VERVIEW

STANDARD INTERFACE HANf)LIN6 C0l.4ANDS

KEYWORD

SHORT FULL

FORM NAME

ci CI.SAV

ie lEEE488.SAV

rs RS232.SAV

pcoS GRAPHlc FAclLITv ConlANI)s

COMMAND FUNCTloN

Provides the BASIC interface to the
RS232-C driver

Loads the lEEE-488 package

Loads the RS232-C package

KEYWORD

SHORT FULL

FORM NAME

dp DPALETTETV. CMD

la LABEL.CMD*

1s LSCREEN.CMD

rf RFONT. CMD*

sp SPRINT. CMD*

wf WFONT. CMD*

COMMAND FUNCTI0N

Defines colors (TVA only)

Displays, magnifies, orients, and pos-
itions a label string

Transfers contents of display screen to
printer

Creates a new ASCIl font matrix file f rom
the currently active font

Prints the text and graphic contents df a
specified window

Makes the new font matrix file active

3-7

USER AIDS

KEYWORD

SHORT FULL

FORM NAME

--l r- -

!

Jl

dc DCONFIG.CMD*

ep EPRINT.SAV*

TV ADAPTOF{ COMMANDS (*)

COMMAND FUNCTI0N

Displays the hardware and/or memory
configuration

Displays error messages

Another version of these commands, (commands with *), is available for
the TV adaptor. This adaptor enables a regular TV set to be used in
place of the video screen. Because of distortions caused by the dif-
ferent interface used, these commands have been modif ied for the TVA.
When both versions of the command are on the same diskette, the TV ver-
sion will have TV in the command name; for example, SCOMMTV.CMD.

The command DPALETTETV.CMD may be used only with the TVA.

The command LABEL.CMD is available in two additional versions, depending
on the TV screen refresh rate. LABELT5.CMD is for 50 megahertz and
LABELT6.CMD is for 60 megahertz.

3-8 PCOS SYSTEM PROGRAMMER'S GUIDE

4. HARDWARE CONFIGURATION OPTloNS

AB0UT TllIS CHAPTER

This chapter gives a concise description of M20 hardware configurations,
including options and enhancements. Information is given from a program-
mer's viewpoint, in terms of system functions and capacities.

CONTENTS

OVERVIEW

MINIMUM CONFIGURATI0N

KEYB0ARD

DISPLAY SCREEN

DISK DRIVES

MEMORY

PRINTERS

AUXILIARY INPUT/OTPUT

RS232

lEEE

ALTERNATE PROCESSOR B0ARD

TRADEOFFS

SYSTEM PRINTERS AVAILABLE

4-1 SPARK INK JET

4-1 THERMAL

4-1 DAISY WHEEL

4-1

4-2

4-3

4-4

4-4

4-4

4-4

4-4

4-5

4-5

DOT MATRIX IMPACT 4-5

HARDWARE CONFIGURAT10N 0PT10NS

OVERVIEW

This section gives a concise description of M20 hardware configurations.
It comprises standard configurations, options, and enhancements. The
section includes a list of available printers.

1nformation is given from a programmer's viewpoint, that is in terms of
system functions and capacities. Hardware specifications are not given.

MINIMÜM CONF16URAT10N

The M20 system consists of a display screen and keyboard and a chassis
containing the Z8000 CPU mounted on the motherboard.

The motherboard also contains 128 Kbytes of RAM, serial (RS232-C) and
parallel (industry standard) interfaces, and floppy disk control 1ogic.
This boardalso contains five expansion slots. Two slots are for
optional interface boards or an alternate processor board, and three
slots are for memory expansion.

The standard video display screen is monochrome.

The minimum configuration is one diskette drive, nominal capacity 160
Kbytes, 320 Kbytes, or 640 Kbytes. However, the unit is usually sold
equipped with two drives.

KEYB0ARD

There are 16 national keyboards available, based on the Roman alphabet.
Non-Roman versions have been developed for Semitic alphabets, Katakana
characters, etc.

The national keyboards support 95 characters, with additional characters
software-definable. Software utilities allow reconfiguring the keyboard,
reassigning characters and keys, and creating new character fonts and
keyed graphic display elements.

DISPLAY SCREEN

The screen can be monochrome or color. The color display supports eight
possible colors: red, green, yellow, blue, magenta, cyan, black, and
white. Monochrome and color versions have the same alphanumeric and
graphics characteristics and are software compatible. The system sup-
ports two color configurations, four-color and eight-color. Four-color
supports any four colors at a time, eight-color supports all colors.

Color displays require one or two additional memory boards, either 32 Kb
or 128 Kb. One expansion board can support four colors, two boards are
required for eight. Within each 32 Kb or 128 Kb board, 16 Kb are
reserved to support four colors and the remainder is available for system
memory use.

4-1

The screen is 12 inch diagonal with 256 horizontal rows (scanlines) con-
taining 512 dots each. These dots are called "pixels," short for "pic-
ture elements." Text and graphics characters are both built from pixels
and are treated alike by the system. This allows development of new
character fonts for screen display by developing font tables.

PCOS supports either 161ines of text with up to 64 characters per line,
or 25 1ines of text with up to 80 characters per line.

DISK DRIVES

The unit typically has two floppy disk drives, and can support an
optional 5-1/4" Winchester hard disk. The hard disk unit may replace one
of the floppy disk units or may be in a separate enclosure. 1t requires
additional hardware control logic, which occupies one expansion slot.
The software disk driver program supports the following floppy disk and
hard disk configurations:

1 160-kbyte floppy drive
2160-kbyte floppy drives

1 320-kbyte floppy drive
2 320-kbyte f loppy drives
1 320-kbyte floppy drive, 1 hard disk drive
2 320-kbyte floppy drives, 1 hard disk drive

1 640-kbyte floppy drive
2 640-kbyte floppy drives
1 640-kbyte floppy drive, 1 hard disk drive
2 640-kbyte floppy drives, 1 hard disk drive

As provided by the factory, the hard disk unit is placed in one of the
diskette drive compartments.

ROM 2.0 is required for support of the hard disk, and for 160 Kb and 640
Kb floppy disk drives.

The floppy disk capacities are nominal unformatted capacities. Formatted
capacities are:

Unformatted Formatted

160 Kb
320 Kb
640 Kb

143 Kb
286 Kb
592 Kb

The hard disk, nominally 11.26 megabytes, has a formatted capacity of
8.85 megabytes.

Configurations with floppy disk drives of different sizes intermixed are
not supported by the disk driver. The driver supports any floppy disk
drive in combination with the hard disk drive. However, 01ivetti does
not necessarily market all possible combinations.

4-2 PCOS SYSTEM PROGRAMMER'S GUIDE

HARDWARE CONFIGURATION 0PT10NS

The disk driver will work with all memory and display configuratit)ns.

The drive identifiers are 0 and 1 for floppy disks and 10 for the hard
disk.

MEMORY

The central processing unit board includes 128 Kbytes of RAM. The mother-
board has three memory expansion slots. Memory expansion boards have a
capacity of 32 Kbytes or 128 Kbytes. Expansion boards cannot be mixed;
all must be 32 Kbytes or 128 Kbytes, giving a system maximum of 224
Kbytes or 512 Kbytes. The color monitor uses expansion memory, one board
for 4-color and two boards for 8-color.

Jumpers are used to inform the system of the memory configuration. The
seven fundamental cases are shown in the table below.

Case Configuration

1 Standard 128 Kbyte memory
Only

2 32 Kbyte expansion board(s),
black and white display

3 32 Kbyte expansion board(s),
4-color display

4 32 Kbyte expansion board(s),
8-color display

5 128 Kbyte expansion board(s),
black and white display

6 128 Kbyte expansion board(s),
4-color display

7 128 Kbyte expansion board(s),
8-color display

Expansion
Boards

0

1-3

1-3

2-3

1-3

1-3

2-3

Jumper
Code

Table 4-1 Memory Configuration

As the table shows, there are seven fundamental configurations, each with
either no expansion or a range of possible expansion. Actual memory con-
figuration within the possible range is determined by the system diagnos-
tics when the system is started up.

4-3

Details of memory configuration are given in the "Memory Configuration"
section of Part 2.

PRINTERS

There are four kinds of printers: spark ink jet, dot-matrix impact, ther-
mal, and daisy wheel. Printers are connected to the parallel port, using
the industry-standard Centronics interface method, except for certain
cases where the serial port with the RS232-C interface is used.

The thermal, inkjet, and certain dot-matrix printers support printing of
graphics, and one supports color printing. Printers available are listed
later in this section under the heading "System Printers Available."

1t is possible to connect two printers to the system, one on the parallel
interface and another on the serial RS232 interface. The printer driver
routines can be set to support either printer, in alternation, by using
the SFORM utility. Another approach is to use the printer driver to supT
port the parallel printer and use the RS232 driver, with appropriate
separate software and support routines for a serial printer.

AUXILIARY INPUT/OUTPUT

These optional interface boards are in addition to the serial and paral-
1el interfaces provided in the basic system. One or both boards can be
placed in the two interface expansion slots on the motherboard.

RS232

Dual serial interface (RS232-C) and/or Current Loop. The board supports
any of these combinations:

-- Two RS232-C interfaces
-- Two current loop interfaces
-- One RS232-C and one current loop interface

lEEE

IEEE 488 parallel interface.

ALTERNATE PROCESSOR B0ARD

Uses the 8-MHz 8086 CPU and supports alternate operating systems, CP/M-
86, MS-DOS, and UCSD p-system. This board is placed in one of the inter-
face expansion slots, and requires ROM 2.0 or later.

4-4 PCOS SYSTEM PROGRAMMER'S GU10E

HARDWARE CONFIGURAT10N 0PT10NS

TRAl)EOFFS

System configuration tradeoffs are summarized below:

-Color displays require one or two memory expansion boards. Four-
color systems require 16 Kbytes of dedicated memory; eight-color sys-
tems require two boards and use 16 Kbytes from each.

- The two interface expansion slots support any two of the following
four boards`. Only one board of each kind is supported:

. Hard disk controller board

. Dual serial board

. 1EEE board

. Alternate processor board

-Asprovided by the factory, the hard disk replaces one diskette
drive.

SYSTEM PRINTERS AVAILABLE

DOT MATRIX IMPACT

Mnemonic

PR 1450

Description

Dot-matrix printer with graphics capability

-normal characters (7 x 7) printed within a 9 x 7 dot
matrix

-10,12.5, or 16.6 characters per inch

-80 or 132 characters per line

-6 printed lines per inch

Speed: 80 characters/second at 10/inch;
100 characters/second at 12.5/inch:
132 characters/second at 16.6/inch -

4-5

PR 1471

PR 1481

Dot-matrix printer with graphics capability

-normal characters (7 x 7) printed within a 9 x 7 dot
matrix

-double width characters (under program control)
'

i -10, 12, or 16.6 characters per inch
1

|} -132,158, or 220 characters per line

-6 or 8 1ines printed per inch

-140 characters per second print speed

Dot-matrix printer with graphics capability

-normal characters (7 x 7) printed within a 9 x 7 dot
matrix

-double width characters (under program control)

-10, 12, or 16.6 characters per inch

-132,158, or 220 characters per line

-6 or s printed lines per inch

-140 characters per second print speed

-two and four color printing

SPARK INK JET

Mnemonic

PR 2300

__ ___u

4-6

Description

Dot-matrix printer with graphics capability

-characters printed within either 7 x 7 or 7 x 5 dot
dot matrix

-80, 97, or 147 characters per line

-10, 12.2, or 18 characters per inch

-double width and double height character optioms

PCOS SYSTEM PROGRAMMER'S GUIDE

HARDWARE CONFIGURAT10N 0PTloNS

-6, 8, or program controlled printed lines per inch

-50 lines (of 80 characters) per minute, average

THERMAL

Mnemonic

PR 2400

DAISY WHEEl

Mnemonic

PR 320

Description

Dot-matrix printer with graphics capability

-characters printed within a 7 x 5 dot matrix

-80 characters per line

-10 characters per inch

-6 printed lines per inch

-240 lines per minute print speed

Description

Bidirectional printer

-10, 12, or 15 characters per inch or proportional
spacing

-132 characters per line at 10 characters per inch; 158
characters/1ine at 12 characters/inch; 197
characters/1ine at 15 characters/inch

-6 printed lines per inch

25 characters per second print speed, average; 30
characters/second peak

4_7

PART 11

5. OVERVIEW

AB0UT Tl+IS CHAPTER

This chapter describes the contents of Part 2, which is the heart of
the System Programmer's Guide, and contains an extended functional
description of PCOS.

CONTENTS

GENERAL 0VERVIEW 5-1 GRAPHICS SUBSYSTEM ' 5-3

DETAILED CONTENTS 5-1

COMMAND LINE INTERPRETER 5-1

COMMANDS AND UTILITY

PROGRAMS

MEMORY CONFIGURAT10N

MEMORY MANAGEMENT

SYSTEM CALLS

DEVICE REROUTING

THE KEYBOARD DRIVER

VIDE0 DISPLAY DRIVER

DISK DRIVER AND FILE

MANAGEMENT

0THER DRIVERS

THE PRINTER DRIVER AND

PRINTER MANAGEMENT 5-3

OVERVIEW

6ENERAL OVEIWIEW

Part 2 is the heart of the System Programmer's Manual. 1t contains an
extended functional description of PCOS, starting f rom the outside and
moving in.

Part 2 begins with general discussion of major system elements: the com-
mand line interpreter, commands and utilities, memory management, the
system call interface, and device rerouting. Then the device drivers,
which underly the system calls, are discussed with a section each for the
major drivers.

At the end of Part 2 is an explanation of the graphics subsystem, which
is implemented for PASCAL, and its library of subroutines which can be
used by assembly-1anguage programmers. The graphics subsystem is based on
the graphics system calls, which are described briefly in the Video
Driver section. The graphics subsystem, useful in its own right, is also
an example of how the system resources present in PCOS can be used to
develop further resources.

I}ETAILED CONTENTS

CO"D LINE INTERPRETER

The command line interpreter is the part of PCOS that works directly with
the user. lt gives the user access to PCOS commands and utilities and to
other programs that make ,use of PCOS capabilities. This section
describes the functions of the command line interpreter and provides some
information about its implementation.

COMM"DS AND UTILITY PROGRA»S

This section gives background information on the distinctions between
resident and transient commands and on the use of the PCOS utilities
PLOAD, PUNLOAD, and PSAVE. The section includes information about com-
mand name conventions and requirements.

MEMORY CONF16URATION

This section explains the physical implementation of system memory in
functional terms. The information is provided for background, and is not
necessary for making use of memory when using the PCOS system calls for
storage allocation. This section bridges the gap between information
about Z8000 memory handling concepts in the vendor literature and the
PCOS implementation of memory management.

5-1

MEM0fw MANAGEMENT

This section is a companion to the prior one, and gives practical infor-
mation about the use of system storage allocation. It provides some
information about how these functions are implemented.

SYSTEM CALLS

System calls are PCOS procedures used to handle input/output and to
manage system resources such as memory and the real-time clock. System
calls can be accessed by assembly language calls. They provide indirect
access to privileged instructions that cannot be directly used.

This section gives an overview of the system calls grouped by general
functions, and provides background information on their use.

I)EVICE REROUTIN6

Device rerouting allows the rerouting of standard input (the keyboard),
or standard output (the display screen), or both. Certain other input or
output devices can be substituted for these two devices or used to sup-
plement them.

This section gives information on how and why to use device rerouting,
and provides some information on how this capability is implemented.

THE KEYBOARD DRIVER

This section is the first of five driver sections. 1t describes the key-
board driver routines and their related utility programs. The driver
takes raw codes generated by the keyboard and interprets them as ASC11
characters. PCOS supports numerous national keyboards. A utility called
SLANG (Set Language) provides the keyboard driver with the information
needed to support any national keyboard. Two other utilities, CKEY
(Change Key) and PKEY (Program Key) allow easy user modification and
enhancement of keyboard functions.

Vll)EO DISPLAY DRIVER

The video display driver supports both text and graphic display. This
section describes the capabilities of the driver and its related utili-
ties, RFONT and WFONT. RFONT allows creating customized characters and
small graphics characters, and can be used to create entire alphabets.
WFONT is used to select an alternate display font. The section includes
information about the system calls used to display text and to provide
graphics capabilities.

5-2 PCOS SYSTEM PROGRA"ER`S GU10E

OVERVIEW

DISK DIUVER ^ND FILE MANAGEMENT

The disk driver controls the floppy disk drives and the optional hard
disk drive. Based on the disk drive functions, PCOS provides file
management capabilities. This section explains the capabilities of the
disk driver, and gives information about the system calls for using it
and the file management capabilities.

OTHER l)RIVERS

This section contains background information on two device drivers, the
RS232-C driver and the lEEE-488 driver. These drivers are not seen
directly by the user. The RS232 driver supports the SCOMM package and
the Cl calling BASIC. The lEEE driver supports the lEEE commands in
BASIC. The programmer could, if necessary, access these drivers through
system calls. System call information is given in this section.

THE F'RINTER DIUVER AND PRINTER MANACEMENT

This section describes the capabilities of the printer driver and the use
of its associated utility programs. The driver supports the printing of
ASCIl text and (on certain printers) of graphics, using either a parallel
or serial interface. The SFORM utility gives the user control over
printer configuration parameters. LSCREEN allows the printing of display
screen text and SPRINT allows the printing of the entire screen contents,
including graphics.

GF{APHICS SUBSYSTEM

This section describes an extensive set of library routines that are used
in PASCAL to provide graphics. These routines can also be accessed via
assembly language calls. In addition to describing the capabilities of
these routines, the contents of this section provide an example of the
use of the PCOS graphics system calls which underlie these routines.

5_3

6. COMMAND LINE INTERPRETER

AB0UT THIS CHAPTER

This chapter provides a functional description of how the command line
interpreter works.

CONTENTS

OVERVIEW

THE COMMAND LINE

6-1 COMMAND EXECUTloN

6-1 RELAT10NSHIP 0F THE CL1

AND CALL USER (77)

COMMAND LINE SOURCES 6-1

THE BASIC CALL STATEMENT 6-1

COMMAND LINE PARSIN6 6-2

DEVICE REROUTING 6-2

PARAMETERS 6-2

REROUTING DIRECTIVES 6-2

STRINGS

NUMBERS

NULL PARAMETERS

MAXIMUM COUNT

FILENAMES AND EXTENSI0NS

PASSING PARAMETERS

6-3

6-3

6-3

6-3

6-4

6-4

SPECIAL CHARACTERS

COMMAND LINE ERPRETER

OVERVIEW

The command line interpreter (CLI) receives keyboard input from the user,
interprets the user request, and calls on PCOS command routines to ful-
fill the request. This section provides a functional description of how
the command line interpreter works. The section "Creating A Utility," in
Part 3 of this manual, contains more detailed information on the internal
appearance of the parameter information that the command line interpreter
passes to the command routine.

THE COMMAND LINE

The command line interpreter operates on a command line, which is
string of characters ended with a carriage return. The command line
assumed to begin with a command and may have parameters to be passed
the command routine for processing or use. 1t may also have directives
for use in device rerouting. (A later section, "Device Rerouting," gives
information about this system facility.)

COMMAND LINE SOURCES

Commands are most commonly received from the keyboard by direct user
input. Commands can also be be received from the RS232-C interface, from
a disk file, or from the lEEE-488 interface, by means of the device
rerouting capability. Commands can be received from BASIC, via the EXEC
statement. A11 characters between the double-quote marks in the EXEC
statement are sent to the CLl as a command line. Commands can be
received from assembly language programs using the Call User (77) system
cal l ,

THE BASIC CALL STATEMENT

The CALL statement in BASIC can also be used to call a command routine
for execution. However, it bypasses the CLl and handles the command and
its parameters directly. BASIC implements the CALL statement by process-
ing the parameters itself and issuing a Call User (77) system call.
There are several differences between EXEC and CALL in the handling of
commands and their parameters:

- The maximum number of parameters allowed is different

- The identification of hexadecimal numbers is different. PCOS uses an
ampersand (&) and the CALL statement an ampersand H (&H) to identify
hexadecimal numbers

-Parameter syntax is different

• For information on these syntactical differences, see the BASIC manual.

There is another difference in the capabilities of CALL and EXEC. Only
CALL can use BASIC program variables as parameters.

6-1

COMMAND LINE PARSIN6

From the viewpoint of the CL1, command lines from the keyboard, from an
RS232-C or lEEE-488 interface, from a disk file, from a Call User (77)
system call, and from a BASIC EXEC statement, are all indistinguishable.
A11 send the CLl a command line with the same format.

The Cll scans the command line and separates strings, numbers (decimal
and hex), and rerouting directives (parameters beginning with '+' or '-
'). Commas or spaces are the separators which break the command line

into separate elements. The first (non-directive) word in a line will
always be interpreted as the name of the command to be executed, the
other characters on the line as parameters for the command itself or as
rerouting directives. The command name will be first searched for in
memory and, if not found, will be searched for as a disk file.

The parsing logic assumes that items starting with + or - are rerouting
directives, that the first string encountered identifies the command rou-
tine, and that other non-directive items on the line are command parame-
ters. These parameters can be identified by the first character. A
decimal digit implies a decimal number, an & implies a hexadecimal
number, and other items are strings. 1f appropriate, the string might be
a file name. lf it contains special characters, the string must be
within quotation marks.

I)EVICE REROUTIN6

The effect of , and implementation of , rerouting directives is described
in "Device Rerouting" in Part 2. The rerouting directives go to the PCOS
routines which support device rerouting. Rerouting is independent of the
fundamental CLl functions, which are to process command parameters for
the command routine.

PARAMETERS

The CLl checks for syntax consistency of every parameter, processes the
parameters into a standard form, and then pushes all the parameters onto
the stack. A brief overview of the types of parameters allowed is given
below. For more details, see "Creating A Utility," in Part 3.

REROUTIN6 DIRECTIVES

Device rerouting directives begin with '+' or '-' and may appear anywhere
in the command line. Currently, the directives are:

6-2 PCOS SYSTEM PROGRAMMER'S GUIDE

COMMAND LINE INTERPRETER

+ l -p rt

+ | -Sdevi cename :

+ | -Odevi cename :

+ | -S fi lename

+ | -Df i l ename

These directives may be in uppercase or lowercase. The default device
names are shown below. Other names can be assigned by using SDEVICE.

prt: coml :
cons: com2 :
com: ieee:

The file name can be any valid disk file name.

STRIN6S

Strings may be enclosed in single or double quotes, or may be any
alphanumeric sequence containing some character which is not a space,
comma, ampersand, plus sign, minus sign, or quote character. These char-
acters can be inserted only in a quoted string. A quoted string can also
contain the quote sign of the opposite type from that used to delimit the
string. That is, a string delimited by double-quotes can contain a sin-
gle quote, and vice versa.

NLMBERS

Numbers must be integers, either decimal or hexadecimal (shown with the
'&' identifier).

NULL PARAMETERS

Commas in sequence, or separated only by spaces, are evaluated as null
parameters. 1f there are N + 1 commas in a sequence of spaces and com-
mas, N 'null' parameters will be pushed onto the stack.

MAXIMIM COUNT

The maximum number of parameters allowed in a command line is 20 (PCOS
2.Of and following releases). The maximum number of parameters allowed
in a command line for previous versions of PCOS was 11.

6-3

FtLENAMES AND EXTENSIONS

Only a portion of the command routine filename is needed by the CLI (at
least the first two characters, and sometimes more). The CLl checks
first for the resident commands, including those commands made resident
by PSAVE or by being PLOADED during the current working session. Then it
searches the disk files. Both diskettes are searched, the current
diskette first.

The search logic treats upper and lower case letters as equal. It looks
for the portion of the name given and (except for three built
commands) assumes a filename extension unless the full comma
supplied. Command extensions are .cmd and .sav, and
tine is implemented in BASIC. The search logic will
passes, looking first to match the filename portion

in resident
d name is
en the rou-

p to three
nd .cmd, then to

match with the .sav extension, and finally with the .bas extension. In
the case of ambiguous names. the CLl uses the first one it finds. For
example, "fc" will match either "fcopy.cmd" or "fcopynew.cmd."

PASSIN6 PARAMETERS

Parameters are processed into a standard form and pushed on the stack.
They conform in format to the specifications described in ''Data Passing
Mechanism" in Part 3. A parameter appears on the stack as a three-word
entry; the high byte of the first word contains a type identifier (0:
null, 2: integer, 3: string --and others not used by the CLI), and the
second and third words contain a pointer to the data item. The item must
be in the same segment.

1f the item is an integer, the pointer points directly to the high byte
of a 16-bit integer which is not necessarily word-aligned. 1f the item
is a string, the pointer points to a 3-byte string descriptor: the first
byte contains the string length in bytes, and the second and third bytes
contain the offset of the first byte of the string in the same segment as
above. If the item is null, the value of the offset of the pointer will
be -1 (9roFFFF).

When the CLl calls the command routine, the stack contains the CLl return
address, a one-word parameter count, and the parameters (processed into
Mfcrosoft standard parameters as described above). See the section
"Creating A Utility" or "Data Passing Mechanism" in Part 3 of this manua.1
for a more detailed description of parameter format.

COMMAND EXECUTION

lf the command routine is present in memory, the CLl turns control over
to it. If the command routine is on a disk file, the CLl reads it into
memory and turns control over to it.

If the command routine is in BASIC (has a .bas extension) the CLl checks
to see if BASIC is in memory, and loads it first if necessary.

6-4 PCOS SYSTEM PROGRAMMER'S GUIDE

COMMAND LINE INTERPRETER

The command routine makes use of any parameter information on the stack.
At the conclusion of its processing, it returns control to the CLl by
using the return address given on the stack.

RELAT10NSHIP 0F THE CLI AND CALL USER (77)

Call User (77) is recursive; it can call itself . When Call User (77) is
invoked with a single string parameter, it passes control to the CLI.
The CLl parses the string, puts the individual items on the stack, and
returns control to Call User (77). Call User (77) then calls the command
routine, which executes using the parameter information on the stack.

The CLl handles rerouting directives by invoking the appropriate PCOS
routines. 1f the command line contains only rerouting directives, only
the rerouting routines are called and the effect is to set global rerout-
ing.

CLl and Call User (77) are designed to work together, and can be thought
of as co-routines. When Call User (77) is invoked with one string param-
eter, it calls on CLl to do its parsing; when it is invoked with parame-
ters in a stack, it invokes the appropriate command routine which then
executes using the parameter. So, the CLl is a subroutine for Call User
(77). The two work together as the complete PCOS command line inter-
preter. When PCOS receives a command line (from any source) it passes
the command line to Call User (77) as one string. Call User (77) calls
CLl to parse the string into a parameter stack, and when control returns
to it, Call User (77) calls itself with that parameter stack.

SPECIAL CHARACTERS

The characters.listed below have special meaning. They are not allowed
in a string, unless the string is delimited by quote marks.

-SYMB0L:

- plus sign

- minus sign

- ampersand

- Space

- Comma

- double quote

- single quote

USED FOR:

device rerouting identif ier

device rerouting identifier

hex number identifier

parameter separator

parameter separator

string delimiter

string delimiter

Either single or double quotes can delimit a string. Quotes inside a
string must be of the opposite type.

7. COMMANDS AND UTILITY PROGRAMS

ABOUT THIS Cl+APTER

This chapter gives background information on the distinction between
resident and transient commands and on the PCOS utilities PLOAD, PUNLOAD,
and PSAVE. 1t includes information about command name conventions and
requi rements .

CONTENTS

OVERVIEW

BACKGROUND INFORMAT10N

RELATED SECTIONS

COMMAND NAMES

COMMAND LINE INTERPRETER

COMMAND SUFFIXES

.cmd and .sav

.bas

PUNLOAD EXCEPT10NS

EXCEPTI0N LIST

7-1

7-1

7-1

7-1

7-2

7-2

7-2

7-3

7-3

7-3

THE .sav EXTENSI0N 7-3

LEGAL FILENAMES

COMMAND NAME AVAILABILITY

COMMANDS AN0 UTILITY PROGRAMS

OVEIWIEW

This section gives background information on the distinction between
resident and transient commands and on the PCOS utilities PLOAD, PUNLOAD,
and PSAVE. It includes information about command name conventions and
requi rements .

BACK6ROUND INFORMAT10N

PCOS has resident and transient commands. Resident commands are built
into PCOS or are placed into PCOS by use of the PSAVE command. Transient
commands are resident on disk. They are brought into system memory and
executed by the command line interpreter when the user enters the command
name .

The user can PLOAD the command, which brings the transient command rou-
tine into system memory as a temporary resident command. The routine
stays in system memory, available for immediate use, until it is removed
using the PUNLOAD command or until the system is reset or turned off .
PLOADED commands can be made resident by PSAVING them.

A command routine is loaded into space allocated from the memory heap.
During the time it is in memory, the amount of heap space remaining for
the user is diminished. The command routine must be relocatable (must not
depend on being in a fixed memory location), because the memory location
assigned for it can vary.

A command routine is a utility program written in such a way that it can
be called by the command line interpreter, can make use of the parameters
passed to it by the command line interpreter, and can properly return
control to PCOS when it has finished its task. For information on
developing such a utility program, see "Creating A Utility" in Part 3.

RELATED SECTIONS

"Comman.d Overview" in Part 1 provides an overview of PCOS commands

grouped by general functions. "Commmand Line lnterpreter" in Part 2
explains the mechanism by which commands are invoked. "Creating A Util-
ity" in Part 3 gives information on developing a utility program that can
be called as a PCOS command.

COMMAND NAMES

The minimum identification necessary to invoke a command is the first two
characters. The PCOS standard requires that these characters be unique.
1t is not always possible to meet this requirement. Some special purpose
commands may have duplicate characters in the first two positions. How-
ever, in most applications duplicates will not be found because the com-
mands in general use meet this standard. Letters may be lower case or
upper case. For example, the command for file copying is "fcopy." 1t
can be invoked by "fc," "fcopy," "FC," or "FCOPY." 1f the first two
letters of a command are the same, then more letters must be used to

7_1

properly identify that command. 1n any event, the command line inter-
preter makes use of as much comm~and identif ications as it is given.

The parameters to be used by the command routine are included in the com-
mand line. For example, if a user wanted to copy from O:filel to 1:file2
the command line could be

fc O:filel 1:file2

fcopy O:filel 1 :file2

COMMAND LINE INTERPRETER

The PCOS command line interpreter (CL1) interprets the first item on a
line as the command, and everything following the command as parameters.
Then it relays the parameter information to the utility by pushing onto
the stack the number of parameters given and what they are, before
transferring control. The utility itself is responsible for parameter
error checking.

The command line interpreter does have the responsiblity for finding the
proper command. If it is already PLOADED, then nothing more is neces-
sary but to transfer control there. However, the search of the disk files
needs to be explained. Disk files which are PCOS utilities have one of
these extensions: .sav, .cmd, or .bas. The command line interpreter
searches for the first file with one of those extensions that begins with
the same two (or more) characters the user gave. lt takes the first
matching entry it finds. Letters are matched exactly, treating upper and
lower case as equivalent. Any number of characters greater than two can
be specified to distinguish a command. and the last character used can be
the first character in the file name which is not a duplicate. For exam-
ple, to distinguish between fcopy.cmd and fconnect.cmd, the commands can
be` entered as fcop and fcon.

COMl"D SUFFIXES

.cmd and .sav

The difference between the .cmd and .sav extensions deserves some expla-
nation. Most utilities are in the category which use .cmd as a suffix.
Utilities with .cmd extensions are removed from system memory after they
return control to the system. Utilities with .sav extensions remain in
memory (the CLI PLOADS them). Usually, the .sav extension indicates
utilities which, when loaded, alter the PCOS system in some permanent way
which remains in effect until the system is reset or powered off . For
example, RS232 is a driver that provides RS-232-C communications. Once
loaded, it must remain to service communications it has begun.

PCOS SYSTEM PROGRAMMER'S GUIDE

COMMANbs AND UTILITY PR06RAMS

•bas

The .bas suffix indicates that the command routine is written in BASIC.
The CLl will check for the presence of the BASIC interpreter, and if
necessary will 1oad BASIC and then the command routine. A BASIC routine
cannot have a .sav extension.

PUNLOAD EXCEPTloNS

The PUNLOAD command, available in PCOS 2.0 and later verions, reverses
the effect of PLOAD (or in theory, .the .sav extension) and frees, if Pss-
sible, the memory space formerly occupied by the command routine.

EXCEPTION LIST

However, some commands change PCOS tables and cannot be removed after
having been PLOADED. Their TLOC attribute is set to 9. PUNLOAD examines
the attribute and does not remove them. The commands are:

ci . sav
rs232 . sav
ieee.sav
eprint . sav
kana . sav
vmove . sa v

RS232 driver user routines
RS232 driver basic routines
lEEE driver routines
Print error messages
Katakana keyboard table
Volume copy on one drive system command

pdebug. sav Debugger

Resident commands cannot be PUNLOADED:

lterm pload punload

THE .sav EXTENSI0N

Usually, commands with the .sav extension cannot be removed from memory.
However, the .sav extension does not imply the command is unloadable.
This extension means only that the system does not automatically unload
the command after its execution. The user can use the .sav extension as
desired. Unloadability is controlled by the TLOC attribute.

LEGAL FllENAMES

Legal filenames must start with a letter. The remaining characters can
be letters or numbers. Both upper and lower case characters are allowed
as filenames, and are treated as equivalent. The following special char-
acters are NOT allowed within the filename:

7-3

= (equals)
(comma)

\ (backslash)
* (asterisk)
/ s'pace /

- (minus)
: (colon)
/ (slash)
? (question mark)
/any control character/

COMMAND NAME AVAILABILITY

+ (plus sign)
(pound or hash)
' (single quote)
" (double quote)

Despite a few exceptions, the PCOS standard requires characters of a com-
mand name to be unique for the command to be properly accessed when
called in its short form. The following table shows the commands gen-
erally furnished with PCOS. A11 other two letter combinations are avail-
able. ln fact, all combinations of a letter followed by a number are
also available.

as ASM.CMD

ba BASIC.CMD

bk BKEYBOARD.BAS

bv BVOLUME.SAV

ci C1.SAV
ck CKEY.CMD

dc DCONFIG.CMD

ed EDIT.CMD

ep EPRINT.SAV
fc FCOPY.CMD

fd FDEPASS.CMD

ff FFREE.CMD
fk FKILL.CMD
fl FLIST.CMD
fm FMOVE.CMD

fn FNEW.CMD

fp FPASS.CMD
fr FRENAME.CMD

fu FUNPROT.CMD

fw FWPROT.CMD

hd HDUMP.CMD

ie lEEE.SAV
la LABEL.CMD
li LINK.CMD

ls LSCREEN.CMD
lt LTERM
ml MLIB.CMD

pd PDEBUG.SAV

pk PKEY.CMD

pl PLOAD
pr PRUN.CMD

ps PSAVE.CMD

pu PUNLOAD
rf RFONT.CMD
rk RKILL.CMD
rs RS232.SAV
sb SBASIC.CMD

sc SCOMM.CMD

sd SDEVICE.CMD

sf SFORM.CMD

sl SLANG.CMD

sp SPRINT.CMD
ss SSYS.CMD
te TEXTDUMP.CMD

va VALPHA.CMD

vc VCOPY.CMD

vd VDEPASS.CMD

vf VFORMAT.CMD

vl VLIST.CMD

vm VMOVE.CMD

vn VNEW.CMD

vp VPASS.CMD

vq VQUICK.CMD

vr VRENAME.CMD

vv WERIFY.CMD
wf WFONT.CMD

?-4 PCOS SYSTEll PROGRAMMER'S GUIDE

8. MEMORY CONFIGURATION

AB0UT THIS CHAPTER

This chapter explains the physical implementation of system memory in
functional terms, providing background information.

C"TENTS

OVERVIEW

PHYSICAL MEMORY BLOCKS

Z8001 MEMORY CONCEPTS

LOGICAL-TO-PHYSICAL MEMORY

DECODING 8-3

LOGICAL ADDRESSES 8-5

SEGMENT USAGE 8-5

ROM (READ ONLY MEMORY) 8-5

SCREEN BIT MAP 8-6

PCOS BLOCKS 8-6

LANGUAGE BLOCKS 8-6

UTILITY AND ASSEMBLY

PROGRAMS 8-6

Z8001 BACKGROUND INFORMAT10N 8-6

SYSTEM MODE AND NORMAL MODE 8-7

SEGMENTED MODE AND

NON-SE6MENTED MODE

THE SEVEN FUNDAMENTAL

CONFIGURATI0NS

OVERVIEW

CONFIGURATION 1 :

CONFIGURAT10N 2:

CONFIGURATI0N 3:

CONFIGURATI0N 4:

CONFIGURATloN 5:

CONFIGURATION 6:

CONFIGURATI0N 7:

8-7

8-8

8-8

8-9

8-10

8-11

8-12

8-13

8-14

8-15

MEMORY CONFIGURAT10N

OVEIWIEW

This section explains the physical implementation of system memory in
functional te.rms. The information is provided for background, and is not
necessary for making use of memory when using the PCOS system calls for
storage allocation. These calls are described in the companion section,
"Memory Management," which follows. "Memory Configuration" bridges the

gap between information provided about Z8000 memory handling concepts in
the vendor literature and the PCOS implementation of memory management.
The section also has information about the actual storage location of
certain PCOS system elements, which is not usually needed by the program-
mer but which may be needed for certain programming tasks. This section
does not contain hardware information except for a small amount of back-
9round information necessary to explain certain memory functions.

PllYSICAL MEMORY BLOCKS

The M20 system memory is allocated in 16 Kb blocks. Standard memory on
the motherboard is 128 Kb (8 blocks). Up to three memory expansion
boards can be added. A11 expansion boards added must be of the same
capacity, which is either 32 Kb (2 blocks) or 128 Kb (8 blocks).

Jumper options on the motherboard inform the system software that the
system contains one of the seven fundamental memory configurations shown
below.

Case Configuration

1

2

3

4

5

6

7

Standard 128 Kbyte memory only

32 Kbyte expansion board(s),
black and white display

32 Kbyte expansion board(s),
4-co.1or display

32 Kbyte expansion board(s),
8-color display

128 Kbyte expansion board(s),
black and white display

128 Kbyte expansion board(s),
4-color display

128 Kbyte expansion board(s),
8-color display

Expansion
Boards

0

1-3

1-3

2-3

1-3

1-3

2-3

Jumper
Code

8-1

As the above list shows, the jumper code informs the system either that
no memory expansion boards are present or that expansion capacity exists
with a particular maximum potential. The system determines the actual
size within the potential size when it is started up. 1t does this by
writing a word of zeros at the low address for each block and reading the
value at that address. 1f the value of all ones is read, no memory block
exists. (The unconditioned value of the data lines will be read as
ones .)

Z8001 MEMORY CONCEPTS

:::e:8::1p::#]:;:t::t::::::e::n:?#a:i::i3:i::;:a:o:::::¥e:Sg:::::!o::
and security. The fundamental memory addressing scheme is segment and
offset: A memory segment can be up to 64 Kb (addressed by 16 bits), and
there can be up to 128 segments, (addressed by 7 bits). The M20 uses 32
segments, addressed by 5 bits. In the interests of execution speed, PCOS
does not use the Z8001 security code provisions for user memory. Because
the M20 is a single-user system, such provisions should not be necessary.

Furthermore, memory can be differentiated between "code" and ''data" seg-
ments. The Z8001 has a code/data signal which changes state according to
whether the CPU is executing an instruction code or accessing data. This
distinction is meant to provide the designer with a tool for system secu-
rity. The designer can reserve certain logical memory locations for data
only, and the machine will refuse to allow code execution in those loca-
tions.

In practice, there are some difficulties with this distinction. When the
loader is placing programs in memory, those programs are data (they are
not executing). When those programs are executing, they must be in
"code" segments. Therefore, certain "code" and "data" segments must be
equivalent for the system loader to work.

The distinction between code and data segments is useful in high-1evel
languages, where the code may be processing buffers of data or large
arrays of numbers. In assembly language programs, code and data informa-
tion is often intermingled and must all be placed in a code segment for
actual execution.

PCOS design makes use of the code/data distinction in certain cases. One
example, discussed in "Language Support" in Part 3, is the implementation
of the BASIC interpreter. As developed, the interpreter and its user
area were both fitted within 64 Kb. The PCOS enhancement places the user
area in a second 64 Kb segment which is a data segment. The user-entered
BASIC statements can all be treated as data by the interpreter which
actually executes code.

PCOS SYSTEM PROGRAMMER`S GUIDE

MEMORY CONFIGURAT10N

L061CAL-TO-PHYSICAL MEMORY I)ECODING

The M20 provides for the physical memory (up to 512 Kb, 32 blocks) to be
addressed within a logical framework of two megabytes, one megabyte for
"code" memory and one for "data." Many physical blocks have more than

one logical address.

Figure 1, below, shows how logical addresses are decoded into physical
block addresses.

Fig. 8-1 Logical to Physical Address Decoding

A The Z8001 provides s bits for segment address. The low four bits are
sent to the memory mapping ROM and the high bits are ignored. Two
address bits, A14 and A15, are also sent.

8-3

8 The Z8001 code/date signal is sent to the memory mapping ROM.

C The configuration jumper setting is read by the memory mapping ROM.

D These input bits (A, 8, and C) are used as an index into a table and
the ROM table entry provides s bits of output. There are 16 tables.
The table is selected by the three configuration jumper settings and
the code/data signal. Within the selected table, the four segment
address bits index a table entry which is output. Output consists of
a 5-bit physical block address (0-1F; 0-31 in decimal) and three sig-
nal settings described below.

E These two signal 1ines are used by the M20 hardware. They indicate
whether the physical block is ROM or dynamic RAM. A third signal,
currently unused, is available for future development.

The figure below shows the logical-to-physical configuration for the
eight blocks on the motherboard. The portions shown are the same for all
PCOS systems. Other logical-to-physical assignments vary according to
memory configurations. At the end of this section, logical-to-physical
memory maps are provided for the seven fundamental cases.

Code Segments

CS0 CSI CS2 CS3 CS4 CS5 CS6 CS7 CSS CS9 CS10 CS11 CS12 CS13 CS14 CS15

Data/Stack Segments

DS0 DSI DS2 DS3 DS4 DS5 DS6 DS7 DSS DS9 DS10 DS11 DS12 DS13 DS14 DS15

Fig. 8-2 Motherboard System Memory

8-4 PCOS SYSTEM PROGRAMMER'S GUIDE

MEMORY CONFIGURATloN

The figure above shows the logical access paths for s Kb of ROM (RO) and
eight blocks of system memory (SO, S1 ,.... S7). As can be seen. some
physical blocks can be accessed in more than one path and may be accessed
in either a code segment or a data segment. The diagrams also show that
logical segments may contain no memory or from one to four blocks (16 Kb)
of physical system memory.

L06lcAL ADI)RESSES

A logical address consists of a segment and an offset. Segment values
range from 0 through %F and offsets from 0 through ®JÜFFFF. The distinc-
tion between code and data segments depends on the state of the code/data
signal from the Z8001.

Physical blocks within a segment start at one of these offsets: 0,
9Jo4000, %8000, or %C000. For example, physical block 6, which is in the
same location in both CS2 and DS2, starts at <<2>>%4000 and ends at
<<2>>9ro7FFF. The block boundary does not matter to the programmer so long
as it is not an end of the segment. A data string lying from <<2>>%7FE0
through <<2>>%813A could be manipulated without regard for block boun-
daries.

When using the storage handling system calls, the programmer does not
need to be concerned with logical boundaries. PCOS treats all memory as
a "heap" without boundaries, and takes care of the boundary effects
internally.

SE6MENT USA6E

The following discussion gives some information about usage of ROM and
some of the system memory segments. This information is provided as
background. The application programmer would never need to know these
details. The information may be useful to the system programmer in cer-
tain cases.

ROM (FtEAD 0NLY MEMORY)

The startup routines, including startup diagnostics and the bootstrap
loader, are in ROM. They occupy s Kb of the physical block shown as RO,
which is present in logical segments CS4, CS7, DS4, and DS7. The ROM
routines must be in a code segment in order to execute, and in a data
segment in order for the system routines to extract data provided there.

8-5

SCREEN BIT MAP

S0 is a 16 Kb block which is dedicated for screen display, and is present
in both CS3 and DS3. The video display is memory-mapped, which means
that data placed in S0 displays on the screen.

Further screen bit-map blocks to support color graphics would go into the
same segment.

For display purposes, S0 is in a data segment. It is also in a code seg-
ment because during startup the ROM routines use half of S0 for work
space. (Therefore, only half the display screen is active during startup
diagnosti cs .)

PCOS BLOCKS

PCOS code is executed from physical block 4, which is the third block in
Csl and CS6. The bootstrap routines and other loader routines can also
access this block via a data segment address in order to load the PCOS
nucleus or other PCOS routines.

PCOS uses physical block 1 for data. This can be located as the first
block of both CS0 and DSO.

LAN6UA6E BLOCKS

The BASIC interpreter goes into Csl and its user area into DS2. The
loader routines place other languages in the highest segment available
and work down. The loader skips the BASIC segments, and uses them only
as a last resort.

UTILITY AND ASSEMBLY PR06RAllls

These routines use physical blocks 5, 6, and 7, which can be accessed in
both code and data segments. See. for example, CS2 and DS2.

Z8001 BACKGROUND INFORMATION

The memory concepts discussed briefly here are provided for background
information. The information is available in reference documentation on
the Z8000 family of CPU and supporting integrated circuit chips. The
PCOS memory management software handles these hardware capabilities and
buries them from view of the programmer.

8-6 PCOS SYSTEM PROGRAMMER'S GUIDE

MEMORY CONFIGURAT10N

SYSTEM MODE AND NORMAL MODE

The Z8001 has two modes of operation, system mode and "normal" mode. 1n
system mode, all Z8001 instructions can be executed. 1n normal mode,
certain instructions, such as direct input/output, are not allowed. PCOS
runs under system mode and user programs under normal mode. The PCOS
system calls allow user programs to perform, indirectly, system mode
operations.

The memory management subsystem of PCOS performs operations in system
mode to control memory allocation. These operations include setting of
logical-to-physical translation and setting of attributes for portions of
memory. Memory attribute settings allow reserving portions of memory for
system use only and the prevention of unauthorized memory access.

The stack control registers, R14 and R15, are actually different regis-
ters in system mode and normal mode. A programmer using system mode and
a programmer using normal mode can both set values into FU4 and R15 and
work with stack operations. The stack handling instructions appear to
refer to the same registers, but actually do not. The two stacks will be
handled independently.

SEGMENTED MODE AND NON-SEGMENTED MODE

Memory addressing in the Z8001 is done using "segments" and "offsets." A
segment can contain a maximum of 64 kilobytes of memory. The offset
pointer is 16 bits and can address any byte within the maximum segment
size. A complete segmented memory address consists of a 7-bit segment
identifier and the 16-bit offset:

| Seg | Off set |

Segment 0-127
0ff set 0-65534

1n segmented mode, the programmer provides both segment and offset
values. In non-segment mode, the programmer provides only the offset
value. The '`current segment" is implied. The current segment value is
obtained from the program status word (PSW). The segment value is main-
tained in the PSW in either mode. Specifying a segment in segmented mode
does not change the PSW segment identifier.

The M20 design uses the
fore has segment values

four bits of the segment address, and there-
0 through 15.

•Üil ,,,, `,+,: '`,`,1'.

8-7

THE SEVEN FUNDAMENTAL CONF16URATI0NS

OVERVIEW

The tables that follow give the seven fundamental configurations possible
for system memory. The expansion configurations show the maximum possi-
ble expansion. Actual capacity is determined by the startup diagnostic
routines and saved for use by the system memory management routines.

The tables show three underlying.conditions: no expansion. 32 Kb expan-
sion, and 128 Kb expansion. When expansion boards are available, the
layout depends on the type of display because 4-color and 8-color
displays require one or two blocks to be dedicated for additional screen
memory.

CONFIGURAT10N OVERVIEW

Case Configuration

Standard 128 Kbyte memory only

32 Kbyte expansion board(s),
black and white display

32 Kbyte expansion board(s),
4-color display

32 Kbyte expansion board(s),
8-color display

128 Kbyte expansion board(s),
black and white display

128 Kbyte expansion board(s),
4-color display

128 Kbyte expansion board(s),
8-color

Expansion
Boards

0

1-3

1-3

2-3

1-3

1-3

2-3

Jumper
Code

The].umper code shown refers to motherboard].umpers, and is used when
computing the effective address. Strapping or jumper arrangements on the
expansion boards are not discussed.

8-8 PCOS SYSTEM PROGRAMMER'S GUIDE

MEMORY CONFIGURATION

CONFIGUR^TION 1 :

Standard 128 Kb, no expansion, black and white display.

Jumper selection: Switches Read: 5

Code Segments

CS4 CS5 CS6 CS7 CSS CS9 CS10 CS11 CS12 CS13 CS14 CS15

Data/Stack Segments

DS0 DSI DS2 DS3 DS4 DS5 DS6 DS7 DSS DS9 DS10 DS11 DS12 DS13 DS14 DS15

= RO, SO,1, 2, 3, 4, 5, 6, 7

Physical arrangement:

Main M20 board
No Expansion boards

R0 is the ROM Memory on the main board
S0 indicates screen bitmap area

Note :

8-9

CONFIGURATION 2 :

32 Kb expansion board(s) (1-3), black and white display.

Jumper selection: Switches Read: 7

Code Segments

CS4 CS5 CS6 CS7 CSS CS9 CS10 CS11 CS12 CS13 CS14 CS15

Data/Stack Segments

1----1----1----1

DS0 DSI DS2 DS3 DS4 DS5 DS6 DS7 DSS DS9 DSIO DS11 DS12 DS13 DS14 DS15

Physical arrangement :

Main M20 board
First expansion board
Second expansion board
Third expansion board

R0 is the ROM Memory on the main board
S0 indicates screen bitmap area

PCOS SYSTEM PROGRAMMER'S GUIDE

Note :

8-10

MEMORY CONFIGURAT10N

CONFIGURATI0N 3 :

32 Kb expansion board(s) (1-3), 4-color display

Jumper selection: Switches Read: 3

Code Segments

CS4 CS5 CS6 CS7 CSS CS9 CS10 CS11 CS12 CS13 CS14 CS15

Data/Stack Segments

DS0 DSI DS2 DS3 DS4 DS5 DS6 DS7 DSS DS9 DS10 DS11 DS12 DS13 DS14 DS15

Physical arrangement:

Main M20 board
First expansion board
Second expansion board
Third expansion board

R0 is the ROM Memory on the main board
SO, Ss indicate screen bitmap areas

Note :

8-11

CONFIGURATloN 4:

32 Kb expansion board(s) (2-3), 8-color display

Jumper selection: Switches Read: 2

Code Segments

CS4 CS5 CS6 CS7 CSS CS9 CS10 CS11 CS12 CS13 CS14 CS15

Data/Stack Segments

DS0 DSI DS2 DS3 DS4 DS5 DS6 DS7 DSS DS9 DS10 DS11 DS12 DS13 DS14 DS15

Physical arrangement:

Main M20 board
First expansion board
Second expansion board
Third expansion board

R0 is the ROM Memory on the main board
SO, S8, S10 indicate screen bitmap areas

PCOS SYSTEM PROGRAMMER'S CUIDE

Note :

8-12

MEMORY CONFIGURAT10N

CONFIGURAT10N 5:

128 Kb expansion boards (1-3), black and white display

Jumper selection: Switches Read: 6

Xl to X8 = ON
X2 to X7 = OFF
X3 to X6 = OFF

Code Segments

CS0 CSI CS2 CS3 CS4 CS5 CS6 CS7 CSS CS9 CS10 CS11 CS12 CS13 CS14 CS15

R4h` - RLö,.w

Data/Stack Segments

DS0 DSI DS2 DS3 DS4 DS5 DS6 DS7 DSS DS9 DS10 DS11 DS12 DS13 DS14 DS15

Physical arrangement:

Main M20 board
First expansion board
Second expansion board
Third expansion board

Note : R0 is the ROM Memory on the main board
S0 indicates screen bitmap area

8-13

CONFIGURATI0N 6 :

128 Kb expansion board(s) (1-3), 4-color display

Jumper selection: Switches Read: 1

Code Segments

6 1 2 1 14 I 18 1 22 1 26

CS0 CSI CS2 CS3 CS4 CS5 CS6 CS7 CSS CS9 CS10 CS11 CS12 CS13 CS14 CS15

Data/Stack Segments

2 I-RO-1 6

1----1----1----1

DS0 DSI DS2 DS3 DS4 DS5 DS6 DS7 DSS DS9 DS10 DS11 DS12 DS13 DS14 DS15

Physical arrangement:

Main M20 board
First expansion board
Second expansion board
Third expansion board

R0 is the ROM Memory on the main board
SO, Ss indicate screen bitmap areas

PCOS SYSTEM PR06RAMMER'S GUI0E

Note :

8-14

CONFIGURATION 7 :

128 Kb expansion board(s) (2-3), 8-color display

Jumper selection: Switches Read: 0

Code Segments

CS0 CSI CS2 CS3 CS4 CS5 CS6 CS7 CSS CS9 CS10 CS11 CS12 CS13 CS14 CS15

Data/Stack Segments

DS0 DSI DS2 DS3 DS4 DS5 DS6 DS7 DSS DS9 DS10 DS11 DS12 DS13 DS14 DS15

Physical arrangement:

Main M20 board
First expansion board
Second expansion board
Third expansion board

R0 is the ROM Memory on the main board
SO, S8, S16 indicate screen bitmap areas

Note :

8_15

9. MEMORY MANAGEMENT

`AB0UT THIS CHAPTER

This section presents the memory management functions available to the

programmer that allow use of system memory resources as a "heap", without
regard for segment boundaries. It includes implementation concepts.

CONTENTS

OVERVIEW

PCOS MEMORY CONCEPTS

IMPLEMENTATION OF MEMORY

MANAGEMENT

WARNIN6 0N BUFFER USE

PCOS NUCLEUS

PCOS STARTUP

OBSOLETE STORAGE ALLOCAT10N

CALLS

STORA6E ALLOCATION CALLS

Dispose (34)

New (120)

BrandNewAbsolute (121)

9-1

9-2

9-3

9-3

9-3

9-4

9-4

9-4

9-4

NewLargeBlock (122) 9-5

StickyNew (123) 9-5

MEMORY MANAGEMENT

OVERVIEW

This section is a companion to the prior section, "Memory Configuration."
"Memory Management" presents the system functions available to the pro-

grammer that allow use of system memory resources as a "heap," without
regard for segment boundaries. It gives some information on implementa-
tion and briefly describes the system calls for storage allocation.

PCOS MEMOIW CONCEPTS

The "heap" concept allows the programmer to request a block of memory of
a Particular size and to release it back to the system when d
able system memory is treated as a heap from which portions c
and to which portions can be added. Most of the details
prior section are hidden. The system calls given at the end
tion operate without regard for segment boundaries.

1MPLEMENTATION OF MEMORY MAl\lA6EMENT

e. Avail-

in the
Sec-

The PCOS nucleus includes the memory management routines. When PCOS is
initialized the memory management routines are initialized also and used
by the nucleus to load the rest of PCOS and the associated routines and
tables (resident commands, RFONT tables, etc.).

Memory management takes all of memory available after initialization and
links it together as large buffers forming one large heap. Then it allo-
cates memory from the heap and, when allocated memory is returned to it
(by the Dispose call), returns the memory block to the heap. Memory
management starts by allocating chunks of memory constrained only by seg-
ment boundaries, which it hides from users. As user programs and system
programs receive memory buffers, the allocation of memory begins to
resemble a patchwork quilt.

Memory buffers look like this:

| overhead | buffer space |

The overhead information is concise. 1t contains a special marker, the
length of the buffer space, and information linking it to other buffers.
When a buffer is requested, memory management takes space from the heap,
sets up a buffer of the requested size, and allocates it to the caller.
Unused space is allocated to the heap in the same fashion as to any other
user. When a using program disposes of a buffer, memory management allo-
cates it to the heap. When a program finishes execution, PCOS informs
memory management which then releases all buffers used by the program and
allocates them to the heap. (StickyNew allocations are an exception.)

Certain points can be summarized from this.

* All system memory is allocated, either to a user program, system pro-

gram, or the heap.

9_1

* Memory management hides details. Users request memory of a particu-
1ar size, receive it, use it, and return it. The actual 1ocation of
memory buffers is not a matter of user concern.

The DCONFIG utility program can be used to find actual memory locations,
if desired.

WARNING 0N BUFFER USE

As described above, there is no unallocated space in the system and there
is no guard space around buffers. The design of the memory management
system emphasizes small overhead and speed of execution. Memory manage-
ment does not guard against a program accessing memory past its buffer
bounda r i es .

In the figure below, we see that at the end of a buffer is the overhead
informtion for the next.

|overhead| buffer space l |overhead| buffer space 2 |

1f the user of buffer space 1 writes information past the end of the
buffer, the overhead information on buffer space 2 is destroyed.

This can happen in assembly language programs through programmer error,
and to some degree in languages such as BASIC when using arrays or simi-
1ar data structures and attempting to access with a subscript incremented
or decremented just past the proper range. Such errors are less likely
in PASCAL, which has rigorous internal checks.

To some degree, memory management can recover from difficulties caused by
desroyed overhead information. However, the buffer space information
that depended on the lost overhead information is lost. The effects of
this may not show up until later, usually when the program terminates,
and the cause may not be understood. That is, it is possible to destroy
buffer information and not realize it, and to later suffer the conse-
quences and not realize why. This kind of problem can be one of the most
difficult to detect and remedy. A special command, TEXTHEAP.SAV, can be
very valuable in this situation. 1t can give the address of destroyed or
invalidated information. Contact Olivetti for this program.

1n summary, be careful not to exceed buffer boundaries.

9-2 PCOS SysTEM PROGRAMMER'5 GUIDE

MEMORY MANAGEMENT

PCOS NUCLEUS

The PCOS nucleus, or kernel, is a fundamental part of PCOS required to
handle input/output for the system peripherals (keyboard, display,
printer, and disks), to decode command lines and execute commands, and to
manage memory. Other system software modules are loaded by the kernel
when needed.

The kernel resides in permanent memory. The permanent memory area also
contains the resident commands and any system elements made permanent by
the PSAVE utility, such as command routines, programmed key (PKEY) defin-
itions, `and user designed fonts (RFONT utility).

PCOS STARTUP

The diagnostic ROM determines the size of memory for each segment and the
total size of memory and saves these values for memory management. 1f
there is not enough memory to load the current PCOS, PCOS will not exe-
cute. This can happen when a user has saved material on a larger system
and attempts to load it on a smaller one.

When a PSAVED PCOS is booted onto a system with more memory, the memory
management descriptor table is modified to include the additional f ree
blocks in the heap.

OBSOLETE STORAGE ALLOCATION CAILS

Certain obsolete system calls operate within segment boundaries. They
are listed in "System Calls" in Part 2, under "Obsolete Calls." These
calls are presently supported, but should not be used for development
work. When modifying older programs, these calls should be replaced with
the system calls described at the end of this section. For convenience
in understanding the obsolete calls in order to replace them, some infor-
mation on segment handling is given below.

The. major constraint is the segment boundary and therefore the remaining
memory capacity in the segment. Most of the obsolete system calls
operate within the "current segment." The current segment can be changed
to a new segment by issuing a new segment call requesting memory. The
request can be for zero length, which merely changes the segment and
allows determining such matters as how much memory is available in the
new segment.

F{emember that although a segment has a maximum size of 64 Kb, it may
actually be made up of fewer physical blocks or even be empty. Moreover,
even in a full-sized segment the system may have taken memory space for
its own use or for memory management overhead.

9-3

STORAGE ALLOCATION CALLS

The following system calls are the programmer's interface to the memory
management system. These calls treat all of system memory as a heap,
without regard for segment boundaries. For further details, see the
Assembly Language Manuals.

Oispose (3.)

Releases heap space.

lnput :

RR8 <-address of block pointer

Output :

@RR8 -> hex FFFFFFF
R5 -> error status

Ne, (120)

Allocates a block of bytes from heap.

lnput :
RF{8 <- address of block pointer
R10 <- 1ength

Output :
R5 -> error status
@RR8 -> block pointer

--

Br®ndl®i.Absolute (121)

Allocates a block at a specified address.

1nput :
RR8 <-address of block pointer
R10 <- 1ength

Output :
R5 -> error status
@RR8 -> block pointer

9-4 PCOS SYSTEM PROGRAMMER'S GUIDE

MEMORY MANAGEMENT

NeLar_ge_?_::?_r___(_1_2_¥gt.

Allocates the largest free block of bytes from heap.

1nput :
RR8 <- address of block pointer

Output:
@RR8 -> block pointer
R10 -> length
R5 -> error status

[,[[[[[[[sä§ckywe, t, 23,

Allocates a block of bytes from heap that remains allocated after the
program doing this call terminates.

1nput:
RR8 <-address of block pointer
R10 <- 1ength

Output :
@RR8 -> block pointer
R5 -> error status

Examples

The following examples show how the stack can be used to hold the block
pointer .

Example 1. All calls except Dispose

Example 2. Dispose

push @rrl4, rr2
1dl rr8, 4414
sc Dispose
pOp rr2

NEEDED

//make room for pointer
//addr of ptr to rr8

//rr2 has ptr to block

//rrs has addr of ptr

//rr2 will contain nil (-1)

9-5

10. SYSTEM CALLS

AB0UT THIS CHAPTER

This chapter gives an overview of the PCOS system calls grouped by gen-
eral functions and provides background information on their use by the

programmer. System calls are used to handle input/output and to manage
system resources.

CONTENTS

OVERVIEW

TYPES OF CALLS

NUMßERING AND LABELS

FURTHER INFORMATI0N

BYTESTREAM 1/0 CALLS

6ENERAL

FILE IDENTIFIER (FID)

NUMBERS

FILE AND DEVICE P0lNTERS

10-1 ReadLine (14)

10-1 Eof (16)

10-2 ResetByte (18)

10-2 Close (19)

10-2 SetcontrolByte (20)

10-2 GetstatusByte (21)

BYTESTREAM 1/0 CALL 0VERVIEW 10-3

LookByte (9)

GetByte (10)

PutByte (11)

ReadBytes (12)

WriteBytes (13)

10-3

OpenFile (22)

Dseek (23)

DGetLen (24)

DGetposition (25)

BYTESTREAM CALLS AND

10-4 APPLICABLE DEVICES

10-4 DEVICE REROUTING

10-4 RS232 DEVICE 0RIVER

10-4 BLOCK TRANSFER CALLS

10-5

10-5

10-5

10-5

10-6

10-6

10-6

10-6

10-7

10-7

10-7

10-8

10-8

10-9

GENERAL 10-9 SetTime (73)

BLOCK TRANSFER CALL 0VERVIEW 10-9 SetDate (74)

Bset (29)

BWset (30)

Bclear (31)

BMove (32)

STORAGE ALLOCAT10N CALLS

GENERAL

LIST 0F CALLS

DATA MANIPULAT10N CALLS

GENERAL

NUMERIC DISPLAY CALL

OVERVIEW

DHexByte (91)

DHex (92)

DHexLong (93)

DNumw

DLong (95)

STRING HANDLING CALL

0VERVIEW

Dstring (89)

Crlf (90)

StringLen (105)

TIME AND DATE CALLS

10-9 6etTime (75)

10-9 GetDate (76)

10-9 USER CALL TO PCOS

10-10 Calluser (77)

10-10 SYSTEM MANAGEMENT

10-10 SYSTEM MANAGEMENT CALL

0VERVIEW

10-10

BExit (0)
10-10

Error (88)
10-10

Bootsystem (107)

10-11 Setsysseg (108)

10-11 SearchDevTab (109)

10-11 KbsetLock (114)

10-11 EXPLANAT10N

10-11 FILE MANAGEMENT

10-12 GENERAL

EXPLANATI0N

10-12

IEEE-488 CALLS

10-12

GENERAL

10-12

SUMMARY 0F IEEE SYSTEM

10-12 CALLS

10-13 0BSOLETE CALLS

Newsamesegment (33)

Maxsize (99)

TopFree (100)

ProtRead (101)

1nitHeap (103)

NewAbsolute (104)

GRAPHIC CALLS

SUMMARY 0F GRAPHIC CALLS

SYSTEM CALL LABELS

THE MASTER TABLE

10-18

10-18

10-18

10-19

10-19

10-19

10-19

10-20

10-21

10-21

SYSTEM CALLS

OVEIWIEW

System calls are PCOS procedures used to handle lnput/Output and to
manage system resources such as memory or the real-time clock. System
calls can be accessed by assembly language programs via the Z8000 System
Call instruction. The System Call instruction includes a one-byte
request code which indicates the function to be performed. For example:

sc #3 System call, request code = 3

System operations done by BASIC, PASCAL, and other high-1evel languages
make use of system calls, as do PCOS command routines and utility pro-
grams.

Parameters to be used by the system call are generally passed in regis-
ters numbered from R5 to R13. 1f strings or other large data structures
are to be passed, pointers to the structures are passed as parameters in
the registers.

1n general, parameters are passed as 16-bit unsigned values. ASC11 char-
acters are passed occupying the lower bytes of a register.

All system calls that return an error condition use register R5. Zero
indicates no error: a non-zero integer gives the error code. Error codes
are listed in Part 3, under "PCOS Error Codes."

TYPES 0F CALLS

ln the discussions which follow, the system calls have been grouped by
type as follows:

a. Bytestream calls
b. Block Transfer Calls
c. Storage Allocation Calls
d. Data Manipulation Calls
e. Time and Date Calls
f . User Call to PCOS

g. System Management
h. File Management
i.1EEE-488 Calls

j. Obsolete calls
k. Graphics calls

The section also has supplementary discussions on Device Rerouting and on
the RS232 driver support. These topics are related to the bytestream
cal ls .

All system calls from PCOS 1.X through PCOS 3.X are included in the dis-
cussion in this section.

10-1

NUMBERIN6 AND LABELS

For purposes of identification, each system call has been assigned a
label as well as a number. A list of these labels is given at the end of
the section.

1t is recommended that this list be made into an include file and that
programmers use the symbolic label rather than the number when coding
system calls. For example, SC 9 can also be referenced by its label:
'LookByte. '

FURTHER INFORMATloN

The remainder of this section gives an overview of system calls and gen-
eral information about them. For detailed information on each system
call, see the Assembly Language Manual.

BYTESTREAM 1/0 CALLS

GENERAL

Bytestream 1/0 calls are used to interface with the disk, printer, RS232
communications port, and console (keyboard and video). These calls are
used to:

a) Transfer bytes of data to or from an 1/0 device

b) Send control information to a device or to a device driver

c) Receive status information from a device

The bytestream calls are:

LookByte (9)
GetByte (10)
PutByte (11)
ReadBytes (12)
WriteBytes (13)
ReadLine (14)
Eof (16)
ResetByte (18)

10-2

Close (19)
SetcontrolByte (20)
GetstatusByte (21)
OpenFile (22)
Dseek (23)
DGetLen (24)
DGetposition (25)

PCOS SYSTEM PR06RAMMER'S GUIDE

SYSTEM CALLS

FILE IDENTIFIER (FID) NUMßERS

A FID is a small integer used to identify the keyboard, the console, the
printer, an open disk file, or other 1/0 device. The operating system
maintains a table associating FIDs with a File Pointer. That pointer
refers to a control structure comprised of pointers to data structures
and to routines. The FID is required with bytestream calls.

FILE ANl) DEVICE POINTERS

Opening a disk file creates a stream data structure, and places a pointer
to it in the File Pointer Table (FPT). Closing the disk file sets this
pointer to nil, and releases any table space associated with the file.
Some "files" or devices are always open. For example, the keyboard and
the screen (the default window) are always open. They can, however, be
closed and re-opened by use of the PCOS Device Rerouting feature.

The following table describes the allocation of FIDs. Some of these FIDs
represent devices which are always open: others are assigned to files or
screen windows by system calls.

0-15 BASIc files
16 Reserved system file
17 Console
18 Printer

19, 25, 26 RS232 Communications (Com, Coml, Com2)
20-24 PCOS files

BASIC file numbers translate simply into PCOS FIDs, but BASIC window
numbers for the screen are distinct from FIDs. The PCOS file ID's cannot
be accessed in BASIC.

BYTESTREAM 1/0 CALL OVERVIEW

------ ` _l_ F m

L-kByte (9)

Returns the next byte from designated device buffer without removing the
byte from the buffer.

Input :
R8 <- FID

0utput:
RL7 -> returned byte
RH7 -> buffer status
R5 -> error status

10_3

GetByte (10)

Returns the first byte from designated device, removing the byte from the
device buffer.

lnput :
R8 <- FID

0utput :
RL7 -> returned byte
(H7 always zero)
R5 -> error status

PutByt® (11)

Transmits a byte to specified device.

1nput :
R8 <- FID
RL7 <- input byte

Output :
R5 -> error status

ReadBytes (1 ZXTiT¥ä;:

Reads and counts bytes, from a device, into a buffer in memory.

Input :
R8<-
R9<-
RR10 <-

Output :
R7->
R5->

WriteByi[-Ti-3i_|\^
Writes a specified number

lnput :
R8<-
R9<-
RR10 <-

Output:
R7->
R5->

10-4

FID
count to be read
ptr to memory buffer

count returned
error status

of bytes from memory to a file or device.

FID
count
start

count returned
error status

PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CALLS

ieaEt--.___`-_ ______ _

R.adLine (14)

Reads and counts bytes input from keyboard, until the first <CR>, into a
memory buffer (at a specified address).

1nput :

Output :

R8<-
R9<-
RR10 <-

R6->
R5->

FID
count
destination

count returned
error status

Checks if input character is available from file.

Input :
R8 <- FID

Output,
R9 -> returned status
R5 -> error statiis

Resets input file or device.

lnput :
R8 <- FID

Output :
R5 -> error status

Closes specified disk file or device.

1nput: R8 <- FID number

Output : R5 -> error status

L:x±gF#Fof (i 6)

-_ (,.) :,,,ii§:-.tffi

Close (19)

10-5

diäJIlBH

SetcontrolByte (20)

Writes a word into device parameter table.

lnput :
R8 <- FID
R9 <- word number
R10 <- word

Output :
R5 -> error status

6etstatusByte (21)

Reads a single word from the Device Parameter Table.

1nput:
R8 <- FID
R9 <- word number

Output :
R10 -> word read
R5 -> error status

OpenFile (22)

Opens designated file or device for read, write, etc.

lnput :
(Files)

R6 <-extent length
R7 <- mode
R8 <- FID
R9 <- fileidentifier

length
RR10 <- address

(Device)

R8 <- FID

Output :
R5 -> error status R5 -> error status

Dse®k (23)

Positions file pointer as specified.

1nput :
R8 <- FID
RR10 <- position

Output :
R5 -> error status

10-6 PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CAILS

Returns length of file or number of bytes in the input buffer.

lnput :
(Files)

R8 <- FID

0utput :

RR10 -> 1ength
R5 -> error status

(Device)

R8 <-FID

RIO -> zero status
R11 -> number
R5 -> error status

L ``>~` Deetposition (25):
Gets postion of next byte to be read or written.

1nput ,
R8 <- FID

0utput:
RR10 -> position
R5 -> error status

BYTESTREAM CALLS AND APPLICABLE DEVICES

The table below shows which bytestream calls can be used with which dev-
ices. The devices are:

Console FID 17. (File ldentification 17.)
The console includes the keyboard (key)
and the screen display (disp).

BASIC disk files (8), FIDs 0-15;
PCOS disk files (P), FIDs 20-24.

The RS232-C ports; COM, COM1, and
COM2; FIDs 19, 25, and 26.

The system printer, FID 18.

Bytestream Calls and Applicable Devices

Bytestream
Call

LookByte (9)
GetByte (10)
PutByte (11)
ReadBytes (12)
WriteBytes (13)
ReadLine (14)
Eof (16)
ResetByte (18)
Close (19)
SetcontrolByte (20)
GetstatusByte (21)
OpenFile (22)
Dseek (23)
DGetLen (24)
DGetposition (25)

I)EVICE REROUTIN6

Console
key disp

Disk
BP

Standard M20 system devices are the keyboard, the display screen, the
disks and their files, the printer, and an RS232 interface. Optional
system devices include extra RS232 interfaces and an lEEE-488 interface.
The PCOS Device Rerouting commands permit the user to declare any of
these devices or files as a replacement or additional source or destina-
tion, depending upon its type and the parameters of the command. The
source or destination can replace or supplement the fundamental input
source and output destination which is the keyboard and the display
screen (the console).

1n general, the bytestream commands that can use FID 17 (the console) are
capable of being modified by the device rerouting capability to accept
another bytestream FID in addition to or in place of FID 17.

For further information, see the "Device Rerouting" section in Part 2.

RS232 DEVICE l)RIVER

The RS232 device driver is a general purpose asynchronous communication
package that allows the user to specify baud rate, parity, stop bits, and
data bits for the communication line. The bytestream calls interface
with this driver. The user accesses this driver by the SCOM command,
described in the PCOS User Manual. The programmer can make use of the
SCOM package (via Call User) or the Cl command in BASIC, or can access
the driver via the appropriate FIDs and bytestream calls.

10-8 PCOS SYSTEM PROGRAMMER'S 6UIDE

SYSTEM CALLS

This driver is discussed in the "Other Drivers" section of Part 2.

BLOCK TRANSFER CALLS

6ENERAL

The block transfer system calls allow the programmer to set portions of
memory to a fixed value, to transfer data from one portion to another,
and to clear memory. For example, block transfer calls are used by the
PCOS system to transfer the BASIC interpreter's fixed tables from ROM to
RAM, and by BASIC to transfer other initialization tables from ROM to
RAM.

BLOCK TR^NSFER CALL OVERVIEW

Sets a block,of bytes to a specified value.

1nput :
RL7 <- n (byte value)
RR8 <- start
R10 <- 1ength

Output :
R5 -> error status

Sets a block of words to a value.

1nput :
R7 <- n (word value)
F`R8 <- start
R10 <- 1ength

Output:
R5 -> error status

Sets specified block of memory to zeros.

Input :
RR8 <- start
R10 <- 1ength

Output ,
F{5 -> error status

-`.p_1
.`

BWset (30)

Bclear (31)
_-__

10-9

Moves a block of bytes from one location to another.

1nput :
R7 <- 1ength
RR8 <- start
RR10 <- destination

Output :
R5 -> error status

STORAGE ALLOCATION CALLS

GENERAL

The storage allocation calls are supported by the memory management rou-

:::::;t a::e:eL::::r::;fe:n:pa::S::m s;::::am.:e:::;. UseM::o:;es:a:::::e::
makes system memory available as a "heap" without regard for segment
boundaries.

LIST OF CALLS

The Storage Allocation calls are:

Dispose (34)
New (120)
BrandNewAbsolute (121)

NewLargestBlock (122)
StickyNew (123)

For background information and for details on these calls, see the
"Memory Management" section in Part 2.

DATA MANIPULAT10N CALLS

GENERAL

Numerical Display calls convert the internal form of numeric values into
a displayable form. They operate on bytes, words, long words, and
integers. String handling calls display a string, perform a carriage
return and line feed, and provide the length of an input string.

10-10 PCOS SYSTEM PROGRAMMER'S 6UIDE

SYSTEM CALLS

NUMERIC DISPLAY CALL OVERVIEW

The system calls are:

Displays a byte in hexadecimal.

Input :
R12 <- byte

Output :

R5 -> error status

Displays a word in hex.

Input :

Output : .

R12 <- word

R5 -> error status

Displays long word in hexadecimal.

Input :
RR12 <-longword

Output:
R5 -> error status

Oisplays integer.

Input :

Output :

R12 <- integer
R13 <-field width

R5 -> error status

I
DLk!xByte (ql)

DHex (92)

gä D,,exLong t,3,

I
DNu" (94)

10-11

DLong (95)

Displays number as unsigned integer.

1nput:
RR12 <- 1ong integer

Output :
R5 -> error status

STRIN6 HANDLIN6 CALL 0VERVIEW

Dstring (89)

Displays a string message.

1nput :
RR12 <- address

Output :
R5 -> error status

Crlf („)

Does a carriage return <CR> and linefeed <LF>.

1nput :
(there are no parameters)

Output :

R5 -> error status

Stringlen (105)

F!eturns the length of the].nput string.

• 1nput :
RR12 <- pointer

Output :
R7 -> 1ength
R5 -> error status

10-12 PCOS SYSTEM PROGRAMMER'S GUIDE

TIME AND DATE CALLS

The M20 has a real-time clock which maintains both date and time. This
clock must be reset each time the system is turned on.

Setting the time or date is done by passing the address of an ASC11
string to the operating system. Likewise, the time or date may be read by
receiving an ASC11 string from the operating system. The formats of
these strings are defined by the calls listed below. These correspond to
the string values passed in BASIC by TIMES and DATES.

These system calls read and set data and time:

SetTiiN! (73)

SetDate (74)

fi..ffi 6etTiN (75)

10-13

Sets the system clock.

1nput :
RR8 <- address
R10 <- 1ength

Output :
R5 -> error status

Sets the system date-clock.

Input :
RR8 <- address
RIO <- length

Output :
R5 -> error status

Returns the system time.

1nput :
RR8 <- address
R10 <- 1ength

Output :
R5 -> error status

ato (7ti,.:.--
Returns the system date.

1nput:
RR8 <- address
R10 <- 1ength

Output,
R5 -> error status

USER CALL TO PCOS

One system call has been provided to allow the user to execute any util-
ity or command routine available that could be executed from the PCOS
command line. The utility or routine may be transient or resident. The
call is:

Calluser (77)

Calls user or PCOS utility or command.

1nput :
RR14 <- pointer

Output :
R5 -> error status

The call can be used in assembler utilities to process PCOS user com-
mands. The "Command Line lnterpreter" section in Part 2 gives further
information about this call. A detailed explanation of the call is given
in the discussion of Calluser (77) in the Assembly Language Manual.

SYSTEM MANA6EMENT

These calls are used for internal PCOS management and are available for
general use as needed.

svsTEM mNA6Ellq:NT cALL ovERvlEw

BExit (0)

Exit from Basic.

(this procedure has no parameters)

10-14 PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CALLS

Displays standard error message.

Input :
RH5 <-parameter number #
RL5 <-error code

Output :
(no outputs)

Reboots (initializes) system.

1nput :
(this call has no parameters)

Output :
R5 -> error status

Returns caller to segmented system mode.

Input :
(this call has no parameters)

Output :
F{5 -> error status

Searches system device table.

1nput :
RR10 <- ptr to device name
R9 <-device name length

Output :
RL5 -> entrynumber
RH5 -> device type
RR8 -> ptr tableentry
R5 -> error status

Error (88)

F] thtsysta (|o7)

l_äi#.j
Setsysseg (108)

SearchoevTab (109)

10-15

KbsetLock (114)

Sets the state of both the shift lock and the cursor lock flags.

Input :
R6 <-integer flag

Output :
R7 -> previous flag
R5 -> error status

EXPLANATION

BExit exits from BASIC to PCOS. Error displays system call error mes-
sages. Bootsystem initializes or reinitializes the system. Setsysseg
returns the system to segment mode. SearchDevTab is used to search the
device table. RbsetLock sets the state of the shift-1ock and cursor-locl<
flags .

FILE MANA6EMENT

GENERAL

These calls are used intenally to manage volumes and files, and are
available for general use.

The file management calls are:

DRemove (26)
DRename (27)
DDirectory (28)
DisectName (96)

Checkvolume (97)
Search (98)
Setvol (102)
DiskFree (106)

EXPLANATION

DRemove removes a file name from a directory. DRename renames a file in
a directory. DDirectory displays a directory. DisectName parses file
names. Checkvolume forces a check of disk volumes. Search searchs a
disk directory for a file name. Setvol sets the active volume for next
access. DiskFree returns the number of free sectors on a disk. For
further information, see the "File Management" section in Part 2.

10-16 PCOS SYSTEM PROGRA"ER'S GUIDE

1EEE-488 CALLS

6ENERAL

The lEEE-488 package supports use of an optional IEEE-488 interface
board. The package consists of a group of programs which execute the
following BASIC IEEE statements:

ISET, IRESET, ON SR0 GOSUB, POLL, PRINT@,

WBYTE, RBYTE, lNPUT@, and LINE INPUT@.

These statements allow the user to perform the following operations on an
IEEE-488 bus:

a) Control the IFC (interface clear) and REN (remote enable) 1ines

b) Receive a service request from another device on the bus, identify
the requesting device through serial pooling, and process the service
request

` c) Write control bytes (e.g., "Device Clear", "Device Trigger", etc.) to

other devices

d) Address, write data to, and read data from, other devices

e) A11ow the devices within an lEEE-488 network to transfer data on the
bus (that is, assign ''Talker" status to one de-vice, and "Listener"

. status to one or more devices)

SutMARY 0F IEEE SYSTEM CALLS

The following system calls are assigned for the lEEE package:

1BsrQO (78)
1BsrQ1 (79)
1BPoll (80)
1BIset (81)
1BRset (82)

1Bprnt (83)
IBWByt (84)
1Blnpt (85)
1BLinpt (86)
1BRByt (87)

For further information, see the "Other Drivers" section in Part 2.

1f the system does not have an lEEE option board, register R5 will con-
tain error 34 on exiting from any IEEE system call.

10-17

OBSOLETE CALLS

The following calls are obsolete. Their functions have been replaced
with newer system calls. These calls are still active to provide support
for older software. However, they should not be used for current
development work and should be replaced when encountered in programs that
are being redone. Later versions of PCOS may no longer support these
calls.

Newsamesegment (33)

Allocates a block of bytes from heap in the current segment.

1nput :
RR8 <-
R10 <-

Output ,
R5->

address variable->

pointer to address variable
size

error status
buffer start address

Maxsize (99)

Returns maximum free heap size.

Input:
(there are no parameters)

Output:

R8 -> size
R5 -> error status

TopFree (100) .

Gets top of heap.

1nput :
(there.are no parameters)

Output :
RR8 -> top
R5 -> error status

10-18 PCOS SYSTEM PROGRAMMER '5

SYSTEM CALIS

Verify protection pattern on track 35.

lnput ,

R5 -> error status
Output :

Sets new address for top of heap.

Input :
R9 <- address

Output :
R5 ->-error status

Allocates a block at a specified address.

1nput :
RR8 <- address of block pointer
RIO <- length
@RR8 <- block pointer

Output :
R5 -> error status

GRAPHICS CALLS

.T , ProtRead (|0|) (

|E|nit|kap ,,o3, H

= Ne.Absolute(104) |

The graphics system calls are discussed in detail, with background, in
the "Video Display" section of Part 2. A summary of the calls is given
below,

10-19

SUMMARY 0F GRAPHICS CALLS

Mnemonic

CLS
Chg Cur
Chg Cur
Chg Cur
Ch9 Cur
Chg Cur
Chg Cur
Read Cur 0

Read Cur 1

Select Cur

Grf lnit
Palette Set

Define Window
Select Window
Read Window
Chg Window
Close Window
Scale XY

Map XY

54 Map cxY

55 '(Fetchc
56 Store c

UpC

DOwn C

59 | Leftc

60 , Ftightc

61 ' SetAtr
62 Set c
63 , Readc

:3 llN::::;

Description

Clears current window
Positions text cursor
Positions graphics cursor
Sets text cursor blink rate
Sets graphics cursor blink rate
Sets text cursor shape
Sets graphics cursor shape
Returns text cursor positon (column, row)
and blink rate in current window
Returns graphics cursor position (column,
row) and blink rate in current window
Selects graphics or text cursor, or turns
off current cursor
lnitializes screen and sets defaults
Selects a global four-color set (only for
four-color systems)
Creates a new window
Selects another window
Reads attributes of current window
Changes window colors
Closes the selected window
Checks coordinates against window bound-
boundaries
Converts x-y coordinates to absolute
values and stores results in graphics
accumulator
Converts C-value in graphics accumulator
to X-Y coordinates

1 Returns contents of graphics accumulator' Sets graphics accumulator to a specified

| C-value saved by 'fetch'
Moves position (as stored in graphics

! accumulator) up by one pixel
Moves position (as stored in graphics
accumulator) down by one pixel
Moves position (as stored in graphics
accumulator) 1eft by one pixel
Moves position (as stored in graphics
accumulator) right by one pixel
Sets the current color value
Plots a single point
Returns the color attribute of the
current point
Draws a horizontal line
Draws a -vertical 1ine

1 0-20 PCOS SYSTEM PROGRAMMER'S GUIDE
~

SYSTEM CAILS

:; llN#::e

68 Pnt lnit
11

69 ' TDownc

1

70 TUp C

Scan L
Scan R
Close A11
Windows
Clear Text

Scroll Text

SYSTEM CALL LABELS

Reads a screen rectangle into an array
Transfers a graphics rectangle from an
array to the screen
Specifies global color attributes for
PAINT routines
Moves graphics accumulator down by one
pixel after checking the window boundary
Moves graphics accumulator up by one
pixel after checking the window boundary
Paints left on a scanline up to a border
Paints right on a scanline up to a border
Closes all existing windows (from 2 to
16)

Clear a specified rectangle of text in
the current window
Copies a rectangle of text characters in
a window to another position of the same
window

On the following pages is a sample include file that gives a suggested
symbolic label for each system call number. This sample can be made into
an include file so that programmers may use labels rather than numbers
when coding system calls. Using a standard set of labels makes source
code easier to read and maintain. . The sample shows certain labels "com-
mented out." Some managers may wish to do this as a matter of policy, in
order to discourage the use of obsolete calls and the inadvertant use of
calls not required within a programming group, such as the graphics calls
or ieee calls.

TI+E MASTER TABLE

After the list of system calls a sample PCOS master table is provided for
background information. PCOS internal routines make use of the master
table and system calls. They read and update master table values. The
sample table gives an idea of the information used by and available to
system calls. Master table locations change with every release of PCOS.
Therefore, the master table is not available for programmer use, except
for certain programmers working directly on the internal PCOS routines.
Location address are not given in the sample table in order to avoid con-
fusion.

The PCOS system calls allow programmers access, indirectly, to all master
table values necessary for developing programs under PCOS. System calls
will continue to work, regardless of PCOS changes, because they are not
location dependent.

10-21

Sample System Call Include File

CONSTANT

/ Nfi_xit
LOokByte
GetByte
PutByte
ReadBytes
WriteBytes
ReadLine
1 lGe!tip
Eof
//Eom
F!esetByte
Close
SetcontrolByte
GetstatusByte
OpenFile
Dseek
D6etLen
DGetposition
DRemove
DRename
DDirectory
/ lp;Se;+
BWset
/ NlleElr
1 lpIN®Ne :=32
Newsamesegment := 33
Dispose
Cls
Chgcuro
Chgcurl
Chgcur2
Chgcur3
Chgcur4
Chgcur5
Readcuro
//Readcurl
Selectcur
Grflnit

:=34
:=35
:=36
:=37
:=38
:=39
:=40
:=41
:=42
:=43
:=44
:=45

//Paleteset := 46
//Definewindow := 47
//Selectwindow := 48
Readwindow := 49
Chgwindow := 50
//Closewindow := 51
| | Sca+f 3XN
I NHPH:NC
I Na,pK;N
1 1 F e!t¢Nß
1 lst;ßre,f.

10-22

exit to PCOS
look at what is in buffer
get byte from file
put byte in files
read n bytes from file
write n bytes to file
read a line from screen

1e pointer
for end of file

test for end of medium
clear ring buffer for keyboard
close specified file
set comm port device param table entry
get comm port device param table entry
open specified file
seek to nth byte
get length of file
get current file position
remove specified file
rename specified file
list volumne directory
block memory seg
block word set
31 //clearmemory
block memory move
allocate heap storage in same segment
dispose of heap storage
clear screen
update text cursor position
update graphics position
set text-cursor blinkrate
set graphics-cursor blinkrate
set text-cursor shape
set graphics-cursor shape
fetch attributes of text cursor
fetch attributes of graphics cursor
select graphics or text cursor
initialize graphic system
select color palete
define a new window
change window
read window characteristics
change window forground and background color
close window
52 // check on window boundaries
53 // map x&y into graphic accumulator
54 // map graphic accumulator into x&y
55 // fetch graphic accumulator
56 // store graphic accumulator

PCOS SYSTEM PROGRAMMER'S 6UIÜE

//UpC
/ lDCNrYß
/ lLef tf,
//Rightc
/ / SetA:+r
//Setc
/ /R;eauf,
1 Nse;Hf ;X
I Nse;Vf ;N
//NRead
//Nwrite
//Pntlnit
i /TrjoNNf.
//TUpC
//ScanL
/ / ScEirrR`
SetTime
SetDate
GetTime
GetDate
Calluser
//1BsrQO
//1BsrQ1
//1BPoll
//lBIset
//IBRset
1 1 T!HR r rr*
1 /TRNRNt
//lBlnpt
//IBLinpt
//lBRByt
Error
Dstring
CrLf
DHexByte
DHex
DHexLong
DNumw

DLong
DisectName
Checkvolume
Search
Maxsize
TopFree
ProtRead
Setvol
lnitHeap
NewAbsolute
StringLen
DiskFree
Bootsystem
Setsysseg
SearchDevTab
SetHFlag
Dsplctlchar

:=66

•.-- 70 11
-.-_ 71 11

:= 72 //
:= 73 //
:=74 //
•.-_ 75 / 1
•.-_ 76 //
•.-_ 77 11

ve graphic accumulator up one pixel
ve graphic accumulator down one pixel
ve graphic accumulator left one pixel

// move graphic accumulator right one pixel
// set current attribute

ot graphic accumulator position on screen
ad current attribute

// set n pixels on x axis
// set n pixels on y axis

read n pixels into memory
67 // write n pixels from memory to screen
68 // paint initialization
69 // move graphic acc down one pixel & check
move graphic accumulator up one pixel & check
scan to the left
scan to the right
set time
set date
get time
get date
call on PCOS transient file
78 // enable ieee-488 interrupt

•.= 79 // disable ieee-488 interrupt
:=80 //poll listeners
:= 81 // 1SET call
:=82 //1RESETcall
:=83
:=84
:=85
:=86

87

// output parameter to lEEE-488
write n bytes out to IEEE-488
input off IEEE-488 bus
input a line off IEEE-488
read bytes of IEEE-488

print error message
print string
print carriage return and line-feed
display hex byte
display hex word
display hex long
display decimal word
display decimal 1ong
file system
force check of disk volume
f ile system
display max free heap block size
display top of heap
verify protection pattern on track 35
set active volume ,
set top of heap
allocate block at specif ied address
return length of input string
f ree sectors on disk
boot default system with no disk parameters
caller is returned in segmented system mode
Routine to search system device table
set heap flag value (for PSAVE, etc)
switch screen driver mode to display control chars

8¢OoOo

830D6¢

lnitwTree
DispwRoot
kb set lock
C1€arT€xt
ScrollText
//WarmBootsys
Netcall
Getvol
New

#
<5> C)OÖÖ Sdr}i`rrn b;8 %400Ö

:=112 //
•.-_„3 /1
•.-_„411
:=115 //
•.-_„6 /1
:=117 //
:=118 //
•.=119 /1
•.-_12!f J //

NewAbsAnysegment:= 121 //
NewLargestBlock := 122 //
StickyNew
//
//
//

calls pwindo initwtree (for PSAVE)
^.alls pwindo-disproot (for PSAVE)
set shift ana cursor lock.
clear a rectangle of characters to background
copy a rectangle of characters within a window
Warm boot of system with disk parameters
Access the Local Area Net
Returns current volume number as a string
allocate block in any segment
newabs not restricted to seg 2
new for largest block anywhere in mem

:= 123 // block to stick around forever

Sample of Master Table -- Without Addresses

CONSTANT

// This is the PCOS PSA Table location

psabase := %8200xxxx // Master Table pointer Location

// These are linkages to the rom routines % 94%C'Coc` ~?c,%¢-i" 8792`

// disk init
11 dsk.To
11 rtc_ irli*
| | rcG~LTrLr
/ / scn_ ±rT+t

((:::-B:t:t:e

:=.,o8400!%C,
:= %8400xxxx
:= %8400xxxx
:= %8400xxxx
:= %8400xxxx
: = .~Ü 8 4 0 0 x x x x
:= %8400xxxx

Cola boot := %8400XXXX
warm-boot : =.~ü8400xxxx

// System data size constants

mail box size := 11
sc täble-size := i24
fp-table-size := 27
niT _ := -1

// Disk Driver lnitialization Call
// Disk Driver 1/0 Call
// Real Time Clock lnitialization Call
// Real Time Clock lnterrupt routine
// Rom Screen Driver lnitialization Call
// Rom Screen Driver Character display
// Rom Screen Driver String display
// Reboot PCOS from first file on disk
// Reboot PCOS from specified file

// 11 words ,
// system calls 0 ..123
// file pointers of double longs
// system nil definition (ffffffff)

TYPE

mastab record [?8200%O e~?{H=f£f ## c>~+ |
£ mtBoot long // system start address --o-ne of following:
? mtlnit long 4 // either: normal start address
9 mtchkpt long 8 // or: checkpoint restart address
¥ mtRomtab long ii. // address of Rom linkage table [1]
5 mtMaxsc word lf // maximum system call
6 mtsctab \- long 18 // address of system call table [2]

b ,` 'B
ric;b=®}4i ~{{G b

10-24

&h3 3.? bö+e s b,`+€

PCOS 5YSTEM PROGRAMMER 'S GUIDE

`/ mtExtsc
L5 mtsaveregs
'¥ mtcursc

-/, mtMaxfp

77' mtFptab
7?` mtsegtab
?3 mtHeaptab
„4, mtlnitlist
L,,£ mtchktab

'j mtpkey
^'/ mtMonlink

```.mtMailbox
•`~i  mtcurwind

-,' ;-  mtFonttab

? 7 mtscntran
2?  mtKbdtran
j2.3 mtconf i g
2 C' mtwFheap
J2i`mtprinter
^'J:-mtclock

?\'  mtcurwindadr

==!::!;:::::tt
jp mtsysputatt
..,r/mtFSvol

3:!i!!;i#!:i;is:!:::i;::;!;;i!:;::;::i::::äirm

.`  'mtsysinitfils'.  mtsysxfrblk
:'"/  mtsysbitinmap

u2j`mtKbdEntries
.z.r mtKbdvar
? `; mtsysfstime

_/46

1ong :  "   //  address   of  FP  table   [4]
long  -1:,   //  address   of   segment   table   for   PSAVE   [7]

::::u-, ;  (( ::::e::  ;:i:::ii:::!:n`i!st  [0]
|ong`.LS   //  pointer   to   (future)   checkpoint  table   [10]

!:::\5+#  ((  3:i:t::  t:  R::¥t::n:t=abi:b!:' !,2]

i!!ii~;ä#!;ti;!iii;::;::!;::::t:::|:ab|e
long`  r`\    //  pointer  to  keyboard  translation  table
longi`:+    //  ptr  to  system  configuration  table
long:7'±'    //  ptr  to  Write  Font  heap  allocation   record
long;{£?.   //  ptr  to  printer  driver   variables
long  \`'~'     //  ptr  to   real   time  clock  variables
longJ`':     //  adr(current   window   num.    in   pwindo.p)

!:#;;;  ((  :::{;a:::n:fo:±T:::a::inters  in  pwindo.p)
1ong/,'`/ //  entry  point  of   'getatt'
iong''/4y  //  Pointer   to  Current-voiume  structure
long",",q` //  file  system   initialization  entry
long-'^;'  //   file   system   remap   block  transfer   entry
long+  ,\.'-//   file   system  bit   map   routine   (?)
1ong  ',   '`i  //  pointer  to  table  of  keybd  routine  entries
long-,  ¢',y   //  pointer   to  keybd  variables
long.,',   -//   file   system   '.random"  number   generator.

_. j9 mtExtErrp_roc         long-'l
-7¢G  j'9  mtsysdsk   io  _T,,:i'  long ,,.

-¢c) mtDiskTräce              iong   i

¢/ mtsysvar                    lQng
4t ;t  mtDevTable                   10ng   'r
45-mt6etsymbol             long
4+` mtExtusage               long

'  ,//  external   error  handler

//  system  dsk   io   routine
//  external   dTsk  trace  routine

r  //  system  extent  and  display  type  pointer
//  system  device  table

. //  routine  to  get  two  char  symbol   of  last  cmd
d  //  external   usage  printing  utility

c75  mtExtDsk                     long-/`';;  //   External   disk   driver   hook

¢a`'mtpsaveBlockFlag:;!!:.;`:g?;2((!::;!::s:;e:§:::;:!:::!:;:p::::::::riot

4/ mtFsvoltab
4 r7 mtRamfont

`  5LT::¥::]#:e           :::g c,;.ff<,=¥t,  :::n:::tt:r¥::u::d:a:::o:::dp;;v:e::::+,ocate

]   //  end  ?f   'mastab'   type  declaration
!u€        '   -`-:.      rz~    =     |80         =    490    ß`y+es

-'-J





11.   DEVICE  REROUTING,



^B0UT  "ls  CHAPTER

This   chapter   gives    information   on   how   and   why   to   use   device   rerouting,
and  provides  some   information  on  how  this  capability   is   implemented.

COHTENTS

OVERVIEW

LOCAL    AND    GL0BAL    DEVICE

REROUTING

REROUTING    PARAMETERS

DEVICE    NAMES

FILE    NAMES

iEI=

ifl=

il-L

11-3

11-3

REROUTING    EXAMPLES                                      11-3

DEVICE    REROUTING    FROM   A

BASIC    PROGRAM

1MPLEMENTATI0N

USE    0F    DEVICE    REROUTIN6



DEVICE   REROUTING

OVERVIEW

Device  rerouting  allows  the  rerouting  of  standard     input     (the    keyboard)
and     standard  output   (the  display
can  be  substituted  for  these  two
Rerouting     can     be   local   (for  the
(for  all   commands  entered  during
is  specified).

This  section  gives   information  on
and     provides     some     information
Further   information  on  the  use  of
PCOS   0perating  System  User   Guide.

LOCAI   AND   CLOBAL   DEVICE   REROÜTIN6

screen),   or  both.   Certain  other  devices
devices     or     used     to     supplement     them.

duration  of  a   single   command)   or   global
a  work  session  or  until   other     rerouting

how  and  why  to     use     device     rerouting,
on     how  this  capability   is   implemented.
device  rerouting  is    available     in    the

Local   device   reroutin.g  changes   input  and/or   output  devices   for     one     PCOS
command     only.      Following  execution  of  the   command,   the   rerouting  command
is  cancelled.     Global   device  rerouting  remains  in  effect   for  all   commands
entered    during    the  rest  of  the  working  session  or  until  other  rerouting
is  specified.     The  difference  in  specifying  local   and  91obal   rerouting   is
simple.     Rerouting  parameters  entered  with  a  command  take  effect  only  for
that  command.      Rerouting  parameters  entered  without  a  command  take  effect
globally.

REROUTIN6   PARAMETERS

Device  rerouting  is  implemented  by  specifying  parameters  for  the     devices
involved.       A     plus     sign   (+)   indicates  that  a  device   is  to  be  enabled:   a
minus  sign   (-)   indicates  that  a  device   is  to  be  disabled   (cancelled).       A
second     indicator--S     for     source  or  D  for  destination--specif ies  whether
the  device  will   be  used  for   input  or  output.

inE



SYNTAX    ELEMENT

command

MEANING

a   PCOS   command  to  be   executed   using  the   rerouting
capability.      (1mplies   local   rerouting.)

command   parameter      1        a   parameter   for   the   PCOS   command

+1
( the  device  or  file  specified  is  to

enabling  of  the  device  or   file   spe
be   cancelled

S specifies  the  source   (input)     devi
1ower   case)

D specifies  the  destination   (output)
or   lower   case).

device   name a  string  of  13  or   fewer  prt'ntable
ers,  the  first  character    alphabet
the     device     to  be   used.     The  devi
followed   by  a   colon   (:),   with     the

Frt.

cified    is    to

ce      (upper     or

device   (upper

AScll   charact-
ic,     specifying
ce   name   must   be

exception     of

file  identifier         |,      :::a::::d±:i::n:d:::i€::r.     A  destination  file  is

±L__

No  spaces   separate  +  or   -,   S  or  D,   and  device  or     filename;     these       ele-
ments       constitute       one     parameter.        Rerouting  parameters  are  separated
by  commas.      Upper-and   lower-case   letters  are   equivalent.

1f  additional   devices  are  enabled  without  disabling  the  currently    active
device(s),     devices  are  active   simultaneously.     Caution  must  be   exercised
in   input   rerouting  to  prevent   intermixing  of  data  from  several   devices.

The   keyboard   can   be   disabled   by  specifying   "-SCONS:".      Control   cannot     be
regained,      however,      unless     a   "+SCONS:"   command   is   issued   by  an   external

11_2 PCOS   SYSTEM   PROCRA"ER'S   GUI0E



DEVICE   REROUTING

active  device  or  the  system  is  reset.

DEVICE   NAMES

The  standard   (default)   device   names  are:

prt:                  Printer
cons:                 Keyboard   input,   video  output
com:                     Standard   RS232-C   communications  port
coml :                  Second   optional   RS232-C   port
com2:                  Third  optional   RS232-C  port
ieee:                   1EEE-488  optional   communications

The  coml,   com2,   and   ieee   devices   require  optional   hardware.

Because  the  printer   can  be  a  destination  device  only,     the     D     pref ix     is
optional   for  prt.

The   standard   device   names   can  be   changed   by  using     the     SDEVICE     utility.
For      information,   see   the   PCOS  Operating  System  User   Guide.   1f  a   standard
device   name   has   been   changed,   the   new  name   must   be   used   in   rerouting.

FILE   NAMES

A  file  name  must  meet   PCOS  standards.     A  source   file   contains     text     with
the   desired  commands  and  parameters.     A  destination   file  will   receive  the
output.     1f  a   file  of  the  specified  name  does     not     exist,     one     will     be
created    on     the     disk    specified  or  the  disk  in  the  drive   last  selected.
Only  one  source  and  one   destination   file  may  be  open  at  one   time.

REROUTIN6   EXAMPIES

The  position  of  the   rerouting  parameter   in  the  command   line   is  arb:trary.

+DPRT:    FL   1:prun.cmd
Or

FL   1  :prun.cmd   +DPRT:

+DPRT:   may   also   be   written   as   +PRT
(in  upper-or   lower-case   letters).

The  examples   below  show   local   rerouting.

11-3



ENTRY

___=_        r____

MEANING

VL   0:  ,-DCONS:  ,+DPRT:

SS   +PRT   /CIV

the  directory  of  the  disk  in  drive  0  is  printed
(+DPRT:)   but   is   not   displayed   (-l)CONS:)

the  Set  System  global   parameters  are     displayed
and  printed

The  examples  below  show  global   rerouting.

ENTRY

+SCOM:,+DCOM:        /CR/

-DCOM:  ,+DPRT:    /CR/

+D1:fileA      /CR/

+SANYFILE/CR/

11-4

_11

MEANING

input  is   received  f rom  both  the     keyboard     and
and  the  built-in   RS-232-C   communications     port
(provided  it  has  been  initialized.     Output     is
displayed     and       rerouted       to       the     RS-232-C
communications  port.

the   RS232-C  port   (previously  enabled)   is     can-
celled  as  a  destination  device  and  the  printer
is     enabled.       Other     devices     designated       as
source  or  destination  devices   remain  enabled.

fileA  on  the  disk  in  drive  1     is     enabled     for
output.   If  no  fileA  exists,   i.T.   is  created.   All
output   is  displayed  and   rerouted  to  fileA.

the   system   loads   the   file,   ANYFILE.   and     takes
input   f rom   it   and     the     keyboard.      1f     ANYFILE
contains  the  following  lines:

BA

LOAD   MYFILE

LIST   100-200

----

PCOS    SYSTEM   PROGRAMMER'S   6UIDE



DEVICE    REROUTING

+DPRT:    /CR/

+D1  :output   /CR/

-DPRT :            /CR/
-D                     /CR/

the     system     will     execute     the        command        in
sequence,   first   loading  the  BASIC   interpreter,
then     loading     the     BASIC     program     stored     as
MYFILE,   and   then   listing   lines     100-200.        The
system     remains   in   the   BASIC   environment.

the  printer   is   enabled   for   output   (+DPRT:)

the   f ile   named   "output"   on  the   disk   in  drive  1
is  enabled  to   receive  output   (+D1 :output)

the  printer   (-DPRT)   and  the   file   (-D)   are   can-
celled.     ,When  a   file   is  cancelled,   the   identi-
fier   can  be  omitted  because   it   it  not  checked.

DEVICE   REROUTIN6   FROM   A   BASIC   PROGRAM

A11   device   rerouting   in   BASIC   is  global   and     remains     effective     until     a
command     is   issued  to  alter   it  or  until   the  system  is  no   longer   operating
in   BASIC.      The   EXEC   or   call   statements   are   used  to  execute   rerouting   com-
mands   in   BASIC.

ENTRY

ba  /cr/
EXEC   "vl   1  :  ,+D1  :OUT"   /cr/

EXEC   "-D1:OUT"      /cr/

ba    /cr/
EXEC   "vl   1  : ,+dprt:"   /cr/

S;NSIE!"     |C;T |

MEANING

the   BASIC  mode   is   entered   (ba).   The   first
EXEC   statement   executes   a      VLIST     command
on  the   disk   in  drive     1     and     routes     the
volume   list   to  the   OUT   file   on     the     same
disk  and  to  the   display.     A11     subsequent
output  is  routed  to  the    file     until     the
command   is   cancelled   by   the      second     EXEC
statement ..

the   BASIC   mode   is   entered   (ba).   The     dir-
ectory  of  the  disk  in  drive  1   is     printed
(EXEC   statement).      All   subsequent     output
is  also  routed  to    the    printer     until     a
SYSTEM   command   cancels   the   printer.

11-5



1MPLEMENTATION

Any  bytestream  call   that  can  be   used  for  FID  17   (the  console)   can  be   used
with     device   rerouting.     PCOS  maintains  a   table  of   input  devices  and  out-
put  devices  to  be  used  with  these  calls  when  FID     17     is     specified.     The
tables     contain     entries     for  the  standard  devices:   the  console   (keyboard
and  screen)   and  the  printer.     The  tables  also     have     space     reserved     for
disk     filenames,      one     for     input     and     one   for   output.     When  the  RS232-C
driver   is   loaded,   or  the  IEEE-488  driver,   additional     table     entries    are
added.        The     table     entries     use     the  standard  device  names  or  the  names
specif ied   by  the   SDEVICE   utility.

S;:::{a::8wwt:£e#:rde¥i:e  ::3:::  a::  ff!:g;s  :::8iej°:r  ::::::::?.afidT!:
enabled  the  flag  shows  whether  the  device  is     a     source     or     destination.
Ordinarily,     only     the     console   is  enabled,   for   keyboard   input  and   screen
output.     Device   rerouting  adds  and/or   removes   flags.

For   local   rerouting,   the  flags  are   re.set  when  the  command     finishes     exe-
cuting     to  use  only  the  console  entries.     For  global   rerouting,   the  flags
are  not  reset  unless  changed.     However,   their  settings  are  not     saved     by
PCOS     after   the  working  session  ends.      Local   rerouting  can   supercede   glo-
bal   rerouting  for  one  command,   and  then  return  the  system  to     the     speci-
fied  global   rerouting.

USE   0F   DEVICE   REROUTIN6

Device   rerouting  can  be  used   for  minor     conveniences,     such     as     printing
information     displayed     on  the  screen  or  saving  console  output   for  debug-
ging.     Device   rerouting  is   far  more  than  a  convenience.        It     is     a     very
powerful     and     general   tool   for  programmer   use.      The  opportunities  avail-
able  can  be  grasped  when  the  programmer   realizes   how  general   it   is.        For
example,   one  system   can   control   another   system   connected   by  an   RS232-C   or
lEEE-488   communications   facility.

Entire   files   of   commands   can   be   set   up  and   run.      Canned   procedures   can   be
developed   for   use  by   entry  of  a   simple   command.      This   can   be   done   to   sim-
plify  repetitive  operations  and  to  assure  accuracy.

Remember   that   device   rerouting  can   be   done   from  within     programs.        Exam-
ples   of   rerouting   in   BASIC   have   been   given.      Rerouting   can   be   done   within
assembly   language   by   using  Call   User   (77).

11-6 PCOS    SYSTEM   PROGRAMMER'S   GUIDE



12.  THE  KEYBOARD  DRIVER



ABOUT   "1S   CllAPTER

This    chapter    describes    the    keyboard   driver   functions   and   capabilities
and   its   related   utilities.      This   chapter  is   the   first   of   five   chapters
devoted  to  system  drivers.

CONTENTS

OVERVIEW

RELAT10NSHIP    0F    KEYB0ARD

DRIVER   AND   VIDEO    DISPLAY

DRIVER

KEYB0ARD    DRIVER    INTERNAL

LOGIC

WHAT    THE    KEYB0ARD    DRIVER

DOES

RAW    CODES

THE    CONTROL    CHARACTERS

THE    KEYSTROKE    UTILITIES

THE    SLANC    UTILITY

THE    CKEY    UTILITY

THE    PKEY    UTILITY

THE    LTERM    UTILITY

SLANG   UTILITY

12-1                     0VERVIEW 12-6

USE   0F    THE    SLANG   UTILITY                12-6

12-1                     CHANGE    KEY   UTILITY

OVERVIEW

12-1

USER    INTERFACE    DESCRIPTI0N          12-7

12-2                   THE   PKEY   UTILITY                                         12-9

12-3                   0VERVIEW

12-4                    DEFINE    KEY

12-5                     DELETE    KEY

12-5                    DELETE    ALL

12-6                    DISPLAY    KEYS

12-6                    THE    USA   ASCII    KEYB0ARD

12-6                     NAT10NAL    KEYBOARD

DIFFERENCES

SYSTEM    CALLS

12-6

12-9

12-9

12-10

12-10

12-11

12-11

12-13

12-13



TllE   KEYBOAR0   0RIVER

OVERVIEW

The  keyboard  driver  is  a  set  of  routines  devoted  to  handling  the  input  of
characters  from  the  keyboard.     The  keyboard  driver  has  several   tasks.     1t
interprets  keystroke  input  according  to  the  requirements  of  many  national
keyboards     with     different     keys  and  keyboard  layouts.   PCOS  comes  with  17
national   keyboards,   selectable  with  the     set     language     (SLAN6)     utility.
The     driver     allows     redefinition     of  keys   (done  by  the  CKEY  utility):   it
allows  one-key  entry  of   "alias   strings"   (strings  defined  with     PKEY    com-
mands);     and     it  handles  some  control   characters   (such  as   control   C,   con-
trol   S,  and  reset)  by  taking  direct.action.       Finally,     it     supports    the
LTERM  utility,   which   returns  a  code  corresponding  to  the   last   line  termi-
nator   key   pressed.      These   utilities,    SLANG,   CKEY,   PKEY,      and     LTERM,      are
described  in  this  section.

RELAT10NSHIP   OF   KEYBO^RD   DRIVER   AND   VII)EO   DISPIAY   ORIVER

Text  characters  from  the  keyboerd  driver's  buffer  are     displayed    by    the
video  driver  using  font  tables  that  describe  the  appearance  of  characters
on  the  display  screen.     A  font  table  contains  a  matrix  for   each     display-
able     character.       Within  each  matrix  is  a  pattern  of  zeros  and  ones   used
to  generate  a  pattern  of  pixels   (picture  elements  =  individual     dots)     on
the    display    screen.       Text     characters     are  passed  to  the  video  display
driver  by  kernel   routines.     The  two  drivers  are   independent     and     do     not
interact.

The  programmer  can  create  new  font  tables  for  custom     character     sets     or
for     graphic     use.      The   RFONT  and  WFONT   utilities,   which   allow   font-table
creation  and  change,   are  described  in  the  next  section,   "Video     Display."
The     keyboard  utilities  CKEY  and   PKEY  and  the   display   utilities   RFONT   and
WFONT  can  be  used  together  to  extend  system  capabilities,   to  support  cus-
tomized  keyboards,   and  to  create  entirely  new  keyboard  configurations.

KEYBOARD   DRIVER   INTERl\lAL   106lc

Every  time  a   key   is  pressed,   an   interrupt   is     generated.        When     the     CPU
acknowledges     the   interrupt,   it  jumps  to  a  memory   location  defined  by  the
"interrupt  table"  and  executes  a  routine  called  ..keyboard  service     inter-
rupt     routine."       This     routine     receives    the    character  from  the  serial
interface  and  acts  as  follows:

1.     Translates  the  raw   (physical)   keyboard  code   into  the  code     associated
with     the     key.        The   raw  code  is  used  as  an  index   into  a  translation
table.     The  associated  cole  may    be     one     specified     by     the     current
national     keyboard     or   it  may  have   been  changed  by   use   of  CKEY.  `   (The
current   national   keyboard  may  be   specified  by  SLANG.)

2.      lf  the  character   is  a   control   character   (in  the   range  96AO  -9oAF),   the
driver  executes  the  routine  for  this  specific  character.

3.     If  the  character  is  a  printable  character,   it  adds  this  character    to
the     keyboard     buffer.       Displayable     characters     will   be  sent  to  the
screen  by  the  video  display  driver.

12-1



4.      However,   there  may  be  an   ''alias"  created  by  use  of  PKEY.      1f  so,      the
driver     replaces     the    single    ASCIl  character  in  its  buffer  with  the
alias  string.     This  string  might  contain  a     complete     command,     which
will     be    executed  by  PCOS  as   if  it  had  all   been  entered  character  by
character.

5.     Finally,   if  the  keystroke  entered  was  one     of    the    three     terminator
characters,   the  driver  sets  the  associated  integer  value  in  a  mailbox
location   available   to   LTERM.      The     value     %OD      (the     ASCI1      /CR/)      is
placed  in  the  keyboard  buffer.

After  these  operations  the  routine  completes  and  returns  control   to  PCOS,
which  returns  to  the   interrupted  program.

AScll  characters  are   listed  in  Part  3;   AScll  character     equivalences     are
listed   in  Appendix  8  to  the   PCOS   User   Guide.

WHAT   TtJE   KEYB0ARl)   DRIVER   DOES

The  M20  keyboard  sends  the  keyboard  driver  a   code   called   "raw  key     code."
This     code  depends  merely  on  the  physical  position  of  the   key  on  the  key-
board  and  on  whether  or  not  a  shift  or  control   key  was     pressed     together
with     the     key     itself .        Every  key  in  the  same  position  on  all   keyboards
will   generate  the  same   raw  code   in  all   countries.   The   raw  codes  are   shown
later     in     this     section.     Refer   to  the  PCOS  Operating  System  User  Guide,
Appendix  8,   for   the  corresponding  codes   for   each  national   keyboard.        The
raw    codes  and  the  associated  translation  codes  are   independent.     Because
of  a  design  artifact,   the  raw  key  codes  and  the  translation  codes  for  the
USA     national     keyboard  happen  to  be   in  the   same  order.     The  USA  national
keyboard  is  given  at  the  end  of  the  section.

The  translation  table  contains,   for  each  raw  key  code,   the     corresponding
ASCIl     character  to  be   inserted  into  the  buffer.     This  table  contains  two
elements:

-       A  small   table   (3  words)   called  cap-lock  table

-       A  large  table   (256  bytes)   containing  the  translation  codes.

1n  the  cap-lock  table,   every  key  is  represented  by  a  bit;   if  the  bit   is  1
this  means  that  this  key  must  be  reversed  when  in  c?p-lock  state.   1f  this
bit  is  0,   this  means  that  the  key  will   not  be  affected    by    the    cap-1ock
operation.

The  keyboard  tables  for  all   countries  are    contained     in    a     file    called
"kb.all"     in     the  PCOS  diskette.   The  PCOS  diskette  officially  distributed
contains  the  USA  ASC11   table.   The   SLANG  utility  allows  the   user   to  change
the     table     and     customize     the  PCOS  with  other   country  keyboards.      SLAN6
replaces`both  the  cap-1ock  table  and  the     translation     table.       The    only
differences    among  national  keyboards  are  that  these  tables  are  different
and  different  markings  are  on  the  keytops.

12-2 PCOS   SYSTEM   PROGRAMMER'S   6UI0E



THE    KEYB0ARD   0RIVER

The  keyboard  buffer   is  a  64-character   ring  buffer  used  by  the     driver     to
store  the  characters  ].ust  typed  and  not  yet  required  from  PCOS.     When  the
buffer  is  full,   all   further  characters  typed  in  are  lost  and  a  beep    sig-
nals  the  buffer-full   condition.     The  buffer  contains  the  translated  codes
from  the  national   1anguage  table  and  the    CKEY    changes     to     that     table.
PKEY     strings     are     picked    up   indirectly.     lf  the  translated  code   in  the
buffer  refers  to  a  PKEY  string,   the  driver  then  looks  into  a  second  table
that     holds  PKEY  strings,   picks  up  the  associated  alias  string,   and  makes
the  alias  string  available  when  responding    to    a     request     for     keyboard
input.

1f  the  translated  code   is  a   line  terminator     code,     the    keyboard     driver
inserts     a  giooD   into  the  buffer   in  its  place.     1t  also  updates  the  mailbox
area  with  the  code  for  this  particular  line  terminator.     A  layout  of    the
mailbox  is  given  in  the   "Other  Drivers"  section  of  Part  2,   in  the  discus-
sion  of  the   lEEE-488   driver.

to  requesting
raw  code                translated  code             char.   routine
111

+ ------------- +  \/    + ------------ +  V    + ------------ +        V
|        keyboard     |--->|   kbd  driver   |--->|   kbd  buffer   |--+-->AScll
+--+               +--+         1                            1          + ------------ +     1

+ ------ +               +--_-________+                                            1

11

+-----++-----+
1      kb         1       lpKEY     1

|table|    |table|
1111

+-----++-----+

+--->f) 1\ 12

1

to  mailbox
(memory  location  used

by   LTERM   utility)

Fig.12-1      Key  code  Generation

The  keyboard  driver  services   requests  for     keyboard     input     by    providing
pointers   into   its   internal   key  buffer.     The  pointer.   when  an  outside  rou-
tine  requests  characters  from  the  keyboard,   looks     into     the     buffer     ahd
sees  the  code  of  the  next  character.

RAW   CODES

The   raw  codes  are  the  same   for  all     keyboards.        The     illustration     below
shows  the   raw  codes,   in  hexadecimal.

12-3



00ö000ö000000ö00000000000Ö0000000000ö000000000000

Fig.       12-2      Raw   Key   Codes

THE   CONTROL   CHARACTERS

The  control   characters  are  keys  that  cause  the  keyboard  driver  to  take     a
specific     action.        These     characters  are  executed  directly  by  the  driver
and  are   never   seen   by     a     requesting     routine.        The     control     characters
correspond      to   ASCIl   codes   in   the   range  -~ÜA0   to  %AF   and   can   be   disabled   by
using  CKEY  to  change   (delete)   those   codes     in     the     keyboard     translation
table.      The  table  is  given  below.

KEY                                                  ASCII    CODE                     FUNCTION

/CTRL,`   /RESET                   96AO

/C:IF(L/     |8/                           °2o:A:^

lc:m!L|    /c|                        ozoA:2

12-4

Logical   reset.   Boot   PCOS   again

Reserved.     Jump   into  debug   routine,      if
present.

Break   facility.   Clear   keyboard     buffer,
place  03  in  first   location.

PCOS    SYSTEM   PROGRA"ER'S   GUIDE



THE    KEYBOARD   DRIVER

€
ic;m!Li    m                      0%ONb`Q.

|CIFUL/     /?. |                            9zoNA

/C;f yNMNNni     n. i                   ®ZOA!£

/00/

/S1/

ls;2/

lc!R/

/S1/

ls;2.l

lc;Rl

%A6

%A7

%AS

p,ÜA9

%AA

%AB

f,',ÜAC

%AD

%AE

%AF

Table  12-3     Control   Characters

THE   KEYSTROKE   UTILITIES

Halt  display.     Any   key  causes   scrolling
to   resume.

Cursor   lock.     Equivalent  to     shift  lock
for   numeric   keyboard.

Shift   lock.     A11     keys     go     to     shifted
mode.     Pressing  again     returns     to     un-
shift.

Two   zeros.   Two   zeros   are   placed   in   key-
board  buffer.

End  of   line.      CR   in   keyboard   buffer,      0
in   LTERM   buffer.

End   of   line.      CR   in   keyboard  buffer,      1
in   LTERM   buffer.

End   of   line.      CR   in   keyboard   l}uffer,      2
in   LTERM   buffer.

End  of   line.      CR   in   keyboard   buffer,      0
in   LTERM   buffer.    (DATEV   keyboard')

End   of   line.      CR   in   keyboard  buffer,      1
in   LTERM   buffer.    (DATEV   keyboard)

::dL::R:£::;fe::  {3A#Vb#o:::;er.    2

Reserved

Reserved

No  operation

Keystroke  utilities  are  described  briefly  below.     More  extensive  descrip-
tions   of   SLANG,   CKEY   and   PKEY   are   given   later.

THE   SLAN6   UTILITY

The  set   language  utility  selects   one  of  the  national   keyboards   to  be     the
current     keyboard.1t     replaces     the     cap-key  table  and  the  translation
table,

12-5



THE   CKEY   UTILITY

The  change  key  utility  is  used  to  change  a  single  code     in     the     keyboard
translation     table.     CKEY     takes     effect     after   SLANG.     1t   is  possible  to
rearrange  all   the   keyboard,   changing  the  meaning  of     each     key     including
the  control   keys.

THE   PKEY   UTILITY

The  PKEY  utility   is  used  to   replace  a   character   generated   by  the   keyboard
with  a   string.      PKEY   takes  effect  after   CKEY.

THE   LTERM   UTILITY

The  LTERM  utility  returns  the  contents   of  a   memory   location  called     mail-
box.     The   keyboard   driver  maintains  the  mailbox   location.      lt   provides   an
integer  value  of  0,1,   or  2  for   the  three   line  terminators.

SLAN6  UTILITY

OVERVIEW

The  M20   is  marketed  with  17  different  physical   keyboard     layouts     identi-
fied     with     national`    requirements.       The  software  generation  of  the   font
patterns   for  all   these   national   keyboards   is   included  with  PCOS     and     can
be   invoked  by  the  SLANG  utility   regardless  of  the   actual   keyboard   used.

The   SLANG   utility  may   be   invoked

-        in   direct   command  mode

-         in   BASIC

-by  an  Assembly  Language   subroutine

USE   OF   Tl+E   SLANG   UTILITY

The  SLAN6  utility     allows     displaying     the     country     codes     available     or
selecting    a     country     code     for     use     as  the  current  keyboard.     Entering
sl/CR/  will   display  the  menu,   similar   to  the  example   below.

12-6 PCOS    SYSTEM   PROGRAMMER'S   GUIDE



THE   KEYB0AR0   DRIVER

Country  Code  Numbers

ltaly                           0
West   Germany                i
France                              2
Great  Britain            3
United  states           4
Spain                                   5
Portugal                        6
Sweden/F inland          7
Denmark                               8

Yugoslavia
Norway
Greece
Switzerland/France
Switzerland/6ermany
Germany   (Original)
Datev
Delta

To   select   a   keyboard,   provide   SLANG  with  a   country   code.

sl     [country  code  #]

To  maintain   the   new   keyboard  translation  after   powering  off     the     system,
the   PSAVE   utility   can   be   used   to  make   the   condition   permanent.

Cl+AI\lGE   KEY   UTILITY

OVERVIEW

The  change  key   (CKEY)   utility   is   used  to  change  a   single   code   in  the  key-
board     translation     table.     It  is  possible  to  rearrange  the  coniplete  key-
board,   including  the  control   keys,   by  using  this   utility.

The   raw  key  code   is   used  as  an   index   into  a     table     identif ied     with     the
particular     national     keyboard     in     use.      CKEY  changes   the   character   code
associated  with  any  or  all   the   raw  key  codes   in  the  table.

The  M20   keyboard   generates   252   raw  codes,   0  through   251.      The     associated
translation     table     entry     can     be     any  8-bit  value,   that  is,   any  integer
ranging  from  0  to   255.

USER   INTERFACE   DESCRIPTION

The  user   specifies  a   raw  key  code   in  the   range  0   to  251   and  an  associated
translation     code     in     the     range  0  to  255.   Refer  to  the  chart  of   raw  key
codes   shown  above.

1f  the  user  enters  only  the  raw  key  code,   the  current  character     code     is
printed  out.

When  changing  key  codes,   be  cautious  with  these   special   cases:

a)      The  ASCIl   codes   for   0   through   31    (hex  0  through   lF),   which  ASCIl   uses
for  control   purposes.

b)     The  special   PCOS  system  codes  described  above.      They  are   in  the   range
160   through   175   (hex   AO   through   Af).

12-7



The   form  of  the  change   key  command   is  as   follows:

ck    {[%f    SHIFTFLA6%[,OLOVALUE%]]     |     [RAWKEY%       [,NEWCODE%        |    NEWCODES]]}*

where:

SHIFTFLAG°<   =   AN    INTEGER    FROM   0   TO    3.

0  =  both  f lags  cleared

1   =  shift  lock   (alphabetic  characters)
set,   cursor   lock   (numeric  characters)
cleared

2  =  cursor   lock  set,   shift  lock  cleared

3  =  both  f lags  set

OLDVALUE%  =   previous   setting   of   flags.

RAWKEY%  =  an   integer   that   defines   the   desired   key.

NEWCODE%  =  an   integer   that   defines   the   new  desired
character  code.

NEWCODES   =  a   one-character   string  that   defines   the
new  character.

The   following  examples   illustrate   the   use   of  CKEY   from  BASIC:

CAIL   "ck"       ("%F",    shiftflag%   ,   @OLDVALUE%)

CALL    ''ck"        (RAWKEY%    ,    NEWCODE9Jo)

Or

CALL    "CK"       (rawkeygro    ,    NEWCODES)

Here  are  a   few  of  the  more   useful   examples   of  CKEY:

PCOS                                                   BAS IC                                                            COMMENT

ck   &C3,8                    CALL   "CK"      (&HC3   ,    8)                  S2   to   backspace

ck   &64,MS              CALL   "ck"      (&H64    ,   &HA8)         disable   CTL   C

ck   &64,&A3               CALL   "CK"       (&H64    ,    &HA3)          enable   cTL   C

ck   &60,üs              CALL   "ck"      (&H60    ,   &HA8)         disable   CTL   RESET

ck   &60,8AI                CALL   "ck"       (&H60    ,    &HA1)          enable   CTL   RESET

CKEY   works   on   all   M20   configurations   except   KATAKANA.

12-8 PCOS    SYSTEM   PROGRAMMER'S   GUIDE



THE    KEYB0ARD   DRIVER

THE   PKEY   UTILITY

OVERVIEW

The  PKEY  utility  allows   replacing  a     single     keyboard     character     with     a
string     of  characters.     When  the   user   presses  the   redefined   key,   the  PKEY
function  replaces  the  entered  character  with  the    string    of    characters.
The     PKEY     function     can     be     used   to   create   one-key   command   entries,   for
example.     For   practical   reasons,   PKEY  is   often   used  to   redefine     a     shift
or  control   version  of  a   key,   rather  than  the   fundamental   keystroke   entry.

The   replacement  string  could  be  a   single   character.      However,   for  a     sin-
gle   character   change,    using   CKEY   would   be   recommended.

The  string  that  substitutes  for  a  character   is  called  the  "alias"    string
and     is     returned    automatically     when  the  character   is  typed.     Note  that
CKEY  changes  the  translation  between  the  physical   keyboard  code     and     the
generated     translation  code,   while  PKEY  converts  a  translated  code   into  a
different   code   or   string.      1n  other  words,   PKEY  works   after   CKEY.

When  PKEY   is   invoked,   a   new  table   is   created   in     memory;      in     this     table
will   be  stored  the  code  that  we  want   to  change  and  the  memory  address   for
the  alias  string.     This  26-entry  table  will  contain  the  first  26    charac-
ters     changed     by  PKEY  and  their  associated  strings.     When  there  are  more
than  26  alias  strings,   the  table  can  chain  to  another   table,   and    so     on,
using     a     link     mechanism.     When  outside   routines   request   characters   from
the  keyboard  driver.   the  driver  returns    the     first    character     ready    on
buffer    after  checking  the  alias  table.     1f  this  character   is  substituted
with  an  alias  string.   the  driver  returns  all  the  characters  in  the    alias
string.        1n  this  manner,   an  alias  string  can  be  larger  than  the  keyboard
buffer:      255  bytes  compared  to  64.

PKEY  has   four   functions   that  are   described  below:

DEFINE    KEY

l)ELETE    l{EY
DELETE   ALL

DISPLAY   ALL

DEFINE   KEY

The  syntax   is:

pk  char | int,string. . .

The  char|int  portion  specifies  the  keystroke  entry,  and  the    string    por-
tion  specifies  the  alias  string.

To  define  the  keystroke  entry,   specify  a  character  or  an  integer     in    the
range     of  0  -  255.     Any  key  may  be  defined.     In  the  case  of  control   shift
or  command  shift,   an  integer  must  be  specified  because  they  do     not    gen-
erate  displayable  characters.

12-9



The  string  portion  of  the  syntax  may  be  a  series  of   integers     or     strings
or     a     combination     of     each.        The   maximum  number   of  bytes   used   must   not
exceed   255.

Examples

The   following   examples   are   written   in   BASIC   and   assume   a   USA     AScll      key-
board  is  being   used.     These  examples  all   do  exactly  the   same  thing.     They
define  the  capital   "A"   key  to  print   "clear"   followed  by  CR     which     causes
immediate   execution.

CALL   "pk"   ("A",clear,13)

CALL   "pk"   (65,clear,13)

CALL    "pk"    (65,99,108,101,97,114,13)

CFY%    =    13

AS   =   "clear"
CALL    "Pr"       ("A",AS,CRn~ü)

To  re-define  a  key  it   is  not  necessary  to  clear   it   first.     Simply     invoke
PKEY  using  the   integer   format  to  specify  the  key  since   its   original   char-
acter   is  no  longer   in  effect.

l)ELETE   KEY

The  syntax   is:

pk   int

The  parameter   is  an   integer   representing  the  key  to  be  cleared.        1f     the
key     has     not     previously  been  defined,   the   key   retains  the   original   code
and  the   next  prompt  appears.

l)ELETE   ALL

The  syntax   is:

pk%c

All   previously  defined  keys  will   be   returned  to  their   normel     state.        1f
no     keys     have     been  defined  then  all   keys   retain  their  original   code  and
the  next  prompt  appears.

12-10 PCOS    SYSTEM   PROGRAMMER'S   6UIDE



THE    KEYBOARD   DRIVER

DISPLAY   KEYS

The  syntax   is:

pk

lnvoking  PKEY  with  no  parameters   will   cause     all     the     currently     defined
keys     to     be     displayed     with     their     definitions.        If  no   keys   have  been
defined  the   next  prompt  appears.

If  there  are  defined   keys,   the  screen  will   be  cleared  and  set   up     for     80
column   display  mode.       (A11   windows   will   be   closed.)

At  this  point  a  small   window  at  the  top     of    the     screen     is     created     to
prevent  the  heading  from  scrolling  off  the  screen   in  the  event  that  there
is  more  than  a  screenfull   of  information  to  display.

The  keys  and  their   definitions  are  then  displayed     in     the     main     window.
There     are     three     fields   in  the  display,   the  Code   field,   the  Char   field,
and  the  String  field.

The  Code   field   represents  the  numeric   value  of     the     key     that     has     been
defined.

The  Char   filed  will   be  blank   unless   the   key     defined     has     a     displayable
character  associated  with  it.

The   String  field  will   display  the   definition  of  the   key  as   PCOS  sees     it.
This     will     not     always     appear     e*actly  as  entered.      For   example,   if  one
enters  the   following  command:

pk   65'66

the  display  will   show:

Code   Char

|   define   "A"   to  be   "8"

65          A    :    B

THE   USA   ASC11   KEYBOARD

The   keyboard   translation   table   for   USA  ASC11   is   given   below.      The     layout
and     tables     are     organized   in  ascending  numerical   order   based  on  the   raw
key  code.     This  corresponding  order   is  a  design  artifact.     The     order     of
the     translation  tables   is  independent  of  the  raw  code  order,   as   is  shown
in  other  national   keyboards.

12-11



Main   keyboard   keys.

This  is  the  cap-1ock  table:   each  bit  corresponds  to  a   key  in  the
table®

0011111111111111    1111111111110000   0000000000000000

Main   keyboard   UNSHIFTED.    Raw   key   range   %00   -%2F.

%DD,  '    ' ,  'a' ,  'b' .  'c' ,  'd' ,  'e' ,  'f '  ,  'g' .  'h'  ,  'i '  ,  'j ' ,  'k' ,  '1 ' ,  'm' ,  'n' ,
'o' , 'p' ,  'q' , 'r' ,  's' ,  't' , 'u' ,  'v' ,  'w' ,  .x' ,  'y' ,  'z' , '0' ,  '1  ' ,  '2' , '3' ,
•4'  ,  '5'  ,  '6'  ,  '7'  ,  .8.  ,  .9'  ,  '-.  ,  'n'  ,  '@.  ,  . [  l  ,  '  ;  '  ,  .  :  .  ,  .  ] 1,O,.2C ,...,. /.  ,

Main   keyboard   SHIFTED.    Raw   key   range   %30   -965F.

9.o0E,  '  |  '  ,  'A'  ,  'B'  ,  'C '  ,  'D'  ,  'E '  ,  .F '  ,  .G.  ,  'H'  ,  ' l '  ,  'J'  ,  .K'  ,  'l '  ,  'M'  ,  'N '  ,

:8::;o!;::8:;;.!;::i:::i:::=:::±:::T::{¥::iY::;?::;T:,.:o?i,,.;'.'::;#:,

Main   keyboard   CONTROL   shift.    Raw   key   range   %60   -%8F.

9ioAO,9io7F,9iool,9A:A1,®<»2,%04,%05,9io06,%07,9ioo8,9ioo9,%OA,®~o0B,%OC,%OD,%OE,

9iooF,%10,9o:oll,9612,96A3,®614,9iol5,%16,%17,%18,%19,%1A,®~oEO,9toE1,9ioE2,%E3,
r,oE4,%E5'r,oE6'%E7'8,oE8,r,oE9,86EA'8,oEB'8'ooo,8o,oFB,9'o|E'%|F'®,o|D'o`aFE'%FF'®6A4,

Main   keyboard   COMMAND   shift.    Raw   key   range   %90   -°<BF.

%DF,%F8,%80,9to81,%82,9ro83,9to84,%85,%86,9to87,9to88,9to89,%8A,9tosB,9tosc,%8D,

%8E,9orosF,%90,9i.91,%92,%93,®/o94,9io95,r/o96,9io97,%98,%99,%EC,9toED,9ioEE,%EF,
%FO,%F1,9oF2,9ioF3,%F4,%F5,9toF6,9ioF7,9tol3,9i®1C,.~oFC,^~oFD,%9F,%F9,9oFA,%A5,

The   following   keypad  keys  generate  only  three   unique  codes   each.   Pressing
COMMAND  and   one   of   these   keys  generates   the  same   code   as   unshifted.

SP       CR       SI        S2

12-12 PCOS    SYSTEM   PROGRAMMER'S   GUIDE



THE   KEYB0ARD   DRIVER

UNSHIFTED   -   raw   key   range   groco   -%D3.

9!o20,9A!A7,%A8,9toA9,

%2E,9to30,®~oA6,%31,

%32,9io33,%34,9o35,
%36,9o37,®~o38,%39,
9oio2B,9to2D,%2A,9ro2F,

SHIFT   -raw   key   range   r~oD4   -%E7.

•~o20,%A7,.~oA8,%A9,

%2E`,%30,9oioA6,9io|C,
9to9A,9tolD,%9B,%9C,

%9D,%1E,969E,®~u1F,

%2B,^~o2D,%2A,%2F,

CONTROL   -   raw   key   range   %E8   -r;oFB.

9io20,%A7,%A8,9ioA9,

(Note   1)

(Note   2)

(Note   1)

(Note   2)

(Note   1)

%BO,%B1,%82,r~o83,
9ro84,9Jo85,%86,%1B,

9toB8,%B9,9toBA,%BB,

96BC,r/oBD,./oBE,%BF,

Note   1.   96A7,   %A8,   and   %A9   will   all   be   interpreted
as   %OD,   an   ASCII   /CR/.      The   distinction
among  these   keys   is  maintained   in  the  mailbox
and   is   accessible   by  LTERM.

Note   2.   %A6   will   be   interpreted   as   %3030,   two   ASC11
Zeros .

NATIONAI   KEYBOARD   l)IFFERENCES

All   national   keyboards   are   shown   in  Appendix  8  of   the   PCOS   0perating   Sys-
tem     User     Guide.     The  translation  table  and   font  display  is  the  same   for
national   keyboards,   except  for  eleven  keys.     The  table  below  shows  them.

SYSTEM  CALLS

Bytestream  Calls   are   used   for   reading  text  from  the  keyboard.        The     key-
board   FID   is   17.      The  system  calls   are:

LookByte   (9)                            Eof   (16)
GetByte   (10)                          ResetByte   (18)
ReadLine   (14)

For   further   information,   see  the  discussion  of  Bytestream     Calls     in     the
chapter     entitled  "System  Calls"  in  Part  2.     Details  on  using  these  calls
are   in  the  Assembler   User   Guide.

12-13





13.   VIDEO  DISPLAY



AB0UT   THIS   CHAPTER

This   chapter   describes   the   capabilities   of   the   driver   and    its    related
utilities,     RFONT   and    WFONT.     The  chapter      includes    information   about   the
display  screen  characteristics  and  about  the   system  calls   used  to   display
text  and  to  provide   graphics   capabilities.

CONTEMTS

OVERVIEW 13-1                    TEXT

DRIVER    FUNCT10NS                                              13-1                      GRAPHICS    CALLS

DISPLAY    SCREEN                                                     13-1                      GENERAL

SCREEN    BIT-MAPS    AND    COLOR               13-2                     CLEAR    WINDOW    (SCREEN)                             13-9

SCANLINE    SKIPPING                                        13-3                    CURSORS

DISPLAY    FONT    AND    CHARACTER                                               WINDOWS

FONT

FONT    TABLES

READ    AND    WRITE    FONT

UTILITIES

RFONT

RFONT    FILE    STRUCTURE

WFONT

RFONT    AND    WFONT    -    INTERNAL

INFORMATI0N

SYSTEM    CALLS

GRAPHICS    ACCUMULATOR                                13-10

PAINT    GRAPHICS    CALLS                               13-11

13-4                    COLOR                                                                                13-11

13-5                    0VERVIEW   OF    GRAPHICS    CALLS           13-12

13-5                 Cls    (35)

13-7                 Chgcuro    (36)

Chgcurl    (37)

Chgcur2    (38)

13-12

13-12

13-12

13-12



Chgcur3    (39)

Chgcur4    (40)

Chgcur5    (41)

Readcuro   (42)

Readcurl    (43)

Selectcur   (44)

6rflnit   (45)

Paletteset   (46)

Def inewindow   (47)

Selectwindow   (48)

Readwindow    (49)

Chgwindow    (50)

Closewindow   (51 )

ScalexY    (52)

MapxYC    (53)

MapcxY    (54)

Fetchc   (55)

Storec   (56)

UpC    (57)

Downc    (58)

Leftc   (59)

Rightc   (60)

SetAtr   (61)

13-12

13-13

13-13

13-13

13-13

13-14

13-14

13-14

13-14

13-15

13-15

13-15

13-15

13-16

13-16

1 3-16

13-16

13-17

13-17

13-17

13-17

13-17

13-17

Setc   (62)

Readc    (63)

Nsetcx   (64)

NsetcY    (65)

NRead    (66)

Nwrite   (67)

Pntlnit   (68)

TDownc    (69)

TUPC    (70)

ScanL    (71)

ScanR    (72)

CloseAllwindows    (113)

ClearText    (115)

ScrollText   (116)

13-18

13-18

13-18

13-18

13-18

13-19

13-19

13-19

13-20

13-20

13-20

13-20

13-21

13-21





V10EO   DISPLAY

OVERVIEW

The   video  display  driver   supports  both  text  and     graphic     display.        This
section     describes     the  capabilities  of  the  driver  and  its  related  utili-
ties,   RFONT   and   WFONT.      RFONT   allows   creating   customized     characters     and
small     graphics     characters,     and  can  be   used  to  create  entire  alphabets.
WFONT   is  used  to  select  an  alternate   display  font.     The   section     includes
information  about  the  display  screen  characteristics  and  about  the  system
calls  used  to  display  text  and  to  provide  graphics  capabilities.

DRIVER   FUNCT10NS

The   video   display   is  memory-mapped.      The   screen   display   hardware   reads     a
pattern     f rom     an     area     in     system     memory  called  the   screen  bit-map  and
displays  that  pattern.     The  video  display     driver     maintains     the     screen
bit-map.      It   receives  both  text  and  graphics  material   to  display.

Text   is   received  as  a   code,   us.ually   in   the  ASCIl      range     32-127,      and     is
displayed     by     means  of  a   font  table  which  has  a  bit-map  pattern   for   each
displayable   code.      (RFONT  can   extend   the   range   of   displayable   codes     past
127.)        Text     codes  are  passed   in   R7  to  the   driver  by  various   kernel   rou-
tines,   system   utilities,   and  user   programs.     Most  of  these     sources     send
text     via   byte-stream  system  calls.     One   kernel   routine  monitors   the   key-
board  buffer  and  sends   newly-entered  displayable  characters  to  the     video
display  driver.

Graphics  patterns  are   drawn  on   the   screen   bit-map.        All     graphics     input
comes     to  the   screen   driver  by  means  of  system  calls.      Screen   driver   rou-
tines  interpret  the  graphics  call   requests   in  terms  of  the  current     state
of    the  driver  pointers  to  the  screen  bit-map  and  other   internal   informa-
tion,   and  modify  the  bit-map  to  fulfill   the   request.

l)ISPLAY   SCREEN

The   video  display  screen  contains   256   horizontal   scanlines,   each   consist-
ing   of   512  pixels   (picture   elements).      There   are   two   display  modes:

Mode   0:      161ines   of  64  characters   (64  columns)

Mode   1:      251ines   of   80  characters   (80   columns)

Mode   0   is   mapped  across   all   pixels   in  a   scanline   (256   x  512).      Mode   1      is
mapped     across     480     pixels   (256   x   480).      These  modes   are   set   as  a   global
parameter  choice  by  the   Set   System   (SSYS)   Utility  and     their     implementa-
tion      is     handled     by     M20   hardware   and   PCOS   software.      For   example.   when
mode  0   is  changed  to  mode   1,   the  trailing  32  pixels   for   each   scanline  are
automatically  cleared.

13-1



SCREEN   BIT-MAPS   AND   COLOR

The   video   display   is   memory-mapped,   which  means   that     an     image     is     con-
structed  within   system  memory,   read  by  the   display  hardware,   and  shown   on
the  display  screen.      Black  and  white   displays   use   16   K  of   screen     bit-map
memory.        Each   bit   represents,  one   pixel;   0   is   black,   1    is   white.      Mapping
starts  at  the   upper   left  of  the  screen,   which   is   the   low  memory    address,
and  proceeds  across  and   down.      Scanline   lengths  are  according  to  the  mode
setting,   512   or   480.

Color   systems   use   two   or   three   16   K  bit-map   memories,   for     four-color     or
eight-color     displays.        Mapping     is     the     same,   the  additional   screen   or
screens  provide  additional   color   information.     As   the   figure   below  shows,
for  every  pixel   position  on  the  screen  there  are  either  two  or  three  bits
in  the  same   relative   location   in     the     screen     bit-maps.        These     provide
either   four   or   eight   values  which   determine  the  pixel   color.

(3)   0000

(3)    BFFF

Fig.      13-1      Color   Bit   Plane   Coding

Screen  bit-maps  are   in  memory  segment   3.     The   figure   shows   three  bits     in
three     bit-maps     that     together     specify    the     color  of  one  pixel.     Color
values  are:

13-2 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



VIDE0   DISPLAY

Four-Color                  Eight-Color

0   color   A
1    color   8
2   color   C
3   color   D

0     black
1      green
2     blue
3     cyan
4red
5      yellow
6     magenta
7     white

Four-color   values   are   selected   from  the   set  of  eight.        More     information
on  color   is  given  later   in  this  section,   in  the  discussion  of  graphics.

SCANLINE   SKIPPIN6

Pixels  are  organized   into  display  fonts   that  are   s  pixels   wide  by  10  pix-
els     high   in  mode   0,      6   x   10   in  mode   1.      In  both  modes,   text   lines   are   10
scanlines   high.      In  mode   0,   the  16     textlines     are     automatically     spaced
within     bands     of     16     scanlines.        The  extra   scanlines  are  automatically
skipped.      In  mode   1,   the  25     textlines     leave     only     6     extra     scanlines.
These     extra     lines  are  automatically  skipped  at  appropriate  positions  on
the  display  screen.

I)lspLAY   FONT   AND   CHARACTER   FONT

The  programmer   who   is   defining  display  fonts   must   be  aware     of     the     dif-
ferent     use     of     the   display   font  matrix   in  these   two  modes.     The   display
font  matrix   is  s  columns  by  10   rows.      The   character   font   is   5  x  7  and     is
placed     in  the   5   right-hand   columns  as  shown   below.      Wtien   the   s   x   10   font
is  displayed   in   25   x  80   display  mode,   the  two   left-most   columns     are     not
used.     The   result   is  as   follows:

16   by   64  Characters                           25   by   80   Characters
(8xl0)                                                             (6xl0)

A11   characters   used   in  the   16  national   keyboards     are     delineated     within
the     5  x  7  character   font  in  the  position  shown.     This  convention  assures
vertical  and  horizontal   spacing  for  text  lines.     However,   it   is     possible
to     use  the   full   font  when  spacing  is  not  required.     Font  displays  can  be
used  to  define  primitive  graphic  elements  that  can  be  used   in     construct-
ing     graphic     displays.     These  graphic  elements  provide  another   method  of

13-3



implementing  graphics   displays,   independent   of  the   BASIC   or   PASCAL   graph-
ics  facilities  and  the  underlying  graphics  system  calls   used  to  implement
them.

Such  fonts  would  be  suitable   for   defining  symbols  to  be   used   singly  or
groups     as     an     adjunct     to     text     or     for     simple     displays.     Because
automatic  scanline   skipping  in  mode   0  display,   or   the   shortened
the     screen     in     mode     1,     such  characters   cannot  be   used   for   full-screen
displays.

PCOS  makes   available   two   utilities,   RFONT   and  WFONT,   that   can   be   used     to
define  extensions  or   replacements   for  the  display  characters   furnished   in
the  national   keyboards.     These  facilities  have  been  used  to  define  entire
non-Roman  alphabets.      As   mentioned  above,   they  can   also   be   used   to  define
graphic  elements.

FONT   TABLES

The  standard  national   font  tables  correspond  to  the     national     keyboards.
Most     of     them  have   95   displayable   characters,   corresponding   to  the  ASCII
values   from   32   to   127.      (The   Greek,   Katakana,   and   Datev   tables     are     non-
standard  and  have  more.      Greek  and  Katakana   support   display   of  both  Roman
and  national   characters,   and  Datev  has  additional   special   characters.)

The  tables  are  kept   internally  in  binary  form.     A  95-character     font     set
consists     of    95     display     fonts     in  sequence,   starting  with  the   font   for
ASCII   32.      1n  other  words,   a   95  character   font  table   can  be   considered  as
10   rows  of  binary  values,   each   row  s  times  95  bits   in   length.

To  display  a  text  value,   the  driver   indexes   into  the   font  table  and  picks
up  the  character   font  corresponding  to  the  value.      (Taking  either  an  sxl0
or   6xl0   font,   according  to  mode   setting.)     The   driver   places  the     charac-
ter     font    at    the    current     text    character     location  in  the  bit-map  and
updates  its  location  pointer,   which  displays  as  the  text  cursor.

READ   AND   WRITE   FONT   UTILITIES

The   RFONT   and   WFONT   utilities,   combined   with   CKEY  and   PKEY,    enable   a   pro-
grammer     to     define,     call,     and     use  any  character   fonts   desired.     These
fonts  can  be  customized  character     sets,     non-Roman     character     sets,     or
graphics  characters.     A  personalized  font  thus  created  can  be  called  from
the   PCOS   environment,   called   from  BASIC   or  an   assembler     subroutine,      or,
if  PSAVED,   initialized   on  booting  the  system.

The  standard  character   sets  of  the  M20  national   keyboards   use     the     codes
for     ASC11     32   through   127   (hexadecimal   20  -7F).      1n  general,   additional
character  or  display  fonts  are  assigned  within  the   range  of  codes  sO     hex
to     9F     hex,      and   80  hex  to  FF   hex.     These   new  characters  or   display  ele-
ments   would  be  supplementary  to  the  existing  national   keyboard   font.        1f
it     is  desired  to  create  an  entirely  new  font,   the   range  of  codes  from  20
hex  to   9F   hex  and   80   hex  to  FF   hex     would     be     available.        Codes     0     hex
through     19     hex     are   used  by  AScll   for   control   functions,   and   PCOS   makes
special   use  of  the  codes   from  A0  hex  to  AF   hex.

13-4 PCOS   SYSTEM   PR06RAMMER'S   GU10E



VIDE0   DISPLAY

A  brief   description   of   RFONT   and  WFONT   usage   follows.      For      details,      see
the   PCOS   0perating   System   User   Guide.

RFONT

The  RFONT  utility  is   used  to  create  a  text  file  that   forms  the     base     for
the  customized   font   set.     When   invoked,   a   file   is   created   using  the  char-
acter   set  of  the  current     keyboard     or     personalized     font     pattern.       To
create  a   customized   font,   use  RFONT   (rf )   to  read  the  existing   font   into  a
file,   then  edit  the  file.

RFONT   reads  the  selected  display     font     table     and     converts     the     binary
display     fonts     into     an  ASCIl   file.      The  RFONT   file   is  a   sequential   file
that  uses  a  pattern  of  ''-"  and  "X"  to  display  the   fonts.     This     file     can
be  edited  to  change  or   add   display   fonts.

The   ASCIl   file   can   be   converted   to   binary   for   system     use     by     the     WFONT
utility,   which   is  described  later.

For   information   on   the   use   of   RFONT,   see   the   PCOS   0perating     System     User
Guide.

RFONT   FILE   STRUCTURE

The   RFONT   file   has   the   structure   shown   in   the     example     below.        In     this
example,   the  current  character   set   is  the  USA  ASCII.     The   first  character
is   AScl132,   the   SPACE   character   (20   hex).   Each     character      is     shown      in
dot-matrix   form,   with   ''-"  and   "X"   used  to  delineate  the  character.

For   reference,   the   "ASC11"   section   in   part   3   shows   the   full   USA     keyboard
values.      The  RFONT   utility  can  be   used  to   display  the  character   fonts   for
any  national   keyboard  of  interest.

13_5



USA

country  4

matrix  height  =  10

95  characters

32

33

-----X--
-----X--
-----X--
-----X--

-----X--
-----X--

34

-----, o ,

etc.

13-6 PCOS   SYSTEM   PROGRA"ER 'S   6UIDE



VIDE0   DISPLAY

The  meanings  of  the  first  four  lines  of  the  file  are  as  follows:

Line  1      Reference   text   name,   not   used   by  WFONT  and  may  be     used     as     con-
venient.

Line   2     Country  code   from  which  the   original   RFONT   utility     was     invoked.
Not   used   by  WFONT   and   is   useful   as   reference.

Line   3     The   line   height  of  a  valid   character   font  matrix.     Reminder   only,
not   used   by   WFONT.

Line   4     The   character   count.      A  number   followed   by  a   word   (i.e.,   "charac-
ter").     This  character  count  must  be  equal   to  the  total   number  of
matrices   in  the   file   to  be   read  by  WFONT.     Any  characters     beyond
this   figure  will   be  ignored.

The   remaining   lines   of  the   file,   from  line   5  to  the  end,   are   sets   of     11-
1ine     matrix     blocks,      each     set   comprising  the  character   code   in   decimal
followed  by  an  s  x  10  matrix  describing  the  actual   character.

Characters  must  be  defined   in  sequence     and     cannot     be     skipped.        Blank
displays     can     be    provided   for   unused  values,   such  as  the  characters   for
160-175   (hexadecimal   AO-AF).

WFONT

The  WFONT   utility  does   two  tasks.      First   is   converts  an  RFONT     file     from
^Scll     to    a     binary     display     font  set  which  it  places   in  system  memory.
Then   it  changes  a   system  pointer   causing  PCOS  to  use   the  new  font  set     in
place     of     the     prior.        The     other     font     set     is  not  harmed,   and  can  be
restored  to  use.

The  new  font  set  can  be   stored  on  disk  and     saved     for     later     use.        The
PSAVE   command  can  be   used  to  configure  the  system  so  that  the   new  font   is
the  initial  font  available.

For   information   on   using   WFONT,   see   the   PCOS   0perating   System   User   Guide.

RFONT   AND  WFONT   -   1NTERl\tAL   INFORM^TION

PCOS   reserves   a   6-byte   area   for   use   by  WFONT.      This   global   pointer     holds
the     size     and     location     of     the   last   font  set  generated  by  WFONT.     When
WFONT  is   invoked   it   clears  that  pointer  and   releases   the   space   to     memory
management.        1f  WFONT   is   invoked  without  a   filename,   this   has   the   effect
of  restoring  the     initialization     font     to     use.       When     invoked    with    a
filename     it     converts  the  AScll   file  to  a  font  table  and  places  the  size
and  location   information   in  that  pointer   space.      PCOS  then   uses   the  WFONT
pointer     in     place    of  the  pointer  to  its  initialization  font  set.     PSAVE
preserves  the  pointer  and  the  font  set.

Any   number   of  RFONT   files   can  be   saved  as   text   files   and  made     active     by
WFONT   whenever   desired.

13_7



SYSTEM   CALIS

TEXT

For  writing  text  to  the  display  screen,   use  these  Bytestream     Calls     with
FID   17:

PutByte   (11)
WriteBytes   (13)

For   information,   see  the  discussion  of  Bytestream  Calls   in  the  section  on
"System     Calls"     in     Part     2.       For     details  on  the  system  calls,   see  the
Assember   User   Guide.

The  text  cursor  can  be  modified  by  system  calls   (as  can  the  graphics  cur-
sor).        The     cursor   shape  may  be  changed  and  the   rate  at  which   it  blinks.
For   information  on  both  cursors,   see     the     discussion     on     cursors     under
"Graphics     Calls,"  below.     System  calls  for  modifying  the  text  cursor  are

grouped  with  the  calls   for  modifying  the  graphics     cursor     and     explained
below,

6RApllICS  CALLS

Graphics  system  calls  are  discussed   in  this  section.     Later   in  Part  2     of
this     manual     is     an     extended  discussion  of  a  graphics  package  that   runs
under   the   PASCAL   language,   and  can   be   used  by  assembly   language   programs.
That  graphics  package   uses  these  system  calls,   and  so  do  the  BASIC  graph-
ics   routines.

GENERAL

The  screen  area   for   the  M20   display  has   256   scanlines   by  512   pixels,      for
either     black-and-white     or     (optional)   color.     "Pixel,"  or   "picture  ele-
ment`.  is  the  fundamental   unit  of  screen  display.     1t   is  a  dot  capable     of
being     set  to  black  or  white,   or  to  a  color  on  color   screens.     Both  mono-
chrome  and  color   displays  have  two  different   display  modes:   256   scanlines
by     512     pixels,   used   for   64  character   by  16   row  text  mode;   and   256   scan-
1ines  by  480  pixels,   used  for   sO  character  by  25   row  text  mode.

A  brief  overview  of     the     graphics     system     calls,      including     background
information,      is  given  below.     A  summary  table   of  calls   follows   the   over-
view.

13_8 PCOS   SYSTEM   PROGRAMMER'S   6UIDE



VIDEO   DISPLAY

CLEAR   WINDOW   (SCREEN)

System  call   CLS   (35)   clears   the  screen   (or   current  window)   and     positions
the  cursor(s).

CURSORS

The  PCOS  system  provides  two  cursors   for   the  screen,   one   for   text  and  one
for     graphics.        These     may     be   placed  anywhere  and  XORed  with   the   normal
contents  of  the   screen.     The     cursor     may     be     blinking     or     nonblinking.
There     is  only  one  cursor   displayed   for  the  whole   screen  at  a  given  time.
However,   each  window  will   maintain  two  cursor   positions     and     two     cursor
bitmaps.

The  standard  cursor   bitmap   is   s  bits  wide  and     12     scanlines     high.        The
shape     may     be  changed  to  suit  the   user's   preference,   and  each   cursor  may
have  its  own  blinkrate.     The  blinkrate   value  defines  the  number  of  "state
changes"     per     second,      and   is  twice  the  number  of  blinks.`    (Blink  and   no
blink  are   two  states.)     A  blink   rate  of  6  gives   3  blinks   per   second.

During  BASIC   INPUT  and  Line   INPUT,   the   text   cursor   is   used.         lf     it     was
off ,     it  will  be  turned  on,   and  upon  exit  will   be  turned  off  again.     When
using   BASIC,   the   cursor   is  always  a   standard  block,   and  non-blinking.

System  calls   36  through  44  provide   the  capability  to  select  the     text    or
graphics  cursor,   select  blinkrate,   and  update   its  position:

Chgcuro   (36)           Chgcurl   (37)                Chgcur2   (38)
Chgcur3   (39)           Chgcur4   (40)                 Chgcur5   (41)
Readcuro   (42)        Readcurl   (43)             Selectcurl   (44)

WINDOWS

The  screen   is   initialized  to  obtain  one   window  by  Grflnit   (45)   which  sets
default     global     attributes     for     both     screen  and  windows,   and  returns  a
color   flag  and  a   pointer   to  the     "mailbox."     The     mailbox    also     contains
other     flags,      indicating  the  M20  model,   etc.     A  layout  of  the  mailbox  is
given  with  the  lEEE-488  driver  described  in  the  "Other     Drivers"     section
of  Part  2  of  this  manual.

The  screen  may  be   divided   into  windows  by  splitting  along     horizontal     or
vertical   1ines.      There  may  be  a   maximum  of  sixteen  windows   on  the   screen,
which  are   assigned   window  numbers   1   to  16   in   order   of   creation.

A  new     window   is  created     by  splitting  the  current  window   into  two  parts.
The     current     window  remains  the  one   selected.     A  quadrant   system   is   used
to   identify  the   new  window  and  the   part  of  the     old     f rom     which     it     was
created.

1n  addition  to  Brflnit(45),   system   calls   47   through  51   and  113     are     pro-
vided  to  define,   select,   return  attributes  and/or  close  windows:

13-9



Grflnit   (45)
Definewindow   (47)
Selectwindow   (48)
Readwindow   (49)

Chgwindow   (50)
Closewindow   (51 )
CloseAllwindows   (113)

6RAPHICS  ACCIHU^TOR

The  graphics   routines  make  use  of  a  global   variable   referred     to    as     the
"graphics  accumulator"  to  define  the  current  absolute   screen   location.

This  graphics  accumulator   is   said  to  be  of  type   "C".     A  C-variable     is     a
32-bit  variable  containing  a  memory  address  and  a  bit  mask   for  the  speci-
fied  group  of  pixels  at  that  address.     The  memory     address     and     the     bit
mask  are  each  16  bits   in  size.

The  memory  address  selects  a  word   in  the  Bit-Map     area,      and     is     in     the
range     960     to     %3FFE      (8192     words).      The  bit   mask   relates  a   pixel   on   the
screen  to  a  bit  in  that  area  of     the     Bit-Map     specified     by     the    memory
address.      A  bit   value  of  one  means  ON,   zero  means   OFF.

For  example,   if  the  graphics  accumulator   is  assigned  the  value  %20208000,
then    the    first    word  identifies  the  sixteen  pixels  at  the  center  of  the
screen  and  the  second  word  sets  the  first  of  these  sixteen  pixels  ON.

Conversion  routines  are  provided  for  converting  local   x-y  coordinates  for
windows  to  or   from  the  C-type  variable   in  the  graphics  accumulator.     Most
plotting  routines  manipulate  the  graphics  accumulator   in  an  abstract    and
machine-independent     way.        In  general,   the  plotting  of  a  point   is  at  the
position  defined  by  the  contents  of  the  graphics  accumulator.

Likewise,   the  "current  attribute"  is  a  global   variable     representing    the
current  foreground  color.     Any  plotting  or  painting  routine  will   set  this
to  the  color   specified   in   the   high-1evel     BASIC     (or     other)     routine     by
using     SetAtr     (61)      (set     attribute),     or     is     assumed  to  be  the  current
window's   current   foreground  color   by  default.

Several   system  calls   (52  through  67,   115,   and  116)   are  provided   for   scal-
ing     or  converting  coordinates,   for  manipulating  the  accumulator,   and  for
drawing   lines:

ScalexY   (52)
MapxYC    (53)
MapcxY   (54)
Fetchc   (55)
Storec   (56)
UpC    (57)

Downc    (58)
Leftc   (59)
Rightc   (60)
SetAtr   (61)
Setc   (62)
Readc   (63)

Nsetcx   (64)
Nsetcy   (65)
NRead    (66)
Nwrite   (67)
ClearText   (115)
ScrollText   (116)

13-10 PCOS    SYSTEM   PROGRAMMER'S   GUIDE



VIDEO   DISPLAY

PAINT   GRApl11CS   CALLS

The  PAINT  operation   fills  an  area   of  a     window     bounded     by     a     specified
boundary     color     (and  the  window  boundaries)   with  another   specified  brush
color.      These  system  calls   implement  the  PAINT  operation:

Pntlnit   (sc  68)                       ScanL   (sc  71)
TDownc   (sc   69)                            ScanR   (sc   72)
TUpC   (sc   70)

Pntlnit   (68)   is  called  first,   and  sets  the  paint  and  border  colors.       The
colors  selected  must  be   legal   screen   colors   (see  Color,   below).

The   remaining  calls  move  the  position  of  the  graphics  accumulator     up     or
down     (checking   first  if  the  move   is  within  the  boundaries  of  the  current
window;   if  not,   an  error   is  returned),   and  scan   left  or     right     to    paint
the   window.

COLOR

There  are  two  color  systems,   one  allowing     the     display    of     four     colors
simultaneously    and     the     other  allowing  eight  colors.     In  the   four-color
system,   the  colors  are  selected  from  the  full  set  of  eight.

A  color   code   is  a   value   from  0  to  7.   expressed     in     three     bits     (2,1,0).
The  color   codes   for   the  different  systems  are:

Black/White               Four-Color                 Eight-Color

0       black
1         white

O   color   A                    0     black
1   color   8                   1      green
2   color   C                    2     blue
3   color   D                    3     cyan

4red
5     yellow
6     magenta
7     white

The  four-color  selections  are  chosen  from  the  eight     color     possibilities
by  using  Paletteset   (46).

Where  a  color   code  exceeds  the  specified   range,   the     assignment     is     com-
puted     as     follows.        For  a  black  and  white  system,   codes   2  through  7  are
computed  by  ORing  the  three  bits  together.     For  all   cases  the     result     is
one.        For     a     four-color  system,   codes  4  through  7  are  computed  by  ORing
bit  2  with  bit  0.     The  result  is:

100   =   01
101    =   01
110    =    11

111     =   11

4=1
5=1
6=3
7=3



OVERVIEW   0F   GRAPHICS   CALLS

Cls  (35)     #¥.=

Clears   the   current   window.

(this  call   has  no  parameters)

Chgcuro  (36)

Positions  the  text  cursor.

1nput :
R8          <-     column
R9           <-      row

Output :
R5         ->     error  status

Chgcurl   (37)

Positions  the  graphics  cursor.

1nput :
R8        <-      x
R9        <-      y

Output :
(no  output)

--:.~.:-i Ct¢ur2   (38)

Sets  blink  rate  of  the  text  cursor.

Input :
Ft8          <-     rate

Output :
(no  output)

Chgcur3   (39)

Sets  blink   rate  of  the  graphics  cursor.

Input:
R8         <-     rate

Output ,
(no  output)

13-12 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



V10EO   DISPLAY

Sets  shape  of  the  text  cursor.

1nput :
RR8          <-     address

Output :
(no  output)

Chgcur4  (40)

Chgcur5   (41 )
Eiijä

Sets  shape  of  the  graphics  cursor.

lnput :
RR8          <-     address

Output :
(no  output)

Readcuro   (42)

Returns  the  position   (column  and   row),   and  the  blinkrate   of     the     current
window's  text  cursor.

Input :
RR10        <-     address

Output,

Readcurl   (43)

Returns  the  position   (column  and   row)9   and  the  blinkrate  of     the     current
window's   graphics   cursor.

Input :
RRIO        <-      address

Output :
R7         ->     blinkrate
R8          ->     x  position
R9          ->     y  position

1 3-13



___             __           ____  _  B*L__=

Selectcur  (44)

Selects  graphics  or   text  cursor,   or  turns  off  current  cursor.

1nput:
R8         <-     select

Output :
(no  output)

6rflnit  (45)

Initializes  screen  and  sets  defaults.

1nput :
(no   inputs)

Output :
R8         ->     color   flag
RR10     ->     pointer

Paletteset  (46)

Selects  a   global   four   color   set   (only   for   four   color   systems).

Output :
R5         ->     error   status

Definewindow   (47)

Creates   a   new   window.

Output:
R11

R5

13-14

quadrant
position
vertical   spacing
horizontal   spacing

->     window   number
->    error  status

PCOS    SYSTEM   PROGRAMMER'S    CUIDE



VIDE0   DISPLAY

Selects  another   window.

1nput ,
R8           <-window   number

Output :
R5         ->     error  status

Returns  attributes  of  current  window.

Input :
(no   inputs)

Changes  window  colors.

Input :

Output :

R8          <-     foreground
R9          <-     background

R5         ->     error   status

Closes  the   selected  window.

1nput :
R8           <-      window

Output:
(no  outputs)

Eiffi

Selectwindo.  (48)

Rea"indow  (49)

Chgwindow   (50)

Closewindo.  (51 )



ScalexY   (52)

Checks   coordinates   against   window  boundaries.

1nput:
R8           <-      x
R9           <-      y

Output :
R10        ->     return   value

NapxYC   (53)                   ,

Converts  x-y  coordinates  to  absolute  values     and     stores     result     in     the
graphics  accumulator.

lnput :
Ft8            <-      x
R9           <-      y

Output :
(no  outputs)

MapcxY   (54)

Convert  C-value   in   graphics  accumulator   to   x-y  coordinates.

Input :
(no   inputs)

Output :
R8            ->      X
R9            ->      Y

F.tchc  (55)

Returns   contents  of  graphics  accumulator.

1nput :
(no   input)

Output :
RR8        ->     C-value

13-16 PCOS    SYSTEM   PROGRAMMER'S    GUIDE

---        ±s"_.-*,



VIDE0   DISPLAY

Storec   (56)

Sets  graphics  accumulator  to  a  specified  C-value  saved  by   'fetchc'.--

lnput ,
RR8        <-     C-value

Output :
(no  outputs)

UpC   (57)

Moves  position   (as  stored   in  graphics  accumulator)   up  by  one  pixel.

(this  procedure   has   no  parameters)

Dori  (
Moves  the  position   (as   stored  in  graphics  accumulator)   down   one  pixel.

(this  procedure   has   no  parameters)

L®ftc  (5,)

Moves  the  position   (as   stored   in  graphics  accumulator)   left   one  pixel.

(this  procedure   has  no  parameters)

T
Rightc  (60)

Moves  the  position   (as   stored   in  graphics  accumulator)   right  one  pixel-.

(this  procedure   has  no  parameters)

SetAtr   (61)

13-17

Sets  the  current  color   value.

1nput :
R8          <-     color

Output :
R5         ->     error  status



Setc   (62)

Plots  a  single  point.

Input :
R8          <-     operation

Output :
(no  outputs)

Readc   (63)

Returns  the  color  attribute  of  the  current  point.

1nput :
(no   inputs)

Output :
R8          ->     color

Nsetcx  (64)

Draws  a   horizontal   line.

1nput,
R8          <-     count
R9         <-     operation

Output:
(no  outputs)

NsetcY  (65)

Draws  a  vertical   line.

Input,
R8          <-     count
R9          <-     operation

Output :
(no  outputs)

NRcad   (66) -

Reads  a  screen  rectangle  into  an  array.

13-18 PCOS    SYSTEM    PROGRAMMER'S    GUIDE



VI0EO   DISPLAY

Input :

Output :

R8          <-width   (in   pixels)
R9          <-height   (in  pixels)
Rmo    <-    pojnter  to  byte  array

@RR10   ->     address   of   byte   array
R5          ->     always   cleared   (no  error

conditions)

Transfers  a  graphics   rectangle  from  an  array  to  the  screen,

lnput :
R7          <-1ogical   operation
R8          <-maximum  width   of   rectangle

in   p.ixels
R9          <-maximum   height   of   rectangle

in  scanlines
RR10     <-     pointer   to  a   byte  array

Output :
R5          ->     always   cleared   (no   error

conditions)

Writo ü

Specifies  global   color  attributes   for  PAINT  routines.

1nput :
R8          <-paint  color
R9          <-border   color

Output :
R5         ->     error  status

TDownc   (69)

Moves  graphics   accumulator   down  by   one   pixel   after     checking     the     window
boundary.

1nput :
(no   inputs)

Output :
R8          ->     check   value

13-19



TUPC   (70)

Moves  graphics  accumulator   up  by  one     pixel     after     checking     the     window
boundary.

Input ,
(no   inputs)

Output :
R8          ->     check   value

ScanL   (71)

Paints  left  on  a  scanline   up  to  a  border.

1nput:
(no   inputs)

Output:
R9          ->     count-1
R10        ->     marginflag
R11        ->     painted   flag

ScanR   (72)

Paints  right  on  a  scanline  up  to  a  border.

1nput :
R8          <-     maxcount

Output:
RR6
RS

R9
R10
R11

CloseAllwindows   (113)

Closes  all   existing   windows   (from  2   to  16).

1nput/Output :

This  call   has   no  parameters

13-20 PCOS    SYSTEM   PROGRAMMER'S   CUIDE



VIDEO   DISPLAY

ClearText   (115)

Clears  a  specified  rectangle  of  text  in  the  current  widow.

lnput :
R10             <-Column   (1eft   edge   of

cleared  rectangle)
R11              <-Row   (top   row   of   cleared

rectangle)
R12             <-Column   count   (width   of

rectangle)
R13            <-Row  count   (height   of   rectangle)

Output :
R5             ->  error  status

ScrollText  (116)

Copies  a   rectangle  of  text  charac,ters  in  a  window  to  another  position     of
the   same   window.

1nput :
R6        <-   Color   Plane   Mask
R7       <-  Logical   function   (0   for

normal   copy)
R8       <-   Source   column   (Left   edge   of

.        source)
R9       <-   Source   row   (top   row  of   source)
R10     <-   Destination   column   (1eft   edge

of  destination)
R11      <-Destination   row   (top   row  of

destination)
R12     <-Column  count   (width   of   rectangle)
R13     <-Row  count   (height   of   rectangle)

Output :
R5       ->  Error  status

13-21





14.   DISK  DRIVER  AND  FILE  MANAGEMENT



AB0UT   Tllls   Cl+APTER

This   chapter   explains   the   capabilities   of   the   disk   driver   and   PCOS   file
management.      1t     provides     information    about    related    utilities,     system
calls   used   for   doing   disk   file   input/output,   and   system   calls   used   for
file   management.

CONTENTS

OVERVIEW

DISK    DRIVER    AND    FILE

MANAGEMENT    FUNCT10NS

DISK    DRIVER    CAPABILITIES

DISKETTE    AND    HARD    DISK

CHARACTERISTICS

DISKETTES

HARD    DISK

INTERFACE    DESCRIPTI0NS

DRIVER    INITIALIZAT10N

14-1

14-2

14-2

14-2

14-3

14-3

ASSEMBLY    LAN6UAGE    INTERFACE       14-4

COMMANDS

VERIFY   AFTER    WRITE    FLAG

0PTION

FLOPPY    DISK    ERROR    CODES

HARD    DISK    ERROR    CODES

14-4

CONCEPTS    AND    BACK6ROUND

INFORMAT10N 14-5

LOGICAL    BLOCK    NUMBERS                            14-5

WRITE    PRECOMPENSAT10N                            14-7

DISK    FORMATS                                                         14-8

ECMA   COMPATIBILITY                                     14-8

MSDOS,     CPM-86,     AND    IBM    PC

DISK    FORMATS                                                         14-9

SYSTEM    INTERFACE    DESCRIPTI0N    14-9

1NITIALIZAT10N                                               14-9

FLOPPY    DISK    ERROR    RECOVERY           14-10

HARD    DISK    ERROR    RECOVERY                  14-11

MISCELLANEOUS    INFORMATI0N              14-11

ROM    REQUIREMENTS                                              14-11

HARDWARE    CONF16URAT10NS    AND

VERSI0NS 14-12



VALID   0PERATI0NS

FILE    MANAGEMENT    0VERVIEW

LOGICAL    BLOCKS

CONTROL    TRACK

VOLUME    DESCRIPTOR    BLOCK

ALLOCATI0N    0F    BLOCKS

FILE    DIRECTORY

THE    DIRECTORY    ENTRY

FILENAME    HANDLING

FILE   0ESCRIPTOR    BLOCK

0VERVIEW   0F    FILE

MANAGEMENT    UTILITIES

SYSTEM    CALL    0VERVIEW

14-12

14-13

14-13

14-13

14-13

14-14

14-15

14-15

14-15

14-15

DISK    BYTESTREAM    I/O   CALLS              14-18

FILE    MANAGEMENT    CALLS

DRemove    (26)

DRename    (27)

DDirectory   (28)

DisectName   (96)

Checkvolume   (97)

Search   (98)

Setvol    (102)

DiskFree    (106)

14-19

14-19

14-19

14-19

14-20

14-20

14-20

14-20

14-21





DISK   0RIVER   AND   FILE   MANAGEMENT

OVEIWIEtJ

The   disk  driver   supports   floppy  disk  and  the  optional   hard     disk     drives.
Based  on  the  disk   drive   functions,   PCOS  provides   file  management   capabil-
ities.     This  section  explains  the  capabilities  of     the    disk     driver     and
gives  information  about  the  system  calls   for   doing  disk  f ile   input/output
and   file   management.

DISK   DRIVER   AND   FILE   MANAGEMENT   FUNCTIONS

The  disk   driver  manages  the  physical   resources   of  diskettes  and  the     hard
disk.     File  management   routines  are   structured  on   top  of   the   driver   capa-
bilities  in  a  hierarchical   fashion.     At  the   lower   levels,   the  driver  pro-
vides     file     management  with  the  functions   that  convert  logical   blocks  to

3!¥:::::£::dr:is. f±£:s:  h±8:::  `:¥::.  #::g::::€em:::]:::::esop:::::  o:n:
diskette  or  disk   full   of  files,   which   is  called  a   volume.

This  section  starts  with  a  discussion  of  the  driver  and  then  gives   infor-
mation     about     file     management,   including  an   overview   of   file   management
utilities.     System  calls  are  given  at  the  end.

DISK   DRIVER   CAPABILITIES

The  driver   features   include  write   precompensation   for     the     640KB     drive,
and     support     for   disk  operation  on  the   512  byte   sector   diskettes   (CPM-86
and  MS00S   types)   as   well   as   256   byte   sectors.

This  driver  supports  the   following  disk  drive  configurations,   not  all     of
which  are  actually  provided  by  Olivetti.

1   160-kbyte   floppy   drive
2160-kbyte   floppy  d.rives
1   160-kbyte   floppy   drive,   1   hard   disk   drive
2160-kbyte   floppy   drives,   1   hard   disk   drive

1   320-kbyte   floppy   drive
2   320-kbyte   floppy  drives
1   320-kbyte  floppy  drive,   1   hard  disk   drive
2  320-kbyte   floppy  drives,   1   hard  disk  drive

1   640-kbyte   floppy  drive
2  640-kbyte   floppy  drives
1   640-kbyte   floppy  drive,   1   hard  disk  drive
2   640-kbyte   floppy  drives,   1   hard  disk   drive

ROM  2.0   is   required   for   support   of  the   hard   disk,   160KB,   and   640KB   floppy
disk  drives.

14-1



Configurations  with  floppy  disk  drives  of  different  sizes   intermixed    are
not     supported     by     the  disk   driver.     The  driver   supports  any  floppy  disk
drive   in  combination  with  the   hard  disk   drive.      However,   not  all   possible
drive     combinations     are     actually     marketed.     For   example,   the  160-kbyte
floppy  drives  are   not  used  with  the  hard  disk.

This  driver  will   work  with  all   memory  and  display  configurations.

DISKETTE   ANt)   W\RD   I)1SK   CHARACTERISTICS

DISKETTES

A11   diskettes  are  5-1/4  inches   in  diameter,   have  a  transfer   rate     of     250
Kbits     per     second,   and  an  average  access   time   of   303  ms,      The   individual
characteristics  are:

160   Kbytes             320   Kbytes               640   Kbytes

Sides
Density

Read/write
heads

Tracks  per
surface

single-sided         double-sided         double-sided
double-density     double-density     quadruple-density

1

40
(35   used) i¢35_::edy.)~vfi,,-!."otF

A1]   diskettes  have   16  blocks  per   track,   with  256  bytes  per   block,     except
for  track  zero  of  side   zero.     This  track   is  not  used.     Its  16  blocks  have
128  bytes  per  block,   filled  with  Olivetti   control   data.

HARD   DISK

The  hard  disk  is  also  5-1/4  inches   in  diameter,   and     can     be     substituted
for    a     5-1/4     diskette     drive.        It   is  a  Winchester-type   drive,   with  the
rotating  memory  and  the  access   heads  sealed   inside  a     protective     casing.
1t     has    three  platters  with  six  recording  surfaces.     1ts  characteristics
are:

14_2 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



DISK   DRIVER   AN0    FILE    MANAGEMENT

Read/write   heads
Track   density

Tracks  per  surface
(cylinders)

Access  times

Rotation  speed

Latency  time

Data  transfer  rate

Capacity,   nominal

Capacity,   formatted

Drive   identifiers:

0'   1    floppy
10        hard  disk

INTERFACE   DESCRIPTI0NS

6
10   tracks   per   mm
(254  tracks   per   inch)

180

track  to  track  --1.1   ms
average  --  66  ms
maximum   --158   ms

3,600   revolutions   per   minute

average   --8.33   ms

5  Mbits  per   second

11.26   Mbytes

8.85   Mbytes

256  bytes  per  block
32  blocks  per  track
8.192   Kbytes  per   track
1.475  Mbytes   per   surface

The   following   information   is  provided   for   background.     User   calls  to     the
disk     driver     are     actually  done  by  bytestream  system  calls.     These  calls
are  listed  later  in  this  section.

DRIVER   INITIALIZAT10N

The  global   name  for   this     procedure     is     "disk   init".        This     routine     is
called    at  system  initialization  time.     Any  active  disk  drives  are  turned
off  and  RAM  variables  are  initialized  so  that  upon  the  first  disk     opera-
tion  the   restore  operation  will  be  done.



ASSEMBLY   LAN6UA6E   INTERFACE

The  global   call   name   of  this  procedure   is   "disk   io".     This     call     is     the
general     interface     that  allows  ail   of  the  commänds  described  in  the  Com-
mands  section  below  to  b`e  executed.        All     parameters     to     and     from     the
driver  are  passed  in  registers.

The  following  registers  are  used   for  parameter  passing  to  the  driver     and
returning   information  from  the  driver.     The  driver   does  not  save   register
values.

Pa ramete r s :

Return:

RL7              Driver   command
RH7             Physical   drive   number    (0,1,   or   10)
RS              Number  of  blocks  to  transfer
R9                Logical   block   number
RR10          Buffer  address

RH6            lf  re.try  count  is  not  zero,   this   is  the
type  of  error

RL7            Error  code:   final   result  after   retry
attempts

RH7            Number   of   retries   attempted

CO"DS

The   following   commands   can  be   issued   using  the   general   assembly     language
cal l :

Read   block(s)   command
Write   block(s)   command
Format   track   command
Verify  block(s)   command
lnitialize  driver

VERIFY  AFTER  WRITE  FLA6   0PTIoll

A  global   flag  byte  with  the  name   "dsk_vfy_flag"  will   determine   if  a     ver-
ify    operation    should    be  done  after  a  write  operation.     1f  this  flag  is
zero  no  verification  will   take  place.      1f  the  flag   is  non-zero  the  verif-
ication  will   take  place.

This   flag   is   initially   zero  but   can   be   changed  with   the   SSYSTEM   PCOS   com-
mand   and   PSAVED.

ßti[[y       25G    Bj+S     ¢-JJ6(¢`Ff,)

14-4 PCOS   SYSTEM   PROGRAMMER'S   6UIDE



DISK   DRIVER   AND   FllE   MANAGEMENT

FLOPPY   DISK   ERROR   CODES

The  following  is  a  list  of  bits  that  can  be  set     by    the     driver     in    the
return     status    byte     to     reflect     error     conditions.  .A  zero  status  byte
reflects  no  errors.     NOTE:   Bit  0  is  the  least  significant  bit.

Bit   0        111egal   parameter(s)   error
Bit  1       Not  track  0  after   restore  error
Bit  2       Seek   error
Bit   3       Data   transfer  error
Bit  4       Record  not   found  error
Bit   5       Write   fault  error
Bit  6       Write  protect  error
Bit  7       Drive  not   ready  error

l+ARD   DISK   ERROR   CODES

The  following  is  a  list  of  bits  that  can  Be  set    by    the    driver     in    the
return    status    byte     to     reflect    error    conditions.     A  zero  status  byte
reflects  no  errors.     NOTE:   Bit  0  is  the  least  significant  bit.

Bit  0       l11egal   parameter(s)   error
Bit  1       Not  track  0  after  restore  error
Bit  2       Abort  error
Bit   3       Data  transfer  error
Bit  4       Record   (sector)   not   found  error
Bit   5       CRC  on  sector   id  error
Bit  6       CRC   on  data   error
Bit  7       Bad  block  error  OR  Drive  not   ready  error

CONCEPTS   AND   B^CK6ROUNl)   1NFORNATION

The  following  discussion  gives  general   concepts  and  specific     information
useful   in  understanding  the  disk  drives.

L06lcAI  BlocK  NIHERS

Many  operations  performed  by  the  driver   require  the     calling     program     to
furnish     a     "1ogical     block  number".     This  number   is  a   device   independent
way  of  representing  block  of     data.        Each     valid     logical     block     number
refers     to    a  .  physical     disk    address     (a  set  of  sector  head,   track,   and
numbers).     Valid     logical   block  numbers   comprise     an     unbroken     sequence,
beginning     with     0.     The  file  system  may  therefore  increment  or   decrement
any  logical   block  number   within  this  sequence  and  produce     another     valid
logical     block    number     designating    the  next  or  previous  sector,   respec-
tively.

Ttx}   PCOS  1.0   driver   mapped     logical     block     numbers     into     physical     disk
addresses  as   follows:

XXXXX             TTTTTT    H   SSSS
bit:         15        1110           543     0

14_5



where   S   =   sector   number   (range  0   -15),   H   =   head   number    (range   0   -1),      T
=     track   number   (range   0   -34),   and   X  =  unused.      This   scheme   accommodated
all     valid     disk     addresses     on     the     320-kbyte     disk,        which       had       16
sectors/track,   2  sides,   and  35  tracks/side.

A  new  method  accommodates  all   valid   disk  addresses   on  the  optional     drive
types.     Their  parameters  are:

Media   Type

Drive   Type

Disk   Format

Bytes/sector
Sectors/track

Bytes/track

Tracks/head(side)
Heads ( si des ) /dr i ve
Tracks/drive

Capacity   (KB)
Capacity   (Bytes)

+-----------------------------+-----------+
|                          Floppy   Disk                          |    Hard   Disk    |
+---------+---------+---------+-----------+
|160   Kbyte|320   Kbyte|640   Kbyte|      s   Mbyte      |
+-----+---+-----+---+-----+---+-----------+
|     ECMA|lBM|     ECMA|lBM|     ECMA|lBM|                ECMA             |
+-----+---+-----+---+-----+---+-----------+

256    |512|    256
16      1      8      1          16

4,096      |      4,096       |      4,096      |         8,192
111

40               1               40            1               80            1               180

1121216

40             |             80          |          160          |          1,080-11111-
160          |         320          |         640          |         8,640

163,840    |    327,680    |    655,360    |    8,847,360
+---------+---------+---------+-----------+

As  shown  above,   an   independent   "track  number"   field   requires  7     bits     for
the  640-kbyte   floppy  drive,   and  s  bits   for   the  hard   disk.     An   independent
"heads"   field  requires  3  bits   for  the  hard  disk.

The  method  currently  used  maps   disk  addresses  as   follows:

14-6 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



1

00   33   !]8   88   1E   ü!]

08  ::  08  80  88  3:
m   10   58   43  4F   53

80   SÖ   Ö0   Ö0   ü   80

FF  FF H  üO  i]:  FF

#" " , t `8" `
1''1

Pt:OS

:F   FF   FF   FF.   FF   FF

:F.   FF   FF   FF   FF   FF

F.F   FF.   FF   FF   FF

i]ä!]BFEü      OC   88   ÖÖ   i]0   08   !jö   !]i]   08   CO   SÖ   0Ö   88   iJÖ   SÖ   !]t]   ÖO

[!äööFüs     Ö8   88   ü   [io  O[i   [iö   ÖÖ   ÖÜ   88  «   88   80  88   8Ö  08  88
-j88FEEO     ÖÖ   m   ÖÖ   so   88   08   aB   !]o   oo   sÖ   oo   sÖ   88   ü   138   8Ö

'                  }88FEF[i      Ö8   80   80   Ö0   88   ÖÜ   80   ü   ÖÖ   80   Ö[i   Ö0   ÖÖ   80   80   0C

IJRÖÖFFO8      08   l]Ö   08   ü   €8   08   i]Ö   08   80   ÖS   Ü8   08   00   8Ö   Ö0   08

o#csFF18     00  8Ö   Öo   oo   oo   oÖ   08   Üo   m   oo   88   [!Ö   oo   ßS   Öß   Ö8
•3fi!30FF:[.      OC   !0   90   00   0.0   :!0   !:!   !]0   1].!=.   i]O   [!0   [l[i   m   oo   oo   ot}

i:iä;]!]FF.J:i      !]!j   ,:![i   [![i   !][1   [::!   [i[l   !J[!   [i!:   Oli   ::[10!]   lJü   [10   00   00   00,



y'ib/      TrBMk     J/-3P   „

vciJVL     9i'bt         J/o8g    b/o{ke     u



X..X.Ä.   Di5ketteTiblä,.:ke   r]Tizei,!eTi    !.#*

nib   L,]ijfwet`k5riiJmmer   -} 1

)ib   !,18f:'F.Ti!jmnter    -}Ö

"ÖoFE48    gä`8i  ü  .:3  82   io  ci   !]o  oo  io  Ö8  :,s  oi]  i38  iE  so
msgFE5Ö     FF-  F.F   80   88   [19   sÖ   Cs   ü   OÖ   31   00   2:   88   C9   88   £3

mooFE60      FF   FF   FF   FF   FF   FF   FF   FF   00   00   00   10   58   Ji3   4F   .53

ofiooFE?0     00   no   00   0£  ß0   00  00   0[,   00  00   00   00   00   00  0[!   00

0flocFE88     88  88  Öß  08   80   00  ü   Ö0   Ö0  01   FF   FF ü§ 80  8=   FF

1#",   -,8-'
1'I

S        ,       t

8fioSFE98      FF   FF   FF   FF   FF   FF   FF   FF   FF   FF   F'F   FF   FF   FF   FF   FF

ÖflBSFmo      FF   FF   FF   FF   FF   FF   FF   FF   FF   FF   FF   FF   FF   FF   FF   FF

OaooFEp,O      FF   FF   FF   FF   FF   FF   FF   FF   FF   FF   FF   FF   FF   FF   FF   FF

flal]oFEt:o     oo   oooai!000   000000   mo1]0o0000   00   00   m                                     .,,::.,{

]EFEDü     00   oÜ   Ba   ßg   m   D0   oo   üo   [1o   oo   ÜÜ   oo   m   oo   oo   O[1

]i]FEEO      00   00   üO   üO   00   üO   00   m   ßO   Oß   Oü   00   ÜO   ßO   Oü   m

ÜRgoFEF[l     oo   oo   oÜ   @o   Üo   üo   m   oo   m   oü   Bü   Üo   oo   oo   m   oo

OfimFFOO      00   üO   üÜ   l]Ü   OÜ   üß   ÜÜ   00   00   m   üü   flo   üO   0o   Oo   Oü

[IaooFFIO      t}o   00   O0   0O   0O   00   m   OO   0O   0O   m   m   OO   oO   oo   ocl

;3fil3!]FF£[!      !!]    Olj   ;Jl]   [H:    :]i=!   i:,01]0   l][i   sl=   1],o   !J!   ;]0   i]l]   ao    !]o   ;]Q

;=fi::!;rF=.i:       !::]    i][;    i][!    C:::    !:!:i    a:!    [!!J    ;:!i:!    [![i    0[!    €:[i    iJ[i    !3[;    [!0    0[1    [{!:

D15K   DRIVER   AND   FILE   MANA6EMENT

Hard   disk:
AAAAAAAAAAA                    S S S S S

bit:        15                       5               4       0

Floppy   disks:       (ECMA   type)

160-kbyte :
XXXXXX          TTTTTT          SSSS

bit:      15           10      9           4        3      0
320-kbyte :

XXXXX             TTTTTT   H   SSSS
bit:      15         1110           5   43      0

640-kbyte:
XXXX             TTTTTTT    H   SSSS

bit:      151211               543      0

Floppy   disks:       (1BM   PC   ty.pe)

160-kbyte :
XXXXXXX         TTTTTT          S S S

bit:      15             9        8          3        2   0
320-kbyte:

XXXXXX             TTTTTT    H   SSS
bit:      15           10        9           4   3   2   0

640-kbyte :
XXXXX             TTTTTTT    H   SSS

bit:      15         1110              4   3   2   0

For   the   hard  disk,   A  =   (track   X  6)   +  head;    (range  =  0   -2047).      Track  and
head     values     are   determined  by  dividing  the  A-field  by  6:   track   value   is
the  quotient,   head  value   the   remainder.

WRITE   PRECOMPENSATION

Write  precompensation   is   used  both  on  the  640KB     floppy     disk     drive     and
with  the  hard  disk  drive.

For  the  640KB  drive,   the  write  precompensation  bit   (bit  7  in  general   pur-
pose  disk  output  port)   is  set  to  one  whenever  a  write  operation   is  occur-
ring  on  tracks  43  through  sO.

For  the  hard  disk,  the  write     precompensation    byte     is    written    to    the
Western     Digital     controller     at   initialization  time.     The  track  at  which
the  write  precompensation   is  begun  is  track  128.

14_7



DISK   FORMATS

Both  floppy  disks  and  the  hard  disk  are   formatted  one  track  at  a  time,   by
repeated   "format   track"  commands   issued  from  the   utility  VFORMAT.

Any  sector   interleaving  is  done  when  the     diskette     is     formatted.       This
allows     for  many  different   interleave   formats  that   can  be  optimized   for  a
particular  application.     The  driver  software   is   independent  of  the  inter-
1eave     and     will     work     with  any   interleave   scheme.     Therefore  the   driver
supports   the  ECMA  standard  of   having  the   sectors   in  numerical     order,     as
well  as  supporting  different  interleave  schemes.

The  format  program  contains  tables  that   have   interleave   schemes     for     the
various     types  of  disks.     For  the  PCOS   3.0  floppy  diskettes,   VFormat   uses
the  following  interleave  table:

Physical   01    02   03   04   05   06   07   08   091011    1213141516
Logical      09   01    10   0211    0312   0413   0514   0615   0716   08

For   the   PCOS   3.0   hard   disk,   VFormat   uses   the   following   interleave   table:

Physical   01    02   03   04   05   06   07   08   091011    1213141516
Logical      00   04   081216   20   24   28   01    05   091317   21    25   29

Physical   171819   20   21    22   23   24   25   26   27   28   29   30   31    32
Logical      02   06101418   22   26   30   03   0711    1519   23   27   31

The  floppy  disk   interleave   is  an   interleave  by  2.     This  allows     about     12
milliseconds     of     processing     time  between  sectors.     The   hard  disk  inter-
1eave   is  an   interleave  by  8.     This  allows  about  4     milliseconds     of     pro-
cessing     time  between  sectors.     These  interleaves  have  been  optimized  for
the   PCOS   file  system.

ECMA   COMPATIBILITY

The  physical   format  of  the  diskette     can     be     written    according    to     the
ECMA-70     Standard  if  the   format  program  that   uses  the  write   track  command
sets   up  the  data   to  be  written  properly.     NOTE:   The     floppy     disk     driver
writes     and     reads     only     the     FB     data     mark  and   does  not  support  the  Fs
deleted  data  mark  on  normal   sector   reads  and  writes.      However,     when     the
write     track     command   is  executed.   The   driver   will   write  whatever   data   is
supplied  by  the  user,   so  deleted   (F8)   type  sectors  can  be  written   in  this
Way.

The   format  program  currently  used  by  the  PCOS  operat.ing  system  creates   an
interleave  by  2,   which   ls  NOT  the  ECMA-70   standard.      1f  the   ECMA  standard
is   required,   a   user   supplied   format   program   can   be   used.        Also,      ECMA-70
diskettes     generated  on  other  machines  can  be   used  as   long  as  they  do  not
use  the  Fs  deleted  data  mark.     This  may  cause  a  difference     in     operating

:{:::i:::%;n:::`ause    there  may  not  be  any  interleave  on  diskettes  made  on

14-8 PCOS   SYSTEM   PROGRAMMER'S   6UIDE



DISK   DRIVER   AND   FILE   MANA6EMENT

MSDOS,   CPM-86,   AND   IBM   PC   DISK  FORMATS

The   AP81086   board   using   MSDOS   and   CPM-86   and   the   lBM   PC   all   use   disk   for-
mats     with  s   sectors   of  512  bytes  per  track.      The  PCOS   3.0  disk   driver   is
also  capable   of   reading  MS-DOS  and   CP/M-86   diskettes.      This     is     done     by
specifying     diskette     type   4   for   the   160KB  diskette,   type`LET`rfor   the   320KB
diskette,   and  type  6   for   the   640KB  diskette.

`\

SYSTEM   INTERFACE   DESCRIPT10N

1NITIALIZAT10N

At   initialization  time,   the  attached     drive     types     are     identified.     Two
flags,   ``drive  0  type"  and  "drive  1   type",   are   set,   using  these   values:

drive  not  present  or   type   unknown
160-kb   floppy
320-kb   floppy     L:\   !     '`--i'
640-kb   floppy.

A  third  flag,   "hard  dsk  drives",   is  set  to  0  if  no  hard  disk     drives     are
attached.     .   if  one-is  ättached.     in  future  reieases,   this  flag  may  indi-

iri  si;i€:tsr,[,!,:,:1`€  ar,:Eigeri  *•     ..`i.   .-`.`.ac      attached

giE,   Laijfwe!.i...5rHjmß!ei`    -,`!

^,  .3ib  g.lo£kn;jmgr  -.}Ü

g#ESg Effläo3
0f!0!JFE60     FF  FF   FF   FF

mooFE70
8flooFE80

0ß00FE90

8#80F'mo

ÖÄ88FEP,O      F

3$00FEm     Ü

-.'JSßOFEDO    88
0ß00FEE0     jJfl

Dflot'FEFt'

!JflooFF00

[l#00FF10

11floüFF£0 ;J8

Ofl[I0FF30     oo

08   00   lJS   OÜ

if     a     multiple-hard-disk
---.- +~

FF  FF   Ff

FF   FF   FF

•J
ul'
b

1

"Pll

14-9



sys_conf_tab:
zsocLoc%  :::n::!e           ü±3y::

g:::eü|#:e  2 3y::

disk_1_type        Fbyte
hard  dsk  drives%yte

The  system  configuration  table
pointer   "mtconfig" .,,, //,,

keyboard  country
total   number   of   16k  memory
blocks
saves  any  key  pressed  at  startup
number   of   ready  disk   drives
offset  of  system  stack  top
color/bw  flag
verify  after  write  f lag
drive  0  floppy  drive   type
0   =  type   unknown
1   =   160-kb   floppy
2   =   320-kb   f loppy
3  =  640-kb   floppy
drive   1   floppy  drive  type
drive  0  floppy  disk  type

: : ::::£ :!:::::: (::# :#  # r-c>k5
4   =  160-kb   diskette   (1BM   PC   type)
5   =   320-kb   diskette   (IBM   PC   type)
6   =  640-kb   diskette   (1BM  PC   type)
drive   1   floppy  disk  type
number  of  hard  disks   in  system

can  be  accessed  through  the     master     table
K f+.,`;-    t} c+:+ Cj S

r7)ä!.e4i,'kp      c±-:=  ::

FLOPPY   DISK   ERROR   RECOVERY

The  following  is  a   list  of  various  types  of  floppy  disk  drive  errors     and
error   recovery.

Data  Lost  Error

This  error  will   result  when  an  interrupt  occurs   just  prior  to  the    begin-
ning     of  a   sector   read  or  write.     This  error   does  not   increment  the   retry
count  and  does   not  in  any  way   reflect   on  the  performance     of     the     floppy
disk     interface.       Whenever     this  error   occurs  an   immediate   retry  will   be
done ,

Seek  Error

This  error   results  when  the  track  desired  is  not  reached  correctly.       The
recovery    for    this    error  is  to  first  restore  the  drive  and  then  attempt
the  seek  again.     This  will   be  repeated  up  to  6  times.

14_10 PCOS   SYSTEM   PROGRAMMER'S   GU10E

`.-

-



PJ„irJ---~,`    `,-`.
fp

-^sp;,OI:c

Wu;n  enhj    ®-8AÖE.

8bok     ¢      p~8A
2
1

Z=-
^.#-!-,ä-W

hl#e,b

`.  !"fLfv    riD`bfi&#   9L  t/

:NT

done  to  recover   from  this  error.

tempted  without   head  movement.

rformed  and  the     desired     track     is     reached
ration.

en  attempted.

itelligent  controller     has    built     in    error
t  programmable.   The  disk   driver   adds   another

•ite   command,   if  the  WD-1000   does   not   find   a
•s  a   CRC   error   in  either  the   ID  field  or  the

sequence   is  done.     First  the     operation     is
!ment  16  more  times.     A   restore  operation   is
isued.        The     operation     is     then     attempted
•er     will   cause  the  above   sequence  to  happen
;  returned  to  the  caller.

iot  track  0  errors,   the  driver     returns     the
no  retries.

*:%o8ooDowF.S]:.ke1
a#&yfz   ^3JZJ5  -Ä/./yp/'*  `  t  of  the  hard  disk,16oKB,  and  64oKB  fioppyworks   properly  with   the   ROM  1.0   if   only  the

&-& ff ,j#d od *,:
L,,

f  the  Bootstrap   ROM     1.0     is     present,      the
C/

'JZ4¢±G_6-#'o(£-%/:5a?¢_`)_'::;:::Md:::T:::::Gt:::is::::°::M`:::`n:,::

lvES.     Note,   though,   that  the   software  will
!/r/cic/er                                                               l.LÜ     ,.V.„...V.t ,..,.......,..,.. „...  „...

o{6   G/ook    4¢  -Gj£#c/,£   };?Strü  R°M '¢   althoud   the   bootstrapüstd,.o,'. 1 -
q!:.B#

'

¢t8,3,:„ff±

14-11



HARDWARE   CONF16URATIolls   AND   VERSIONS

Two  jumpers  are   used  to   indicate   the  type  of   floppy  disk   drive   present   in
the  M20     system.      The   four   floppy  disk  drive   jumper   configurations  are   as
follows:

Jumper   Settings

X4   to   X5                      ZA   to

ON

(0)

ON

(0)

OFF

HH

0FF
bm

ZA1

(0)

ZA2

Hm

ZA1

(0)

ZA2

Bm

System   lnterpretation

Skip   diagnostics,   and   query
user   for  floppy  drive  type.

Floppy  disk  drive   configur-
ation  #1   --160   kbyte.

Floppy  disk  drive   configur-
ation  #2   --   320   kbyte.

Floppy  disk   drive  conf igur-
ation  #3   --  640  kbyte.

VALID   OPERATIONS

The   following  chart  shows  the  valid  combinations     of     disk     drive     types,
diskette     types,     and     possible  operations.     The  codes  have  the   following
meanings :

160   kbyte   =   1,320   kbyte   =   2,640   kbyte   =   3,read   =   R,and   write   =   W.

diskette
type

(side   1   cannot   be  accessed)
(side   1   caTinot   be   accessed)
(too  many   tracks   for   stepping  mech.)

R,W

R'W

NONE             (too   many   tracks   for   stepping  mech.)

R    ONLY

R    ONLY

R'W

drtype  =  dktype-->R,   W:
drtype   >  dktype-->R   ONLY   (e.   9.,   320   kb   diskette   on   640   kb   drive)

except    (2,1)   -->   R,   W;
drtype  <   dktype-->NONE.    (e.   g.,   640   kb   diskette   on   320   kb   drive)

14-12 PCOS   SYSTEM   PR06RAMMER.S   6UIDE

-



DISK   DRIVER    AND   FILE    MANACEMENT

FllE   MANA6EMENT   0VERVIEW

File  management   routines   use  and  maintain  certain   tables   of     information.
File     management  capabilities  and  methods   can  be   understood  by  describing
these  tables  and  explaining  how  certain  entries  are   used.     These  descrip-
tions  and  explanations   are  given  below.

L061CAL   BLOCKS

The  concept  of   logical   blocks  should  be   explained   first.     A  logical   block
is     256     bytes     of     disk     space.        Each  block   is   uniquely   identified  by  a
number  starting  with' zero  and  ending  with  the  capacity  of  the  diskette  or
disk;     that     number     requires     four     bytes     for  storage.     A  logical  block
number  can  be  converted  to  a   unique  physical   address.        Finally,     logical
blocks  are  often   linked  in  groups  of  associated  logical   blocks  by  placing
the  next  block  number   in  the  last     four     bytes     of     each     block.       A     nil
pointer,   hexadecimal   FFFFFFFF,   ends   such  a  group.

CONTR0l   TRACK

The  control   track  is   in  a  central   location  on  the  diskette  or   hard     disk.
The     track     contains     the     f irst     blocks  of  the  directory  and  the  bit-map
which  shows  block  allocation.     File  management  often   needs     the     informa-
tion     on     this     track,   and  its  central   1ocation  minimizes  seek-time  going
between  it  and  the  other  files.

Note :

The   two  diskette   type   numbers   used   by   for  MSDOS/CPM  diskettes,   4     and     5,
are     eciuivalent     to     types     1     and     2     respectively.      Type  4   is  the  160KB
diskette,   and  type  5   is  the  320KB  diskette.

For   160  Kb  and   320   Kb   diskettes,   track  16   is  the  control   track.     For     640
Kb  diskettes,   track  32   is  used.     The  control   track  is  on  side  0.

VOLud:   DESCRIPTOR   BLOCK

The   Volume   Descriptor   Block   (VDB)   is     the     first     block     on     the     control
track,     and     is  logical   block  zero.     1mportant   locations  within  the  block
are  described  below.      Locations  are   given   in  hexadecimal.

14-13



Contents

Optional   volume  name,   left-justified,   zero  filled.

Optional  password,   left-justified,   zero  filled.

Code  used  to  detect    whether     diskette     has     changed
since  last  disk   1/0.   Used  to  prevent  damage     to     the
bit-map.

Diskette   type   code.      1=160   Kb,   2=320   Kb,    3=640   Kb.

Start  of  bit  map.

The  bit-map  has  one  bit  for  each  logical   block  on  the  diskette     or     disk,
and     the  sequence  of  bits  corresponds  to  the  logical   block  numbers.     Bits
are  0  if  the  corresponding  block  is  available,   1   if  allocated.     The     bit-
map     is     initialized  with  all   zeros  except  for  bytes  38  and  39,   which  are
all   ones  because  logical   blocks  0-15  are  the  control     track     blocks.       As
blocks  are  allocated  and  de-allocated,   the  bit-map  changes.     File  manage-
ment  routines   looking  for  available  disk  space     search    the     bit-map     for
free  blocks.

Diskette   bit-maps   fit   into   logical   block  0  with  the  VDB,   except     for     640
Kb   diskettes,   whose  bit-maps  extend   into  block  1.

ALLOCATION   OF   BLOCKS

Blocks  are  allocated  by  extents.     An  extent   is  a  group  of  logically    con-
tiguous     blocks     on  the  diskette.     The  number  of  blocks   in  an  extent   is  a
Set  System  parameter  setting,  and  starts  out  at  8.

Blocks  can  be  chained  together  by  using  a  4-byte  pointer  at     the     end     of
each  block  containing  the  next  block  number   to  use.      Therefore,   allocated
blocks  do  not  have  to  be     physically     contiguous.        Changing     the     extent
value  does  not  affect  blocks  allocated  under  the  prior  value.     The  extent
value  just  tells   file  management  how  many  blocks  to  allocate  when     creat-
ing  or  extending  a   file.

Extents  are  logically  contiguous  groups  of    blocks;     that     is,     they    are
linked  in  succession  with  a  4-byte  pointer  at  the  end  of  a  block  pointing
to  the  next  block.     They  are  often  assigned  in  sequential     1ogical     block
numbers,      especially     during     early   use   of  the   volume.     When  a   volume   has
seen  much  use,   with  files  being  created  and  deleted,   the  extent     linkages
will     skip     so     that     the     logical     block     components  of  files  seem  to  be
intertwined.      1f  this  begins  to  slow  file  access,   FCOPY  can     be     used     to
make  a  more  contiguous   set  of   files  on  a   new  diskette.

The  number  of  blocks   in  an  extent   is  usually  8,   but  can  be  set   larger     or
smaller.     The  theoretical  upper   limit  is  65,535.     When  a   file   is  created,
the  first  block  of  the  extent  contains   the  File  Descriptor  Block  and     the
following     blocks     contain  file  data.     Extent  handling  is  discussed   later
under   "File   Descriptor   Block."

14_14 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



DISK   0RIVER   AND   FILE   MANAGEMENT

FILE   DIRECTORY

The  file  directory  starts  in  logical  block  2,   the  third  block  of  the  con-
trol     track.       The   remaining  blocks   in  the  track  are  allocated  to   it  with
pointers  at  the  end  of  each  block  linking  to    the     next.        lf    additional
directory     space     is  needed  eventually,   more  blocks  can  be   linked  without
regard  for  their  actual   location.     Directory  blocks    are     initialized    to
hexadecimal   FFs,   or   nil   characters.     Such  a   directory  appears   empty.

THE   DIRECTORY   ENTRY

The  directory  entry  contains  a   filename  of  up  to  14  characters  and     a     4-
byte  pointer  to  the  File  Descriptor  Block.     Each  directory  block  can  con-
tain  14  entries  and  ends  with  a  4-byte   link  to  the  next  directory    block.
The     original     directory     blocks,     2-F,     can     contain     up  to  196  entries.
Further   blocks  are   linked  as   needed.     A  nil   pointer,   FFFFFFFF,      indicates
the  last  directory  block  allocated.

FILENAm:   HANDLIN6

The   filename   can  be   up  to  14  characters,   and   is   used  as  the   reference     to
the  file.

When  a   file   is  deleted   (by  FKILL),   a     nil     character,     FF,      replaces     the
first    character     in  the  filename.     That  character  goes  to  the  end  of  the
filename.

The  associated  logical   blocks  are  de-allocated   in  the  bit-map.     The     file
can     be     restored,     so     long     as  those  blocks  have  not  been   re-allocated.
RKILL   restores  a   file   by  checking     the     bit-map     and,     if     all     is     well,
replacing     the   first  character   in  the  filename.     1f  there  had  been  a   14th
character,   it  is  lost.

When  a  file   is  hidden,   the  first  character  of  the     filename     is     replaced
with     an    ASCII     /CR/.   hexadecimal   01).     That   first  character   is   saved   in
the   FDB.

FILE   DESCRIPTOR   BLOCK

The   File   Descriptor   Block   (FDB)   has   the   following   information.      Locations
are  given   in  hexadecimal.

14-15



Location

0-1

2-3

4

5

6-9

A-B

Contents

File  size  in  bytes.     The  actual   size,   not     the    allo-
cated  size

The  number  of  extents,   usually  1

Reserved  for   "hiding"  a   file.     The  first  character   of
the  name   of  the   hidden   file  goes   here

Write  protect  flag:   00  means  writable,   FF   means     pro-
tected

Pointer  1.     Points  to  the  first  extent

Length  1.      The   number   of   blocks   in  that   extent

From  this  point,   the  FDB   is  available   for  additional   pointers  and   lengths
up     to  Pointer   37  and  Length  37..     These   values  are   usually  zero,   and  must
be   zero   if  the   file   has  no  further  extents.     The   last   four  bytes     of     the
block    are     available     for     a  pointer  to  a   linked  extent  descriptor  block
which  could  contain   up  to     42     more     extent     pointers     and     lengths,     and
another     pointer  to  yet  another  block.     There  is  no  theoretical   1imit   for
having  extents,   except  the  limit  of  blocks  available.     1n  actual   use,     it
is     very     unusual     for     an     FDB     to  have  a   link  to  an  extent   continuation
block,   and  this  pointer   is   usually  set  to  nil   characters,   FFFFFFFF.

OVERVIEW   0F   FILE   MAI\IAGEMENT   UTILITIES

A  brief  overview  of   file  and  volume     utility     programs     is     given     below.
Where     appropriate,      concise     information     on  the   internal   working  of  the
utility  is  included.

FCOPY

14-16

Copies   file  by  file.     Can  copy  between  diskettes     of     dif-
ferent   capacities   (unlike   VCOPY).      Copying   from  a   diskette
that  has  had   file  activity  to  a  clean  diskette     will     make
the     files     more  compact,   and  more  efficiently  accessible,
because  the  destination  space     is     allocated     in     contigu-
Ously.

File   delete   password.      Must   know  password.

Frees   unused  blocks  on  diskette   for   use.

Delete  a  file.     De-allocates  the  sectors.     The   filename   is
flagged       deleted     in     the     directory,     but     the     name     is
preserved.      RKILL   can  be   used  to   recover   the   file   so     long
as    the  file  space  is  still   unused  and  the  directory  entry
is   not   changed   (by   VALPHA,   for   example).

Lists  file  contents  on  display  screen.

The   equivalent   of  FCOPY   for   single-drive     systems.        Holds
files   in  memory  while  diskettes  are   swapped   in   drive.

PCOS   SYSTEM   PROGRA"ER'S   GUIDE



DISK   DRIVER   AN0   FILE   MANAGEMENT

FNEW

FPASS

FRENAME

FSAVE

FUNPROTECT

FWPROTECT

RKILL

VALPHA

VCOPY

VOEPASS

VFORMAT

Pre-allocates  space   for  a   file,   with  file  name.

Set  password  for   file.

Changes   file  name   in  directory.

For   file   transfer   between  systems.        Uses     RS-232     connec-
tion.

Unprotect  a  protected  file.

Write-protect  a  file.

Restores   killed   file,      if     possible.     FKILL     replaces     the
first  character  of  the   filename  with  a   nil   character,   hex-
adecimal   FF,   and  places  that  character  at  the  end     of     the
name     entry.        RKILL     checks     to   see   if  the   f ile   space   has
been   re-  allocated,   and     if     not,     restores     the     original
filename.      A  13-character   filename   can   be   restored   unambi-
guously.     The  last  character   filename   is  lost.

Alphabetizes     the     directory     and     squeezes     the       entries
together,     compacting     them.        A     killed     file     cannot     be
restored  after   VALPHA.

Copies  between  diskettes   of     the     same     capacity,     placing
logical     blocks     in  the   same   locations  without   compacting.
Copies  control   and  boot  information,   but  not  serialization
data.      Determines   the  maximum  size   of   system  memory  avail-
able,      reads     logical     blocks     into     memory,     writes     from
memory.        Much     faster   than   FCOPY.      Cannot   be   used   between
diskettes  of  different  capacities  because  of  control  track
and  boot  track  differences.

Volume   delete   password.      Must   know  password.

Formats  diskette  or  hard  disk.     Creates   sectors  and  tracks
with     proper     address     information,     handles   interleave  of
sector  address.     For   hard  disk,   flags  bad     sectors.        When
finished,   calls  VNEW  to   set   up   file   system   information.

Volume  assign   password.

Sets   up  clean   file     system    by     initializing    the     control
information     including     the     bit     map.     Requires   formatted
diskette  or  disk,   replaces  any  existing  file   system   infor-
mation.

Lists  all   files   in  volume,   for   diskette  or   hard  disk,   with
size  and  allocation   information.

Concise   version   of   VLIST,   gives   only   filenames   and     number
of  blocks   left   in   volume.

14-17



VMOVE

VRENAME

VVERIFY

Equivalent  of   volume   copy   (VCOPY)   for  a   single-drive     sys-
tem.           A11ocates        maximum     memory     available,      and     will
overwrite   PCOS.      Reads   logical   blocks   into  memory,     writes
out     when     diskette     swapped.        Will   do  multiple   passes  as
necessary®   depending     on     size     of     diskette     relative     to
memory  capacity.

Names   or   renames   a   volume.

Non-destructive  test  of  diskette  or  disk.

SYSTEM   CALL   OVERVIEW

For  the  general     user,     actual     disk     input/output     operations     and     file
management     operations     are     done     using     system     calls.        The     calls   are
described  below.     For  additional   information   on  the  bytestream  calls,   see
the     "System     Calls"     section     in     Part  2.     For  additional   information  on
these  calls  and   file   management  calls,   see  the  Assembler   User   6uide.

DISK   BYTESTREAM   1/0   CALLS

Disk   input  and  output  are  all   done  by  bytestream  system   calls.     A     stream
structure     for     an     open     file     maintains  a   32-bit  pointer  to  the  current
position   in  the  file  at  which  tiij   next  byte     will     be     read     or     written.
Files     will     be  extended  automatically  as  they  are  written,   in   increments
specified  by  the  Set  System  global   parameter   for   extents.

The   following   calls  are   used   for   disk   files.     Those  marked  "ds"  are     disk
specific,   used  only  for  disk  files.     The  other  calls  can  be  also  used   for
other   devices   (printer,   console,   or   communication  ports).

Close    (19)                                       DGetLen   (24)
OpenFile   (22)                             DGetposition   (25)   ds
Dseek      (23)   ds

The  bytestream  calls   are   described   in  the  "System  Calls"  section,   Part   2.
The   disk   FIDs   are:

1   -15                      BASIC   files
20   -   24                     PCOS   files

PCOS   can   use   FIDs   1-15,   but   BASIC   cannot   use   FIDs   20-24.

14-18 PCOS    SYSTEM   PROGRAMMER'S   GUIDE



DISK   DRIVER    AND   FILE    MANAGEMENT

FILE   MAI\lA6EMENT   CALLS

The   file  management   system  calls   do  not   have  FIDs.      They  are   used  to  han-
dle     f ile  and  volume   names,   to  work  with   directories,   and  to  handle   disks
and   volumes. I
Removes   specified   file   name   from   disk   directory.

1nput ,
R9               <-               1ength
RR10          <-                address

Output :
R5              ->              error  status I

Renames  specified   file.

Input :
RR6             <-               old   address
R8               <-               old   length
RR10           <-                new  address
R9               <-                new   length

Output :
R5              <-              error   status

ILI
Displays   list  of  files  from  specified  disk.

Input :
R9             <-              file   identifier   length
RR10         <-              file   identifier  address

Output :
R5              ->             error   status

DR"ve  (26)

DRemm  (27)

nDirectory  (28}

14-19



DisectNai»  (96)

Parses   file   or   volume   name.

string  len
string  addr
names   record   addr

Output :
@RFU2   ->      names   record
R7           ->      volume   number
R5         ->     error   status

CheckvolLpe   (97)

Forces  a   check  of  disk   volumes.

1nput :
(there  are   no   parameters)

Output:
R5         ->     error   status

•  search  ,08,     fi

Searches  on  a  specified   disk   for  a   file   name   supplied  by  user.

drive
search  mode
length
pointer  to  buffer  for  output  file  name'name  pointer'    (pointer  to  input  file

name)

pointer  to  file  name
fdb   logical   block
error  status
length  of  output   file  name

S.tvol   (102)

Sets  the  active  volume   for  the  next  access.

1nput :
R7          <-     vol   number

Output :
R5         ->    error   status

14-20 PCOS    SYSTEM   PR06RAMMER'S   GUIDE



DISK   0RWER   AND   FILE   MANAGEMENT

Returns   number  of  free   sectors  on   disk.

Input :
Ft7           <-volume   number

O utput :
RR10     ->     number   of   sectors
F{5          ->     error   status

ffl.A  `^    DfskFree   t.o6,

14-21





15.   OTHER  DRIVERS



AB0UT   THIS   CHAPTER

This    chapter    contains    information    on    the    RS-232-C   driver,    the   lEEE-488
driver,   and   the   system   calls   through   which   these   drivers   can   be   accessed.

CONTENTS

OVERVIEW

RS-232-C    DEVICE    DRIVER

USE

DESCRIPT10N

HANDSHAKE

DEVICE    PARAMETER    TABLE

INPUT    ERROR    HANDLING

SYSTEM   CALLS

1EEE-488   DEVICE    DRIVER

USE

DESCRIPT10N

IEEE    MAILB0X

15-1                1Bsroo    (78)

15-1                lBsro1    (79)

15-1                1BPoll    (80)

15-1                1BIset    (81)

15-2              lBRset   (82)

15-2              IBprnt    (83)

15-2                1BWByt    (84)

15-2              1Blnpt    (85)

15-3              1BLinpt    (86)

15-3               1BRByt    (87)

15-3                 ERROR    HANDLING

15-3

1EEE    SYSTEM   CALLS                                          15-4

15-4

15-5

15-5

15-5

15-5

15-5

15-6

15-6

15-6

15-7

15-7



OTHER    DRIVERS

OVEIWIEW

This  section  contains   background   information   on   two   device     drivers,      the
RS-232-C     driver     and     the     lEEE-488     driver.      These   drivers   are   not   seen
directly   by   the   user.      The   RS232   driver   supports   the     SCOMM     package     and
the     Cl      calling      BASIC.         The      lEEE   driver   supports   the   IEEE   commands   in
BASIC.   The   programmer   could,   if   necessary,   access   these     drivers     through
system  calls.      System  call   information   is  given   in  this   section.

These   drivers   support   the   following   devices   in   the   PCOS   device   table:

Default
Driver             Name                        Description

RS-232-C        Com:                         Standard   RS-232-C   communications   port

Coml  :                      First   RS-232-C   communications   port   on   Twin   Board

Com2:                      Second   RS-232-C   communications   port   on   Twin   Board

lEEE-488        ieee:                      1EEE-488   communications   port

Coml,   Com2,   and   ieee   require   expansion   input/output  boards.        These     dev-
ices  can  all   be  used   in  device   rerouting  as  a  source  or  destination.

More   information  on  these  drivers   is  available   in  the   "1/0  with     External
Peripherals   User   Guide."

RS-232-C   DEVICE   DRIVER

USE

The   user   generally  accesses   this   driver   via   the   SCOMM  command   or   by     cal-
ling     Cl      in      BASIC.      Before   SCOMM   or   CF   can   be   used,    the   RS-232~C   driver
must   be   loaded   using   the   RS232.SAV     command.         Once      loaded,      the     driver
stays   in  memory  until   the   end  of  the  working   session.

The  driver   can  also   be  accessed   using  bytestream  system   calls.

DESCRIPTION

The   RS-232-C   device   driver   is   a   general   purpose     asynchronous     communica-
tion     package.      Its   implementation   allows   the   user   (by  means   of   the   SCOMM
command  or   the  Cl   call)   to  specify   the  baud   rate,   parity,   stop  bits,     and
data     bits   for  the  communication   line.      In  addition,   it  also  supports  the
standard   XON/XOFF   handshake,   a   variable-1ength     input     buffer,      and     both
full   (character   echoing)   and  half   (no  character   echoing)   duplex.

A11   driver   parameters  are  specif ied   in  the  Device   Parameter   Table   so  that
accessing     the  parameters   is  simplified.     The   receive  mechanism   is   inter-
rupt  driven  and  maintains  an   input   ring  buffer.     The     output     routine     is
not   interrupt  driven.

15-1



HANDSHAKE

Handshaking   can   be   enabled   or   disabled.      When   handshaking   is   enabled,   the
RS-232      device      driver   implements   the   standard   XON/XOFF   serial   handshake.
Whöi  the   input  buffer   is  75%  full,   the   receiving     routine     will     send     an
XOFF      (DC3   =   13   hex)   to   the   transmitting   device.      When   the   buffer   becomes
less   than   50%  full,   the   XON   (DC1   =  11   hex)   character   is   sent   to   the   send-
ing  device.

The  receive   interrupt  routine  scans   incoming  characters     for     either     the
XON     or     XOFF     characters,     and     sets     or     resets     a   f lag  to   indicate  the
handshake  status.     The  transmitting  routine   looks  at  this   flag     prior     to
transmitting     a     character  and  will   wait   until   the  XON  character   has  been
received  before  sending  the  character.

DEVICE   PARAMETER   TABLE

A   table   of   values   called   the.  Device   Parameter   Table   (DPT)   is   used   by     the
driver     to     control     the     serial     1/0  port.     This  table   contains  the  port
status  word,   all   the   1/0  port  addresses     and     device     commands,     and     the
receive     buffer   control   parameters.   The   SCOMM   command   will   use   the   DPT   to
set  the  port  parameters.       A  ResetByte  call     to     the     driver     causes     the
hardware  and   input  buffer   to  be   reset  based  on  the   parameters   in  the   DPT.
An  OpenFile   command   initializes   the   hardware  and  also  allocates   the   input
buffer     on  the   heap.      1f  handshaking   is   enabled,   an  OpenFile   command  will
also  transmit  an   initial   XON.

1NPUT   ERROR   HAI\lDLIN6

Errors  that  occur   when  a  character   is   input   (a   ring     buffer   overflow,     or
a   hardware   parity,   overflow,   or   f raming   error)   will   cause   flags   to  be   set
in  the  driver.     The   first  operation  that  performs  a   read   from     the     input
buffer  will   return  the  error  code   for  Disk   1/0  Error.

This  allows   the  calling     program     running     to     know     that     an     error     has
occurred,     but     not     on     which     character     the   error   has   occurred.      (This
approach  eliminates  the  need  to  store  an  extra  byte   in  the     buffer     as     a
status  for  each  character   received).

SYSTEM   CALLS

The  RS232   driver   is  accessed  by  bytestream  system  calls.        The     FIDs     are
19,      25,      and   26   for   Com,   Coml,   and   Com2,    respectively.      The   system   calls
are:

LookByte   (9)
CetByte   (10)
PutByte    (11)
ReadBytes    (12)
WriteBytes   (13)
Eof   (16)

15-2

ResetByte   (18)
Close    (19)
SetcontrolByte   (20)
GetstatusByte   (21 )
OpenFile    (22)
DGetLen    (24)

PCOS    SYSTEM   PROGRAMMER'S   6UIDE



OTHER   0RIVERS

For  general   information,   see  the  description  of  bytestream  calls     in     the
''System     Calls"     section     Part  2.     For   further   details,   see  the  Assembler
User   Guide.

lEEE488  I)EVICE   DRIVER

USE

This   driver   package   supports   devices   on   the   lEEE-488   channel.        The     com-
mand     IEEE.SAV     is   used   to   load  and   initialize   the   package.      Once   loaded,
the  package  stays   in  memory  until   the  end  of  the     working     session.        The
functions   supported   by  this   package   can   be   accessed   using   BASIC   commands.
A  set  of  system  calls   also  accesses   the   IEEE   package.      They  are   described
below   and   in  more   detail   in  the  Assembly  Language   manual.

DESCRIPTION

This   command   loads   and   initializes   the   lEEE-488   package     --     a     group     of
programs      that      execute      the     BASIC      IEEE   statements   lsET,    lRESET,   ON   SRQ
GOSUB,    POLL,    PRINT@,    WBYTE,    RBYTE,    1NPUT@,    and   LINE    INPUT@.       These    state-
ments   allow  the   user   to  perform  the   fol-   1owing  operations   on   an   IEEE-488
bus:

a)      Control   the   lFC   (interface   clear)   and   REN   (remote   enable)   lines.

b)     Receive  a   service   request  from  another   device  on     the     bus,      identify
the  requesting  device  through  serial   polling,   and  process   the  service
request.

c)     Write  control   bytes   (e.   g.,   "Device  Clear",   "Device     Trigger",     etc.)
to  other  devices.

d)     Address,   write   data   to,   and   read   data   from  other   devices.

e)     A11ow  the   devices   within  afl   lEEET488   network   to   transfer   data   on     the
bus     (i.     e.,   assigning  "Talker"  status   to  one   device,   and   "Listener"
status  to  one  or  more  devices).

1t  should  be   noted  that   lE,   when   calkd,   stays   in     memory.        The     display
flag  option   is  NOT   used  with  this   call.

1EEE  MAllBOX

A  mailbox  area   (9   bytes)   is   used   by  the   lEEE   driver   to     communicate     with
the   BASIC   interpreter.

15-3



Foririat  of  Mailbox  Area

Bytes              Description

0-5                    array   "IEEE";      values      set     by      IEEE     driver   for   use   by     BASIC
interpreter

6                        flag   "srq  488";   value   set  by   IEEE     interrupt     service     routine
"ibsrq92"T  tested  by  BASIC   interpreter.   Indicates  that  service
request   has   been   received.

S1/S2   key  depression  flag,   set  by  the   keyboard   driver.      1   =  Sl
depressed,   2   =  S2   depressed.   Zero      is     returned     for     ANY     key
except   SRl    or   SR2.

reserved  for   system   use

For   information  on  the  array   "1EEE"  and  the  flag  "srq-488"   see     the     dis-
cussion   of   system   calls   78   through   87   in   the  Assembly  Language  Manual.

When   BASIC   calls   GRFINIT   (45),    it   is   passed   the   mailbox   address   in   RR10.

1EEE   SYSTEM   CALLS

lf  the  system  does   not   have  an   IEEE   option   board,   these   system   calls   gen-
erate     error     34,   "IEEE:     Board  Not  Present."     For   further   information   on
these   calls,   see   the  Assembler   User   Guide.

]Bsroo   (78)          ::;`ä.

Disables  the  servi;e   request   (SRQ)   interrupt.

1nput :
(no   input  parameters)

Output :
R5         ->     error   status

15-4 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



OTHER   DRIVERS

Enables  the   service   request   (SRQ)   interrupt.

1nput :
(no   parameters)

Output :
R5         ->     error  status

L .,,,. HH ±B=-rolLi79L

Ilrioli ,8d
Polls  a   specified  device  on  an   instrument  bus.

Input :
R8          <-talker  addr

°Utput:   RRio     _>     ptr   to  status

R5         ->     error   status

IBIset  (81)

Causes   remote   enable   (REN)   or   interface   clear   (1FC)   to-be   se-nt .-----

1nput :
R8          <-     operand

Output :
R5         ->     error   status

qse-?_-_(!iLlBRset

Causes   remote   enable   (REN)   message   to  be   sent   false.

1nput :
(no  parameters)

Output :
R5         ->     error  status

Checks  address   and  then  causes  output  of  data  bytes.



buffer  addr
listener  addr
buffer   len,   in  bytes
delimiter

Output:
R5         ->     error   status

lBWByt   (84)

Outputs   commands.  (optional)   and   writes   data   bytes   (optional).

lnput :
RR6        <-numval   addr
R8          <-comlist   length
R9           <-numval   1ength
RR10     <-comlist   addr

Output:

lBlnpt  (85)

R5         ->     error  status

Places  bytes   received,   into  a  buffer.

buffer   length
talker  addr
listener  addr
buffer  addr

Output :
R5         ->     error   status
R7          ->     number   of  bytes   not   read

lBlinpt  (86)

Places  bytes   received   into  a  buffer  as  a   single   line   of  data.

1nput:
R7         <-buffer   length
R8         <-talker  addr
R9          <-1istener   addr
RR10     <-     buffer   addr

Output :
R5         ->     error  status
R7          ->     number   of  bytes   not   read

15-6 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



OTHER   DRIVERS

IBRByt   (87)

Outputs  commands   (optional)   and   reads  data  bytes   (optional).

Input :
RR6       <-buffer  addr
R8         <-comlist   length
R9         <-buffer  len,   in  bytes
RR10     <-     comlist   addr

Output :
R5         ->    error  status

ERROR   HANDLIN6

Possible   IEEE   call   errors  are:

1.      1ncomplete   data   handshake.      The   handshake     was     aborted     by     operator
input.

2.      No  active   device.      An  attempt  was  made  to     output     data     without     any
addressed   listeners  or  to  input  data  without  an  addressed  talker.

3.     An   illegal   function   call.      Bad   parameters.

4.     Bad   file   data.     More   parameters  than   data.

5.      Communications   buffer   overflow.      Too   many   bytes   in   line.

6.     Type  mismatch.     Variable  and  data   of  different  type.

15-7

i -_r-





16.  THE  PRINTER  DRIVER  AND
PRINTER  MANAGEMENT



AB0UT   THIS   Cl+APTER

This   chapter   describes   the   capabilities   of   the   printer   driver   and   the
use   of   its   associated   utilities.    1ncluded   is   a   brief   discussion   on  sup-
porting   two   printers   and   on   using   the   printer   driver   to   drive   special
devices,   such  as  plotters.

CONTENTS

OVERVIEW

PRINTER    AN0    DRIVER

DESCRIPTloN

PRINTER   0UTPUT

PRINTING   TEXT

PRINTING    GRAPHICS

USING    SFORM    T0    SET    THE

PRINTIN6    ENVIRONMENT

SUPPORTING    TW0    PRINTERS

CONNECTING    0THER    DEVICES

T0   THE    DRIVER

PRINTING    SCREEN    TEXT    WITH

THE    LSCREEN    UTILITY

USIN6   LSCREEN

IMPLEMENTAT10N    0F    LSCREEN

PRINTING   TEXT   AND    GRAPHICS

WITH    THE    SPRINT   UTILITY

16-1                     SPRINT   PARAMETERS                                        16-8

SPRINT    IMPLEMENTATION

16-1

CORRECT10N    T0    PRESERVE

16-2                   ASPECT   RATI0

16-2                     PRINTING    COLOR    GRAPHICS

16-3                    PRINTER    SYSTEM   CALLS

16-6

16-7

16-8



THE    PRINTER   DRIVER   AND    PRINTER   MANAGEMENT

OVERVIEW

This  section  describes  the  capabilities  of  the  printer   driver  and  the  use
of     its     associated     utilities.     The   utilities   include   SFORM,   which  gives
the   user   control   over   printer   configuration     parameters;      LSCREEN,     which
allows     the   printing   of   display   screen   text:   and   SPRINT,   which   allows   the
printing  of  both  text  and  graphics     from     the     display     screen     contents.
LSCREEN     and     SPRINT     use   system   capabilities   outside   the   printer   driver,
and  their   implementation   is  briefly  discussed.

This   section   includes  a   brief   discussion  on  supporting   two     printers     and
on  using  the  printer   driver  to  drive   special   devices,   such  as  plotters.

PRINTER   DRIVER   DESCRIPTloN

The  printer   driver   supports   printing  both  AScll     text     and     graphics      (on
certain     printers)   using  either   parallel   or  serial   output,   and  provides  a
variety  of  printing  options.      The   SFORM  utility  can  be     used     to     set     or
display     the     parameters  which   control   the   driver   functions.     Figure   16-1
below,   shows   these   interrelationships.

PRINTER   DRIVER

Fig.16-1      Printer   Driver

16-1



PRINTER   0UTPUT

The  standard  M20  has   both  a   parallel   and  a   serial   interface  available   for
connecting  printers.   The  parallel   interface   is  Centronics   compatible,   and
any  compatible  parallel   printer  may  be   connected.     The     serial     interface
uses     the     RS-232-C     standard.        Part  1   of  this  manual   provides  a   list  of
available  printers   in  the   "Hardware  Configuration   Options''     section.        In
general,     dot     matrix     printers  are  connected  via  the  parallel   interface,
and  the  daisy-wheel   printers   via     the     serial     interface.        Some     printer
models     are     available  with  either   parallel   or   serial   interface.     Parity,
when   present,   is   handled   by   hardware.

PIUNTING   TEXT

The   driver   transmits   text  to  the  printer   in  a  stream   of  AScll   bytes.     The
driver     may     receive   information   f rom  the   printer   in  the   form   of  a   status
byte,   which  contains   information   on     whether     the     printer     is     ready     to
receive  data  and   on   error   conditions.

The  printer   receives   AScll   codes,   interprets   them,     and     prints     them     as
characters     according     to     its     internal     control     mechanism.     Dot-matrix
printers   have   internal   fonts   separate   from  the  PCOS   fonts,   often   in  a   7  x
7     matrix.        The     ASCIl      code     is     used     to     lookuptheequivalent   font.
Daisy-wheel   printers   interpret   the  ASC11   code   as   a   position   on   the  wheel.
For     further   information  on  the   printer's   display  of  the  ASC11   codes,   the
documentation   for   the  printer   must  be   consulted.

The  AScll   values   are   printed   according   to  the  ASC11   assignments     used     by
the     video     display.        These     assignments     are   set   and  modified   by  SLANG,
CKEY,   and   PKEY.      Non-ASCIl   fonts   developed   using   RFONT   cannot   be      printed
as     text.         (The  assigned   code   may  print   as   some  AScll   character.)     Those
printers  that  can   print  graphics     print     RFONT     characters     in     the     same
manner     as     other     graphics.      Figure   16-2   below  gives   an   overview  of   text
printing.

16-2 PCOS    SYSTEM   PROGRAMMER'S   GU10E



THE    PRINTER    DRIVER   AND    PRINTER   MANAGEMENT

1.EXT   PRIMT"G

Fig.16-2     Text   printing

PRINTIN6  GRAPHICS

Graphics  printing  is     handled     according     to    the     constraints     of     those
printers     which     can     print     graphics.     The  driver  builds  a   block  of  dots
based  on  the  contents  of  the  screen  bit-map   in  pixels     and     the     require-
ments  of  the  printer,   and  sends  that  block  to  the  printer  as  a   succession
of  bytes.      Figure   16-3  below,   gives  an     overview     of     graphics     printing.
More   details  are  given   in  the   discussion  of  SPRINT   later   in  this   section.

16-3



GRAPHICS   PRINTIN6

ii=EI=Ei=
Fig.16-3     Graphics   printing

USIN6  SF0l"  TO   SET  THE   PRINTIN6  ENVIRONMENT

The  SFORM  command  specifies  the  type  of   printer   being     used,      the     inter-
face,     and     the  printing  format,   and  allows  the  user   to  change  parameters
in  the  printer   driver.      lf  the  SFORM  command   is   invoked  without     specify-
ing  parameters,   it  gives  a  display  of  the  current  values   for  the  printing
env i ronment .

SFORM   parameters   are:

auto

ptype

16-4

The  AUT0   parameter   shows   the   status   of   the   SFORM     parameters,
and     can  be  used  to  change  that  set  of  values.     OFF   indicates
that  the  default  values  are   in  effect.     ON  indicates  that  new
values      (selected  by  SFORM)   are   in  effect.     This   is   true   even
if  new  values  are  PSAVED.      Setting  0FF   returns   to   the  default
values,   setting  ON  selects  the   new  values.

The  ptype  parameter   specifies   the     type     of     printer:     PR1450
(the      default   value),    PR1471,    PR2400,    PR1481,    PR2300,    ET-121,
ET-231,   PR-430,   PR2835,   PR320,   or   TRANSP    (transparent     mode).
In     transparent    mode,     file     contents  are  printed  exactly  as
specified   in  the  file   independent  of  the  type  of  printer.     No
additional   end-of-1ine  characters  or   form  feed  characters  are
added .

PCOS    SYSTEM   PR06RAMME.R.S   6U(DE



THE    PRINTER    DRIVER   AND   PRINTER   MANACEMENT

lines

Spacln9

compress

The   lines   parameter   specifies     the     number     of     lines     to     be
printed  on  each  page  before   software-generated  automatic   form
feed.     Zero   implies   that  no   form   feed   will     be     issued.        The
default  value  is  60.

This  parameter   specifies     the     number     of     inter-1ine     spaces
between     printed   lines.      1ts   value  can  be   1   (single   spacing);
2   (double   spacing),   etc.      The   default   is   1.

This  parameter  specifies  which  of  six     styles     of     characters
are     to    be  used.     lt   is  made   up  of  two  characters,   the  first
of  which  must   be   either   w  =   wide   (bold)   or   n   =   narrow     width.
("Wide"     printing     is  only  supported  on  certain  printers;   for
example,    PR1450,    PR1471,    PR1481.)   The   second   character   speci-
fies     the     pitch     at   narrow  width  and  must  be  c  =  compressed;
that   is,   16.6  characters  per   inch;   e  =  elite;   that     is,     12.5
characters     per     inch;   or   p  =  pica;   that   is  10   characters   per
inch.   At   "wide"  width,   the   printer   will     print     two     horizon-
tally  adjacent  dots   for  each  one  that  would  have  been  printed
at   narrow  width.-The   default   values   are   n,e.

interface       This  parameter   specifies  whether  the  printer   is     to     be     con-
nected  to  the   serial   (RS-232-C)   or   parallel   (Centronics-like)
interface.      1ts  value  must  be  either  se     =     the     serial     (RS-
232-C)     interface     or     pa     =     the     parallel   (Centronics-like)
interface.     The  default  value   is  pa.

title This  parameter  defines  the  title  to  be  printed  at  the  top     of
each  page.      1t  can  comprise  as  many  as   24  characters  and  must
be   enclosed   in   quotation  marks.        Entering     a     value     of      '}.
deletes  the  current  title.     The  default  value  is  no  title.

The  SFORM  settings  take  effect  during   later  working   sessions   according   to
the     current     auto   setting.      The   prior   SFORM  settings   saved   by  PSAVE   take
effect  when  the   current  auto  setting   is  ON.     For  more     complete     informa-
tion   on   SFORM,   see   the   PCOS   0perating   System   User   6uide.

SUPPORTIN6   TWO   PRINTERS

1t  may  be  desirable  to  support  both  a     dot-matrix     printer     with     graphic
capabilities     and    a     daisy-wheel     printer,     or  some  other   combination  of
printers.      PCOS   assumes   the   presence   of   only  one   printer,   FID     18.        How-
ever,      SFORM     allows     switching     between     printers     and     interfaces.      One
printer   could  be  used  on  the  serial   interface  and  one     on     the    parallel.
Two   PCOS   versions   can   be   configured.    one   for   each,    using   SFORM   and   PSAVE.
Then  whichever   system   is   desired   can  be   loaded,   either   by  booting     or     by
using   PRUN.

An  alternative  method  allows   using  two  printers  without  switching  between
them.     A     parallel     printer     is  connected  as  FID  18  and  controlled  by  the
printer   driver.   A  serial   printer   is  driven  using  the  RS232  driver.        This
approach     requires     special   programming  to  support  the  serial   printer  and
does   not  provide   support   for   the  printer   utilities:      SFORM,   LSCREEN,     and
SPRINT.

16-5



CONNECTIN6   0THER   DEVICES   T0   THE   DRIVER

The  printer  driver  can  be  used  in  transparent  mode  to  drive  special     dev-
ices.        For     example,     a     plotter   could  be  connected  as   FID   18.      ln   tran-
sparent   mode,    (the   SFORM   setting   of  TRANSP   for   the   ptype   parameter),      the
plotter     would     receive     exactly     the     characters     sent  to  FID  18  without
change,   addition,   or  deletion.     Using  the  printer  driver   in  this     fashion
can  be  very  useful   for  the  programmer  who  must   provide   interface  and  con-
trol   routines   for  a   special   device,   so  long  as  the  device   is  appropriate.

PRINTIN6   SCREEN   TEXT   WITH   THE   LSCREEN   UTlllTY

LSCREEN     dumps     the     text     contents     of     any     screen     window        onto        any
alphanumeric   printer   supported  by  the   M20   PCOS   system.      It   works   with   the
current   system  font,   which  may  be  any  95-character   font   set.

The  utility  is  presently  limited  to  95-character  font  sets,   although     the
fundamental     approach     could     be     extended  for  additional   characters.      It
works  by   reading  the   screen  bitmap  and,   in  effect,   comparing     the     screen
bits    with  the  current  system   font  to  determine  the  corresponding  charac-
ter  codes.

USING   LSCREEN

The   command   syntax   is   as   follows:

1s   [window   number]   /CR/

The   text   in   the   specified   window  will   be   printed.      1f   no  window  number   is
given,     the     text   in  the   current  window  will   be   printed.     Window  0   refers
to  the  entire  screen.

For   example,   type

\s   /C;R1/

to  display  the  current   window.     To  display  window  3,   type

\s 3  lc;R/

The   following  are   some  examples  of  BASIC  calls   to  this   utility:

100   EXEC   "LS"                                                     '   print   current   window
200   EXEC   "LS   5"                                                 '   print   window   5
300   CALL   "LS"(windnum)                                '    print   window   %windnum

The  specif ied  window  may  have  text  with  any  spacing   in     it.        Any     screen
data     within     the   normal   5  by  10  character   dot  matrix  not   recognizable  as
text  will   be  printed  as  blanks.     On  a  color  system,   only  screen     plane     0
will     be  read;   if  the  background  color   is  even,   the   foreground  color  must
be  odd  and  vice   versa.

16-6 PCOS    SYSTEM   PROGRAMMER'S   GUIDE



THE    PRINTER    DRIVER   AND    PRINTER   MANA6EMENT

The  utility  does  not  distinguish  highlighted  displays  on  the  screen,     but
does   recognize  and  print  both   'normal'   and   'inverse   video'   characters.

LSCREEN   works   with  95-character   fonts,   a   limit   which   could   be   changed     if
necessary.        The     95-character     limit     is     based     on     the  actual   internal
representation  of  fonts,   which  is  horizontal   across     the     entire     set     of
font     characters.        Decoding     any     other     length  of   font   set  with  LSCREEN
yields  scrambled  characters.

Therefore,   LSCREEN   cannot   print   the   Greek  or   Katakana   fonts.      These   fonts
both     have     a     full   Roman  character   font   set   followed  by  the   Greek  or   the
Katakana  characters.     The  full   font  tables  extend  past  the  95-font   limit.
For     the     sar"9     reason,      special   RFONT  character   sets   longer   (or   shorter)
than   95   characters   cannot   be   printed.      Modified   RFONT   characters   within   a
95-character   font  set  would  be   detected,   but  would   print   as  ASCIl  charac-
ters.

1MPLEMENTATION   0F   LSCREEN

The  utility  accesses  the  font  table  via  the  font  pointer     data     structure
referenced     in  the  master  table.      lt  also  accesses  the  parameters   for  the
specified  window,   which  define   the   size,   position,   and  character  and   line
spacing  of  the  window.      Hence,   the   PCOS  master   table,   font  pointer   table,
and  window  data   structures  are  used  by  the  utility.     Also,   the     character
format     (the     exact     positioning  of  characters   within  a  window,   given  the
horizontal   and   vertical   spacing)   is   determined  by  reading     screen     memory
to  locate  the  placement  of  the  character  bitmaps.

A  hash-code  mechanism   is   used   to  speed  the   font   table   lookup.        The     hash
table     used     is     constructed  at  the  beginning  of  execution  of  the  program
from  the  current  system   font.     Font  characters  are     evaluated     into     hash
numbers     which     are     used  to   look  up  a   small   set  of   corresponding   values;
typically,   a   has  number   has   fewer   than   half  a  dozen   corresponding   values.
The     corresponding     values     are     ASC11   codes.      The   printer   receives  ASCII
codes  and  prints  them  according  to  its  own  fonts  or   its  daisy-wheel   char-
acters.

PRINTIN6  TEXT  AND   6RAplllcs   WITH  THE   SPRINT   UTILITY

This   utility  prints  an   image  of  all   text  and  graphic`s     displayed
screen  or  within  a   specif ied  window.     The  display  is   transferred
pixel.      SPRINT   can  only  be   used  with  printers  that  have  graphics
ities.     This  command  can  specify  the   "polarity"  of  the  printout;
white  on  black  printout   for  white   on  black   display,     or     black     on
printout     for     white     on  black  display.     Printouts   from  color   screens  are
printed   in  black  and  white.   one   value   used   for  the   foreground     color     and
the     other     value   for  all   other  colors.     A  title  can  also   be  specified  to
appear  at  the  top  of  the  printout  with  or  without  date  and  time.

16-7



SPRINT   PARAMETERS

The   specific   parameters   for   SPRINT  are   as   follows:

window  number        from  0   through  16,    inclusive,   representing  the   window     to
be     printed.       0     indicates  the  entire  screen,   whether  or
not  the   screen   is     divided     into     windows.        The     default
value   is   0   (the  whole   screen).

polarity

title

date/time

n  or   p,      describing     the     paper     image     in     monochromatic
terms.        Positive     (p)     gives   black  on  paper   for   black  on
screen,   negative   (n)   gives  black   on   paper     for     white     on
screen.      The   default  value   is   "p."

is  an  optional  alphanumeric  title  string,   no  longer     than
24     characters,      shown     above     the     graphic     output.     The
default  is  no  title.

is  specified  .by  dt,   or  no,   determining  whether  or  not  the
current     date  and  time  are  to  be  printed  above  the  graph-
ics  output.     The  default  is   "no."

SPRINT   IMPLEMENTATI0N

To   dump   the   contents   of   the   screen   or   window,   SPRINT   takes   a   sequence     of
bits     f rom     the     screen     bit-map  as   input  and  manipulates  the   information
according  to  the  need  of  the  printer.      SPRINT   finds   the   printer   model      in
the     parameter      information   maintained   by  SFORM.      There   are   two   fundamen-
tally  different  approaches  used  by  Olivetti   printers  when  printing  graph-
ics.     The  "raster-format"  printers  receive  a   line  of  pixels,   from  left  to
right  or  right  to  left,   sent   in  bytes.        The     "column-format"     or     "band-
format"  printers   receive  a  succession  of  vertical   columns  of  pixels,   from
top  to  bottom  and  then   from  one   side  to  the  other,   sent   in  bytes.     Figure
16-4,   below,   is  a  general   illustration  of  the  two  approaches.

16-8 PCOS    SYSTEM   PROGRAMMER'S   GUIDE



THE    PRINTER    DRWER   AND    PRINTER   MANAGEMENT

byte  l                                         byte   ß

byte  l                                        byte  ß

+

0 0 0    0     I     0     I     0110     010    01     Oletc

010000 1'00'1 .       .     .      .       etc.etc.

etc.

Screen  bit-map

Fig.16-4     Encoding   pixels

a)     Raster-oriented  printers   receive  a   series  of   lines  of  dots,   from     one
side     to  the  other,   shown   here  as   left   to   right.      1n  the   example,   the
printer   is   being  sent   8-bit   bytes   (as   for   the  PR2300),   but     it     could
be  sent   fewer   bits   (7  bits   for  the   PR2400).

b)     Band-oriented  printers   receive   a  band   of   parallel   columns   of  6     or     7
dots,   from  top  to  bottom,   then  from  one   side  to  the   other,   shown   here
from   left   to   right.      The   PR1450   uses   6-dot   columns.      The     PR1471      and
PR1481    use   7-dot   columns.

c)     Printers  that  use  fewer  than  s  bits   receive  8-bit     bytes     with     fill-
bits,   shown   by   x's.

Here  are   some   examples   of   these   two     approaches.        The     thermal     printer,
PR2400,      is     raster-format,     and     writes  a   scan   line  of  pixels  at  a   time.
The  spark   ink-jet  printer,   PR2300,     is     also     raster-format     but     buffers
several     1ines     of     pixels     and     writes  a   scan   line  at  a   time.      1t  uses  a
print   head  which   is  a   graphite   cylinder   that  sweeps     horizontally.          The
PR1450     is     band-format,      and     prints     6-1ine   bands.      The   PR1471/81,   also
band-format,   prints  7-line  bands.

In  addition  to  encoding  the  pixels,   it  is  necessary  to  fill   out  bytes   for
those     printers     that   receive  6  or  7  bits.     The  driver  always   sends  8-bit
bytes.      SPRINT  provides   data   bytes  with  a   high-order   01   or   1,      for     6-bit
or  7-bit  data.     Control   codes  are  given  a   high-order   00   or  0.

16-9



CORRECTloN   T0   PRESERVE   ASPECT   RATIO

ln  the  graphics  printers  supported,   horizontal   and  vertical   pixel   density
are     the     same.        Therefore,   in   PR2300   output   image,   there   are   108  pixels
per   inch   horizontally  and   vertically;   in  a   PR2400   or   PR1481   output   image,
70;      etc.        Consequently,   to  print  a  square,   the   number   of  horizontal   and
vertical   pixels  must   be   equal.      However,    in   an  M20   screen   image,   the   hor-
izontal     pixel     density  is  greater  than  the  vertical   print  density,   since
512   horizontal   pixels  are   crowded   into  a   length   less   than   twice   as     great
as  the   screen   image   height   (which   contains   256   pixels).      A   rectangle   con-
taining  an  equal   number   of  pixels   horizontally  and     vertically     would     be
longer     vertically     than     horizontally,     not     square;   and  the   full   screen
(which   has  an  aspect   ratio   of   3:2)   would   produce   an   output   image   with     an
aspect   ratio   of  4:2.

To  produce  output   images     without     noticeable     aspect     ratio     distortion,
SPRINT     adds     a     correction     line  after   every  5   screen   image   lines.     This
stretches     the     image     vertically,     compensating       for       the       horizontal
decompression   in  the   output   image.     The  content  of  the   correction   line   is
calculated   from  those   of  the   screen   image     lines     immediately     above     and
below   it.

PRINTIN6   COLOR   GRApllICS

Color   values   shown  on  the  display  are  built   by  combining  the  pixel   values
of     two     or     three     screen  bit-maps   (two  for   four-color,   three   for  eight-
color).     The   value   of  the  associated  bits   designates   the     color.        1n     an
eight     color     system,      111   specifies   white,101   yellow,    etc.,    SPRINT   com-
bines  bits  also,   by  looking  at  the  same  pixel   position   in     all     bit     maps
and     combining     the     two     or  three   values.      (The   figure   below   illustrates
this.)     At  present,   it  produces   either   a   zero  or   one   from  the  combination
and     reduces     the     color   to  white  or   black.     Future   printers  will   support
color   printing  and   so   will   SPRINT.

16-10 PCOS    SYSTEM   PROGRAMMER 'S   GUIDE



TllE   PRINTER   0fuvEF}   AND   PRINTER. MANA6EMENT

(3)   0000

Fig.      16-5     Color   Bit   Plane   Coding

PRINTER   SYSTEM  CALLS

(3)    BFFF

There   is  only  one  printer   system  call,   the  bytestream  call   PutByte     (11).
The   printer   FID   is   18.





17.   GRAPHICS SUB-SYSTEM



AB0UT   THIS   CHAPTER

This    chapter    describes    the    PASCAL    graphic    routines    that    make    up    the

graphics   sub-system.

CONTENTS

OVERVIEW

DESCRIPTION    0F    THE   M20

17-1

GRAPHICS    PACKAGE                                             17-1

CONFIGURAT10NS    AND   VERsloNS       17-3

HARDWARE

SOFTWARE

FUNCTI0NAL    FLOW    DIAGRAMS

GRAPHICS    LIBRARY    ROUTINES

lMPLEMENTATION    LANGUAGE

GENERAL    APPLICATI0N

INFORMATI0N

FURTHER    REFERENCES                                       17-9

GRAPHICS    LIBRARY    FUNCTIONS:

SPECIFICATloNS                                                17-10

LIST    0F    ROUTINES                                           17-10

17-3                     0UTPUT    GENERAT10N    FUNCT10NS       17-11

17-3                   LINEABS(x,y)

17-3                   LINEREL(dx,dy)

17-4                 POLVLINE(#points,    Xarray,

Yarray)
17-4

MARKERABS (x,y )

17-5

STEPS    IN    MODULE    DEVELOPMENT       17-5

ENTERING    THE    GRAPHICS

PROGRAM

DEFINING    C00RDINATES

POSITI0N    LOCATORS

MARKERREL (dx,dy )

POLYMARKER6#points,Xarray,

Yarray)

17-12

17-12

17-13

17-14

17-15

17-16

TEXTCURSOR(column, row)                       17-17

GRAPHOSABS(X.y )                                                  17-18

GRAPHPOSREL(dx,dy)                                      17-18



GRAPHCURSORABS ( x , y )

GRAPHCURSORREL ( dx , dy )

PIXEL   ARRAY(Xwdth,Yht,array-

name)

GDP   functionnmbr,numberof-

poi nts , Xarray , Yarray ,
datarec)

CIRCLE

ELLIPSE

0UTPUT   ATTRIBUTE    SETTING

FUNCTI0NS

SET   LINE   CLASS(classnmbr)

SET   TEXTLINE(chrwdth,

txtlineht)

SELECT   CURSOR(selectnmbr)

SET    TEXT   CURSOR    BLINK-

RATE(rate)

SET    GRAPHICS    CURSOR

BLINKRATE ( rate )

SET    TEXT    CURSOR

SHAPE(arrayname)

SET    GRAPHICS    CURSOR

SHAPE ( ar rayname )

17-19

17-20

17-21

17-22

17-22

17-23

17-24

17-25

17-25

17-26

17-27

17-27

17-28

17-29

SET    COLOR

REPRESENTATI0N(indx#,colr#)      17-30

SELECT   GRAPHICS    COLOR(nmbr)        17-31

SELECT   TEXT

COLOR ( FGnmbr , BGnmbr ) 17_32

SET    COLOR

LOGIC(operatornmbr)

TRANSFORMAT10N    AND

CONTROL    FUNCTIONS

0PEN   GRAPHICS

CLOSE    GRAPHICS

SET    WORLD    C00RDINATE

SPACE ( xform#, xO , yo , xl , yl )

DIVIDE   VIEW   AREA(div/orient,

divpt,xform#)

SELECT    VIEW

TRANSFORMATloN(xform#

CLOSE    VIEW

TRANSFORMAT10N(xform#

17-33

17-35

17-35

17-36

17-36

17-37

17-39

17-40

CLEAR   VIEW   AREA(xform#,err)       17-41

ESCAPE(functionmbr,
recordname )

1NQUIRY    FUNCT10NS

INQ   VIEW   AREA(err,bytewdth

scanl ineht , chrwdth ,
txtlineht)

1NQ    WORLD    C00RDINATE

SPACE( err , xO , yo , xl , yl )

INQ    CURRENT    TRANSFORMAT10N

NÜMBER(err,xfo"#)

lNQ   ATTRIBUTES(err,grcolr,

fgcol r , bgcol r ,1ogop ,
lineclass)

INQ   TEXTCURSOR(err,column,

row , bl i nkrate )

17-44

17-45

17-45

17-46

17-47



INQ   GRAPHPOS(err,x,y)

1NQ    GRAPHCURSOR(err,x,y,

blinkrate)

17-48

17-48

1NQ   PIXEL   ARRAY(Xwdth,Yht,

err,invalidvals,arrayname)        17-49

lNQ   PIXEL   C00RDINATES(Xworld,

Ywor ld , err , Xpx lcoord ,
Ypxlcoord)                                                     17-51

lNQ   PIXEL(x,y,err,

pxlcolrnmbr) 17-52



GRAPHICS   SUB-SYSTEM

OVERVIEW

This  section  describes  an  extensive   set  of   library  routines   that  are   used
in     PASCAL     to   provide   graphics.      These   routines   can   also   be   accessed   via
assembly  language  calls.      In  addition   to   describing  the     capabilities     of
these     routines,     the     contents   of  this   section   provide  an  example   of  the
use   of   the   PCOS   graphics   system   calls   which   underlie   these   routines.

The  graphics  system   calls  are  described   in  the   "Video  Driver"   section     of
Part        2,        with     accompanying     background     information     on     cursor     use,
blinkrate,   and  other   such  concepts.

1n   this   section,   preliminary  discussion   covers   the   basic   methods   used     in
applying     the     graphics     program.      Each   of  the   functions   is   listed  with  a
detailed  description  of  its   use,     register     assignments,     possible     error
messages,   and  examples.      Reference   information  at  the   end   of  this   section
gives   development   language   binding   and   compare   this   package   to   the     BASIC
9raphics   package.

DESCRIPTI0N   0F   THE   M20   6RAPHICS   PACKA6E

The   M20   Graphics   Package      is     a     graphics      library      for     M20     development
languages   (currently   PASCAL).      The   package   preserves   the   functionality   of
the   graphics   developed   for   M20   BASIC,   which   means,    for     example,      that     a
PASCAL   user   is   able   to   achieve   the   same   graphics   results   as   a   BASIC   user.
Directions   contained   in  this   section  guide     the     programmer     through     the
necessary     steps   of   writing  and  compiling  source   code,   linking  the  object
code   compiled   from  the   soiirce   code,   and   finally   running  the   linked,      exe-
cutable     module.        The   executable   module   uses   PCOS   system   calls   to  create
screen  graphics.

The   graphics  package  can  be   used   for   both  business   and  scientific     appli-
cations.         It   is   currently   supported   under   the   PASCAL   language   and   can   be
accessed   using  assembly   language.      It   can   be   used   with   black     and     white,
four-color,   and  eight-color   configurations.

The  creation   of  screen   graphics   results   from     manipulation     of     compiled,
executable     modules     which     include     routines     f rom     the   graphics   library
(GLIB)   as   well   as   necessary   PCOS   system   calls.

Even  though   M20   BASIC   functionality   is     maintained,      the     syntax     of     the
language   'bindings'   reflects   that   of   GKS,   an   emerging   ls0  and  ANsl   graph-
ics   standard.   The   M20   graphics   library   is   not   an   implementation     of     GKS.,
but     it     does     reflect   GKS   syntax  and  organization.      M20   graphics   library
differs  from  GKS   on  the   concept   of  color   organization  as  well     as     other,
more     complex   details.      Some   functional   differences   are   summarized   in   the
following  chart:

17_1



FUNCT10N
Graphics
Package GKS

1.      Maintains   color   logic  operators                            YES                            NO

2.     Direct  pipeline   from  world  coordinate
space  to  viewing  surface

3.     Permits   single-element  graphic   entry
as   in   LINEABS

YES                                       NO

YES NO

(Has   only
POLYLINE)

For  a   complete  description  of  the  GKS   standard,   see   the  GKS   Draft     lnter-
national      Standard     document   (DIS   7942),   available   from  ANsl,1430   Broad-
way,   New   York,   N.   Y.   10018.      A   quick   overview  of   this     standard      is     also
given      in   IEEE   Computer   Graphics   and  Applications,   July   1982:    "GKS   --The
First   Graphics  Standard,"  pp   9-23.

17-2 PCOS    SYSTEM   PROGRAMMER 'S    GUIDE



GRAPHICS   SUB-SYSTEM

CONF16URAT10NS   AND   VERSIONS

tu\RDWARE

The  Graphics  Package  works     across     all     M20     configurations:     black-and-
white,      four-color,      and     eight-color.        The     minimum  confi-guration  may
limit  program  size   (and  prohibit   some     compilers).        Color     systems     will
require  their  usual   expansion-board  configura-  tions.

SOFT"RE

The   initial   level     of     this     Graphics     Package     is     "Version     3.Oa,"     and
is     designed     to   run   under   PCOS   3.0   or   later   versions   of  PCOS.      There   are
no   special   ROM   requirements,   except   that   the   ROM  must   support   PCOS   3.0  or
later.

FUNCTlor\IAL   FLow  DIA6R^Ils

|   source   |

graphics
unrslved
graphics
referen-

1anguage-
to-graphics
interface
Object
modules

GRAPHICS
LIBRARY
ROUTINES

(object
modules)

#
#N

| EXECUTABLE

I     MODULE;

|   includes
1    run-time

> | references
1    to    PCOS
1   graphics
1      system
1      calls

17_3



language-to-graphics   interface:

--------        1 ---------------- _
source    |-->|      com-      |-->|   object   |

|      code      |         |   piler----------------- 1

6RAPHICS   LIBRARY   ROUTINES

----------        1 -------
|    source    |-->|      com-
|      code      |          |   piler----------------- 1

1MPLEMENTAT10N   LAN6UA6E

modules |

object   1
modul es |

1   module   for
each  graphics
function  call

1   module   for
each  graphics
function  call

The   PCOS   3.0   Graphics   Library   Package   is   implemented   in   PLZ/ASM   segmented
code .

17-4 PCOS   SYSTEM   PR06RAMMER'S   6UIDE



GRAPHICS   SUB-SYSTEM

GENERAL   APPLICATI0N   INFORMATI0N

STEPS   IN   MODULE   I)EVELOPMENT

An  applications   programmer   creates     graphic     output     using     his     compiled
development   language   program  and  the   following   steps:

1.     Write   the  source   code.      Currently,   the  graphics  package   is     supported
under     PASCAL      and     can     also   be   accessed   by   using   assembly   language.
For   other   development   languages,   if  the   language     supports     inclusion
of     assembly   language   subroutine   calls,   it  may  be  possible  to  provide
graphic   routines   in  that  manner.        Should     the     language     require     it
(e.g.,   PASCAL),    insert,    in   each   module   which   includes   graphics   calls,
a   section   declaring  the  graphics   routine   names   as   "externals."  A  file
of  graphics   routine   names   is   provided   for   each   language  with  graphics
support,   so   that  external   declaration  may  be  accomplished  by  using  an
"include"   statement.    (See  the  Reference   information   on   language  bind-

ings . )

2.      To  minimize   the   size   of   the   run-time   requirements,   a   user   may  wish   to
edit    this     file     so     that  it  references  only  those  routines  actually
used.     Then   create   the  appropriate   procedures,   subroutines,   or     other
algorithm     units,   incorporating  graphics   calls  that   create  the   images
desired.

3.      Compile   the   source   code.      If  the   above-mentioned   "include"   statements
are  used  for   declaring  the  graphics  calls  as  externals,   the   file   con-
taining  that  list  must  be   included  on  the  same  diskette  as  the  source
code   module.

4.      Link   the   object   code   compiled   from     source     code     with     the     required
external     object     modules,     specifically     including  both  a   file  which
contains  the  source-1anguage-to-graphics   interface  object  modules  and
the   GRAPHICS   LIBRARY   ROUTINES   obje6t   modules.

5.      RUN   the   linked,   executable   module   under   PCOS   3.0.

A  graphics  programmer   has   several   types   of     routines     available     in     this
package     to  create  graphic  output.     One  class  of   routines   is  graphic  out-
put,   which   places  geometric   coordinate   information.     A     second     class     is
output     attributes     which  modify  the  graphic  output   (color,   for   example).
A  third  class   is   transformation  &  control,   which   largely  have   to  do     with
the     transformation     (mathematical)   of   coordinates   from  the   dimensions   of
the  application   program  to  the  physical   dimensions   of  the   display     device
(more     about     these     transformations   in  a  moment).     The   fourth   class   is  a
set  of   inquiry   routines,   whereby     the     application     program     can     consult
tables     and     variables     in     the   Graphics  Package   for   various   data   such  as
color,   current  position,   and  dimensions  of  the  coordinate   space.

17-5



ENTERIN6   THE   GRAPHICS   PR06RAM

Any  application  program   using  any  Graphics  Package   routine  must  enter   the
"OPEN     GRAPHICS"   routine  as  the   first  Graphics  Package   routine   to   be   pro-

cessed.     This   latter   call   may  be   used  to     clear     away     previous     graphics
work     and     start     afresh.        The     application  may   recover  memory   space  and
clear   no   longer   needed   graphics   work   with   the   CLOSE   GRAPHICS   routine.

DEFININ6   CO0Rl)1NATES

A  fundamental   relationship   is   the     one     between     the     dimensions     of     the
object      in      real      space      (WORLD   C00RDINATE   SPACE,   given   typically   in   real
numbers),   and   the  dimensions   of  the  ob].ect  as   it  appears   on     the     viewing
surface   (given   in  device  coordinates*  --  see   footnote  below  for   differen-
tiation   between   viewing   surface,   window,   and   view  area).      1n   the   Graphics
Package,     a   defined   rectangle   in  world  coordinate   space   is   "pipelined"   to
a  defined   rectangle  on   (all   or  part   of)   the   view  area.     World  coordinates
are     mathematically  transformed   into  device   coordinates  as  graphic  output
flows   from  the   pipeline.

Experienced  M20   users   will   recognize   "view  area"     as     equivalent     to     M20
Basic's     "window."     The   term   "window"   is   not   used   in   this   document,   since
graphics   standards  documents   (such  as  GKS)   use   the  term     in     a     different
sense.        1n     GKS,      for     example,   the  model   is  that   of  a  pipeline   in   which
graphic  output   flows   from     within     a     frame     in     world     coordinate     space
through     the  pipeline   (a  mathematical   transformation)   to  a   viewport.     The
term   "window"   is   used  to  mean   the     input     to     the     pipeline,      the     world-
coordinate-space-frame,     rather     than     the     output     of  that  pipeline   (the
viewport) .

There  is  a   lot   of   flexibility  in  mapping  world  coordinate   space     to     view
area.     The   view  area   can  take  up  the   full   screen  or   some   rectangular   part
of   it.      There   can   be   up  to     16     view     areas,      each     with     a     mapping     (or
transformation)      from     a     world  coordinate  space   to  that   area.     Each   view
area  and   its  mapping  are   identified  by  transformation   number.

A  view  area   is   formed  by  dividing  an  existing   view  area     horizontally     or
vertically     into     two     parts,   and  whereas   view  areas   need   not   be  the   same
size,   they  are  not  allowed  to  overlap.     One  part  retains  the     transforma-
tion     number     of     the  original   view  area,   and  the  other   is   assigned  a   new
transformation  number.      The  two   views  also   inherit   some     of     the     charac-
teristics     of  the  pre-division  view  area,   such  as  character  spacing,   line
height,   color  attributes,   graphics  cursor  shapes,     and     world     coordinate
space     definition.       Of    these     inherited    characteristics,     the  last  one
requires   further   commentary.

The   world   coordinate   space   definition   (see   SET   WORLD   C00RDINATE   SPACE)    is
a  set  of  real  numbers  that  define  a  rectangle;   it  establishes  the  scaling
basis  on  which  the  graphical   output   is   described.        However,      it     is     the
world     coordinate     space  definition  along  with  the  shape  of  the   view  area
which  determines  the  proportions  of  the  objects     within     that     view     (see
DIVIDE    VIEW   AREA).

17-6 PCOS    SYSTEM   PROGRAMMER'S   6U10E



GRAPHICS    SUB-SYSTEM

Note :

Note   that   world  coordinate   space   defines   a  Cartesian   plane,     that     is,     a
rectangular     surface     on  which  the   scale   of  each  of  two  axes   (x  and  y)   is
determined.      The  plane  may  contain  an  origin,   a   point   of  crossing  of     the
x-and  y-axes   at  which   the   coordinates   are   (0.0,0.0).

The   relative  magnitude   of  the   width   units   to     the     height     units     has     N0
bearing  on  the   ultimate   view  area   size  or   proportions;   an   x-axis   could  be
defined  as   extending   from  0.0   to   100,000.0   while   a   y-axis   is   from     +0.023
+0.097,   yet  the   result  on  the   viewing  surface   could  be  a   square.

POSIT10N   LOCATORS

Current  Position  Locators  and  Cursors

The  Graphics  Package  maintains  two  current  positions,   one   each     for     text
and     graphics,      and  also  two  cursors,   one   each   for   text  and  graphics,   and
also  two  cursors,   one   each   for   text  and     graphics.        One     cursor     or     the
other   (or   neither)   displays  at  one   time.     While   the   text  current   position
and  text  cursor   are  always  at  the   same   location   (the  point  at     which     the
next     text     output  will   appear),   the  graphics   current   position   (the  point
at  which  the   next  graphics   output  will   appear)   and     the     graphics     cursor
are     not  coincident.      This   separation  makes   it   possible   to   use   the   graph-
ics   cursor  as  a   locator   in     interactive     applications:      use     of     the     lNQ
GRAPHCURSOR   routine   can   return   graphics   cursor   coordinates   with   which   the
current  graphics  position   can  be  updated.     Note  that   the   current   graphics
position   will   be   used   in  many  but   not   all   graphics   output   routines   (e.g.,
POLYLINE  will   establish   its  own   starting  point   rather   than     use     that     of
the   current  graph-ics   position).

Absolute  and  Relative  Coordinates

Some  graphics   routines   use   "absolute"  coordinates,   others   use     "relative"
coordinates.       The  distinction  is  that  absolute  coordinates  are   distances
along  the   x-or   y-axis   from  the  origin     point     of     the     Cartesian     plane,
while     relative   coordinates  are   distances  along  the   x-   or   y-axis   from  the
last  coordinate   (which  last  coordinate  could  be  either  absolute  or     rela-
tive).        Thus,   LINEABS   draws  a   line   from  the   current   graphics   position   to
an  absolute  point   (a  point   referenced   in  terms  of  the     Cartesian     plane's
origin),      whereas   LINEREL   draws  a   line   from  the   current   graphics   position
to  a   relative  point   (a  point   referenced  in  terms  of     distances     from     the
current  graphics  position).      1n  both  cases,   the   current  graphics   position
is   updated  to  the  end  of   the  new  line.

Referencing  Positions  Outside  View  Area

The  Graphics  Package  always   references   the  current   graphics   position.      It
maintains     this     position   itself   instead  of   referencing  the   PCOS   graphics
accumulator.     For   this  reason,   it   is  possible  to  specify  points  that    are
outside     the     world      coordinate     space      rectangle     defined      in     SET   WORLD

17-7



C00RDINATE   SPACE.      When   the   current   graphics   position   ends   up   outside   the
view    area,      the     PCOS     graphics  accumulator   is   "undefined;"  that   is,   its
contents  no  longer   reflect  the  Graphics  Package's  current  graphics     posi-
tion.        No     problem     arises,   because  the  Graphics   Package   never   relies   on
the  PCOS  graphics  accumulator  to  re-establish  the  current  graphics     posi-
tion.       Note  that  in   interactive  applications,   a  user  may  have  difficulty
understanding  what   is   happening  when  the  current  position   is   outside     the
view  area,   especially   if   required   to  make  a   response  at  that  moment.

Color  Attributes

Most  of  the  output   routines  are  affected  both  by  the  color  attributes  and
by    the     current  logic-operator   attribute.     The   "foreground"  color   deter-
mines  the  color   of  the  text  output,   the  "background"  color   determines  the
color  behind  the   letter,   and  the   "graphics"  color   determines  the  color   of
the  graphics   output   (lines,   dots,   etc.).     Note   that  the  background     color
is     the     color  of  choice  when  the  view  area   is  cleared.     These  attributes
are  selectable   from  the   range  of  colors   on  any  given     M20     configuration.
For   further   details,    see   SET   COLOR   REPRESENTATI0N,    SELECT   GRAPHICS   COLOR,
and    SELECT   TEXT   COLOR.

Logic  Operators

The  logic-operator  attribute  determines  which  color  will     appear     in     the
view    area,   considering  the   following:     the  type   of  graphic   routine   (text
or  graphic  output);   the  setting  of  the   foreground,   background,   or     graph-
ics     color     attribute;   and  the  color  of  the  targeted  pixel(s)   in  the   view
area .

There  are   six  logic   operators;   some   iise  only  one   operand   (either  a     color
attribute  or  the  targeted  pixel),   others   use  two   (both  the  targeted  pixel
and  a  color  attribute).        The  logic  operator     acts     on     a     pixel-by-pixel
basis     in     determining  what  the  actual   final   color  of  each  pixel   shall   be
(see   SET   COLOR   LOGIC   for   more   details).

Exchanging  Data  with  the  llost  Language

This   Graphics  Package  uses   three  number   types   in  exchanging  data   with  the
host     language:      integer,      real,     and     address  pointer.     The   integers  are
signed  single-word   integers   in  the   range  of  -32768   through     +32767.        One
exception     to     this   format  is  the  cursor  arrays,   in  which  a  word  stores  a
pair  of  eight-bit  patterns,   and  thus   is  a     16-bit     unsigned     integer;     in
these     arrays,     the   high-order  byte  must  come   first   (i.e.,   have   the   lower
index  number).      The   real   numbers   are   always     lEEE     single-precision     two-
word     elements;     the     32     bits     are  as   follows,   from     most-significant  to
least-significant  bit:   1   sign  bit,   eight  bits  of  exponent,   and  23  bits  of
mantissa.        The     mantissa   is   "dehydrated",   in  that   it   is   the   23   1ow-order
bits  of  a  24-bit  mantissa   whose  most-significant-bit   (always     a     "1")     is
missing.      (The  Graphics  Package  math  package   "reconstitutes"  the  mantissa
by  adding  back  the  high-order   bit.)   1n  array  storage,   the   high-order   byte
must     precede     and     the     high   order   word  must   precede   (have   the   low   index
number).      The  address   pointers  are   Z-8000     segmented     addresses;     consult

17-8 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



GRAPHICS   SUB-SYSTEM

the  standard  Z-8000   1iterature   for  their   format.

Errors

Error   reporting   is   handled   in   two     ways.        For     all     routines,     an     error
status     is     reported     in   register  5;   the  value  "0"  means  "no  error".     For
most  routines,   this  status  value  is  transferred  to  an  error  status     vari-
able     maintained     by     the     graphics      package:      the     ERROR   INQUIRY   routine
returns  the  current  value  of  this  variable   (that  is,   the  error  status     of
the  most   recent  Graphics  Package   routine  other  than  the   lNQ...    routines).

The   lNQ...   group  of   routines   handles  error     reports     differently.        These
routines      never     touch     the     error   status   variable   (except   ERROR   INQUIRY,
which  retrieves   it).     Rather,   these     routines     report     any    error     status
directly     through  an   "err"  parameter.      Thus,   INQ...    routines   cannot   "gen-
erate  an  error   status".     The   "err"  parameter   is  maintained   in  all     lNQ...
routines     as     a     matter     of   form   (in   keeping  with  the  practice  of  the   GKS
standard),   even  though  in  this  package  there     are     several     routines     for
which  the   "err"   routine   can   return   no  other   value  than   "0"   ("no   error").

FURTHER   REFERENCES

Notice  that   in  the  routine  descriptions,   neither  the   routine   headings  nor
the     examples     are     drawn     from     any   specific   language.      For   the   language
bindings  of  these   routines,   see  the  reference  section.

For   those   familiar   with  M20   BASIC   graphics,   the     reference     section     also
has     a  concordance   linking  BASIC   graphics  calls   with  the   routines   in  this
package.

17-9



GRAPHtcs   LIBRARY  FUNCTIONS :   SPECIFICATIONS

LIST  0F   ROUTINES

Output  6eneration  Functions

L INEABS ( x , y)
LINEREL(dx,dy)
POLYLINE(#points,Xarray,Yarray)
MARKERABS ( x , y)

MARKERREL (dx , dy )

POLYMARKER(#points,Xarray,Yarray)
TEXTCURSOR ( column , row )
GRAPHPOSABS ( x , y )
GRAPHPOSREL ( dx , dy)

GRAPHCURSORABS

GRAPHCURSORREL

x,y)
dx , dy )

PIXEL   ARRAY(Xwdth,Yht,arrayname)
GDP(functionnmbr,numberofpoints,Xarray,Yarray,datarec)

[Defined   GDP's:   1=circle,   2=ellipse]

Output  Attribute  Setting  Functions

SET   LINE   CLASS(classnmbr)
SET   TEXTLINE(chrwdth,txtlineht)
SELECT   CURSOR(selectnmbr)
SET   TEXT   CURSOR   BLINKRATE(rate)
SET   GRAPHICS   CURSOR   BLINKRATE(rate)
SET   TEXT   CURSOR   SHAPE(arrayname)
SET   GRAPHICS   CURSOR   SHAPE(arrayname)
SET   COLOR   REPRESENTATI0N(indx#,colr#)
SELECT   GRAPHICS   COLOR(nmbr)
SELECT   TEXT   COLOR(FGnmbr,BGnmbr)
SET   COLOR   LOGIC(operatornmbr)

Transforimtion  &  Control  Functions

OPEN   GRAPHICS
CLOSE    GRAPHICS

SET   WORLD   C00RDINATE   SPACE(xform#,xO,yo,xl  ,yl  )
DIVIDE   VIEW  AREA((div/orient,divpt,xform#)
SELECT   VIEW   TRANSFORMATION(xform#)
CLOSE    VIEW   TRANSFORMATION(xform#)

[ (xform#=0)-->close   2--16]
CLEAR   VIEW  AREA(xform#,err)
ESCAPE(functionnmber,    recordname)

[Defined   ESCAPE:   1=flood]

17-10 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



GRAPHICS   SUB-SYSTEM

Inquiry  Functions

INQ    VIEW   AREA

(err,bytewdth,scanlineht,chrwdth,txtlineht)
INQ   WORLD   C00RDINATE   SPACE(err,xO,yo,xl  ,yl  )
INQ   CURRENT   TRANSFORMAT10N   NUMBER(err,xform#)
lN0   ATTRIBUTES

(err , GRcol r , FGcol r , BGcol r , logop ,1 ineclass )
INQ   TEXTCURSOR(err,column, row,blinkrate)
INO   GRAPHPOS(err,x,y)
1NQ   GRAPHCURSOR(err,x,y,blinkrate)
INQ   PIXEL   ARRAY(Xwdth,Yht,err,invalidvals,arrayname)
INQ   PIXEL   C00RDINATES

(Xworld,Yworld,err,Xpixcoord,Ypixcoord)
1NQ   PIXEL(x,y,err,pxlcolrnmbr)
ERROR   INOUIRY(errorcode)

OUTPUT   GENERATloN   FUNCTIONS

The   following  13   routines   have  a  geometric   influence   on   the   view  area     --
that  is,   they  determine  either   directly,   or   indirectly,   the  placement  and
shape  of  output  to  the  view  area.

OUTPUT    GENERAT10N    FUNCTIONS

L INEABS ( x , y )
L INEREL ( dx , dy )
POLYL"E(#points,Xarray,Yarray)
MARKERABS(x,y)

MARKERREL(dx,dy)
POLYMARKER(#points,Xarray,Yarray)
TEXTCURSOR ( column , row)
GRAPHPOSABS(x,y)
GRAPHPOSREL (dx , dy)
GRAPHCURSORABS(x,y)

6RAPHCURSORREL (dx , dy)
PIXEL   ARRAY(Xwdth,Yht,arrayname)
6DP(functionnmbr,numberofpoints,Xarray,Yarray,

datarec)
[Defined   GDP's:   1=circle,   2=ellipse]

Each  of  these  functions  is  described  in  detail   in     the     following     pages,
with   register   assignments,   possible   error   messages  and  examples.

'_:=,r     LINEABstx,y)

Draws  a   line  from  the  current  graphic  position  to  the     absolute     position
(x,y).        Several   default  conditions  apply:   coordinate   space,   color,   logic
operator,   and  line  class  conditions   (see  output  attribute  and  transforma-
tion  function  calls).

17-11



Register   assignment:

Input                         rro           <--x
rr2           <--y

Output                       r5              <--error  code

lnputs  are   lEEE  single-precision   real:   output   is   integer.

ERRORS

0               (no   error)
38               "Parameter   out  of   range".

EXAMPLE

L ineAbs ( 2 . 33 , -6 . 8 )
LineAbs(xdisp,ydisp)

[where   xdisp  and  ydisp     have     been     assigned
real-number   values  in  a  world-coordinate-space]

Each  of  these  sample  calls  will   create  a   line   from  the     current     graphics
position     to  an  absolute  point  in  the  view  area.     The   first  example  would
draw  a   line  to  a  point  that  could  be  in  any  direction   from     the     starting
point,     and     might  extend   for  any  length.   The   length  and  direction  of  the
line  depend  on  the  currently-defined  world   coordinate   spa3e.

1f  the  coordinates  imply  a  point  outside  the  view  area  but  are  within  the
range    of    a     single-precision   floating-point  number,   a   line  will  appear,
drawn  in  the  direction  of  the  specified  point  but  clipped  at  the  edge     of
the     view    area.        The  specified  point  becomes  the  current  graphics  posi-
tion.

LINEREl(dx,dy)

Draws  a   line   from  the  current  graphic  position  to  a  position  displaced  by
the    amount     dx     parallel     to     the     x-axis  and  dy  parallel   to  the  y-axis.
Several   default  conditions  apply:   co-ordinate  space,   color,   logic    opera-
tor,     and     line  class  conditions   (see  output  attribute  and  transformation
function  calls).

Register  assignment:

lnput                        rro           <--dx
rr2           <--dy

Output                       r5             <--error  code

lnputs  are  lEEE  single-precision   real;   output   is  integer.

17-12 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



GRAPHICS   SUB-SYSTEM

ERRORS

(no   error)
"Parameter   out   of   range"

EXAMPLE

LineRel (2 . 33 , -6 . 8 )
L i neRel ( xdisp , ydisp)

[where   xdisp   and   ydisp   have   been
assigned   real-number   values   in  a
world-coordinate-space]

Each  of  these  sample  calls  will   create  a   line  from  the     current     graphics
position  to  a  point  relative  to  that  current  position.     The   first  example
would  draw  a   line  to  a  point  to  the   right  and  below  the     starting     point.
The     length  of  the  line  depends  on  the  currently-defined  world  coordinate
Space.

1f  the  coordinates   imply  a  point  outside  the  view  area,     yet     are     within
the  range  of  a  single-precision  floating-point  number,   a   line  will   appear
drawn  in  the  direction  of  the  specified  point  but  clipped  at  the  edge     of
the     view     area.        The  specified  point  becomes  the  current  graphics  posi-
tion.

POIYLINE(boints,  X.rray,  Yarray)

Draws   lines  connecting  the  points  specified  by  the  two  arrays   (par;L-ete-rs
two  and  three).     "#points"  is  an   integer   specifying  the  number  of  points.
The  points  are  absolute   locations   in  world  coordinate     space.        Thus     the
two  arrays  are  the  same   size  and  contain   (single   precision)   real   numbers.
Correspondingly   indexed  values   in     the     arrays     (e.g.,     Xarray[32],     Yar-
ray[32])   constitute  a  number  pair   that  specifies  a  point   in  world  coordi-
nate  space.     Several   default  conditions  apply:   coordinate     space,     color,
and     logic     operator     (see     output     attribute  and  transformation   function
calls ) .

Register  assignment:

1nput                          rr6           <--Xarray  pointer
rr2           <--Yarray  pointer
r4              <--number   of   points,   =>2

0utput                       r5             <--error   code

Pointers  are   segmented  addresses:   other  values  are   integer.

ERRORS

0
9

38
76

ARRAY   STRUCTURE

(no   error)"Subscript  out  of  range"
"Parameter   out  of   range"
"Error  in  parameter"

1 ?-13



The  application  program  must   declare     and     allocate     the     two     coordinate
arrays.        Each     array     contains   lEEE     single-precision   numbers;   the   high-
order  word  must   precede  the   low-order  word.      The  size  of   each  array     must
be     at     least     large  enough  to  store  as  many  double-word   numbers  as   there
are  points.

EXAMPLE

["pts"  is  type   integer  and  equals  10]
["Xvals"  and  "Yvals"  each  are     one-dimensional   arrays
of  size  10;     each  contains   10     single-precision     real
numbers   representing  distances  along  the  x-  or  y-axis
from  the  original     Cartesian     plane  defined   in     world
coordinates. ]

Polyline(pts,Xvals,Yvals)
Pol yl ine ( 10 , harry , varry )

Each  of  these   sample  calls  will. create   nine   lines   contiguously  connecting
ten    points.       The     figure  will   not  be  "closed"  unless  the   first  and  last
points  specified  by  the  arrays  happen  to  coincide.     The  application     pro-
gram     calculates     coordinates  and  deposits  them  in  two  arrays,   then  calls"Polyline"  once  to  draw  the  line   series.

lf  the  coordinates  imply  points  outside  the  view  area  but  are  within     the
range     of  single-precision   floating-point  numbers,   the   figure  will   not  be
distorted  but   it  will   be  clipped  at  the  edge  of  the   view  area.     When     the
last  point  is  outside  the  view  area,   the  current  graphics  position  is  set
at  that  point.

1f   "pts"  were   to  be   less   than  the  value   "2'',   error  #38   would  be   generated
and  no   lines   would   be   drawn.

NARKERüS(x,y)

Places  a  visible  point  at  the  absolute   (world  coordinate)   position  speci-
fied     by     parameters     x     and     y.        Several     default   conditions   apply:   co-
ordinate  space,   color,   and     logic     operator     (see     output     attribute     and
transformation  function  calls).

Register  assignment :

Input                         rro           <--x
rr2           <--y

Output                       r5              <--error  code

lnputs  are   lEEE  single-precision   real;   output  is   integer.

17-14 PCOS    SYSTEM   PROGRAMMER 'S    GUIDE



GRAPHICS   SUB-SYSTEM

ERRORS

(no  error)"Parameter  out  of  range"

EXAMPLE

MarkerAbs (2 . 33 , -6 . 8)
MarkerAbs(xdisp,ydisp)

[where     xdisp     and     ydisp     have     been     assigned
real-number  values  in  a  world-coordinate-space]

Each  of  these  sample  calls  will   display  a  point  at  the  absolute   locations
specified     by  their  parameters.     1f  the  coordinates  imply  a  point  outside
the  view  area  but  are  within  the  range  of     a    single-precision     floating-
point  number,   no  point  will   appear.     However.   the   specified  point  becomes
the  current  graphics  position.

•_"(d,¢)
Places  a   visible  point  displaced  in  world  coordinate  space  by  the  amounts
dx  parallel   to  the  x-axis  and  dy  parallel   to  the  y-axis   from  the  Graphics
Package's  current     position,     as     specified     by     parameters     dx     and     dy.
Several     default     conditions     apply:     coordinate     space,   color,   and  logic
operator   (see  output  attribute  and  transformation  function  calls).

Register   assignment :

1nput                          rro           <--dx
rr2           <--dy

Output                       r5             <--error   code

lnputs  are   IEEE  single-precision  real;   output   is   integer.

ERRORS

0               (no  error)
38              ''Parameter   out  of   range"

EXAMPLE

MarkerRel (2 . 33 , -6 . 8)
MarkerRel (xdisp , ydisp)

::::=:um:::S:a:::s  ¥:£:Pwo::ä:co::::na:::;8:::]

Each  of  these  sample  calls  will   display  a  point  displaced   relative  to  the
current     graphics  position.     The   first  example  would  place  a  point  to  the
right  and  below  the  current  graphics  position.     The  length    of     the    dis-
placement     depends     on     the  currently-defined  world   coordinate   space.      1f
the  coordinates  imply  a  point  outside  the  view  area  but     are     within    the
range     of  a  single-precision  floating-point  number,   no  point  will   appear.
However,   the  specified  point  becomes  the  current  graphics  position.

17-15



'T _            _---
POL"ARKER(#points,Xarray,Yarray)

Places   the  visible   points  specif-ied  by  the   two  arrays   (parameters  two  and
three).        "#points"     is     an   integer   specifying  the  number   of  points.     The
points  are  absolute   locations   in  world  coordinate   space.        Thus     the     two
arrays     are     the     same     size  and   contain   (single   precision)   real   numbers.
Correspondingly   indexed   values   in     the     arrays      (e.g.,      Xarray[32],      Yar-
ray[32])   specify  a   point   in  world  coordinate   space.      Several   default   con-
ditions  apply:   co-ordinate  space,   color,   and   logic  operator     (see     output
attribute  and  transformation  function  calls).

Register   assignment:

1nput                          rr6            <--Xarray  pointer
rr2           <--Yarray  pointer
r4               <--number   of   points,   =>1

0utput                       r5              <--error  code

Pointers  are   segmented  addresses;   other   values  are   integer.

ERRORS

0                (no   error)
9              "Subscript  out  of  range"

38              "Parameter   out  of   range"
76               "Error   in  parameter"

ARRAY    STRUCTURE

The  application  program  must  declare     and     allocate     the     two     coordinate
arrays.        Each     array     contains     lEEE   single-precision  numbers;   the   high-
order   word  must  precede   the   low-order   word.      The   size  of   each  array     must
be     at     least     large  enough  to  store  as  many   double-word  numbers   as   there
are  points.

EXAMPLE

["pts"  is  type   integer  and  equals   10]
["Xvals"  and  "Yvals"   each   are   one-dimensional   arrays
of   size  10;     each  contains   10     single-precision   real
numbers   representing  distances  along  the  x-  or  y-axis
from  the  origin  of  a  Cartesian   plane   defined   in  world
coordinates. ]

Polymarker(pts,Xvals,Yvals)
Polymarker ( 10 , ha rry , varry )

Each  of  these  sample  calls  will   create  ten  visible  points.     The     applica-
tion  program  calculates  coordinates  and  deposits  them  in  two  arrays,   then
calls   "Polymarker"  once  to  place   the  points.

Coordinates  that   imply  points  outside  the  view  area  but  within  the     range
of     single-precision     floating-point  numbers  will   not  appear,   nor  will   an
error  message  be  generated.     However,   the  current  graphics  position     will

17-16 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



GRAplilcs   SUB-SYSTEM

track    these     non-visible     points.        Should  the  last  point  be  outside   the
view  area,   it  nevertheless  becomes  the  current  graphics  position.

1f   "pts"  were   to  be   less   than   the  value   "1",   error  #38  would  be  generated
and   no  points  would   be   drawn.

TEXTCURSOR(colulri,ra-)

Moves  the  text  cursor  and  thereby  determines  the  next  screen  position     at
which     text     will     appear.     Note  that  the  text  cursor  will   appear  only   if
the  latest  cursor  selection  has  set  the  text  cursor  to  be  displayed     (see
SELECT   CURSOR)  .

Maximum  ranges   for   a   full-screen   view  area  are   the  default     text     parame-
ters     currently     active:      64   columns   by  16   rows   or   80   columns   by  25   rows.
If  the  current  view  area   is   smaller   than   full-screen,     then     the     maximum
text  parameters  are   commensurately   smaller.

Register  assignment:

1nput                            r8               <--text  column   (1..64  or   80)
r9               <--text   row      (1..16   or   25)

Output                        r5              <--error   code

A11   values   are   integer.

ERRORS

0               (no  error)
38               "Parameter   out  of   range"

EXAMPLE

Textcursor ( 33 .17 )
Textcursor(X,Y)

The  first  of  these  calls  will  cause  the  next  text    output    to    appear     in
column  33,   row  17,   of  the  current   view  area.      1f  the  current   view  area   is
the  full   screeen  and  character  spacing  is  64  by  16,   then  text  will     start
one     character  below  and  right  of  the  mid-screen  point.     The   second  exam-
ple  assumes  that  X  and  Y  are   integers.

1f  the  coordinates  imply  a  point  outside  the  current  view  area,   an     error
message     is  generated  in  r5,   and  the  current  text  cursor  and  position  are
unchanged.

17-17



_..-:"    .      *-T`--ä        _

6RAPHPOSABS(x,y)

Redefines  the  current  graphics  position,   that   is,     the    current     position
for     subsequent  graphics   output   (for   text,   see   (TEXTCURSOR).      Coordinates
x  and  y  define  an  absolute   location   in  world  coordinate   space.      Thus
subsequent     graphics     output  that  uses  the  current  graphics  position
starting  point  will   use  this  point.       Note     that    this     position     is
automatically     associated     with     the  position  of  the  graphics  cursor
two  positions  coincide   only  when  both  are   explicitly     assigned     the     same
coordinates       (see      GRAPHCURSORABS,       GRAPHCURSORREL).          The       separation   of
current  graphics  position  and  graphics     cursor     permits     the     application
program     to     use  the  graphics  cursor  as  a   locator   in   interactive  applica-
tions.

Register   assignment:

Input                         rro           <--x
rr2           <--y

Output                       r5              <--error   code

lnputs  are   IEEE  single-precision   real;   output  is   integer.

ERRORS

0               (no   error)
38              "Parameter  out  of   range"

EXAMPLE

GraphposAbs (2 . 33 , -6 . 8 )
GraphposAbs(xloc,yloc)

[where   xloc     and     yloc     have     been     assigned
real-number   values   in  a   world-coordinate-space]

Each  of  these  sample  calls  will   redefine     the     location     of     the     current
graphics  position  to  an  absolute  point  in  the   view  area.

1f  the  coordinates  specify  a  point  outside     the     view    area,     that     point
nevertheless  becomes  the  current  graphics  position.

CRAPHPOSREl(dx,¢
_ _ __                 _                ____--`*J_'_#i3E¥ll_ _

Redefines  the  current  graphics  position,   that is,     the    current    position
for     subsequent     graphics     output      (for     text,   see   (TEXTCURSOR).      The   new
position   is  displaced  from  the  old  position  by  adding  the   factors   dx    and
dy   (which  are  world  coordinate  space   values)   to  the   corresponding   coordi-
nates  of  the  old  current  graphics  position.     Thus,   any  subsequent     graph-
ics     output    that     uses  the  current  graphics  position  as  a  starting  point
will   use  this  new  point.     Note  that  this  position     is     not     automatically
associated     with     the     position  of  the  graphics  cursor;   the  two  positions
coincide  only  when  both  are  explicitly  assigned  the  same  coordinates   (see
GRAPHCURSORABS,    6RAPHCURSORREL).

17-18 PCOS    SYSTEM   PROGRAMMER'S   GUIDE



GRAplilcs   SUB-SYSTEM

The  separation  of  current  graphics   position  and  graphics     cursor     permits
the     application     program     to     use     the     graphics     cursor  as  a   locator   in
interactive  applications.

Register   assignment:

1nput                           rro            <--dx
rr2           <--dy

Output                       r5              <--error   code

lnputs  are   IEEE   single-precision   real;   output  is   integer.

ERRORS

0               (no  error)
38               .`Parameter   out   of   range"

EXAMPLE

GraphposRel (2 . 33 , -6 . 8)
GraphposRel ( dxloc , dyloc )

[where  dxloc  and  dyloc     have     been     assigned
real-number   values  in  a  world-coordinate-space]

Each  of  these  sample  calls  will   redefine     the     location     of     the     current
graphics  position  to  a   new  point   in  the   view  area,   displaced   from  the   old
point.      ln  the  first  example,   the  new  graphics  position  will     be     to     the
right  and  below  the   old  one.

lf  the  coordinates  result  in  a  point  outside  the  view    area,     that    point
nevertheless   becomes  the  current  graphics  position.   `

CRAptx:URSOWS(x,y)

Moves  the  graphics  cursor   (but  not  the  current  graphics  position,   nor  the
text     position)     to  a   new  absolute   position   (in  world  coordinates).     Note
that  the  graphics  cursor  will  appear  only  if  the  latest  cursor     selection
has     set   the  graphics   cursor   to   be   displayed   (see   SELECT  CURSOR).      1f   the
coordinates  define  a  position  outside  of  the  view  area,   an  error   code     is
sent     to    the    error  status  variable.     The  separation  of  current  graphics
position  and  graphics  cursor  permits  the  application  program  to     use     the
graphics  cursor  as  a  locator  in  interactive  applications.

Register   assignment:

1nput                         rro           <--x
rr2           <--y

Output                       r5              <--error  code

lnputs  are  lEEE  single-precision  real:   output   is   integer.

17-19



ERRORS

0               (no   error)
38              "Parameter  out   of   range"

EXAMPLE

GraphcursorAbs (0 . 39 , 3 .17 )
GraphcursorAbs(X,Y)

The  first  of  these  calls  would  cause  the     graphics     cursor,     when     it     is
turned     on,   to  appear  at  the  absolute  location  specified  by  the  arguments
(in  world   coordinate   space).      The   second   call,   in  which   X  and   Y  are     real
numbers,   would   behave   similarly.

6RAptx:URSORREL(dx,dy)

MOJes  the  graphics   cursor   (but  not  the  current  graphics   position,   nor   the
text     position)   to  a   new  position   (in  world  coordinates).     This   new  posi-
tion   is  displaced   from  the  old  position  by  the  factors  dx  and     dy,     added
to     the     coordinates     of  the  old  position.     Note  that  the  graphics  cursor
will  appear  only  if  the  latest  cursor  selection  has  set  the  graphics  cur-
sor     to   be   displayed   (see   SELECT  CURSOR).      If  the   coordinates   result   in   a
position  outside  of  the  view  area,   an  error  code   is     sent     to     the    error
status  variable.

Register  assignment:

1nput                          rro           <--dx
rr2           <--dy

Output                       r5              <--error   code

lnputs  are   lEEE  single-precision   real;   output   is   integer.

ERRORS

0               (no  error)
38              "Parameter   out  of   range"

EXAMPLE

GraphcursorRel ( -0 . 39 , 3 .17)
GraphcursorRel (X , Y)

The  first  of  these  sample  calls  would  cause  the  graphics  cursor,   when     it
is     turned     on,     to  appear  at  a  new  location  shifted  leftward  and  up  f rom
the  old   location.     The  second  call,   in  which  X  and   Y     are     real     numbers,
would  likewise  shift--tfiairaphics  cursor  in  some  direction.

17-20 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



GRAPHICS   SUB-SYSTEM

-.'-`  =   .=  _

P1)dL  ^RR^Y(Xwdth , Yht..rrayna-)

Transfers  a   rectangular   screen   image     to     the     screen.        The     M20     screen
displays     what     is     stored  in  one  or  more  bit-planes   (where  each  bit  on  a
plane   corresponds  to  a   screen  pixel).     A   rectangle  from  any  part   (or   all)
of     a     view     area     can     thus   be   stored   elsewhere   in  memory   (see   lNQ  PIXEL
ARRAY),   then   re-displayed  at  any  point   in   any   view  area     by     using     PIXEL
ARRAY.        The     rectangle     size     is   "Xwd"   wide   by   "Yht"   high   (world   coordi-
nates),   and  is  placed  with     the     rectangle's     upper-1eft     corner     at    the
current  graphics  position.

The  rectangle   is   retrieved  from  the  one-dimensional   array     identif ied     by
the     "arrayname"       parameter.     The  x  and  y  parameters   need   not   correspond
to  the  full   size   implied  by  the  array.     A  "too-small"  dimension  clips  the
right     or     bottcm     edge;   a   "too-1arge"   dimension  yields  that     dimension's
maximum   (and  no  more).      If  the  current  graphics   position   is     "too     close"
to     the     right  and/or  bottom  edge,   the  rectangle  will   transfer  anyway  but
be  clipped  at  the  screen  edge.     The  current   logic  operator   influences  the
color     output     to     the     screen  on  the  usual  pixel-by-pixel   basis   (see  SET
COLOR   LOGIC)  .

Register   assignment:

1nput                           rro            <--Xwidth
rr2           <--Yheight
rrl0         <--array  pointer

Output
Output                       r5              <--error   code

Size   inputs  are   lEEE   single-precision   real;   pointer     is     Z8000     segmented
address;   xoutput  is   integer.

ERRORS

0               (no  error)
38              "Parameter  out  of   range"

EXAMPLE

[Assume   a   properly  dimensioned  array,   Purtypix,
with  a     previously-saved     screen     block  --  not
necessarily    the     full     size    of    the    screen]
[Assume   also   a   World   Coordinate   Space,   150.0   x   100.0]

GraphposAbs (75 . 0 , 50 . O )
PixelArray(30 . , 20 . ,Purtypix)

The   rectangular   display  saved   in  Purtypix  will   appear  on  the  screen,   with
its    upper     left  corner  at  the  middle  of  the  screen.     1f  the  rectangle  in
Purtypix     is     relatively     large     compared       to       PixelArray's       arguments
(30.,20.),     then  only  part  of  the  stored  picture  will   appear:   anything  to
the   right  of  world  coordinate     105.0   (75.0  +  30.0)   will   not     appear,      nor
will   anything  below   30.0   (50.0  -20.0).

17-21



1f  the   rectangle   in  Purtypix   is   relatively  small   compared   to  PixelArray's
arguments,     then     the     full     picture     will     appear     and   not   extend  to  the
rectangle's   implied   right  and  bottom  borders.     And,   of     course,      if     Pur-
typix     differs   in   shape  compared   to  PixelArray's   parameters,   then  one   but
not  the  other   of  the   right  or  bottom  edges  may  be  clipped.

6DP(fLmctionnlbr,ntilberofpoints,Xarray,Yarray,datarec)

Generalized  Drawing  Primitive,   for   creating   specialized  geometric   output.
This     Graphics     Package   has   two   such   GDP's:   a   circle   (functionnmbr=1)   and
an   ellipse   (functionnmber=2).      Separate   discussions   of   each   follow.

CIRCLE
---GDF{func-t-ionnmbr ,numberofpoints,Xarray,yarray,datarec)

[functionnmbr-->1    (number,   constant,   or   variable)]
[numberofpoints-->2   (number,   constant,   or   variable) ]

Draws  a   circle  according  to  the  world  coordinates   in     arrays     Xarray     and
Yarray.        The     circle     is   centered   at   the   point   [Xarray(1),Yarray(1)]   and
has  a   radius   determined  by  +he  distance   from  the   circle   center     to     abso-
1ute      location   [Xarray(2),Yarray(2)].      The   second   parameter    (the   value   2)
indicates  that  the  array  parameters  will   specify  two  geometric  points   for
this     primitive.        The     dummy     parameter   "datarec"   is   required   by  the   GDP
call   but   not   used   for   circle   drawing.        The     shape     is     always     a     circle
regardless     of     the  coordinate  space  definition.     Default  conditions   that
apply  are  color  and  logic  operator   (see  output  attribute     setting     calls)
and,     with     reference     to  placement   of   the  specified   center   and   perimeter
points,   the  coordinate  space.     The  current     graphics     position     is     unaf-
fected.

Register   assignment:

Input rr6            <--Xarray  pointer
rr2            <--Yarray  pointer
r4                 <--1:      1    =   "CIRCLE"

Output                       r5              <--error   code

Pointers  are   Z8000   segmented  addresses;   other   values   are   integer.

17-22 PCOS    SYSTEM    PROGRAMMER'S    6UIDE



GRAPHICS    SUB-SYSTEM

ERRORS

(no   error)
"Parameter   out   of   range"
"Error   in  Parameter

EXAMPLE

[Assume  arrays     Xdata   and   Ydata,
with     the     following     contents:]

Xda ta                  Ydata
(1)       137.60                     89.36

(2)       129.6                        93.36

GDP (1, 2 , Xdata , Ydata , nul data )

Generates   a   circle     centered.    at     absolute     (world     coordinate)     position
(137.6,89.36),   with   a   radius   of   approximately  8.944.

If  the  coordinates  generate  a  circle   larger  than  the  viewing  surface     can
accommodate,   the  portions  of  the  circle  that   lie   outside   the   viewing  sur-
face  are  clipped.     1t   is  possible  to  specify  a  circle   no  part  of  which   is
visible.

_,--: .: .'""

GDP(functionnmbr,numberofpoints,Xarray,Yarray,datarec)
[functionnmbr-->2   (number,   constant,   or   variable)]
[numberofpoints-->3   (number,   constant,   or   variable) ]

Draws  an   ellipse   parallel   to  the   x  or   y-axis.     The   coordinates   are     given
in     the     arrays     Xarray     and     Yarray.      The   second   parameter   (the   value   3)
indicates  that  there  are  three  points,   and     thus     three     values     in     each
coordinate     array.        The     center     of     the     ellipse     is  given  by  the  point
[Xarray(1),Yarray(1)].      The   major   and   minor     axis      crossings      (in     either
order)             are             given             by          points           [Xarray(2) ,Yarray(2) ]          and
[Xarray(3),Yarray(3).      The   dummy   parameter   "datarec"   is   required     by     the
GDP     call     but     not     used     for   ellipse   drawing.      The   exact   shape  may  vary
depending  on  the  coordinate  space  definition.        Default     conditions     that
apply    are     color  and  logic  operator   (see  output  attribute   setting  calls)
and,   with   reference   to  placement  of  the   specified     center     and     perimeter
points,     the     coordinate     space.        The  current  graphics  position   is  unaf-
fected.

Register   assignment:

1nput                          rr6            <--Xarray  pointer
rr2           <--Yarray  pointer
r4                <--2:      2   =   "ELLIPSE"

Output                       r5              <--error   code

17-23



Pointers  are   segmented  addresses;   other   values  are   integer.

ERRORS

0                (no   error)
38              "Parameter   out   of   range"
76               "Error   in  parameter"

EXAMPLE

[Assume   FuncNo   =   2]
[Assume   arrays   Xdata   and   Ydata,
with  the     following     contents:]

Xdata                  Ydata
(1  )             200                           150
(2)             190                           150
(3)            200                         175

GDP ( F uncNo , 3 , Xdata , Ydata , nul data )

Generates  an  ellipse   centered  at     absolute     (world     coordinate)     position
(200,150),   with  a  major  axis  parallel   to  the  y-axis  and  of   length  50,   and
a   minor   axis   of   width   20.

1f  the  coordinates  generate  an  ellipse   larger  than     the     viewing     surface
can  accommodate,   the   non-visible  portions  are   clipped  at  the   viewing  sur-
face  edge.      1t  is  possible  to  specify  an  ellipse     no     part     of     which     is
visible®

OUTPUT   ATTRIBUTE   SETTIN6   FUNCT10NS

The   following  eleven   routines   influence   various  aspects   of   the  appearance
of  the  geometric  output  routines.     Specifically,   they  set   values   in  vari-
ous  tables  that  the  geometric   routines   use  when  they  create  output.     Each
function  is  detailed  in  the  followir,g  pages.

Output  Attributes

SET   LINE   CLASS(classnmbr)
SET   TEXTLINE(chrwdth,txtlineht)
SELECT   CURSOR(selectnmbr)
SET   TEXT   CURSOR    BLINKRATE(rate)
SET   GRAPHICS    CURSOR   BLINKRATE(rate)
SET   TEXT   CURSOR   SHAPE(arrayname)
SET   GRAPHICS   CURSOR   SHAPE(arrayname)
SET   COLOR   REPRESENTATION(indx#,colr#)
SELECT   GRAPHICS    COLOR(nmbr)
SELECT   TEXT   COLOR(FGnmbr,BGnmbr)
SET   COLOR   LOGIC(operatornmbr)

17-24 PCOS    SYSTEM   PROGRAMMER'S   GU10E



6RAPHICS   SUB-SYSTEM

SET  llNE  CL^SS(classri.br)

For   the   output   functions   LINEABS     and     LINEREL,      determines     whether     the
graphic     output  will   be  a   line,   a   hollow  rectangle,   or  a  solid   rectangle.
In  the  latter  two  cases,   the  coordinates  constitute  opposite     corners     of
the     rectangle.        The     current     graphics  color   is   used  for  both  lines  and
filling    (see   SELECT   GRAPHICS   COLOR).

Register  assignment:

1nput                             r3                <--0..2:         0   =   "LINE"
1    =   „BOX„
2   =   "B0XFILL"

Output                        r5              <--error   code

A11   values   are   integer.

ERRORS

0               (no   error)
38               "Parameter   out   of   range"

EXAMPLE

[Assume   the   integer   variable   ClsN   =   2]

SetL inec lass (0 )
L i neAbs ( x2 , y2 )
SetLineclass(ClsN)
L ineRel (dx , dy )

The  screen   will   display     a     line     between     absolute     points     [xl,yl]     and
[x2,y2],      and     a     solid     rectangle     having  a   diagonal   from   [x2,y2]   to  the

::::tg::::::;  :2:::{;ngT;:. ;n]::sn:xts:t:::::]::sLt::::, £n{::::::ä.  wou]d

SET  TEXTllNE (chrdth, txtlineht)

Sets  the  character   width   (in  pixels)   to  6   or   8   (no  other     legal     values),
and     the     text-line     height     (in   scanlines)   to  any  size   from  10  to  16   (no
other  legal   values).     This  definition  holds   for  the  current   view  area  and
all   subdivisions   of   it   (until   a   subsequent   SET   TEXTLINE   call).      Note   that
this   setting  influences  the  width  of  subsequently-defined  view  areas.

Register  assignment:

1nput                            rl0             <--1ineheight   (10..16)
rl2           <--character   spacing   (6  or  8)

Output                       r5              <--error   code

All   values  are   integer.

17-25



ERRORS

0               (no   error)
38              "Parameter   out   of   range"
76               "Error   in  parai.i`eter"

EXAMPLE

SetTextl ine ( 6 ,12 )

A11   subsequent   text  will   have   6  pixels  per   column,   12   scanlines   per     text
line;      a   full-screen   view  area   would  have   80   columns,   21   textlines.      Note
that  the  individual   character   size  does  not  change,   but   rather   the     space
around  each  character  grows  or  shrinks.

SELECT  CURSOR (selectrbr )

Chooses  which,   if  either,   cursor   is  to  be   displayed.

0:        OFF--neither   cursor   is  displayed.

1:        The   GRAPHICS   cursor   is   displayed.        The     cursor      (default     shape:      a
small     rectangle)     appears  with   its  upper   left  corner  at  the  current
cursor   coordinates.      (N.B.:     The     graphic     cursor     and     the     current
graphic  position  are

2:        The   TEXT   cursor   is   displayed.      The   cursor   (default   shape:   a     rectan-
9le     7     x     11   pixels)   appears  at  the  next  position  that  text  will   be
entered.      not   the   same.)

Register   assignment:

Input                             r8                <--0..2:         0   =   "OFF"
1     =    "GRAPHIC    CURSOR"

2   =    "TEXT   CURSOR"

Output                       r5              <--error  code

A11   values   are   integer.

ERRORS

0               (no  error)
38              "Parameter   out   of   range"

EXAMPLE

[Assume  that  the   integer   variable   SelN  =  2]

Selectcursor(0)
Selectcursor (1 )
Selectcursor(SelN)

17-26 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



GRAPHICS   SUB-SysTEM

After  the  first  example,   no  cursor  will   display.     After  the  second     exam-
ple,     the     text     cursor  will   display:   subsequent  text  entry  will  begin  at
this  point.     After  the  third  example,   the  graphics  cursor     will     display.
However,   subsequent  graphics  output  will   not  start  from  this  point   unless
the  current  graphics  position  has  been  updated  to  this  same   location.

Note  that  the  text  and  graphics  cursors  need  not,     and     usually     do     not,
occupy     the     same     location.        Note     also     that  the  two  cursors   cannot  be
displayed  simultaneously.

SET  TEXT  CÜRSOR  BllNKRATE(rat.)

Sets  the  blinkrate  for  the  text  cursor,   from    0     (no     blink)     to     20    per
second,     truncated  to  the  nearest  50-millisecond   increment.     A  zero  value
leaves  the  cursor  on  continuously.     The  blink   rate     is     state-changes;     a
rate     of     20     is     10  blinks  per  second.     Note  that  this  function  does  not
affect  which  cursor,   if  any,   is  to  be     displayed     currently;      see     SELECT
CURSOR .

Register  assignment:

Input                           r8              <--blinkrate   (O..20)

Output                       r5              <--error   code

All   values  are   integer.

EFtRORS

(no  error)"Parameter   out  of   range"
"Error   in   parameter"

EXAMPLE

[Assume   BkR=5]

SetTxcsrBlinkrate(Bkr)

The  text  cursor,   when   it   is   displayed,   will   change   from  "on"  to   ''off"     or
from  "off"  to  "on"  5  times  per  second.

._,, `\.           SET   6RApllICS   CURSOR   BllNKRATE(rate)

Sets  the  blinkrate  for  the  graphics  cursor,   from  0   (no  blink)   to     20     per
second,     truncated  to  the  nearest  50-millisecond  increment.     A  zero  value
leaves  the  cursor  on  continuously.   The  blink     rate     is     state-changes:     a
rate     of    20     is     10  blinks  per  second.     Note  that  this  function  does  not
affect  which   cursor,   if  any,   is  to  be     displayed     currently:     see     SELECT
CURSOR.

17-27



Register   assignment:

1nput                           r8               <--blinkrate   (0..20)

Output                       r5              <--error  code

All   values  are  integer.

ERRORS

0               (no   error)
38              "Parameter   out   of   range"
76               "Error   in  parameter"

EXAMPLE

[Assume   BkR=5)

SetGrcsrBlinkrate(BkR)

The  graphics  cursor,   when   it   is   displayed,   will     blink     2-1/2     times     per
second .

SET  TEXT  CURSOR   SHAPE(arraynam)

Defines  the  text  cursor  shape  according  to  the     contents     of     the     shape-
array.       Note  that  this   function  does  not  affect  which  cursor,   if  any,   is
to   be   displayed   currently;    see   SELECT   CURSOR.

The  shape-array  is  byte-oriented;   each  of  the     12     bytes     represents     the
bit-pattern     of     a  scanline,   the  first  byte  being  the  highest  of  12  scan-
1ines.     Warning:   in  the  text  cursor,   if  the  most-significant-bit  of  each
byte  is  used,   the  leftmost  column  of  pixels  will   touch  the  previous  char-
acter.

Register  assignment:

1nput                         rr8           <--shape-array  pointer

Output                       r5              <--error  code

Pointer   is  a   segmented  address;   error   code   is   integer.

ERRORS

0               (no  error)
38              "Parameter   out  of   range"
76               "Error   in  parameter"

ARRAY    FORMAT

The  array  consists   of  6     one-word     elements,     each     containing     a     16-bit
unsigned     integer.       Each   integer   is,   in  fact,   a  pair  of  bytes:   each  byte
is  a  bit-map  of  a  scanline  of  the  cursor.     The  first  element's   high-order

17-28 PCOS    SYSTEM   PROGRAMMER'S    6UIDE



GRAPHICS    SUB-SYSTEM

byte   is  the  top  scanline  of   the  new  cursor;   the   sixth  element's   low-order
byte   is  the   last  scanline  of  the  new  cursor.

EXAMPLE

[assume   a   6-word  array   "Arrow"   holds   12   bytes   of
of  pixel   information]

STxcsrshape(Arrow)

The  text  cursor  shape   is  redef ined     in    accordance     with     the     bit-by-bit
specification  in  the  array  "Arrow".     If  that  array  holds  the  bit-patterns
shown   in  the   following  table,   the  text-cursor   will   be   shaped     as     an    .up-
arrow.

element            element  content
(word)              (binary  bit-map)

1                               00001000
00011100
0011 1110

01  111111

00011100
00011100
00011100
00011100
00011100
00011100
00011100_
00011100

3£*iä

(Note  that   each
word  contains  a
PAIR   of   1-byte
bit  patterns,
and  that  the
higher  byte   is
the  high-order
byte   of  the  word.)

SET   6RApl11CS  CIRSOR

Defines  the  graphics  cursor     shape     according     to     the     contents     of     the
shape-array.       Note     that     this   function  does  not  affect  which  cursor,   if
any,    is  to   be   displayed   currently;    see   SELECT   CURSOR.

The  shape-array  is  byte-oriented;   each  of  the     12     bytes     represents     the
bit-pattern     of    a  scanline,   the  first  byte  being  the  highest  of  12  scan-
1 i nes .

Register   assignment:

Input                         rr8           <--shape-array  pointer

Output                       r5             <--error   code

Pointer   is  a  segmented  address:   error  code   is   integer.

17-29



ERRORS

(no   error)
"Parameter   out  of   range"
"Error   in  parameter"

ARRAY    FORMAT

The  array  consists   of  6     one-word     elements,     each     containing     a     16-bit
unsigned     integer.        Each   integer   is,   in  fact,   a   pair   of  bytes;   each  byte
is  a  bit-map  of  a  scanline  of  the  cursor.     The   first  element's   high-order
byte   is  the  top   scanline  of  the   new  cursor;   the  sixth   element`s   low-order
byte  is  the  last  scanline  of  the  new  cursor.

EXAMPLE

[assume   a   6-word   array   "Box"   holds   12   bytes   of
pixel   information]

STxcsrshape(Box)

The  text  cursor  shape  is   redef ined     in     accordance     with     the     bit-by-bit
specification     in     the     array    Box.      1f  that  array  holds  the  bit-patterns
shown   in   th   following  table,   the   graphics-cursor   will     be     shaped     as     an
upright   rectangle.

element            element   content
(word)              (binary   bit-map)

1                                                11111111

10000001
2                                 10000001

10000001
10000001
10000001
10000001
10000001
10000001
10000001

61 0000001
11111111

(Note   that   each
word  contains  a
PAIR   of   1-byte
bit  patterns,
and  that  the
higher  byte   is
the  high-order
byte   of  the   word.)

SET  COLOR   REPRESENT^TION(indx#,colrf)         -'-_T`':

On  four-color  systems,   sets  one  of  the  four  color   indices   (indx#)     to     be
one   of   the   eight  M20   colors   (colr#).      (On  monochrome   and   8-color   systems,
this   command  generates  no  effect  and  no  error  message.)     Legal   values   for
indx#     are   integers   0..3.     Legal   values   for   colr#  are   integers   0..7,   with
the   following  meanings:   0=black,   1=green,   2=blue,   3=cyan,      4=red,      5=yel-
low,   6=magenta,   7=white.

17-30 PCOS    SYSTEM   PROGRAMMER'S   GUIDE



GRAPHICS   SUB-SYSTEM

Register   assignment:

lnput                         rl
r2

0utput                       r5

<--0..3
<--0..7

<--  error   code

All   values  are   integer.

ERRORS

0               (no  error)
38              "Parameter   out   of   range"
76               "Error   in  parameter

EXAMPLE

[Assume   lndx=2,Clr=6]

Setcol orRep ( 3 ,1 )
SetcolorRep(1ndx,Clr)

1n  the  first  example,   all   screen  output  using  color   index  #3   (1ines,   cir-
cles,     points,      filled     areas,     text)   becomes  green   (both  previously-  and
subsequently-created   output).      1n  the  second  example,   all   screen     output
using   color   index  #2   becomes  magenta.

++,=              SELECT   GRAPIJICS   COLOR(rdr)

Selects  a  color  to  be  the  current  color     attribute     for    graphics     output
(not      text     output;      see      SELECT     TEXT     COLOR).        The   color   of   subsequent
graphic  output   is   determined  by  the  argument  "nmbr".     There  are   different
effects  on  monochrome,   four-color   and   eight-color   systems.      On   monochrome
systems,   "nmbr=0':  sets  black  as  the  graphics  color  attribute:   any   integer
in     the  range  1..7  sets   white  as  the  color  attribute.     On   four-color  sys-
tems,   "nmbr"  selects  the  color  attribute   indirectly  by  acting  as  an   index
into    a    table     of  four  colors  preselected  from  the  eight  possible  colors
(see   SET   COLOR   REPRESENTATI0N);    integers   0..3   select   colors   directly,   but
bits   0  &  2   of  the  binary   representation  of  4..7  are   logically  OR'd  before
selection.     On  eight-color  systems,   "nmbr"   is  a   color   number   and     selects
that  color  directly  as  the  graphics  color  attribute.

Register  assignment:

Input                           r8               <--color   code   or   index   (0..7)

Output                          r5              <--error  code

All   values  are  integer.

17-31



ERRORS

0               (no   error)
38              "Parameter   out   of   range"
76              "Error   in  parameter

EXAMPLE

[Assume  that   SetcolorRep  has  associated  color  #5
with   index  #2   in  the  color  table.]

SelectGraphclr(2)

Each  configuration  will   interpret  this  example  differently,   according     to
how     it     uses  the  color   code.     For   information  on  the   color   code,   see  the
discussion  of  color   in  the   "Video   Display"  section.

A  monochrome  system  will   ignore  the  SetcolorRep   statement  and,   since     the
number     2     falls     within   the   range  1..7   inclusive,   set  the  graphics   color
attribute  to  be  WHITE.

A  four-color   system  will   use   the  argument  to   index  the     color     table     and
thereby  set  the  graphics  color  attribute  to  be   color  #5,   YELLOW.

An  eight-color   system  will   ignore   the   SetcolorRep  statement  and     use     the
number   directly  to  set  the  graphics   color  attribute   to  be   color  #2,   BLUE.
Had   the  argument   been   "6"   rather   than     "2":   the  monochrome     system     would
still   have   set  WHITE,   the   eight-color   system  would   have   selected  MAGENTA,
and  the   four-color   system  would   have   selected  the  color   for   index  #3.

}   SELECT  TEXT  COLOR(F6ibr,86rbr)

Selects  colors   used   in  character   output   (not   graphics  output;   see     SELECT
GRAPHICS     COLOR).        Characters     appear   in  the   foreground   color   (the   first
parameter);   the  backdrop   for   the   characters   is  the  background  color     (the
second  parameter).     There  are  different  effects  on  monochrome,   four-color
and  eight-color  systems.      On  monochrome   systems,      the     number     0     selects
black;     any     integer   in  the   range  1..7   selects  white.     On   four-color   sys-
tems,   each  parameter  selects  a  color   indirectly  by     acting     as     an     index
into    a     table     of  four  colors  preselected  f rom  the  eight  possible  colors
(see   SET   COLOR   REPRESENTAT10N);   while   integers   0..3   will   select   colors   as
one  might  expect,   integers  4..7  select  colors  in  a  not-easily-predictable
manner.      On  eight-color   systems,   each  parameter   is     a     color     number     and
selects  that  color   directly  as  the   foreground  or  background  color.

Register  assignment:

Input                         r8              <--foreground  color
code   or   index   (0..7)

r9              <--background  color
code   or   index   (0..7)

Output                       r5              <--error  code

17-32 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



GRAPHICS   SUB-SYSTEM

A11   values  are   integer.

ERRORS

0               (no  error)
38              "Parameter   out   of   range"
76               "Error   in  parameter

EXAMPLE

[Assume  that   SetcolorRep  statements   have     associated
color   #5     with      index  #2,   and   color   #3   with   index  #0
in  the  color  table.)

Sel ectTextc l r ( 2 , 0 )

Each     system     configuration     will     interpret     this     example     differently,
according     to     how     it   uses  the  color   code.     For   information   on  the   color
code,   see   the  discussion  of  color   in  the   "Video  Display"  section.

A  monochrome  system  will   ignore  the   SetcolorRep     statement,      notice     that
the   first   parameter,   the  number   2,   falls   within  the   range  1..7   inclusive,
and  thus   set  the   foreground   color   to     be     WHITE;      and     since     the     second
parameter   is   0,   it   will   set   the   background   to  be  BLACK.

A  four-color  system  will   use  the  arguments  to   index  the   color     table     and
thereby     set     the     foreground   color   to  be   color   #5,   YELLOW,   and   the   back-
9round  to  be   color   #3,   CYAN.        An     eight-color     system     will     ignore     the
SetcolorRep  statements  and  use  the  numbers  directly  to  set  the  foreground
color   to   be   color   #2,   BLUE,   and   the   background   to   be   color   #0,   BLACK.

Had  the  first  argument   been   "6"     rather     than     "2":     for     the     foreground
color,      the  monochrome   system   would   still   have   been   set  WHITE,   the   eight-
color   system  would   have   selected  MAGENTA,   and   the   four-color   system  would
have   selected  the   color   for   index  #3.

SET  COIOR  L061C(operatornlbr)

For  all  subsequent  screen  output  except  text,   def ines    a     logic     operator
that  influences  the  output  color   on  a  pixel-by-pixel   basis.     Each  operand
is  the  color   number   (or,   for   four-color   systems,   one  of     the     four     color
index     numbers)   for  a  pixel--a   new-output  pixel,   a  target-location  pixel,
or   one  of  each.     As  the   screen   is     updated     with     new     input,     the     logic
operation   is  applied  one   pixel   at  a  time.     The   logic  operations   deal   with
the  numbers  0..7  as  three-bit  binary  quantities,   so  that,   for  example,   (3
0R     4)-->7,   and   (3     AND     4)-->0.     There  are  six   logic  operators,   with  the
following  effects:

17-33



Newpix#  =        new  pixel's   color   number   or   color   index
Scrpix#  =       screen   pixel's   color   number   or   color   index

(at  targeted   location)

number
code            operator

new  number   at   pixel   1ocation
[=result  of  a   logic  operation]

0                    PSET                      Pixel   sET   [number   =   Newpix#]

1                    XOR                          result   of   (Newpix#   XOR   Scrpix#)

2                   AND                         result   of    (Newpix#   AND   Scrpix#)

3                  NOT                        complement   of   scrpix#

4                  0R                          result   of   (Newpix#   OR   Scrpix#)

5                   PRESET                 Pixel   RESET   [number   =   background
color   number   or   index]

The   specific   results   vary  depending  on   system   configuration.        Monochrome
systems   transform  the  numbers   2..7  to  1 ;   thus   the  only  operands   are   0  and
1,   and  are  the   colors  black  and  white     respectively,     with     corresponding
results.     Eight-color   systems  make  no  transformation  at  all,   dealing  with
the  numbers   directly  as   colors,   with   corresponding   results      (1:green       OR
2:blue       -->     3:cyan).     Four-color   systems   treat   the   numbers   not   directly
as  colors  but  as  indices  into  the  four-color     palette     table;     predicting
the  final   color  result   is  possible  but  will   take  a  little  concentration.

Register   assignment:

lnput                             rl0             <--0..5:        0   =   "PSET"
1    =   „XOR„
2   =   „AND„
3   =   „NOT„
4   =   „OR„
5   =   "PRESET"

Output                       r5              <--error  code

A11   numbers   are   integer.

ERRORS

0               (no   error)
38               "Parameter   out   of   range"

EXAMPLE

[Assume   integer   variable   Logop  =  1]

SetcolorLogic(1 )
SetcolorLogic(Logop)

17-34 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



GRAplilcs   SUB-SYSTEM

These  two  examples  are  equivalent.      Subsequent   graphics     output     will     be
compared  for  color  on  a  pixel-by-pixel   basis  with  the  target  screen   loca-
tion.     The     current-color-attribute  number  and  the  targeted  pixel's  color
number      (or     color     index   number)   will   be   logically  XOR'd,   and  the   result
placed  in  the  target  screen  location   (to  be  exact,   in  the  target  location
in     the     screen  bit-plane  or  bit-planes).      1n  monochrome     and  eight-color
systems,   the  operands   are     color     numbers;      in     four-color     systems,     the
operands  are  color-table   indices.

TRANSFORMATI0N   AND   CONTROI   FUNCT10NS

These  routines  set  values  that  have  an  effect  across  much     or     all     of     a
view  area.     Largely,   they  have  to  do  with  the  mathematical   transformation
of   world  coordinate   values  to     device     coordinate     values     (screen     pixel
locations)   in  the   view  area.     The   following   is  a   list   of  these   functions.

OPEN    GRAPHICS

CLOSE    GRAPHICS

SET   WORLD   C00RDINATE    SPACE(xform#,xO,yojxl  ,yl  )
DIVIDE   VIEW  AREA((div/orient,divpt,xform#)
SELECT   VIEW   TRANSFORMATloN(xform#)
CLOSE   VIEW   TRANSFORMAT10N(xform#)    [ (xform#=0)-->close   2--16]
CLEAR   VIEW   AREA(xform#,err)
ESCAPE(functionnmber.    recordname)    [Defined   ESCAPE:    1=flood]

1_
-'-------'----EäB_

OPEN  CR»HICS

Sets  up  the  M20   for   creating  graphics,   using  the   routines   in  this     Graph-
ics   Package.

THIS    ROUTINE    MUST    BE    REFERENCED   BEFORE    ANY   0THER    GRAPHICS    PACKAGE    ROUTINE

IS     REFERENCED.         1t  may  be   used  to   "re-initialize"   the   graphics   environ-
ment,   in  which  case  the  effects  of  all   preceding     graphics     routines     are
cleared  away  and  the  application  program   is  prepared  to  handle  subsequent
graphics  routines  and  their  output  as  if  starting  afresh.

The   starting  condition   for   graphics   is  a   single     view     area      (1abeled     as
transformation     number     1),   with  the  default  world   coordinates   set   to  the
normal   display   device   coordinates   (512   X   256),   black     as     the     background
color     amd  white   (for   black-&-white  systems)   or   green   (for   color   systems)
as  the   foreground  color,   with  no  cursor   displayed.

Register  assignment:

1nput                            none

Output                        none

ERRORS

none

17-35



EXAMPLE

0penGraphics

This  MUST   be   the   first   Graphics   Package   call;   it  MAY  be   a     later     one     as
well.      In     either   case,   the   Graphics  Package   tables  and  view  area   defini-
tions  are  established   in  their   default  condition     and     graphics     routines
may   be   used.

CLOSE   6RAPHICS        =`.`  „

Clears   the  application  program  environment   of  the  special   setup     for     the
6raphics     Package,      such     as     view     area     heap   space   and   Graphics  Package
tables.      All   view  areas  are   closed   except  view  area  #1   which     reverts     to
the     original     default     parameters      (full     screen,   defined  with  512   x  256
coordinates,      startup     foreground     and     background     colors,        no       cursor
displayed,   blank   screen).     Graphics  Package   routines  should   not  appear   in
the  application   program   following   this   routine   until   "OPEN   GRAPHICS"     has
been   called  again.

Register   assignment:

1nput                            none

Output                         none

ERRORS

none

EXAMPLE

CloseGraphics

lf  this   routine  appears,   it  must  be  the  last  Graphics  Package  call.        The
Graphics     Package     tables     and  view  area   def initions   are   cleared,   and  the
default  initial  conditions  are  reinstated.

SET  WORLD  COORDINATE   SPACE(xforw,xO,yo,xl ,yl )

Redefines   the  world     coordinate     space      (sometimes     called     the     "problem
space")     for     an     existing     view  area  of  the  screen.     "xform#",   the  first
parameter,   identifies   the  transformation   by  number     and     must     have     been
previously      defined     by     a   DIVIDE   VIEW  AREA   call.      A11   subsequent   graphic
coordinates   in  this   viewspace   (i.e.,     the     transformation     and     viewspace
identified     by     "xform#)   will  be  scaled  to  the  view  area  by  a   transforma-
tion   routine  using  the  coordinates   (parameters   2  through  5)   that  define  a
diagonal     of     the     entire     rectangular  area.     The  coordinates  are  single-
precision   real   numbers.

17-36 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



GRAPHICS   SUB-SYSTEM

Register  assignment:

Input

(1.  .16)

Output                        r5              <--error   code

Coordinates  are   lEEE   single-precision   real:   others   are   integer.

ERROFZS

0               (no   error)
35               "View  area   not   open"
38              "Parameter   out   of   range"

EXAMPLE

[Assume   DivideviewArea   has   created  a   view  area   it   has
labelled  as  #6]

Setwcspace ( 6 , 35 , -1 . 5 , -20 , 2 . 5 )

The  world  coordinate   space   is   defined  along     the     x-axis     from     -20.0     to
35.0,     and     along     the     y-axis     from     -1.5  to   2.5.     Note   that  this  set  of
values  does   not  define  the  proportions  the   view  area   rectangle!     The   view
area      size   is   determined   entirely  by   the  DIVIDE   VIEW  AREA   function;   these
coordinates  determine     the     scaling     interpretation    within     that     space.
Thus,     this     view  area   now  recognizes   55  whole-number   divisions  along   its
x-axis,   and  4  whole-number   divisions  along   its     y-axis.        Note     that     the
coordinate  ordering  was  deliberately  perverse   to  demonstrate   flexibility.

DIVIDE  VIEW  AREA(div/orient,divpt,xform#)

Creates  a   new  view  area   by  dividing  the     current     one     according     to     the
first     two   parameters;   the  number  of  the   new  view  area   is   returned   in  the
third  parameter.     The   new  view  area   inherits  many  of     the     attributes     of
its     "parent,"  such  as  text  spacing,   color  defaults,   and  world  coordinate
space  definition.

The  first  parameter,   "div/orient",   determines  whether     the     current     view
area     shall     be     divided  horizontally  or   vertically,   and  on  which  side  of
that  division  the     new     view    area     shall     be     oriented     (above/below    or
left/right:

17-37



"div/orient"          Division                      Loc.   of  New  view  Area

0                                 HORIZONTAL                        AB0VE   division
1                                   HORIZONTAL                         BELOw   division
2                                  VERTICAL                         LEFT      of   division
3                                   VERTICAL                          RIGHT   of   division

The  second  parameter,   "divpt",   places   the  division   point.      For   horizontal
divisions   (div/orient=0,1),   the  parameter   is   in  scanlines   from  the  top  of
the   current   view  area   (min.=1   scanline;   max.=current   view  area   height   -1
scanline).        For   vertical   divisions   (div/orient=2,3),   the   parameter   is   in
character  positions   from  the  left  edge  of  the     current     view     area.        The
character     width     used   is  as   currently  defined,   i.e.,   6   or   s  pixels  wide.
However,   all   actual   side   edges  are  always  on  byte     boundaries,      i.e.,     at
multiples     of  s  pixels   from  the   screen's   leftmost   column  of  pixels.     When
the  character  width  is  s  pixels,   t-he  resultant  divisions  are     intuitively
predictable,     but     when     characters  are  6  pixels  wide,   prediction   is  more
difficult.     The  actual   view  area  width,   in  pixels,   of  the   left-side  view-
ing  area   may   be   determined  by  trie   following   prediction   formula:

WIDTH  =   truncate   [    (nmbr-of-chars   *  char-width   +  3)   /  8   ]   *  8

where   "nmbr-of-chars"   is  the   second   parameter     and     "char-width"     is     the
current     pixel     width     (6     or  8)   of  characters.     With  6-pixel   characters,
there   is  often  a   right-side  margin,   narrower   than  pixels,   in  which     char-
acters     cannot  appear;   consequently,   such  view  areas   frequently  allow  one
fewer  characters  per   line  than  the   "divpt"  parameter  would   seem  to   imply.
An    alternate     entry  for  either  vertical   or   horizontal   divisions   is  "-1",
which  divides  the  current  view  area  as  equally  as  possible.

The  third  parameter   returns   the   "transformation     number"     by     which     this
view    area  and  all   its  attributes   (in  particular,   the  scaling  transforma-
tion  definition  from  world  coordinates  to  the  view  area)   is     subsequently
referenced .

Note  that  as  a  start-up  condition,   the  full   screen     is     defined     as     view
area     #1.      This  view  area   can,   of  course,   be  subdivided   in  multiple   ways,
and  adjacent   view  areas  can  be  closed  and   joined  with   it   (as   long  as     the
resultant     view     area     is     rectangular),     but   view  area  #1   ALWAYS   exists;
unlike   other   view  areas,   view  area  #1   cannot  be  closed.      There  may  be     as
many     as     16     active     view     areas     at     any     one   time.     A   new   view  area   is
assigned   the   lowest   available   number   in   the   range   2..16   (e.g.,   if  6     view
areas     are     created,     and     then  #3   is  closed,   the  newly-created  view  area
will   be  assigned   the   number   3).

17-38 PCOS   SYSTEM   PR06RA"ER'S   GUIDE



GRAPIJICS   SUB-SYSTEM

Register  assignment :

1nput                           rs
r9

Output

<--div/orient   (0..3)
<--divpt   [(1..63   or   79)

or    (0..255)]

<--  error   code
<--xform#   (2..16)

A11   values   are   integers.

ERRORS

0               (no   error)
36               "Unable   to  create   view  area"
38              "Parameter   out   of   range"

EXAMPLE

Di wiewArea ( 0 ,127 , xfi )
DivviewArea (1,-1, xfj )
Di wiewArea ( 3 , 23 , xfk)

The   first  example   divides  the  current   view     area     horizontally     with     the
upper     view     area   being  the   new   view  area,   127   scanlines   high:    its   number
is  assigned  to   xfi.      The   second  example   divides     the     current     view    area
horizontally     at     the     midpoint;  .the   new  view  area   is   below  the   division,
and   its   number   is  assigned   to   xfj.     The  third  example   divides   the  current
view    area     vertically;     the  view  area   left  of  the  divisio'n   is   (theoreti-
cally)   23   characters   wide,   and   retains   the  number     of     the     current     view
area;   the   right   side  of  the  division   is  the   new  view  area,   and   its   number
is  assigned  to  xfk.     Note  that  if  character  width  =  6  pixels,   the     actual
width     of  the   left  view  area   is  22  6-pixel   characters  plus  a  4-pixel   mar-
gin.     Should  the  three  examples  follow  successively  as  the     first     state-
ments     after     startup     (i.e„     no     view  area   subdivision  yet),   the   result
would   be   four   view  areas:   the   upper   half   of   the   screen      (view     area     #2);
the     bottom  quarter   of  the   screen   (#3):   and  two   in  the   lower   middle   quar-
ter  of  the  screen,   a  smaller  one  on  the  left   (#1)   and     a     larger     on     the
right   (#4).

SELECT  VIEW  TRANSFORMAT10N(xfog»

Selects  the  view  area   identified  by     the     value     "xform"     (as     previously
defined     by     DIVIDE     VIEW   AREA).      All   subsequent   text   and   graphics   output
will  go  to  this  view  area  and  enter   in  accordance  with  the  attributes     of
this     view    area     (color,     world  coordinate  scaling,   text  line   height  and
character  width,   and  current  text  and  graphics  locations,   for     examples).
Note     especially  that  graphic  objects  described  in  world  coordinates  will
be  mapped  to  this  view  area  by  a  transformation   using  the  .  world     coordi-
nate   space  and  view  area   definition  of  this  transform   number.



The   value   of   "xform#"  MUST   be   1   or   correspond   to   a   view   area      def ined     by
DIVIDE      VIEW     AREA;      otherwise,   an   error   code   is   sent   to   the   error   status
variable.

Register   assignment:

lnput                             r8                <--xform#   (1..16)

Output                        r5              <--error   code

All   values  are   integer.

ERRORS

0                (no   error)
35                "View   area   not   open"
38               "Parameter   out   of   range"

EXAMPLE

[Assume   DivideviewArea   has   created   a   view  area   it   has
labelled  as   #6   and  assigned   to   Nwdw]

SelviewTrans(Nwdw)

All   further  text  and   graphic  output  will   be   directed  to  view  area   #6,      in
accordance     to     the     coordinate,   color,   etc.,   definitions  active   for  that
view  area.      1f  view  area   #6   is   not   currently  defined,   an     error     is     gen-
erated.

cLoSE  vlEw  TRANSFORMATloN (xforri}

Closes   the   view  area   identified     by     the     value     "xform"      (as     previously
defined   by   DIVIDE   VIEW  AREA).      That   view   area   is   joined   to   a   view   area   or
view  areas  adjacent   to   it;   the  area   is   cleared   to   the  background  color   of
the     area(s)      to     which     it   is   ].oined,   and   the   enlarged   view  area(s)   have
their   coordinate   definitions   correspondingly  adjusted   to  map   to     the     new
view     area     dimensions      (note     that     the     world  coordinate   values   are   not
changed,   but   rather   the  mapping   is).      If  the  current   view  area   is   closed,
then   view   area   #1   becomes  the   current   view  area.

1f  the  value   of   "xform#"   is   zero,   then  any  and  all   currently  defined   view
areas     labeled     in     the     range     2..16   are   closed,   and   view  area   #1   is   the
current  view  area,   filling  the  entire  screen.

Note  that  this   command  can  attempt   to  close   view  area  #1   without  generat-
ing  an   error;    however,   view  area   #1   cannot   be   closed,   and   such   an   attempt
simply   has   no  effect.      Also,   this   command   can   attempt   to   close   view  areas
that      have      not   been   opened   (defined   by   a   DIVIDE   VIEW   AREA   call),   as   well
as   hypothetical   view  areas  outside  the   range   of  1..16,   without  generating
an   error   condition   or   error  message.



GRAPHICS   SUB-SYSTEM

Register  assignment:

1nput                           r8 <--xform#   (0,1..16,   or   any
other  integer)

Output                         none

ERRORS

none

EXAMPLE

CloseviewTrans(xform#)

The  view  area   identif ied  by  the  value   of   "xform#"   is   cleared  to  the   back-
ground     color     of     an  adjacent  view  area   or   areas   (it  may  be   necessary  to
divide  the  area   being  closed,   in  order   to     join     it     with     two     different
adjacent     areas,     in     order     to     preserve     rectangularity  of  the  enlarged
areas),   and  the  closed  area   isi.oined  to  the  adjacent  area(s).        1f     view
area     #6   was   the   current   view  area,   view  area   #1   becomes   the   current   view
area .

CLEAR   VIEW  AREA(xform#,err)

Clears  the   view  area   identified     by     the     value     ''xform"     (as     previously
defined      by     DIVIDE   VIEW   AREA)   to   the   background   color   (default   is   black;
SELECT   TEXT   COLOR   can   set   a   different   background   color).      Note     that     the
view  area   is  not   closed;   this  call   merely   removes  all   current   contents  of
this  view  area.

Register   assignment:

Input                             r4               <--xform#   (1..16)

Output                        r5              <--error   code

Both  values  are   integer.

ERRORS

0                (no   error)
35               "View  area   not  open"
38               "Parameter   out  of   range"

EXAMPLE

ClearviewArea(xform#,err)

1 7-41



The   view  area   identified  by  the   value   of   "xform#"   is   cleared  to  the   back-
ground     color     of  that  view  area.     The  view  area   is   still   open   to   receive
new  output   in  accordance  with  the     coordinate     transformation     and     color
attributes  currently  defined  for  that  view  area.

SC^PE(ftinctionr-br ,  recordna-e)

A  routine  that  performs  a  special   graphics  function.        1n     this     Graphics
Package,   there   is  only  one  Escape   routine   defined,   "flood".

FLO0D

ESCAPE(functionnmbr,    recordname)
[functionnmbr-->1   (number,   constant,   or   variable)]

Floods  an  area   (i.e.,   paints   it)   in  accordance   with  the  parameters   in   the
record     (data     structure)     "recordname".        That     data     structure     (array,
record,   etc.)   contains   the   following   information:

Nominal   point   coordinates   x,   y
[identifies  area  to  be   flooded]

Color   number     [color   nmbr,   or   color   index   on  4-colr   sys]
Bordercolor        [as   with   color   number]

The  area   surrounding  the  point   (x,y)   is   flooded  with  the   color   identified
in  the  data   record,   within  a  contiguous  border  of  the  color   identified  by
"bordercolor"   in  the  data   record.      lf  the  area-lQcator  point     happens     to
fall   in  a   field  of  the  color   "bordercolor",   no   flooding  will   occur.     Note
that  the  area   f looded  is  that  bounded  by  a  single  color   ;   if ,     for     exam-
ple,     blue     is     to     flood     an  area   bordered  by  green,   a   red   line   will   not
serve  as  a  border--it  will   be  flooded  out.

Register  assignment:

lnput                             rl                <--1:      1   =   "FL00D"
rr2            <--recordname  pointer

Output                       r5              <--error   code

Pointer   is  a  segmented  address:   other   values  are  integer.

ERRORS

0               (no   error)
38               "Parameter   out   of   range"
76               "Error   in   parameter"

17-42 PCOS    SYSTEM   PROGRAMMER'S   6U10E



GRAPHICS    SUB-SYSTEM

ffiffiffi

RECORD    STRUCTURE

The   "recordname"   parameter   is   the   name   of  a   record   having     the     following
structure :

X  coordinate:

Y   coordinate:

Color   number:
Bordercolor :

EXAMPLE

216-bit   words;    1EEE   single-prec.    real
number,   high-order   word   appears   first

216-bit   words;    1EEE   single-prec.    real
number,   high-order   word   appears   first

1   16-bit  word,   integer   (high-order   first)
1   16-bit  word,   integer   (high-order   first)

Assume   the   data   structure   "FRec",containing:

27.34        [x   coord.,   area   locator]
128.           [y   coord.,   area   locator]
2                  [flood   color]
3                  [border   color]

Esc(1,FRec)

An  area   in   world-coordinate   space   that   contain5     the     point      (27.34,128.)
will     be   flooded.      The   result  will   be  a   filled  polygon  where   the   number   2
governs   its   color.      The  polygon  border   is   determined   by  the     screen     con-
tents     at     the     moment     the   function   is   called;   the   flood   will   fill   every
contiguous   nook  and   cranny  that   lies   within  a  contiguous   line   whose   color
is     governed  by  the   number   3.     Note  that  wherever   such  a   line   is   not   con-
tinuous,   the   flooding  will   "1eak"  through  to  a   new  area.

The   language   describing  this   function.s     relation     to     color     numbers     is
obtuse     because   the   example   will   respond   differently  on   monochrome,   four-
color,   and  eight-color   systems.      Monochrome  and  eight-color   systems     deal
directly     with     color   numbers,   but   four-color   systems   deal   indirectly  via
indices  to  a   table  of   four   pre-selected  colors   from     a     gamut     of     eight.
However,      integers      in   the   range   0..7   for   both   color   parameters   will   work
without   error   generation   in  all   color   configurations   (see     discussion     in
SET    COLOR    REPRESENTATI0N).



"QUIRY  FUNCTlolls

These   routines   retrieve   data,   mostly  from  tables  or     other     variables     in
the     Graphics     Package.        Unlike     routines   in  the   other   categories,   these
routines  do  not  generate  errors  --  that   is,   none     of     these     11     routines
sends     an     error     code     to     the     Graphics     Package   error   status   variable.
Rather,   they  report  the  detection  of  any  errors   directly  by  returning    an
error     code     number   (or   "0"   for   "no  error")   through  an   "err"  parameter   in
each  routine.     Note  that,   for  most  of  these   inquiry     routines,     no     error
number     is   defined;   in  most  cases,   there   is  no   error   that   can   occur.     The
"err"  parameter   is  maintained   in  these   routines   for   format     compatibility
with  the   GKS  graphics   standard.     Each   function   is   detailed   in  the   follow-
ing  pages.

1NQ  VIEW   AREA(err,bytewdth,scanlineht,chrwdth,txtlineht)
1NQ   WORLD   C00RDINATE    SPACE(err,xO,yo,xl  ,yl  )
INQ   CURRENT   TRANSFORMATI0N   NUMBER(err,xform#)
lNQ   ATTRIBUTES(err,GRcolr,FGcolr,BGcolr,logop-,lineclass)
1NQ   TEXTCURSOR(err,column,row,blinkrate)
1N0   GRAPHPOS(err,x,y)
1NQ   GRAPHCURSOR(err,x,y,blinkrate)
IN0   PIXEL   ARRAY(Xwdth,Yht,err,invalidvals,arrayname)
INQ   PIXEL   C00RDINATES    (Xworld,Yworld,err,Xpixcoord,Ypixcoord)
1NQ   PIXEL(x,y,err,pxlcolrnmbr)
ERROR    INQUIRY(errorcode)

1NO  VIEW  AREA(err,bytewdth,scanlineht,chrwdth,txtlineht)

Returns   for  the  current  view  area,   the  size  definition  and     text     parame-
ters     of     this   view  area.      The  view  area   width   is   in  bytes,   the   height   is
in   scanlines,   the   current  width   of  a   character   is   in  pixels   (6   or  8),   and
the  textline   height   is   in   scanlines   (10..16).

Register  assignment:

1nput             none

Output          r5            <--error   code
r8            <--view  area   width   (1..64  bytes)
r9            <--view  area   height   (1..256   scanlines
rlo         <--   text  character  width   (6,8  pixels)
rll          <--text   line   height   (10..16   scanlines)

All   values  are   integer.

ERRORS

0               (no   error)

EXAMPLE

lnqvi ewArea ( E rvar , VAwd , VAht , TXwd , Txht )

17-44 PCOS    SYSTEM   PROGRAMMER'S   GUIDE



6RAPHICS   SUB-SYSTEM

Returns  for  the  current  view  area,   in  the     latter     four     parameters:     the
view    area     width,     view  area  height,   text  character  width,   and  text   line
height.      Ervar=0.

1NQ  WORLD  COORDINATE   SPACE(err.xO,yo,xl ,yl)

Returns  the  world  coordinate  space  parameters   for  the  current   view    area.
Parameters     3     and     4,      (xO,yo),   give   the  world  coordinates   for   the   lower
left  corner  of  the  space   (which  maps  to  the  lower   left  corner  of  the   view
area).        Parameters     5  and  6,   (xl,yl),   give  the  world  coordinates   for   the
upper   right   corner  of  the   space   (which  maps  to  the   upper   right   corner     of
the     view    area).     Note  that  these  coordinates  do  not   determine  the  rela-
tive  proportions  of  top  and  side  of  the  view  area,   but     rather     determine
how  points   in  world  coordinate   space   will   map   to  that  view  area.

Register  assignment:

1nput                           none

Output code

A11   x  and  y  values  are   lEEE   single-precision     real;      the     error     code     is
integer.

ERRORS

0               (no   error)

EXAMPLE

lnqworldcoords(Ervar,Xloleft,Yloleft,Xhiright,Yright)

Returns  for  the  current  view  area,   in  the     latter     four     parameters:     the
world     coordinates     for     the  lower   left  corner,   and  the  world  coordinates
for  the  upper   right  corner  of  the   rectangular   "problem"   space   (the     space
in   which  the  application   program's   problem   is   defined).      Ervar   =  0.

1NQ  CURREllT  TRANSFORMATION  NtABER (err , xfonw)

Returns  the  identification  number   of  the     current     view    area     number     in"xform#".        This   number   is   used  in   selecting  a   different   view  area  of  the
screen   to   which   to   move    (SELECT   VIEW   TRANSFORMATloN),      to      re-define      the
world      coordinates      (SET      WORLD   C00RDINATE   SPACE),   to   erase   a   view   area'.s
contents   (CLEAR   VIEW   AREA),   to   close    (i.e.,    undefine)   a   viewspace      (CLOSE
VIEW     TRANSFORMAT10N),      and      to      retrieve     a   host   of   color   and   coordinate
information  about  a   view  space   (see  the  various   lNO   ...   functions).

17-45



Register   assignment:

Input                           none

Ouput <--  error  code
<--   view  area   transformation

number    (1..16)

A11   values  are   integer.

ERRORS

0                (no   error)

EXAMPLE

lnqcurTransNmbr ( Erval , ViewArea )

Returns  the   identification  number   of  the  current   view  area   in   "ViewArea."
Erval   =   0.

INQ  ATTRIBUTES (err , grcol r , fgcolr , bgcolr , logop , l ineclass )

Returns  the  color,   logic,   and  line  attributes   for  the   current  view    area.
1nformation   returned   is:

grcolr              graphics   color   (current)
(see   SET   GRAPHICS   COLOR)

fgcolr

bgcolr

logop

lineclass

foreground  color   for  text
(see   SET   TEXT   COLOR)

background   color   for   text,    CLEAR   VIEW   AREA,
and   logic    (see   SET   TEXT   COLOR)

logic   operator    (PSET|XOR|AND|NOT|OR|PRESET)
for   color(see   SET   COLOR   LOGIC)

interpretation  of  line  coordinates
(LINE|B0X|B0XFILL;    see    SET   LINE    CLASS)

Register   assignment:

1nput                            none

Output                        r5              <--error   code
r7               <--logop   (0..5)
r8              <--lineclass   (0..2)
r9              <--grcolr   (0..7)
rl0            <--fgcolr   (0..7)
rll            <--bgcolr   (0..7)

A11   values   are   integer.

17-46 PCOS    SYSTEM   PROGRAMMER 'S   GUIDE



GRAPHICS   SUB-SYSTEM

EFtRORS

0               (no  error)

EXAMPLE

lnqAttributes (Ervar , Kgraph , Ktext , Kbackg , Klogic , LBF )

Returns   for  the  current  view  area,   in  the     latter     five     parameters:     the
current     color     for  graphic  output,   the  current  color   for  text  characters
(note  that  these  colors  may  be  different),   the  current  background     color,
the     current     logic  operator   used   (pixel-by-pixel)   between   new  output  and
target-area  color  numbers,   and  whether  the  coordinates  of  a   line-function
will            be   used  to  generate   lines,   boxes,   or   filled  boxes.      Ervar  =  0.

INQ  TEXTcmsoR (err , colt-n. rol,bl inkrate )

Returns  the  next  text  entry  poir,t   (which  coincides_wit_h_ the   iäcatioh __:f
the     text     cursor)     and     the     text  cursor  blink   rate   for  the  current   view
area.     This  position   is     given     in     number-of-characters     from     the     view
area's   left  edge   (column),   text   lines   from  the   view  area's   top   (row),   and
state  changes  per   second,   rounded  to  the  nearest  50-millisecond   increment
(blinkrate).        Note  that  this  position   is  NOT  where  the  next   graphic   out-
put   will   appear   (see   lNQ  GRAPHPOS).      Unlike   the   graphics   case,      the     next
point    of     entry  for  text  and  the  text  cursor  position  are  identical.     If
the  information   is  not  available   (e.g.,   view  area   too  small   for   text),   an
error     code     is     returned     in  "err"  and  the  remaining  parameters  are   left
undefined,   but  no  error  code   is  sent  to  the  error  status   variable.

Register   assignment:

1nput                            none

Output r5             <--  error   code
r7              <--blinkrate   (0..20)
r8               <--text   column   (1..64  or   80)
r9               <--text   row   (1..16   or   25)

A11   values   are   integer.

ERRORS

0               (no  error)
151               '`Information  not  available"   (in   this   case:

view  area   too  small   to  contain  text)

EXAMPLE

lnqTextcursor (Ervar , TXcol , Txrow , Txbl inkrate )

Returns  for  the  current  view  area,   in  the   latter     three     parameters:     the
current     entry-point     and     cursor     location     by     column     (Txrow)     and   row
(Txrow),   and  the  blinkrate   for  the  cursor.     lf  the   information  is     avail-
able,   Ervar=0;   otherwise,   Ervar=151.

17_47



._+L#;`EnE IJDS(®rr'x,y)

Returns   for  the  current  view  area   the  location  at  which  new  graphics  out-
put      (note:      not     text   output)   will   begin   (e.g.,   a   LINEREL   function   would
generate  a   line  with  one  end  at   this   point).     The  parameters   (x,y)   define
a  point   in  world  coordinate  space.     "err"  is   set  to  0.

Register  assignment:

1nput                           none

Output                       rr2           <--y
r5              <--  error  code
rr6           <--x

Values   x  and  y  are   lEEE   single-precision   real;   the   error   code   is   integer.

ERRORS

0               (no  error)

EXAMPLE

lnqGraphpos (E rvar , Xpos , Ypos )

Returns   for  the  current  view  area,   in     the     latter     two     parameters:     the
world     coordinates     for  the  current  graphics  position,   i.e.,   the  position
which   relative-oriented   new  graphics   output   (e.g.,   LINEREL)     will     refer-
ence.      Ervar   =  0.

iidii^pLURSolEt:l,:[T[l;,lEITink,=)_il
Returns   for  the  current  view  area   the  location  of     the     graphics     cursor,
and   its  blinkrate.     Note  that  the  graphics  cursor   location  and  the  graph-
ics  position  are  generally  NOT  the  same   location     (unlike     the     case     for
text);     the     graphics     cursor     merely  marks  a   place   in  the   view  area.     An
application  program.  might  wish  to   use   these     coordinates     to     update     the
current    graphics  position,   or  to  set  an  absolute  location  starting  point
for   LINEABS   or   some   other   geometric   output   routine.      The   parameters   (x,y)
define     a  point   in  world  coordinate  space;   the  graphics  cursor  will   place
the  upper   left  corner   of   its   s  x  12  pixel   shape  at     this     location.       The
blinkrate     is     in     state     changes     per   second,   rounded  to  the   nearest   50-
millisecond   increment   (blinkrate).      Note   that  the  graphics     cursor     loca-
tion  and  the  text  cursor   location  are  entirely   independent,   and  that  only
one   of  these  two  cursors   (but  possibly     neither,      if     so     specified)     may
appear  at   one   time.

17-48 PCOS    SYSTEM   PR06RAMMER'S   GUIDE



6RAPHICS   SUB-SYSTEM

Register   assignment:

1nput                            none

Output rro           <--x
rr2           <--y
r5              <--  error   code
r9              <--blinkrate   (0..20)

Values   x  &  y  are   single   precision   real;   others  are   integer.

ERRORS

0               (no  error)

EXAMPLE

lnqGraphcursor(Ervar,Grx,GrY,blinkrate)

Returns  for  the  current  view  area,   in  the   latter     three     parameters:     the
current     graphics     cursor     location   (Grx,6rY,   world  coordinates),   and   the
blinkrate   for   the  graphics   cursor.     Ervar=0.

lNQ  PIXEL  ARRAY(Xwdth. Yht,err , invalidvals , arrayria.e)

Retrieves  a   rectangle  from  the  view  area  screen  and  stores   it   (for     later
re-display)      in      "arrayname".      The   inverse   function   is   PIXEL   ARRAY,   which
outputs  the   rectangle  stored  in  an  array  to  the     view    area.        The     upper
left  corner  of  the  rectangle  to  be  retrieved  from  the  screen  is  placed  at
the  current  graphics  position.     The   rectangle  size   is  specified  in    world
coordinate     space     dimensions;   "Xwdth"   is   in   x-axis   units,   "Yht"   is   in  y-
axis   units.     These   dimensions  are  transformed   into   view     area     diriiensions
(pixels) .

1t   is  the  total   pixel   count,   plus  three   housekeeping  words,     that     deter-
mines     the  size  of  the  storage  array   (recall  that,   for   color  systems,   the
pixel   count  effectively  doubles  or  triples).     The  application  program     is
responsible  for  knowing  the  required  array  size  and  for  allotting   (dimen-
sioning)   space   for   it.

The  bulk  of  the  array  is  bit   images   for  the  scanlines  within  the     rectan-
gle,   packed  16  bits  per   array  entry.      Each   scanline   image  will   begin  with
the  first  bit  for  the  scanline  in  bit  15  of  the  first  array  entry  for  the
scanline     (i.e„     1eft-justified).       The  array  must  be  allotted  a  size  at
least   large  enough  to  accommodate   the   rectangle;   the   size   in  words  may  be
calculated  according  to  the  formula:

size  =  truncate[ (pixelwidth+15)/16]*pixelheight*colrplanes+3

where  "colrplanes"   is  the  number  of  color  planes  in  a     system     configura-
tion      (monochrome=1,      four-color=2,   eight-color=3);   the   final   3  words  are
for  the  three  housekeeping  words  at  the  beginning  of  the  array  that  store
the     rectangle     width,      height,   and  special   codes.      The  maximum  size   is  a
full     screen     (assuming    a     configuration     with     suff icient       memory       to

1 7-49



accommodate   that   large   an  array).      The   array   is   one-dimensional.

The   "err"  parameter   returns   value   0  unless  a   problem     occurs,      in       which
case     it   returns  an   integer  error   code   value.     An   error   code  will   be  gen-
erated  if  the  combination  of  the  current  graphics  position  and  the     width
and     height     parameters     imply     a  point   (i.e.,   a   corner   of  the   rectangle)
that   is     outside     the     view       area.          When     an     out-of-bounds     error     is
detected,   the  destination  array  is   left  untouched.

The   "invalidvals"  parameter   reports     discovery     of     invalid     pixel     color
values.        1f     for   some   reason  the   color   of  a  pixel   cannot   be  ascertained,
the   "invalidvals"  parameter   is   set  to   indicate   "PRESENT";      if     all     pixel
values  are   valid,   the   "invalid-   vals"  parameter   is   set   to   "ABSENT".      Note
that  the   "err"  parameter   is  not  affected     by    the     discovery     of     invalid
pixel   color   values.

Register  assignment:

1nput

Output                        r4

<--  X-width
<_--   y-height
<--  arrayname   pointer

<--0,1:           invalid   values
0   =   ABSENT
1    =   PRESENT

r5              <--   error   code

Dimensions  are   lEEE   single-precision   real;   the     pointer     is     a     segmented
address;   others  are   integer.

ERRORS

0               (no   error)
7                "Out   of   memory"

38              "Parameter   out  of   range"
76               "Error   in  parameter"

ARRAY    FORMAT

The  array   is  a   single-dimension  array  of  one-word     integers.        The     first
three     words  are   housekeeping  data;   the   remainder   of  the   array   stores   16-
bit   screen   image   words   in   each   element.

The   first  word  is  a   one-word  integer  that  gives  the  width  of  the     rectan-
gle     in     pixels.        The     second     word   is  a   one-word   integer   that   gives   the
height  of  the   rectangle   in  scanlines.     The  third  word     holds     codes     that
tell     about     how     this     array     was  generated.     The   low-order   byte  of  this
third  word  gives  the   number   of  color   planes  that  were     in     use     when     the
array     was     filled      (monochrome,      1;      four-color,   2;   eight-color,   3):   the
high-order  byte   is   reserved   (and  should  be  assigned  a     value     of     0     when
filling  array  values   "from  scratch").

The   remainder   of  the   array   is  one-word     integer     elements     which     contain
bit-patterns     (16     bits/word)     that  are   retrieved   from  the  screen  bit-map
color-planes.     The  exact  structure  of  the  array  from     this     point     on     is

17-50 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



GRAPHICS   SUB-SYSTEM

dependent   on   how  many   color   planes   were   active   when   the  array   was   filled,
since  bit-plane  data   is   interleaved  scanline-by-scanline.-    A  first     batch
of     one   or   more   words   (depending   on   view  area   width)   gets   pixels   from   the
first  color-plane's  first     scanline,     transferring    pixels     left-to-right
into  one  or   more   word(s),   high-order   bits   filled   first;   the   last   word   has
from  0  to  151ow-order   bits   unused.      1f  there     is     a     second     color-plane
(i.e.,     it   is  a   four-color  system),   that  plane's   first  scanline  of  pixels
is  transferred   (again  with  possible   leftover     unused     bits     in     the     last
word);   and   so  on   until   all   colorplanes   have   had  one   scanline   transferred.
Then  another  scanline   (if     any)     is     transferred,     again     color-plane     by
colorplane;      until     finally     all     scanlines     have  been  transferred  to  the
array.

EXAMPLE

[Assume   the     default     world     coordinates   (=view
area   pixel   coordinates,   0..x..511,   0..y..255),
view     area     #1      only     is     open:]

Inqpi xelAr ra y( 512 , 256 , Ervar , bogeys , Holdp ic )

Retrieves   the  entire   screen   (assuming  only  view     area     #1      is     open)     for
storage     in     the     array  Holdpic.      Holdpic  must   be   large   enough:    for   mono-
chrome,   8195   words;   for   four-color,16387   words;   for     eight-color,      24579
words.        1f     there     is  an  error   (e.g.,   either   rectangle-size   parameter   is
too  large),   an  error  code   is  returned  in  Ervar,   but  no  error  code   is  sent
to     the     error  status  variable.      1f ,   for  some   reason,   the   color   of  one   or
more  pixels  cannot  be   determined,   "bogeys"   returns  the`value   1;   otherwise
it  is  0.

lNQ  PIXEL  C00RDINATES (Xlorld,World,err,Xpxlcoord,Ypxlcoord)

Given  a   point   (Xworld,Yworld)   in     world     coordinate     space,      returns     the
corresponding     pixel     coordinates     with     respect     to     the     borders  of  the
current  view  area,   in  Xpxlcoord  and     Ypxlcoord.        If     the     function     acts
without     problem,      "err"     returns     value  0,   otherwise   it   returns  an  error
code.     However,   no  error   code   is   sent  to  the  error   status   variable.

Register   assignment:

1nput                           rro            <--Xworld
rr6            <--Yworld

Output                       r5              <--error   code
r6                <--Xpxlcoord   (0..511)
r7               <--Ypxlcoord   (0..255)

1nputs  are   IEEE   single-precision   real;   outputs  are   integer.

17-51



ERRORS

0                (no   error)
38               "Parameter   out   of   range"

EXAMPLE

Assume  a   view  area   that   is   eight   8-bit  characters  wide
and     96     scanlines     high,     with     world     coordinates
(x-axis:   -10,0   to   10.0)   and   (y-axis:   -1.0   to   1.0).
Assume   XX=   7.5,    YY=-0.125

lnqpi xel coords ( XX , YY , Ervar , xpx , ypx )

For   the  given     point      (XX,YY),      the      function      returns:      xpx=56,      ypx=42,
Ervar=0.         Had     XX     or     YY     been     outside     of   their   assigned   ranges,   then
Erval=38,   and   xpx   and   ypx  would   be   undefined;   however,   no   error   condition
would   be   generated.

1NQ  PIXEL (x,y,err,pxlcolrnmbr)

1n   the  current   view  area,   for  the  point   (x,
returns     the     color     number  of  the  nearest
onto   the   view  area   space.      1f  the   function
0:   if  not,   "err"   returns  an  error   code.

The  pixel   color   humber   is  the  direct   number
eight-color     systems,     but     in     four-color
into  a  table  of  pre-selected  colors     (four
available) .

Register   assignment:

Input                         rro           <--x
rr6           <--y

Output

y)   in  world   coordinate     space,
pixel   when  the   point   is   mapped
is   successful,     "err"     returns

of   a   color   in   monochrome     and
systems,   the   value   is   an   index

colors     selected     from     eight

r3               <--color   number   (0..7)
r5             <--error  code

Values   x  &  y  are   lEEE   single   precision   real;   others  are   integer.

ERRORS

0               (no   error)
38              "Parameter   out   of   range"

EXAMPLE

lnqpi xel ( XX , YY , Ervar , Col r )

Assuming   (XX,YY)   is   a   valid   world-coordinate-space   point,   a   corresponding
point     in  the  view  area   is  calculated,   and  the  nearest  pixel   is  selected."Colr"  returns  a  value  for  that  pixel   that     is     interpreted    as    a    color
number     or     as     an     index   into  a   color   table  which   selects  a   color   number

17-52 Pcos   svsTEM   pROGRAmER`s   6uii)E



GRAPHICS   SUB-SYSTEM

(see   discussion   above).      "Ervar"=0.      1f   (XX,YY)   falls   outside   the   defined
world   coordinate   space,   then   "Ervar"   returns  an  error   code,   and   "Colr"   is
undefined.

ERROR   INQÜIRY(errorcode)

Returns  the  error   status   for  the  most   recently     called     graphics     routine
other     than     an      INQ      ...    routine.      The   lNQ   ...    class   of   functions   do   r`ot
alter  or   reference  the  error   status   variable:   rather,   each   routine  of  the
lNQ   ...   class   has   its   own   "error"  parameter,   through  which   it   reports  any
problems   (or   "OK").      Each   of   the   non-1NQ...      routines      clears     the     error
status     variable     prior     to     execution  of  its  assigned  task,   so  that   upon
completion  of  the   routine,   the  error  status  variable   reflects     the     error
status     of    that     routine.     1f  the  status  value  is  "0",   then  no  error   has
occurred.

Register   assignment:

1nput             none

Output          r5               <--error   code   (0..255)
0   =  no   error,
1. .255   =   some

error   code

A11   output   is   integer.

ERRORS

none   (this  routine  does  not   itself  generate  errors   or
write  to  the  error  status  variable)

EXAMPLE

[Assume   an  application   program   has  already   defined   16
view  areas]

DiwiewArea (0 , 23 , TransNmbr )
Errorlnq(Erval)
if   (Erval>0)   then  exit

DivviewArea  attempts   to   create  one     more     view     area     than     is     possible,
thereby     placing  an   error   code,(#36,   "unable   to   create   view  area")   in  the
error  status  variable.      "Errorlnq"   returns  that  value   in     "Erval";     since
it     is     indeed     greater  than  zero,   the   '.if"  test   is  "true"  and  the  conse-
quent   statement   is   executed   (e.g.,   if   "exit"   implies   a     ].ump     to     a     pro-
cedure     which     ends     the     application     program,     then  the   program   is   ter-
mi nated ) .

17-53



REFERENCES

Reference   material   gives   language   bindings   PASCAL   and  assembly     language,
and      provides      a   concordance   between   BASIC   and   PCOS   3.0   that   compares   M20
BASIC   9raphics   with   this   Graphics   Package.

Additional   reference  material   lists   graphics   system   calls     and     graphics-
caused   error   messages.

LAN6UA6E   BINDINGS

Pascal  Language  Binding

The   following   identifiers   are   the   procedure   names   for   PASCAL.        They     are
listed     in     the     order     that     they     appear   in  the   functional   description.
Parameters  are  as     specified     in     the     functional     descriptions:      integer
numbers   or   variables,   real   numbers  or   variables,   or   array   identifiers.

LineAbs
LineRel
Polyline
MarkerAbs
MarkerRel
Polymarker
Textcursor
GraphposAbs
GraphposRel
GraphcursorAbs
GraphcursorRel
PixelArray
GDP

SetL i nec lass
SetTextline
Selectcursor
SetTxcsrBlinkrate
SetGrcsrBlinkrate
SetTxcsrshape
SetGrcsrshape
SetcolourRep
SelectGrcolour
SelectTxcolour
SetcolourLogic

Assembly  Language  Binding

The   following   identifiers

OpenGraphics
CloseGraphics
Setworldcoordspace
DivideviewArea
SelectviewTrans
CloseviewTrans
ClearviewArea
Escape

lnqviewArea
lnqworldcoordspace
lnqcurTransNumber
lnqAttributes
lnqTextcursor
lnqGraphpos
lnqGraphcursor
lnqpixelArray
lnqpixelcoords
lnqpixel
Errorlnquiry

are   the   procedure   names      for      PLZ/ASM     and     M20
assemble`r.        They     are     listed  in  the   order   that  they  appear   in  the   func-
tional   description.        Parameters     are     as     specified     in     the     functional
descriptions:   integer   numbers  or   variables,   real   numbers   or   variables,   or
array  identifiers.     Consult     the     functional     description     for     parameter
register  assignments  and  structures   for  arrays  and   records.

17-54 pcos   sysTEM   pROGRAmER's   GuiDE



GRAPHICS   SUB-SYSTEM

LineAbs
LineRel
Polyline
MarkerAbs
MarkerRel
Polymarker
Textcursor
GraphposAbs
GraphposRel
GraphcursorAbs
GraphcursorRel
PixelArray
GDP

SetL i nec la ss
SetTextline
Selectcursor
SetTxcsrBlnkrate
SetGrcsrBlnkrate
SetTxcsrshape
SetGrcsrshape
SetcolourRep
SelectGrcolour
Sel ectTxcol our
SetcolourLogic

OpenGraphics
CloseGraphics
Setworldcoordsp
DivideviewArea
SelectviewTrans
CloseviewTrans
ClearviewArea
Escape

lnqviewArea
lnqworldcoordsp
lnqcurTransNmbr
lnqAttributes
lnqTextcursor
lnqGraphpos
lnq6raphcursor
lnqpixelArray
lnqpixelcoords
lnqpixel
Errorlnquiry

CONCORDANCE   BETWEEN   BASIC   AND   PCOS   3.0   GRAPHICS   PACKAGE

BASIC

WINDOWS:          Define    New   window

var=WINDOW    (Q,P,[,V]    [,h]

Change   to   Different  Window

WINDOW   %num   or    var

Retrieve   Current   window   Number

var=WINDOW    (0,0)

GRAPHICS    PACKAGE

DIVIDE   VIEW   AREA    (div/
orient,   divpt,   xform#)
See   also   SET   TEXTLINE

SELECT   VIEW   TRANFORMAT10N

(xform#)

1NQ   CURRENT    TRANSFORMATION

NUMBER    (err,    xform#)

'7-55



Define   Text   Spacing

var=WINDOW    (0,0,[,v]    [,h])

Clear   Window

CLS    [%wndw]

i    Release   Window   Definition

1      CLOSE    WINDOW    [%wndw]

COLORS :

17-56

Select  Palette

SET   TEXTLINE    (chrwdth,
txtlineht)

CLEARVIEW   AREA    (xform#,    err)

CLOSE    VIEW    TRANSFORMAT10N

(xform#)
[(xform#=0)-->close   view
areas   2-16]

!     COLOR=   nl,    n2,    n3,    n4 SET    COLOR    REPRESENTATI0N

(indx#,   colr#)

i    Fill   Area   with   Color

SCALE    [%wndw]    xl,xh,yl,    yh                 (|\) SET    WORLD   C00RDINATE    SPACE

( xform# , xO , yo , xl , yl )

PCOS   SYSTEM   PR06RAMMER'S   6UIDE



GRAPHICS   SUB-SYSTEM

Retrieve  Pixel   Coordinate
given    SCALE

SCALEX   (x   scale   coord
SCALEY   (x-scale-coord

CURSOR : Move   Text   Cursor

CURSOR    [(x,y)]

[0:1    (=off:on)]
[,rate   [,shape]]

Move   Graphics   Cursor

!1

1

1

)) 1NQ   PIXEL

(xworld,Yw
Xpixcoord,

TEXTCURSOR

See   also
SET    TEXT    C

SET    GRAPHI

RATE

SET    TEXT    C
SET    GRAPH1

CURSOR   P01NT    [    [same   arg
list   as   CURSOR]    ]

Turn   Off   Cursor

See   CURSOR   and
CURSOR    P01NT

Define  Cursor  Attributes

See   CURSOR   and
CURSOR    P0INT

C00RDINATES
d'err'
xcoord)

( col umn , row )

URSOR    BLINKRATE

CS    CURSOR    BLINK-

URSOR    SHAPE

CS    CURSOR    SHAPE

GRAPHCURSORABS     (x,y)

GRAPHCURSORREL     (dx,dy)
See   also
SET    TEXT    CURSOR    BLINKRATE

SET    GRAPHICS    CURSOR    BLINK-

RATE

SET    TEXT    CURSOR    SHAPE

SET    GRAPHICS    CURSOR    SHAPE

SELECT    CURSOR

( sel ectnmb r )

SET    TEXT    CURSOR    BLINKRATE

( rate )
SET    GRAPHICS    CURSOR    BLINK-

RATE       (rate)
SET    TEXT    CURSOR    SHAPE

(arrayname)
SET    GRAPHICS    CURSOR    SHAPE

(arrayname)

17-57



Retrieve   Cursor   position   re:
current   window

var=POS    (0:1)    [    [=row:col]    ]
(above   for   text  only)

---,--,-,,--

DRAW : Set  Current   Graphics   Position
See    DRAW

Draw   Line

LINE    [%wndw,]    [[STEP]

[ STEP ] ( x2 , y2 )
[ , [clr ][ , [B[F ] ][ [ , vb]

1NQ    TEXTCURSOR

(err,    column,    row,
blinkrate)
1NQ    GRAPHCURSOR

(err , x , y , bl inkrate )

GRAPHOSABS     (x,y)

GRAPHOSREL    (dx,dy)

LINEABS    (x,y)
LINEREL    (dx,dy)
POLYLINE(#points,Xarray
Yarray)
See  also
6RAPHOSABS,     GRAPHOSREL ,

SET    LINE   CLASS,

SELECT    FORE6ROUND    COLOR

SET    COLOR    LOGIC

Draw   Circle   (or   Ellipse)
!

CIRCLE    [9iowndw,]     (x,y),r

[ , [ dr ][ , [asp ][ , vb ] ]

1 7-58

6DP ( 1, 2 , Xarra y , Yarray ,
datarec)           (1=Circle)
GDP ( 2 , 3 , Xarray , Yarray ,
datarec)           (2=Ellipse)
[arrays  contain   defining
coordinates;   "datarec"
is   unused]
See   also:
SELECT    GRAPHICS    COLOR

SET   COLOR   LOGIC

PCOS    SYSTEM    PROGRAMMER'S    GUIDE



6RAPHICS   SUB-SYSTEM

Move   (&   Draw?)   to   Point(s)

DRAW    [%WNDW]    str.    const.:var
M   dx,dy                  U   dy
Jx,y                     Ddy

Ldx
C   ölr                       R   dx
8-   [prefix:   don't   draw]
verb  postfixes:

-A   [and]
-0
-N
-X

not]
xor]

-P   [=PSET;   default]
-R   [=PRESET,   bkgnd   clr]

PIXEL :

8 I TMAP :

Set   Pixel   to   Foreground   (or
Color)

PSET    [%windw](x,y)    [,clr]

(!    ;::m:::¥:sGeometric

i      #ÄBk:33!:   (ä*}iyt

L  %:f:j:#g;,ints'

t ;    §::E#S:äAmcs   CoL0R

Set   Mearest   Pixel   to  Background\
Color

PRESET[96wndw]) (x,y)                                        ,

Retrieve   Color   Number,   Nearest
Pixel

var=POINT    (x,y)

Store   Displayed  Bitmap   Segment

GET    [%wndw,]

(xl , yl )-(x2 ' y2 ) '
1st  array   elem.

Set  graphics   color   to
BACKGROUND;     use    MARKER.  ..?

Change   graphics   color

lNQ   PIXEL(x,y,err,

pxlcolrnmbr)

1NQ   PIXEL   ARRAY(Xwdth,Yht,
err,invalidvals,   arrayname)
See   also
GRAPHOSABS,     GRAPHOSREL,

SELECT   VIEW   TRANSFORMAT10N

r>



MISC.

17-60

Display   Stored   Bitmap   Segment

PUT    [%wndw,]

( xl ' yl ) [ -( x2 ' y2 ) ] '
1st   array   elem.    [,vb]

Open,   Re-initialize,   and  Close
Graphics

(Call    in   BASIC)
CLEAR

i   Preset   Primitive  Attributes

Retrieve   Status   Data

PIXEL   ARRAY(Xwdth,Yht,
arrayname
See   also:
GRAPHOSABS,     GRAPHOSREL,

SET   COLOR   LOGIC

OPEN    GRAPHICS

CLOSE    GRAPHICS

SET    COLOUR    LOGIC

(operatornmbr)
SET    LINE    CLASS

(classnmbr)

1N0   GRAPHOS(err,x,y)
1NQ   ATTRIBUTES(err,GRcolr,
FGcol r , BGcol r , logop ,
lineclass)
1NQVIEW   AREA(err,

bytewdth , scanl i neht ,
chrwdth,txtlineht)
IN0   WORLD   C00RDINATE    SPACE

(err , xO , yo , xl , yl )
ERROR    INQUIRY(errorcode)

PCOS   SYSTEM   PR06RAMMER'S   GU10E



PART  111





18.   OVERVIEW



AB0UT   THIS   CHAPTER

This   chapter   describes   the   contents   of   Part   3,    which   contains   practical
information   for   programmer   use  and   reference   material.

CONTENTS

INFORMAT10N    IN    PART    3

BRIEF    DESCRIPT10N    0F

CONTENTS

CREATING    M20    SYSTEM

UTILITIES

SYSTEM    CONFIGURATloN

PCOS    ENVIRONMENT    AND    GL0BAL

COMMANDS

18-1

18-1

18-1

CUSTOMIZING    A    PCOS    SYSTEM              18-2

DATA    PASSING    MECHANISM                         18-2

LANGUAGE    SUPPORT                                             18-2

lNSTALLING    PCOS    0N    A

HARD    DISK                                                                    18-2

ASCI1                                                                             18-2

PCOS    ERROR    CODES                                              18-2

GLOSSARY 18-2



OVERVIEW

1NFORMATloN   IN   PART   3

Part   2  of  the  manual   contains  an  extended   functional   description   of     PCOS
architecture.      Part  3   supplements  Part  2   with  two   kinds  of   information:

-        Practical   information   on   how   to   enhance   or   configure     PCOS,      such     as
"Creating   M20   System   Utilities"   or   "Customizing  a   PCOS   System"

-        Reference  material   such   as   "Data   Passing  Mechanism"     or      "PCOS     Error
Codes.''        Some     reference     material   is   included   in   order   to   provide   a
concise   reference   to   information  covered   in     more     detail     elsewhere,
but     scattered~  in     several     locations.        Other   reference   material   is
unique.

BRIEF   DESCRIPT10N   0F   CONTENTS

A  brief  description   of  the  contents   of  Part   3   is   given  below.

CREATING   M20   SYSTEM   UTILITIES

This   section   gives   information  on   how  to   develop  a   utility     program     that
can      be      executed   as   a   PCOS   command.      The   command   routine   must   be   capable
of   being   loaded  and   executed   by   the   command   line   interpreter,      and     prop-
erly   returning  control   to  the  system  after   its  task   is  completed.      lt  may
also   need   to   make   use   of   parameter   information     entered     on     the     command
line  and   passed  to   it  by  the   command   line   interpreter.

SYSTEM   CONFIGURATION

This  s.ction  and  the  next  two  form  a  set  that  discusses  the     concepts     of
system     configuration.   environment,   and   customization.   This   first   section
relates   system   conf iguration   to  operational   environment,     and     also     con-
tains  some  examples  of  hardware  system  configuration  changes  that   require
software  support   using  PCOS   utilities  or   custom  software.

PCOS   ENVIRONMENT   AND   GL0BAL   COMMANDS

This   section   explains   the   relationship   between   PCOS   and     the     operational
environments     that  provide  particular  capabilities  to  the  user.     An  over-
view   is   given  of  all   the  global   commands     that     collectively     define     the
PCOS   and   BASIC   environments.

18-1



CUSTOMIZIN6   A   PCOS   SYSTEM

This  section   reviews  the  software   resources  and     utilities     available     to
the   system   programmer   for   customizing  PCOS   to  the   requirements   of   partic-
ular   installations  and  applications.

DATA   PASSING   IVIECHANISM

This   section   describes   the  general   data   passing  mechanism     PCOS     uses     to
pass     information     among     its      internal   elements   and   between   PCOS   and   its
supported   languages.      The  method   uses   the   stack,   and     can     pass     numbers,
strings,   null   values,   and  a   return  address.

LAN6UAGE   SUPPORT

This   section   provides   a   fundamental   overview  of   the   support   PCOS   provides
for   high-level   1anguages,   some  of   which   can   be   used   for   assembly   language
programming.      Topics   include     data     passing,      calling     on      internal      PCOS
resources,   memory  allocation,   and   internal   representation  of   numbers.

INSTALLIN6   PCOS   ON   A   HARD   DISK

This  section  gives   information  on   installing  or   updating  PCOS   on     a     hard
disk.        1nformation     is   included  on  how  to  preserve   prior   system   reconfi-
gurations.

ASCII

This   section   describes   the  AScll   standard   for   information   interchange     as
used     in     the     PCOS     system     and   gives   information   on   its  general   use   and
modification.

PCOS   ERROR   CODES

This   section   lists   error   codes  and   their   meanings     for     BASIC     and     PCOS.
1nformation      is      provided   on   changes   and   differences   between   PCOS   1.X  and
PCOS   3.X  error   codes.      Suggestions   to   the   programmer   on   the   use   of     error
codes  are   also   given.

6LOSSARY

The  glossary  contains     definitions     of     terms     together     with     conceptual
explanations.      Definitions  are   oriented   towards   PCOS   and   th€   M20   system.

18-2 PCOS    SYSTEM    PROGRAMMER'S    GUIDE



19.   CREATING  M20  SYSTEM  UTILITIES`



AB0UT   Tllls   CHAPTER

This    chapter    gives    information    on    how    to    develop    an    assembly    language
utility   program   that   can   be   executed   as   a   PCOS   command.

CONTENTS

OVERVIEW

0BJECT    CODE    FORMAT

CODEFILE    FORMAT

BANNERS

19-1

19-1

19-1

19-2

EXTERNAL    REFERENCING                               19-3

PARAMETER    PASSING

ERROR    HANDLING

EXAMPLE    UTILITY



CREATING   M20    SYSTEM   UTILITIES

OVERVIEW

This   section   gives   information   on   how  to     develop     an     assembly     language
utility   program  that   can   be   executed   as   a   PCOS   command.      When   the   command
routine   is  developed  and  tested,   it  can  be   given  an  appropriate   name     and
extension     and      used     as   a   transient   command   or   PSAVED   and   made   part   of   a
customized  operating   system.      For   information   on     names     and     extensions,
see   Part   2,   "Commands   and  Utilities."

The   command   routine  must   be   capable   of   being   loaded   and   executed     by     the
command     line     interpreter     and     properly   returning  control   to  the   system
after   its  task   is   completed.      1t  may  also   need   to  make   use     of     parameter
information     made     available     to   it  by  the   command   line   interpreter.     The
remainder  of  this  section  explains  these  matters.

OBJECT   CODE   FORMAT

Here   is  some   information   on   the  ob].ect   code   format   for   a   transient     util-
ity  and  how  to  create  the   source   code   for  the   required  object   codes.     The
subjects   covered  are   codefile     formats,     banners,      external     referencing,
parameter   passing,   and   error   handling.

CODEFILE   FORMAT

There   is  an  Olivetti   -  Microsoft   codefile   standard   for   all     M20     relocat-
able     utilities.          The   format   is   very  simple;   the   codefile  begins   with  a
2-byte  code,   the   codefile   configuration  type,   which     defines     the     format
further.        The   information  which   follows  the   configuration   code   tells  the
Command   Line   lnterpreter   or   PLOAD   where   the   initialization     code      is     and
where     the     main     program     is.        This     free-format   allows   for   some   useful
features.     It  automates  the  execution  of     initialization     code,     if    any,
required     by  the  utility.      1t  also  allows  the  execution  of  the   utility  to
start  at  a  specified  entry  point.

The   initialization  code   is   the   code   which  should  be   executed     only     once,
upon     the      loading     of     the     utility.      The   main   program   is   the   code  which
should  be  executed  only  at   run   time  and   not  at   load   time.

The   configuration   type  MUST   be  the   first   word   in   the   code   file.      This     is
accomplished  by  entering  "wval"  statements  at  the  beginn.ing  of  the  source
file,   and  by   making  sure   that   at   TLOC   time     the     segment     which     contains
this  code   is   imaged  first.

Configuration   type   is   an   integer   which  may  be   0,1,   or     2.        This   is   easy
to   remember   because   it  always   indicates  the   number   of  entry  pointers   that
follow.

19-1



Configuration
Type

0

main  entry  code

Explanation

There  are  no  pointers  to  either  the     main   program
or  the  initialization  program.     The   next   location
is  the  main  entry  of  the  utility  and     there   is  no
initialization  code.

The  next     location  is  a    pointer     to  the  initial-
ization  code.     What  follows  this     pointer     is  the
main  entry  point  of  the  utility.

Two  pointers   follow.     The  first  is     a  pointer     to
initialization  code,   and  the  second     is  a  pointer
to  the  main  entry  point  of  the  utility.

Type   1

initialization

main  entry  code

012

initialization
ptr

main  entry  ptr

Type  0   is   the  most   common   type   used  by  M20     utilities.        However,      if       a
utility       has     initialization  code,   then  either   type  1   or   2  must  be  used.
1f  the  entry  point  of  the  main  line  program   is  not  at  the  beginning  of    a
utility,   then  type  2  must  be  used.

Ti5rp±__C:'  W;c    TLdpe  '1  oiber   €t+lc\c\l€verbö*
BANNERS

The  banner,   as  used   for  PCOS  utilities,   has  a  very   rigid   format  which  was
adhered     to,      because     many   items   depended  upon   it.      PLOAD   depends  on  the
name   string  to  be  at  a   fixed  location  so   it  can     be     displayed.        DSTRING
depends     on     the     null     terminator     so  it  knows  the  length  of  the  string.
Labels  and  comments  allow  keeping  track  of  versions.        The     user     expects
all   utilities  to  behave  in  a  predictable  and  consistent  manner.     However,
the   user   may  have  more   allowance   in   his   or   her   choices   (and  may  not     need
a   banner  at  all).

19-2 PCOS   SYSTEM   PROGRAMMER'S   GUII)E



CREATING   M20   SYSTEM   UTILITIES

The   rules   followed   by  PCOS   software   development   were   as   follows:

1.      In  the  ob].ect   file,   the  banner  must  begin  at  the   fourth     byte     within
the  main   procedure   (code   segment).      lt  must   end   with   a   zero   byte.

2.      1n  the  source   file,   the  banner  must  be  preceded  by  the   label   str:   and
terminated  with  the  standard  comment.

3.      The  name  of  the   utility  must  be   spelled  out   in   full,   with  exactly   two
capital   letters;   those  used  to  invoke  the  util-   ity.     The  name  should
end  with  at  least  one  space,   to  separate   it  from  the   revision  code.

4.     The  example  below  has  a   revision  code.      By  definition,   is   it   kept   the
same     for     all     utilities   for  a   particular   revision.     In  the  example,
this   information   is   included   via   an   "include"   file   called   revnum.

5.      In  the  example,   a   development   code   is   used  to   indicate     the     develop-
ment     version.     1t  is   lower  case   letter  that  should  start  out  as   "a",
and     increment     once     with     each     modification.          For     release,     the
development   code   is   changed  to  a   blank.

The  exaiwple   which   follows   is   for   the     FCOPY     utility.        The     object     code
would        be     placed     on     disk     as     a     transient     command     under     the     name
"fcopy . cmd" .

str:          array   [*byte]      :=   'File   copy      '
array    [*   byte]    :=    'a   %r%00'       //   1NCR   DEV.    LEVEL    FOR   EACH   MODIF.

EXTERNAL   REFERENCIN6

Generally  speaking,   relocatable  utilities  cannot   reference   external     pro-
cedures     or     variables,   because  they  must   run   regardless   of   location.      ln
order   for   the  programmer   to   reference     necessary     external     values,      PCOS
provides     appropriate     system     calls.        A11   information   contained   in   PCOS
system  variables   that   is   required   for   use  when  writing  a   PCOS   utility     is
available  through  system  calls,   directly  or   indirectly.

PCOS   internal   routines   can  also  access     external     variables     through     the
"master     table."       However,     these  table  entries  are   subject  to  change  of
location  on  every  release  of  PCOS,   while   system   calls   are   independent     of
location.      Therefore,   command   routines   cannot   use  the  master   table.

System  calls  are  discussed  in  Part   2  of  this  manual.     A    detailed     refer-
ence   for   each  call   is  available   in  the  Assembler   User   Guide.

19-3



PARAMETER   PASSING

Most   utilities   expect   to   process   one   or     more     parameters.        The     command
line   interpreter  pushes  all   parameters  onto  the  stack  according  to  a  par-
ticular   format,   so  they  must  be  popped  by  the  utility    according    to     the
sa"}     format.       When     the  command   line   interpreter   calls  the   routine,   its
return  address  goes  on  top  of  the     stack.       Returning    via     this     address
allows     the     system     to  take  control   properly.     The  address  must  be  safe-
9uarded .

Then,   the  utility  pops  off  one  word,   which   is   "n",   the  number   of     parame-
ters.        The     command   line   interpreter   limits  the  number   of  parameters,   so
this  number   will   never   be   negative  and  will   never  be   larger   than   20   (hex-
adecimal     14).        Each   parameter   entry   is  a   long  word,   so  the   utility  must
next  pop  "n"  number   of   long  words   off  the  stack.      (The   first     one     popped
is     the     first     parameter  the  user  gave,   and  so  on.)     The  utility  must  be
careful   to   pop  exactly  "n"  long  words,   and  not   rely  on  the     number     which
is  expected,   because  the   user   can  enter  an  unexpected   command   line.

Here   is   an  example   of  the  stack   upon   entry  to   the     FCOPY     procedure.      The
command   line   was:

fc  filel   file2

SP   ->   1        return  address

parameter  entry  for   'filel '

parameter  entry  for   'file2'

The   format  of  the  parametef  entry  is  complex.      1t  is     an     address  pointer
where     the     segment  portion  of  the   long  word   is   "OR"ed  with  the  parameter
type.     As  an  illustration,

seg     |     type   |                  |   addr  offset

For   example,

1          86              1              03          1                               1                  OC00                          1

Where  the   pointer   is  <<6>>OC00   and  the   parameter   type   is   3.

The  parameter  type  must  be  extracted  from  the     entry,     by       clearing     the
low-byte     of     the  segment,   before  the  pointer   can  be  used.      1n  this  exam-
ple,   the  parameter   type   is   3  and  the  pointer   is  8600   0C00.

19-4 PCOS   SYSTEM   PR06RA"ER'S   6UIDE



CREATING   M20   SYSTEM   UTILITIES

The   format   of   item   pointed   to   depends   upon     the       parameter        type.        The
command   line   interpreter   passes  three  types  of   parameters   to   command   rou-
tines:

0                 null
2                 integer
3                string

There  are   other   types   of   parameters   used   within   PCOS,   especially     by     the
languages     supported     by   PCOS.      For   information   on   these   other   types,   see
the   "Data   Passing  Mechanism"   section   in   Part   3.

For   convenience,   a   brief  discussion  of   format   of     these     three     parameter
type5   is  given   below  along  with  notes   on   the   usage  of   these   types   by  com-
mand   routines.      More   details   are   given   in  the     "Data     Passing     Mechanism"
section.

Null  Parameters  and  Default  Values

Null   (or   nil)   parameters  are   put  on   the   stack  when  the   user   enters   a   del-
imiter     without     a     parameter     entry.        (The     parameter   entry   is   blank   or
null.)      The   command   routine   is   responsible   for   supplying     default     values
for   null   parameters.   Using   the   SBASIC   command   for   an   example:

sb   „5,512/CR/

The   SBASIC   command   has   four   possible   parameters.      1n   this   case,   the   first
two     entries   supplied  by  the   CLl   are   null.      The   command   routine  must   sup-
ply  default  values.

Missing  Parameters

Default     values     must     also     be     supplied     for     missing     parameters     when
appropriate.      For   example:

ps   /CR/

s;b   "5lc;Rl

ln  the  case   of  PSAVE,   an  optional   file   identifier   could     have     been     sup-
plied.        The     command     routine     is  given   zero   parameters   and   supplies   the
default  file   identifier.      1n   the  case   of     SBASIC,      three     parameters     are
supplied   (two   in   null   form).      The   command   routine   will   supply  the   fourth.

1nteger  Parameters

lf  the  parameter   is  an   integer,   then  the  pointer  points  to  a   2-byte  array
containing     the     value.      This   array  may   or   may   not   be   at   an   even  boundary
address,   so  the  value  must  be   loaded   into   registers  one  byte  at     a     time.
For     example,      if     the  pointer   entry   is   8602   0C00,   then  after  the  type   is

19-5



extracted  the  pointer   is   8600  0C00.

pointer  to   integer: <<6>>OCOO :

1                  8600                    0C00                               1        --->    1           001           051

1n  this  example,   the   integer   value   is   5.

String  Parameters

lf  the  parameter  is  a  string,   then  the  pointer  points  to  a     3-byte    array
where  the   first  byte  contains  the  length  of  the  string,   and  the  other  two
are  the   integer  offset  of  the  pointer   to  the     string.        (The     segment     is
assumed     to     be  the   same  as  before.)   Again,   this   offset  may  or  may  not   be
at   an  even  boundary  address,   so   it  must   be   loaded   into   registers   one   byte
at  a   time.

For   example,   if  the  pointer     entry     is     8603     0C00,     after     the     type     is
extracted  the  pointer   is   8600   0C00.

pointer   to  string:

8600                           0C00               1      --->

<<6>>OCO9 :

<<6>>OC00 :

05          1                   1          OC              1          09

'h,       I           ,e'           1           '1'           1           '1'           1           'o'

1n  this  example,   the   string   length   is   5.

ERROR   HANDLIN6

1f   only   we   could  assume   no   errors   will   occiir,   our   code   could     be     reduced
in     size     by  90%.      However,   we  should   still   check   for   errors.      There   is   a
standard  method   for   doing  this   in   PCOS   transient   utilities.

A11   the   PCOS   errors   have   an   error   code   between  0      and        127.         The      '.PCOS
Error     Codes"     section   in  this  part  of  the  manual   describes  these  errors.
The  section  contains  a   sample   include   file  defining  all     errors     as     con-
stants.        When     referencing  an   error   code   in   your   utility,   you   should   use
the     constant     name     rather     than       the       number.          For        example,        use
"file  exists  err"  rather  than  "58".

All   PCOS   compoflents   and   utilities,   as   well   as     BASIC,      assume     the     error
code     is   in  register   r5.      If  r5   is  zero,   then  there   is  no  error.     Because
all   error  codes   fit   into  the  lower  byte  of   r5,     the  high  byte  can  be   used
for     reporting     a     parameter     number,      if  desired.      Parameter   numbers  are
optional,   and   if  not   reported,   then  rh5  should  be   zero.

19-6 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



With   regard  to  error   handling,   there   are   two     responsibilities     prior     to
exit.      First,   the   message  must  be   displayed.      This   i5   done   by   system   call
#88,   error   message   display.      PCOS   will   display     the     appropriate     message
for  the  error   in  r5.

The  second   responsibility   is   to   retain   the   error   code   in   r5   upon   exit.

Here   is   an   example:

clr           r5
jr               normal   return

error   hand   routineT
la        -r5,error   codenum
sc              #Error

normal   return:
ldT           rrl4,return  address
ret

EXAMPLE   UTILITY

//  no  errors  to  report

//  errors  to  report

On   the   following   pages   is   an   example   utility,   FCOPY,   which   may   be   used   as
an     example      for   Z8000   assembly   language   programming   demonstrating   conf i-
guration  code   setup,   banners,   system     calls,      parameter     proces5ing,     and
error   handling.

fcopy   MODULE

SSEGMENTED

! ================================================================
edit  history
who            date                                                description
Ken             4/13/82                       Added   copy   protection   schemes.

================================================================ !

#include     <errcons.i>
#include     <constants.i>

CONSTANT

STRING    :=    3
GL0BAL
fc    PROCEDURE

ENTRY

fcstart:     wval   0
jr          start

internal

//error   code   names
//system   call   names

//  parameter   type

str:          array   [*  byte]:=   'File   Copy   '                                   //program   id
#include   <revnum.i>

array    [*   byte]     :=    'c    r~'Ür®~®OO'        //    INCR    DEV.    LEVEL    EACH   MODIF.
internal

retadr              long
param  count  byte

start :
1da          rrl2,str
sc            #Dstring

//display  program   id



clrb        param   count
pop          ro ,@rF14
clr         r2
1d             r3,ro
sll          r3'#2
addl        rr2,rrl4
1dl         retadr,rr2
test      ro
jp             z,fc   param  bad

incb        param   count
popl        rr2,   @rrl4
cpb            RL2,    #STRING

jp             ne,fc   param  bad
clrb        RL2
clrb         RH6
ldb            RL6,   @rr2
inc          r3
ldb            RH1,    @rr2
inc         r3

1db             RL1,    @rr2
1d            r9,   rl
ld            r8,   r2
incb       param_count
dec          ro
jp            z , fc_param_bad

popl        rr2,   @rrl4
cpb             RL2,    #STRING

jp            ne , fc_param_bad
clrb        RL2
clrb        RH7
ldb           RL7,   @rr2
inc         r3
ldb            RH1,    @rr2
inc          r3
1db             RL1,    @rr2
ld           rll,   rl
ld            rl0.,   r2
dec         ro

fc_paramT::d:

ldb
jr

nofile  error:

19-8

//number   of  parameters   passed

//compute  return  address
//save  return  address

//   FIRST   FILE   PARAMETER
//  rr2  =  ptr  to  first  file
//  check  for  string  type

//  r6  =  filename  len  of  file  1

//  get  first  half  of  ptr  offset

//  second  half ,   now  offset   in   rl

//  rrs  is  real  ptr  for  f ile  1
//   SECOND   FILE   PARAMETER
//  one  less  parameter

//  rr2  =  ptr  to  second  file
//  check   for  string  type

//  r7  =  filename   len  of  file   2

//  9et  first  half  of  ptr  offset

//  second  half  now  offset  in  rl

//  rrl0  is  real  ptr  for  file  2
//  one  less  parameter

!   rest  of  utility  code  goes  here   !

RH5,param   count

:::#:ram_err

PCOS   SYSTEM   PROGRAMMERts   6U10E



CREATING   M20   SYSTEM   UTILITIES

1d            r5,#file   not   found   err

fc   quit:
ldl          rrl4,retadr
ret

END   fc

!    internal   procedures   go   here   !

END   fcopy

19-9





20.  SYSTEM  CONFIGURATION



AB0UT   THIS   Cl+APTER

This   chapter   describes    the    relationship   between    hardware    system   conf i-

guration    and    the    operational    environments.     The    chapter    also    contains
some     examples     of     hardware     system     configuration     changes    that    require
software   support   using   PCOS   utilities   or   custom   software.

CONTENTS

OVERVIEW                                                                     20-1

RELATI0NSHIP    0F    CONFIGURATloN

AND    ENVIRONMENT

PCOS

BASIC

0THER    LANGUAGES

MODIFYING    THE    PCOS

ENVIRONMENT

SOFTWARE    RE-CONFIGURATI0N

OF    HARDWARE

PRINTERS

DISK    FORMATS

20-1

20-2

20-3

20-3

20-3



SYSTEM   CONFIGURATI0N

OVERVIEW

This   section   describes   the   relationship  between     hardware     system     conf i-
guration     and     the     operational   environments,   which   consist  of  the  system
capabilities  available   to  the   user.     The   section  also   contains   some  exam-
ples     of  hardware  system  configuration  changes  that   require   software  sup-
port   using  PCOS   utilities  or  custom  software.

This   section   together   with  the   next     two     make     a     complete     set.        "PCOS
Environment     and     Global     Commands"     gives     an     overview  of   the   utilities
available   to   define  the   BASIC   and   PCOS   environments.      "Customizing  a   PCOS
System"     concludes     the     set     of     three     sections  with  an  overview  of  the
methods  available   in   PCOS   to  configure  a  system   for  a   particular     instal-
1ation   or   environment.

FIELATI0NSHIP   0F   CONF16URATI0N   AND   ENVIRONMENT

The   figure   below     shows     the     fundamental      relationships     among     the     M20
hardware       configuration,      the     Professional     Computer     Operating     System
(PCOS),   BASIC,   the   PCOS   utilities   and   commands,   and   application   programs.

20-1



Fig.      20-1      Configuration  and  Environment

PCOS

The  hardware   configuration   provides   the   fundamental   universe   of  possibil-
ities     for     use  of  the  operating  system  and  the  other  software   resources.
PCOS   (or  another  operating  system)   provides   functionality  to     the     poten-
tials     of     the   hardware.      The   PCOS   kernel   controls  the   system  peripherals
and     provides     input/output     capability.        The     kernel        manages       system
resources     such     as     system     memory   and  the   real-time   clock,   communicates
with  the   user   via   the  command  line   interpreter,      and     schedules     internal
activities.        PCOS     contains     many     other   routines  which   are   brought   into
action   by  the  kernel   as   needed.      Some  of     these     software     resources     are
simply     part     of     PCOS  but   not   part   of  the   kernel.      Others   have   names   and
are   visible   to   the   user   as   PCOS   commands   and   utilities.

20-2 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



SYSTEM   CONFIGURATI0N

BASIC

BASIC   uses   PCOS   resources   and   supplies   resources   of   its   own   to   the   appli-
cation      programmer.         When      BASIC      is      running,   PCOS   is   hidden.      The   user
interacts   with   the  BASIC   operational   environment   which   provides      its     own
services  and  capabilities.

When  an   application   program   written   in   BASIC   is   running,    it     defines     the
user      environment   within  the   possibilities   of   BASIC.   However,   PCOS   utili-
ties   can   be   called   from   BASIC.

OTHER   LANGUA6ES

Commands,   utilities,   and  application   programs   that  are   written   in     assem-
bly   language   or   a   compiled   language   such   as   PASCAL   or   C,   all   present   PCOS
resources   to  the   user   directly.      Some     of     these     may     enhance     the     PCOS
environment     to     the     degree  that   they  present  a   new  operational   environ-
ment.      The   Video   File   Editor   is   an   example.

MODIFYING   THE   PCOS   ENVIRONMENT

PCOS  makes  available   to  the   user   several   utilities   that     allow     modifica-
tion     of     the   PCOS   and   BASIC   environment.      They   are   called   the   Set   System
global   commands.      The   next   section   "PCOS   Environment   and   Global   Commands"
provides  a  general   discussion  of  this   important   topic.

SOFTWARE   RE-CONFIGURAT10N   0F   HARI)WARE

The  possibilities   of  M20  hardware   configuration  are   presented   in  Part     1.
They     include   adding  expansion   memory,   using  a   color   display,   and   provid-
ing  optional   peripherals  and  communications   methods.

1n  addition,   there     are     possibilities     of     hardware     configuration     that
require     software     support   using  PCOS   utilities   or   custom   routines.      Some
of   these  are  presented   below.

PRINTERS

lt   is  possible   to   use  both  a   serial   and  a   parallel   printer   although     PCOS
supports     only     one     printer     as     FID  18.      The   easiest   approach   is   to   use
SFORM   and   configure   two   versions   of   PCOS,   one      for      each     printer.        Then
either  printer   can  be  used  alternately  as   desired.

Another  method   is   to   configure   the   parallel   printer   using   SFORM,   and   then
to     use     the     RS232     interface  to  support  a  serial   printer.   This   requires
work,   but  allows   both  printers   to  be   used   together.

1n  some   cases,   non-standard   printers   can  be   supported     using     SFORM     with
the     TRANSP     (transparent)     setting     for     the  printer   type.     This   setting
causes  all   values   in  the   text   file   to  be   sent  without  modif ication,   which
allows  sending  of  special   control   sequences.

20-3



However.   using  a   non-standard  printer   loses  many  of  the     design     benefits
of     PCOS     which     so     closely     integrate     the     printer     with     other   system
resources,   such  as   font  definition  and  graphics.

DISK  FORmTs

The   "Disk  Driver"  section  of  Part   2  mentions   that  the  driver   can     support
certain      non-Olivetti      formats.        These   include   ECMA   and  MS-DOS.      The   key
design  point   for  PCOS  support  of  other  formats   is  that  the  order  of     sec-
tors     within    a     track     is   independent  of  the  disk  driver,   which  does  not
have  internal   tables  with  this   information.     The  order  of  sectors   is     set
by  the   format   utility,   VFORMAT.

The  order  can  be  altered  by  developing  a   format   utility  that  uses  a     dif-
ferent     order.       Therefore,   so  long  as  the  desired   format   fits  within  the
general   range  that  PCOS   supports   for   sector   size  and  number   of  tracks,   it
can  be   used.     Of  course,   a   different   order   of  sectors  may  degrade  perfor-
mance  by  causing  the   driver   to  miss   a   sector  and   have  to  access   it  on   the
next  rotation.

20-4 PCOS    SYSTEM    PROGRAMMER'S    GUIDE



21.   PCOS  ENVIRONMENT AND
GLOBAL  COMMANDS



AB0UT   THIS   CHAPTER

This    chapter   explains   the    relationship   between   PCOS   and   the   operational
environments    that   provide   particular   capabilities   to   the   user.    An   over-
view    is    given    of    all    the    global    commands    that    collectively   define   the
PCOS   and   BASIC   environments.

CONTENTS

PCOS    ENVIRONMENT                                               21-1

GL0BAL    COMMANDS

GL0BAL    COMivIAND    0VERVIEW

PSAVE    AND    DEFAULT    0PT10NS

lNTERACT10N    0F    BASIC    AND

GL0BAL    COMMANDS

SBASIC

SSYS     (SET    SYSTEM)     AND

DISPLAY    MODE 21-4



PCOS    ENVIRONMENT    AND    GL0BAL    COMMANDS

PCOS   ENVIRONMENT

PCOS   support   for   the   M20   system   provides   three   operational      environments:
PCOS   itself ,   BASIC,   and  the   Video  File   Editor.      Each   operational   environ-
ment  provides   particular   capabilities   to  the   user.      PCOS     is     fundamental
to     the     other     two:        BASIC   and  the   editor   require  support   services   from
PCOS .

6L0BAL   COMMANDS

PCOS   provides   global   commands   which  are   utility  programs   that     allow     the
user   to  change   "global   parameters."     These  parameters   are   internal   values
that   collectively   define   a   PCOS   environment.

The   global   commands   can   be   used   by   non-programmers      to     def ine     the     PCOS
environment   and   the   BASIC   environment.      The   commands   are   documented   indi-
vidually   in   the   User   Manual.      An   overview   of   the   global   commands   follows.

GloBAI   COMMAND   0VERVIEW

Like   other   PCOS   commands,   the   global   commands   have     standard     or      default
values.        However,      once  a   global   parameter   has   been   set   by  a   global   com-
mand,   that  setting  remains   in  the  system   during  successive     working     ses-
sions  until   it  is   reset.     There  are  a   few  exceptions  to  the   rule  that  the
most   recent   setting   is   the  default   value.      Exceptions   are   noted  below.

1.      SBASIC   (sb)    sets   the   BASIC   programming   environment.

Files                    The   number   from   0  to   15   that   can   be   opened   concurrently.

Bytes                     Amount   available   within   57K.

Windows                Preallocated   memory   space   from   1    to   16.

Record   size     The   maximum   record   size   from   1    to   4096     bytes     available
for   random   files.

The   effect  of  parameter   settings   on   user   memory  allocation   is   as   fol-
lows :

-       Each  window  after   the   first   requires   108  bytes.

-       The   file  and  record  settings   interact  to  require   storage     accord-
ing  to  the   formula:

829   +   F(578   +   R)

where   F   is   the   number   of   files   that   can   be   open   and   R   is   the   max-
imum     record   size.      Note  that   the  maximum   record   is   allocated   for
every  file.

21-1



2.      SCOMM   (sc)   sets   the   transmission   environment   for   an   RS-232-C   communi-
cations  port.     For  more  details   refer  to  the   "1/0  with  External   Peri-
pherals   User   Guide."

3.      SDEVICE   (sd)   displays  the  names   of   devices   in   the   system   and     permits
renaming     of   devices.      A   new  device   name   may  be   assigned   using  a   name
consisting  of  13  characters  or   less.

Default   Device   Names

prt:     --
Cons:   --
Com :      --
coml  :   --

com2:   --

ieee:   --

PCOS   Printer   Driver
PCOS   Console   Driver   (video   and   keyboard)
Standard   RS232-C   communication   port
First   RS232-C   communication   port   on
Twin   Board
Second   RS232-C   communication   port   on
Twin   Board
lEEE-488   driver

Coml,   com2,   and   ieee   require   optional   hardware   boards   for   implementa-
tion.

4.     SFORM   (sf)   specifies   type  of  printer,   printer     interface      (serial     or
parallel),   and  printing   format.

The   SFORM  command   is   used   to   set   the   printing  environment.      lt   speci-
fies     the     type     of     printer     being  used  and  the  printing   format,   and
allows  the  user  to  change  parameters   in  the  printer   driver.

SFORM   parameters   are:

auto                This   parameter   specifies  whether   default   values   are     used,
or      new      values      specified   by   SFORM   (PSAVED   or   not).      Auto
OFF  always   returns   to  the  default   values.

ptype              The  ptype  parameter     specifies     the     type     of     printer     or
TRANSP      (transparent   mode).      1n   transparent   mode   file   con-
tents     are     printed    exactly    as     specified     in    the     file
irrespective  of  the  type  of  printer.

lines              The   lines  parameter   specifies  the  number   of     lines     to     be
printed     on     each     page     before  automatic   form   feed.      Zero
implies  that  no   form  feed  will   be   issued.

spacing         This   parameter   specifies   the  number   of     inter-1ine     spaces
between   printed   lines.

compress       This  parameter   specifies   the  style   of   the  character.        The
width     of  the  character   can  be  specified  and  whether   it   is
to  be   normal   print   or   bold  print.

interface     This  parameter  specifies  whether  the  printer   is  to  be  con-
nected  to  the  serial  or  parallel   interface.

21-2 PCOS    SYSTEM    PROGRAMMER.S    GUIDE



PCOS    ENVIRONMENT    AND    6L0BAL    COMMANOS

title This  parameter   defines  an  optional   title  to  be  printed     at
the  top   of  each   page.

5.      SLANG   (sl)   selects   the   current   keyboard   from  the     national      keyboards
for     various     languages.      This   command   can   be   used   either   to   directly
select   one   of  the   keyboards,   or   to   display  the  menu  of  the     available
country        configurations.        The     new     keyboard     can     be   changed   using
another   SLANG   command,   or   it   can   be   made   permanent      using      the     PSAVE
command .

6.      SSYS   (ss)   sets   the   following   system   parameters:

Date                       Set   date.      Form   depends   on   national   keyboard.

Time                          Set   time,    hh:mm:ss.

Disk  Verify     Verify  on,   verify  off .      Verify  on   causes     data     that     is
written  to  diskette  or  the   hard  disk   to  be   read  back  and
checked .

Extent   Size     The   number   of  sectors   to  be  allocated     to     a     file     when
more   space   is   required,   range   1   to   1087.

Display               Select   16   lines   of  64  characters   each,   or   25   lines   of  80
characters  each.

Disk   Time          Select   the   number   of   seconds   the   motor   remains     on     fol-
lowing     the     last     access     to  a  diskette   in  a   particular
drive,    range   1   to   30.

Date  and   Time   parameters   are   incremented   until   the     sys-
tem     is  physically  reset  or  switched  off ,   then   revert  to
the   default   values.      Changes     to     other     parameters     are
valid     until     respecified     or     until   the  working  session
ends.      With   the   exception   of   Disk   Time,   modified   parame-
ters   can   be   permanently   retained   using   PSAVE.

For   additional   information   on   the   Set   System   global      commands,      refer     to
the   PCOS   0perating   System   User   Guide.

PSAVE   AND   DEFAULT   0PT10NS

Different   versions   of  PCOS   can  be   configured  by  using   different     settings
of     these     global   parameters  and  PSAving  the   setting   (with   certain  excep-
tion   noted   above).      The   configuration   selected   and     PSAVED     then     becomes
the   current   system   configuration   when  that   PCOS   is  booted.      (PSAVE   copies
PCOS,   and   the   new   settings,   to   a   new   PCOS.file.)         The      user      can,      thus,
have     several     system  disks,   each  configured   for  a   certain   task,   and  con-
taining   the   system   settings   needed,   any  PLOADED   utilities   which     will     be
used   in   the   work   session.

21-3



1NTERACTION   0F   BASIC   AND   GL0BAL   COMMANDS

BASIC   has   the   capability   of   executing   PCOS  commands,   including   the  global
commands,      by      using     the     EXEC   or   CALL   verbs.      Therefore,   some   questions
arise   which  are   answered   below.

SBASIC

Executing   SBASIC   while   in   BASIC   has   no   effect   on   the   current   BASIC   param-
eter   settings,   which   cannot  be   changed   dynamically.      The   new   BASIC   param-
eters  will   take  effect   the  next  time  BASIC   is   loaded.

SSYS    (SET   SYSTEM)   AND   DISPLAY   MODE

Executing   SSYS   within   BASIC   to   change   the   display   mode     causes      problems.
When     BASIC   is   initialized.   it   reads  the  current   display  mode   setting   (16
1ines  of  64  characters   or   251ines   of  80  characters).        BASIC     uses     that
information     to  control   text  and  graphic   display.      1f  the   display  mode   is
changed   while   BASIC   is   operating,   BASIC   will   attempt   to     operate     in     the
prior     mode     while     PCOS     supports     the     changed     mode.        The   results   are
unpredictable  and   sometimes   unsatisfactory.      1f   it   is   unavoidably     neces-
sary     to     change  character   spacing  while   in  BASIC,   use  the   following  spe-
cial   case   of  the  window  statement:

W  =  WINDOW   (0,0,vertical   spacing,horizontal   spacing)

21-4 PCOS    SYSTEM   PR06RAMMER'S    GUIDE



22.   CUSTOMIZING  A  PCOS SYSTEIVI



ABOUT   TllIS   CttAPTER

This    chapter    t.eviews     the     software     resources    and    utilities    available
to    the    system    programmer    for    customizing    PCOS    to    the    requirements    of

particular   installations  and  applications.

CONTENTS

SOFTWARE    CONFIGURATI0N                        22-1

STANDARD    INITIALIZATI0N                    22-1

NON-STANDARD    INITIALIZATION       22-2

CUSTOMIZING    THE    KEYB0ARD                 22-2

CKEY                                                                                 22-2

PKEY                                                                               22-2

GENERAL                                                                        22-3

CUSTOMIZIN6   FONT    CHARACTERS       22-3

SET    SYSTEM    GL0BAL    COMMANDS           22-3

1NCORPORATIN6    TRANSIENT

COMMANDS                                                                        2 2-4

SAVING    THE    RECONFIGURED

SYSTEM                                                                         22-4

PSAVE                                                                        22-4

THE    PCOS.SAV    STANDARD    FILE          22-4

THE    PSAVE    PROCEDURE                                   22-5

PSAVE    AND    MEMORY    EXPANSI0N           22-5

B00T    BLOCK    UPDATING                                  22-5

A    PCOS    SO0TABLE    FILE                              22-6

B00TSTRAP    BACKGROUNO

1NFORMAT10N                                                            22-6

B00T    ROM    1.0                                                        22-6

B00T   ROM   2.0                                                     22-6

THE    PRUN    COMMAND                                               22-6

SUMMARy 22-7



SOFTWARE   CONFIGURATI0N

PCOS   is   unique   among   operating   systems   because   of   the     broad     flexibility
accorded     the     system   programmer   in   configuring  the   system   for   particular
installations  and  applications.      Software   configuration   involves   the  ele-
ments     discussed     below.        A     summary     at     the     end      reviews   the   software
resources  and   utilities  available   to  the  system  programmer.

STANDARD   INITIALIZATloN

Standard   initialization   begins   once   the   M20   system   is   powered   on.        Diag-
nostics     are     run,     then     a     search   for  a  bootable   file  begins.   The   first
place   checked   for   this   file   is  on  the   hard   disk   drive   10,      if     available.
If     not     found     there,   the   drive  0   diskette   is   searched,   then  the   drive  1
diskette.   The  bootable   file  must  be   the   first   file   on  a     diskette.        Once
the     file     has     been     found  and   PCOS   is   in   effect,   the   system   proceeds   in
search  of  an  optional   initialization   file   in   the   following  order:

NAME                        DESCRIPTI0N

INIT.CMD         Any   program   in   machine   language,    such   as   a   PCOS   command.         The
system     loads     the     file   into  system  memory,   executes   it,   then
purges   it.      The   system   would   remain   in   the      PCOS     environment,
unless     the   init   routine   brought   up   BASIC   by   using  a   Call   User
Command .

1NIT.SAV        A   program   with   the   same   characteristics   as   an   lNIT.CMD   program
and      loaded      only      if      lNIT.CMD     does      not     exist.      Thesystem
retains   it  after   execution   for   the     duration     of     the     working
session.

1NIT.BAS         Any   BASIC   program,    loaded   if      neither       lNIT.CMD      nor       INIT.SAV
exists.      The   system   loads   appropriate   utilities   (BASIC.CMD   and
BASIC.ABS),    enters   the   BASIC   environment   and   executes   the   pro-
gram.         The      system     would      remain      in     the   BASIC   environment,
unless   the   init   routine   returned   to   PCOS   with     a      SYSTEM     com-
mand .

The  standard  initialization  process  also   happens  after  a   logical   reset  of
the      system      and      after      execution   of   PSAVE   or   PRUN   command.      With   PSAVE,
PCOS  saves   the  current   configuration   of  the  operating  system  on     a     file,
and  then   reboots  the  system,   using  that   file   (if  on   drive  0:).     Following
a   PRUN   command,   the   system   searches   the   drives   for   the   file   (in  any   loca-
tion)      specified     by  the   PRUN   command.      1n  these   cases,   the   startup   diag-
nostics     are     not     run     and     therefore     the     non-standard       interventions
described   next   cannot   be   done.      PRUN,   however,   can   cause   a   different   ver-
sion   of   PCOS   to   be   initialized.      PSAVE   and   PRUN   are      discussed      later      in
this  section.



NON-STANDARD   INITIAL IZAT10N

Non-standard   initialization,   which  permits     operation     in     unconventional
modes     or   for   special   purposes,   is   substituted   for  the   standard   procedure
by  pressing   one   of   five   keys  while   the   diagnostic   routines   are   being  per-
formed.        /L/     and     /D/  are   used  to  cause   looping   during   startup   diagnos-
tics.     /F/,   /8/,   and   /S/  cause   initialization  to  proceed  on  an     alternate
path.     They  are   keyed  during  startup   diagnostics,   then   take  effect   later.
They   have   the   following   effect:

/F/       First  examine   the  diskette     drive,      rather     than     the     hard-disk
drive,   for  a  bootable   file.

/8/        Enter   the   BASIC   command   mode   without   execution   of   an   initializa-
tion   file.

/S/        Enter   the   PCOS   command   mode   without   execution   of   an      initializa-
tion   file.

cusTOMlzlNG   THE   KEVBOAlm

CKEY

The   CKEY  command   is   used   to   change   the   value   of   a   key   or   to   set   the   shift
lock      for      the     alphanumeric   and/or   numeric   keypads.      Use   /CTRL/   or   /COM-
MAND/   in   conjunction   with  assignment   of   the   new   value   to  avoid   cancelling
the     original      function     of     the     key.        The     new   value   is   retained   until
changed   by  another   CKEY   command,    replaced   as   part   of   the   conversion   table
by     the      SLANG   command,   or   disabled   by.the   end   of   the   working   session;    it
can   be   retained   permanently   by   using     the     PSAVE     command.        For      further
information,      5ee   the   discussion   in   the   ''Keyboard   Driver"   section   of   Part
2   or   the   PCOS   0perating   System   User   Guide.

PKEY

PKEY  can  be   used   to   assign  a   string   of   characters   to   a     single     key.        1n
this     way,      single   keystroke   commands   can  be   implemented,   or   data   strings
that  are   oftt.n   used  can  be   entered  with     a     keystroke.        Values     of     keys
(exf :ep€      /S;HHFT/  ,      /C:IF(L|  ,      |Cf JNMNND|  ,      /F(FSEJ|  ,    /S^/  ,    r:2/.   EiTid   /C;R`/   ciin
changed.      Use   /CTRL/   or   /COMMAND/   in   con].unction   with   assignment      of      the
new     value     to     avoid     cancelling  the   original   function   of   the   key.      Note
that   the  new  value   is   retained   for   the   duration   of     the     working     session
(or   permanently   by   using   PSAVE)   and   reduces   the   amount   of   user   memory.

PC05    SYSTEM   PROGRAMMER `S   GUIDE



CUSTOMIZING   A   PCOS    SYSTEM

GENERAL

Values   assigned      using     CKEY     and     PKEY     remain     effective     when     another
environment     or     application     program     is     entered.        Care  must   be   taken,
therefore,   to  avoid  disabling  functions  that  may  be   required   in  the  other
environment   or   program.

CKEY  and   PKEY  are   discussed   in   the   "Keyboard   Driver"   section   of     Part     2.
For  more   detailed   information,   see   the   PCOS   0perating   System  User   Guide.

CUSTOMIZIN6   FONT   CHARACTERS

To  change     shapes     of     existing     characters     and/or     add     characters     for
display,      RFONT     and     WFONT     are   used.      This   feature   is   useful   for   incor-
porating  non-Roman  characters  and/or   small   graphic   symbols     for     text     or
games,     but   full-screen   illustrations  are   not  accommodated.     The   special-
ized  font  sets  can  be  printed  by  all   the     dot-matrix     or     dot-matrix-type
printers,     but     not     by     the     daisy-wheel   printer.        The   font  sets  may  be
stored  on  diskettes   for  use  each  time  particular     characters     or     symbols
are   required,   or   may  be   incorporated   in   the   system   by   using   PSAVE.

RFONT   and   WFONT   are   discussed   in   the   "Keyboard   Driver"   section   of   Part   2.
For   further   information,   see  the   PCOS   0perating   System  User   Guide.

SET   SYSTEM   GLOBAL   COMM"DS

The   Set   System  global   commands   can   be   used   by   non-programmers     to     def ine
the      PCOS      environment      and  the   BASIC   environment.      These   global   commands
are   discussed   in   the   "PCOS   Environment   and   Global      Commands"     section     of
Part   3.      They  are   described  briefly  below:

SBASIC        sets   the   BASIC   programming   environment.

SCOMM          sets   the   transmission   environment   for   an   RS232-C      communications
port.

SDEVICE      permits   renaming   system   device   names.

SFORM         specifies  the  printer   interface,   type  of   printer,     and     printing
format .

SLANG          selects   the   national   keyboard.

SSYS             specifies   fundamental   PCOS   parameters,   including   date     and     time
settings,   display  mode,   and  disk  control   parameters.

22-3



1NcORPORATIN6   TRANSIENT   CorMANDS

PLOAD  and  PSAVE  are   used  to  tailor   the     operating     system     to     particular
installations     or     applications.     Transient   commands   (all   commands  except
PLOAD,   PUNLOAD,    and   LTERM)   with   the   extension    .CMD   are   loaded   into   memory
only     long     enough     for   execution.      Transient   commands   with   the   extension
.SAV  are   loaded   into  memory,   executed,   and   retained   for   the     duration     of
the     working   session.      The   PLOAD   command   is   used  to   retain   transient   com-
mands   in     memory,     without     initial     execution,      even     after     the     system
diskette  is  removed,   for  the  duration  of  the  working  session.

SAVIN6   THE   RECONF16URED   SYSTEM

If  the  reconfigured  operating  system   is   required  for   future     use,     incor-
porating   desired   PLOADED   commands,   PKEYED   definitions,   and   global-command
parameters   it  can  be  stored  permanently  on  diskette  or  hard  disk  by  using
the   PSAVE   command.

PSAVE

The  PSAVE   utility  permits  customizing  of  the     operating     system     under     a
specific     environment.      The  customized  PCOS  system  configuration   is   saved
on   disk  and  can   be   used   at   any  time   by   using     the     PRUN     command     or     the
bootstrap     procedure.     The  PSAVE   utility   can   save  the  system   under  a   spe-
cial   name   to   be   used     by     a     PRUN     command     or     under     the     default     name
PCOS . SAV .

1f  the  system   is   saved  without  a   name,   the   file   will   be  made     a     bootable
file  and  will   be  accessed  by   its   location   rather  than   name.      1t   cannot  be
password  protected.   If  the  system   is   saved  by  name,   it     can     be     password
protected.        PRUN     will     be   used  to  access   it,   and   it   can   be   located  any-
where.

THE   PCOS.SAV   STANDARD   FILE

0n  a  distributed  PCOS  diskette,   the  operating  system     is     stored     in     the
first     file,     PCOS.SAV.      (The   filename   is   not   important   for   the  boot  pro-
cess:)   This  standard   file   is  the  minimum  operating  system   required  to   run
PCOS.      New     utilities      can     be     added     and     some   system  parameters   can   be
changed   using  PSAVE,   but   no   portion   of   the   standard   PCOS.SAV   file   can     be
deleted.

22-4 PCOS    SYSTEM    PROGRAMMER.S    GUIDE



CUSTOMIZING    A    PCOS    SYSTEM

THE   PSAVE   PROCEDURE

The   action   of   the   PSAVE   command   is   as   follows:         all      memory     is     checked
and,     when     a     block   contains   information,   data   are  stored   in  a   file  with
the  block  address  and  the  bytes  count.      PSAVE     creates     a     bootable     file
including     all   memory,   parameters,   configuration,   and  utilities   loaded   in
memory  and   saved   on   disk.

PSAVE   AND   MEMORY   EXPANS10N

A   PCOS   system   that   is   PSAVED   on   an   M20   with   expansion   memory   may   not   boot
up      on     an     M20     with      less   memory.      During   PCOS   startup,   the   PCOS   kernel
looks   at   memory  configuration   information   supplied   by  the   ROM   diagnostics
and  then   configures  memory  according  to  the   requirements   of  the   fundamen-
tal   PCOS  and  the  additional   saved  material.      1f  memory     capacity     is     not
sufficient,   PCOS   will   give   an   error   message   and   die.

B00T   BLOCK   Upl)ATIN6

1n   addition   to   writing   the   PCOS   file   on     disk,      PSAVE     updates     the     boot
block     to     specify     the     address  of  the   file.   1n  this  way  the   new  file   is
automatically   loaded  as   the   PCOS   file.

1t   is   important  to  note  the   following:

-        if  a  disk  contains   several   PCOS   files,   only  the   file   last     PSAVED     is
automatically   loaded  by  the  bootstrap

-       copying  a   file   using  the  FCOPY  utility  does   not   update   the  boot  block
and  the  file  just  copied  is  not  automatically  booted  unless   it   is  the
first   file  on  a  new  diskette

-       on   hard   disk,   PSAVE   must   always  be   used   to     create     a     bootable     file
because  the   first   f ile  is  not  automatically  booted  if  bad  sectors  are
present.

The   user   can   save   an   automatically   booted   PCOS   file   with     PSAVE     or     copy
the     file     to  another   disk,   saving  a  copy  of  a  PCOS   file  that  will   not  be
automatically  booted.

For  more   information  about   using  this   command,   refer   to  the  PCOS     0perat-
ing   System   User   Guide.

22-5



A   PCOS   B00TABLE   FILE

The   structure   of  PCOS   files   on   disk  permits   the     bootstrap     to     load     any
configuration     and  even  a  different  operating  system.     A  bootable   f ile   is
divided   into   records,   each  comprising  a   header  and  a   block  of  data.        The
header     contains     information     such     as  the  address   in  which   data   must   be
loaded  and  a  count  of  data  bytes.     After  the  last   record   is     loaded,     the
bootstrap  begins  execution  of  the   code   just   loaded   in  a   particular  memory
location.     The   bootstrap   is  a  generalized  procedure,     and     there     are     no
constraints  about  the  contents  of  the  PCOS   file.

B00TSTRAP   BACKGROUND   INFORMATI0N

The  bootstrap,   a   small   program  contained   in   ROM,   is   started  automatically
after  a   reset.     The  bootstrap  examines  the  drive   for  a  bootable   file  and,
if  found,   loads   it  and  starts  execution.

B00T   ROM   1.0

1n   Boot   ROM  1.0,   the   first   release,   the  bootstrap   searches   the   first   sec-
tor     of     track  0,   side  1,   for  a  bootable  file.     This   search   is  made   first
for  the  drive  0  and  then   for   the  drive     1.        1f     a     nonbootable     file     is
discovered     in     this     position,     an  error  message   is   returned.     Note  that
PCOS  must  always  occupy  the   first   position   on  a   system  diskette.

B00T  ROM  2.0

The  bootstrap   release   Boot   ROM  2.0   uses   a   specific   location   on     the     boot
block    as     the  address  of  the   first  sector  of  a  bootable   file.   Therefore,
under   the   correct   condition.s,   PCOS  can   reside   on  any   part     of     the     disk.
Only     PCOS     2.0     and     subsequent     releases     update   or   read   the  boot-block
address.

THE   l]RUN   COMMANl)

The   PRUN   command   can   be   used   to   boot     a     PCOS     file     that     would     not     be
automatically     loaded     by     the     bootstrap.     This  command   is  equivalent   to
pressing  the   reset   key  except  that  a   filename   is   specified.        PRUN     looks
for     this     filename     on     disk  and  starts  the  standard  boot  procedure  with
this   file.      The   file   can  be  anywhere,   but  must  be   bootable.

To   boot   the   PSAVED   PCOS   file,   PRUN   opens   the   file   in     the      standard     way,
and     therefore     the  file  can  be  protected  with  the  standard  PCOS  features
(volume  password,   file   password,   etc.).      This     is     not     possible     for     an
automatically     booted   PCOS   file  because   the   bootstrap   is  a   direct   routine
bypassing  the   file  system.

1f   PRUN   is   used   without   specifying  a   filename,   it     will      boot     PCOS     from
either     diskette     drive     or     the   hard  disk,   so   long  as  PCOS   is   accessible
through  the  boot  block   in  the   usual   manner.

22-6 PCOS    SYSTEM    PROGRAMMER'S    GUIDE



CUSTOMIZING   A   PCOS   SYSTEM

SÜMmRv

The  simplest   tools  available   to  the  analyst  or   programmer   for   customizing
versions   of   PCOS   are   the   PSAVE   and   PRUN   commands.      These   can   be   used   with
PLOAD   and   the   Set   System   global   commands   to   quickly   and   easily     configure
versions     of     PCOS     for     particular     applications.        Within     a   particular
installation,   versions   of   PCOS   and  associated   commands   can     be     made     for
the   use  of  a   data-entry  group,   an  accounting  group,   and  so  on.

The  meanings   of   keyboard   keys   can   be   changed  or   enhanced   by     use     of     the
CKEY     and      PKEY      utilities.         PKEY   can   be   used   to   develop   one-key   command
strings  or  to  provide  an  easy  way  to  enter   often-used   strings.     The  RFONT
and     WFONT     utilities     allow   development   of   new   fonts   for   display   and   for
printing.

The   keyboard  and   font   utilities,   used   in  conjunction,   allow  the     develop-
ment   of   new  keyboards   including   non-Roman   keyboards.      They   also   allow  the
development   of   special   characters   for   display  or   printing  that     could     be
useful   for  particular  applications.

The   keyboard   and   font   customizations   can   be   saved     using     PSAVE     so     that
they     are     available     either  throughout  all   systems   in  an   installation  or
only  for  particular  applications  according  to     the     requirements     of     the
installation.

The  discussion  of   bootable   files,   details   of  PSAVE  actions,   and   the  stan-
dard     and     non-standard     initialization   process   shows   how  alternate   paths
can  be  made  available,   so  that  different   versions   of  PCOS   can  be     brought
up   for  standard  use  or  special   use.

Finally,   the  use  of   init   files  gives   the   system  programmer   many  possibil-
ities     for   configuring  a   specialized  PCOS.      lnit   files   in  BASIC   or   assem-
bly   language  allow  bringing  the   system   up   in   either     the     BASIC     or     PCOS
environment,     and     if     desired,     within     a   particular   program.      Such   init
files  and  associated   programs   could  be   customized   for   use     in     particular
application       environments,      such     as     data     entry,     accounting,     graphic
displays  for   interactive   reviewing,   etc.

Remember   that   BASIC   allows   calling   PCOS   commands   using   the   EXEC      or      CALL
verbs.        Similarly,      in     assembly   language   the   Call   User   (77)   system   call
can   invoke  a   PCOS   command.      Either   of  the   methods   can   be   used   to   set   glo-
bal   parameters   with   the   Set   System   commands.

iome   further  suggestions  on  the   use  of   init   commands:

Administration       The   init   routine   can   read  a   text   file   (which   is     updated
regularly)   and  display  that   information   for   any  user   who
starts   up  the  system.     The   init   file   could  also  ask     for
user     identification,   perhaps   even   requiring  a   password,
and  then  bring  the  user   up  in  a     particular     version     of
PCOS   or   a   particular   program   depending   on  the   response.

22-7



IEEE Bring  a  system   up  with  the   appropriate   IEEE   commands   and
do     data-1ogging  of   devices   on   the   lEEE   bus.      The   use   of
an  appropriate   init   file  provides     consistency     in     data
logging  at  various  times  by  different  people.

Communications        Bring   up   two  systems   set   for   RS232     communications     with
the     appropriate     device   rewriting  parameters.     One   unit
can   send  commands  to  the  other  and   receive   data   from   it.
The     use  of  pre-set  and  tested  init  files  simplifies  co-
ordination  between  the  sites.

22-8 PCOS    SYSTEM   PR06RAMMER'S    GUIDE



23.   DATA  PASSING  MECHANISM



AB0UT   Tl11S   CHAPTER

This   chapter   describes    how    information   is   passed   among   the   PCOS   internal
elements    and    between    PCOS    and    its   supported   languages.    lncluded   is    in-
formation    on    the    stack,    the   passing   of   integer   and   floating   point   num-
bers,   strings,   null   values,   and   return   address.

CONTENTS

OVERVIEW

USE    0F    THE    STACK

FORMAT    OF    DATA    ITEMS

NULL    PARAMETERS    AND

DEFAULT    VALUES

INTEGER    PARAMETERS

LONG    INTEGER    PARAMETER

STRING    PARAMETER

SINGLE-PRECIS10N    FLOATING

P0lNT    PARAMETER

DOUBLE-PRECIS10N    FLOATING

P01NT    PARAMETER

SEGMENT    B0UNDARIES    AND

P01NTERS

23-2

23-3

23-3

23-3

23-4

23-4

23-5



DATA    PASSING   MECHANISM

OVEIWIEW

PCOS   uses   one   general   method   for   passing   information   among     its      internal
elements     and     between     PCOS   and   its   supported   languages.   The  method   uses
the  stack,   and     can     pass     numbers,     both     integer     and     floating     point,
strings,      null     values,   and  a   return  address.     The  method   is  that   used  by
Microsoft   for   BASIC   and   other   languages,   and   has   been   generalized   for   use
by   PCOS   and   its   supported   languages.

USE   OF   THE   STACK

Data   items,   also  called   parameters,   are   pushed     onto     the     stack     by     the
sending   routine  and  popped  from  the   stack  by  the   receiving   routine.     They
are   received   in   reverse   order.      If   the  sending   routines   pushes     items     1,
2,     and     3     the   receiving   routine  will   pop  3,   2,1.      The  top   of  the   stack
(1ast   pushed,   first   popped)   is  a  count   of   data   items   on  the  stack.     After
the     items,     if     appropriate,     is    a     return     address   (first  pushed,   last
popped).      The   count   is   a   word,   and   the   other   entries   are   long  words.

The   return  address   is  not   included   in  the   count.   Its   presence   or     absence
is  a  matter   of  convention  agreed   upon   for   the  sending   routine   and   receiv-
ing  routine.      1f  it  is  present,   the   receiving     routine    will     finish     its
processing     by     issuing     a   return   instruction  using  that  address.      1f  the
sending  routine  calls  the  receiving   routine,   the   return  address     will     be
placed     on     top     of  the  stack  by  the  call.      1f  the  sending  routine  passes
control   directly,   without   usinga     call,     there     would     be     no     automatic
return  address.

The   receiving   routine   pops   off   one   word,   which     is     "n",      the     number     of
entries.        Each     entry   is  a   long  word,   so  the   receiving   routine  must  next
pop   "n"  1ong  words  off   the  stack.      The   receiving   routine  must  be     careful
to     pop     exactly     "n"     1ong     words,      and     not   rely   on  an   expected   number,
because  the   sending   routine  may  push  an   incorrect   or   unexpected   number   of
entries.

There   is   no   inherent   limit   to  the  number   of  data   items   that  can   be   placed
on     the   stack   for   transmissiong   except   practical   usage.      The   command   line
interpreter   enforces  a   limit  of  20,   and   therefore   command   routines     never
receive  more  than   20   items.

Here   is  an   example   of  the  stack   upon  entry  to  a   receiving   routine.

SP   ->   1        return   address

121

second   item   pushed

first   item  pushed

23-1



FORMAT   OF   l)ATA   ITEMS

The   long-word   data   item  entry  contains   an     address     segment     pointer,     an
address     offset,     and  a  parameter  type  descriptor.   The  type   descriptor   is
ORed  with  the  segment   pointer.   As  an   illustration,

|      seg      |      type   |                   |   addroffset      |

For   example,

1         86             1             03

Where  the  pointer   is  <<6>>OC00   and  the   parameter   type   is   3.

The  parameter  type  must  be  extracted   from  the     entry,     by       clearing     the
low-byte     of     the  segment,   before  the  pointer   can  be   used.      In  this  exam-
ple,   the  pointer   is   8600   0C00.

The  format  of  data   item   depends   upon  the  parameter   type.     Parameter   types
are:

null
integer
long  integer*
string
single-precision   floating  point
double-precision  f loating  point

*  Long  integer   is  not   currently  supported.

NULL   PARAMETERS   AND   DEFAULT   VALUES

Null   (or  nil)   parameters  are   put  on  the  stack  when     the     convention     fol-
1owed     by     the  calling   routine  and   receiving   routine  allows  the   receiving
routine  to  substitute  standard  or  default  values.

The  .null   parameter   keeps  the   same  two-word     format     of     the     other     entry
types.     Only  the  type  byte  matters.   The  other  three  bytes  are   filled  with
FFs  by  the  sending   routine  and  ignored  by  the   receiving   routine.

null   parameter:

FF     1     00 FF     I     FF

23-2 PCOS    SYSTEM   PROGRAMMER'S    GIJIDE



1NTEGER   PARAMETERS

The  pointer   points   to  a   2-byte  array  containing  the     value.        This
may     or     may     not     be     at     an   even  boundary  address,   so  the   value  mu
loaded   into   registers   one   byte   at   a   time.      For   example,      if     the     po
entry     is   8602  0C00,   then  after  the  type   is  extracted  the  pointer   is
OC00 .

pointer  to   integer:

8600                 0C00

<<6>>OC00 :

--->    1          00       1          05

In   this   example,   the   integer   value   is   5.

LONG   INTEGER   PARAMETER

This   parameter   is   not   currently  supported,   and   the     value     is     used     only
internally      in     PASCAL      programs.      The   following   information   is   given   for
planning   purposes.      The   data   passing  mechanism   could   be   used   if   a   parame-
ter   type   number   were   assigned   for   long   integer.

The  pointer   points   to  a   4-byte   array  containing  the     value.        This
may     or     may     not     be     at     an   even  boundary  address,   so  the   value
loaded   into   registers   one  byte   at  a   time.      For   example,      if     the
entry     is   860x   OC00,   then  after  the  type   is  extracted  the  pointer
OC00 .

pointer   to   integer:

1    8600             0C00     1          -->

<<6>>OC00 :

3A             I         Cl              1             84             1         BE

1n   this   example,    tht:   long   integer   value   is   go.o3AC184BE.

STRING   PARAMETER

The  pointer   points   to  a   3-byte  array  where   the   f irst     byte     contains     the
length     of     the     string,     and  the  other  two  are  the   integer   offset  of  the
pointer   to   the   string.      (The   memory   segment   is   assumed   to   be   the   same     as
before.        1f     not,   a   rather  obscure   error   will   result.)        This   offset  may
or   may  not  be  at  an   even   boundary  address,   so     it     must     be     loaded     into
registers   one  byte  at  a   time.

For   example,   if  the  pointer     entry     is     8603     0C00,     after     the     type     is
extracted  the   pointer   is   8600   0C00.



pointer  to  string: <<6>>OC00 :

8600                              0C00                |       --->    |       06       |              |       OC          |       09

<<6>>OCO9 :

1             'H'        1             'e'             1             '1'             '             '1'             1             'o'             1

1n  this  example,   the   string   length   is   6.

SINGLE-PRECISI0N   FLOATING   P01NT   PARAMETER

The  pointer   points  to  a   four-byte   floating  point   value.     The   value   is   not
necessarily  on  an   even   boundary,   and   should   be   loaded   a   byte   at   a   time.

pointer   to   value <<6>>OC00

|    8600           0CO0    |         -->        |   Floatingpointvalue   (4bytes)    |

The     representation     of     a     single-precision     f loating     point     number     is
explained   in   the   "Language   Support"   section.

DOUBLE-PRECIS10N   FLOATIN6   P0lNT   PARAMETER

The  pointer   points   to  an  eight-byte   floating  point   value.      The     value     is
not     necessarily     on     an     even  boundary,   and  should   be   loaded  a   byte   at   a
time .

pointer   to   value                                     <<6>>OC00

|    8600           0C00    |      -->         |    Floating   Point   Value    (8   bytes)    |

The     representation     of     a     double-precision     floating     point     number     is
explained   in   the   "Language   Support"   section.



DATA   PASSIN6   MECHANISM

SEGMENT   B0UNDARIES   ANt)   P0INTERS

The   numerical   parameters   consist   of  a  pointer   to  a   value,   and   the     string
parameter     consists  of  a   pointer   to  a   descriptor  which   includes  a   pointer
to  the  actual   string.     In  all   these  cases,   it   is  assumed  that     the     value
is     in     the     same     memory  segment  as  the  pointer.     As  a   practical   matter,
only  the  string  parameter   is   likely  to  present     difficulties     because     of
its  three-part  structure.     When  constructing  the   string  parameter,   it  may
be   necessary  to  move   the   string   into  a   new  segment   in   order   to     have     all
three  parts  of  its  description  in  the  target  segment.





24.   LANGUAGE SUPPORT



AB0UT   THIS   CHAPTER

This   chapter   provides   a   fundamental   overview   of   the   support   PCOS   provides
for   high-level   languages,   some   of   which   can   be   used   for   assembly-1anguage

programming.     Topics    include    data    passing,     calling    on    internal    PCOS    re-
sources,   memory  allocation,   and   internal   representation   of   numbers.

CONTENTS

OVERVIEW

DATA    PASSING

AVAILABLE    REPRESENTATloNS

LONG    INTEGER    EXCEPTION

SYSTEM    CALLS    vs    MASTER

TABLE

INTERNAL    SYSTEM    RESOURCES

INPUT/OUTPUT

PCOS    AND    LANGUAGE    MEMORY

ALLOCATloN

BASIC

24-1                    EXpnNENT   BiAsiNc                                       24-6

24_i                     ROUNDIN6                                                                  24-6

24_i                    PRECISION                                                             24-6

24_2                      1EEE    STANDARD    LIMITATI0NS             24-7

COMPILED    LANGUAGES                                      24-4

NUMERICAL    REPRESENTATION                  24-4

INTERNAL    REPRESENTATI0N                     24-5

REPRESENTATI0N    LAYOUTS 24-5



LAN6UAGE    SUPPORT

OVERVIEW

This   section  provides  a   fundamental   overview  of   the  support   PCOS  provides
for   high-1evel   1anguages,   some   of  which   can  be   used   for   assembly-language
programming.      F]igh-level   1anguages   currently   supported   are   BASIC   and   PAS-
CAL.        Topics      include     data   passing,   calling   on   internal   PCOS   resources,
memory  allocation,   and   internal   representation   of   numbers.

DATA   PASSING

A11   data   passing  between   PCOS   and   the     languages     it     supports,      in     both
directions,   is  done   using  the  scheme   described   in  the   "Data   Passing"   sec-
tion.     This  general   approach   is  used  throughout  the  PCOS   system.

The  data   passing  scheme  allows  passing  of  numbers,   strings,   null     values,
and     a     return     address.        A     null   value   can  be   passed  where  a  convention
between  the   sending  and  the   receiving   routine  allows  the     receiving     rou-
tine     to  substitute  a  standard  or  default  value.     Numbers  can  be   integers
or  floating  point  values.     The     internal     representation     of     numbers     is
described  in  this  section.

Within   the   language   implementations,   and  within   many   PCOS     elements,
bit     pointers     are     used  so  that  all   of  memory  can  be  treated  alike.
data   passing  mechanism   uses   16-bit   pointers   and   has     the     implied     un
standing     that     the     items     pointed     to     are     in     the   same  segment  as
pointer.

AVAILABLE   REPRESENTAT10NS

The  following  table   shows  the  internal   data   representations  available     in
the     languages     supported     by     PCOS.        "X"   means  available,   ''-"  means   not
available.

Data   Representation  Usage

Long             Single     Double
Null     1nteger     lnteger     Float       Float       String

BASIC                  x                  x                                                   x                     x                     x
PASCAL                x                  x                         x                        x                     x                     x

Assembly  Language  can  use  all   data   representations,   but   requires  the  sup-
port  of  appropriate  mathematics  routines.

24-1



LON6   lNTEGER   EXCEPTloN

lnternally,   PASCAL   and   many   other     commercial      compilers     pass     numerical
parameters  as  ASC11   strings.     Compilers   used  with  PCOS   receive   parameters
from  PCOS,   and   send   them,   using   the   formats   and     mechanism     explained     in
the   "Data  Passing"   section.     Most  programmers   never   see   the   internal   for-
mat.     The  one  effect   this  difference   has  on   PCOS   is   that  the  data   passing
mechanism     does   not   currently  support  the  passing   of   long   integers,   which
are   used   only   in   PASCAL.      The   PCOS   data   passing   mechanism   could     accommo-
date  long  integers  by  passing  a  pointer  to  the   four-byte  value.     All   that
would  be  necessary  is   to  assign  a  type  number   for   long   integers.

SYSTEM   CALIS   vs   MASTER   TABLE

A11   use  of  system  resources  by  a   supported   language   is     done     via     system
calls.        Languages     do   not   use   the   PCOS   Master   Table,   which   is   subject   to
change.      By  using  system  calls,   languages   remain   independent     of     changes
in     PCOS     releases,      and     so     do     application     programs     written   in  those
languages.   1n  particular,   languages  must   use  appropriate   system  calls   for
using       internal     system     resources,      such     as     system     memory,      and     for
input/output  operations.     The  system  calls   for   data   manipulation,     string
handling,   etc.,   are  available  for   use  but  not   required.

1NTERNAL   SYSTEM   RESOÜRCES

Supported   languages   use  the  storage  allocation     calls     to     obtain     system
memory     f rom     the     heap     and     to   release   it  back  to  the   system.     Once   the
language   has   obtained  memory  space,   the  language     internal      routines     may
manipulate  and  configure  that  memory  as   desired.

Interaction  with  PCOS   itself   is  done   using  the  system     management     calls.
This     includes     setting  or   reading  the  real   time  clock  using  the  time  and
date  calls.

"PUT/0ÜTPUT

A11   input/output  operations  are  done   using     system     calls.        These     calls
inolude  the  bytestream   1/0  group,   file  management  and  disk   1/0,   and   vari-
ous   special   1/0   control   commands.

l]COS   AND   LANGUAGE   MEMORY   ALLOCAT10N

Conceptual   overviews   of     memory     handling     for     BASIC     and      for      compiled
languages     are     given     below.        BASIC   is  of  special   interest,   because  the
implementations   of   BASIC   and   PCOS   are      very     closely     coupled,      and     also
because     BASIC,      being  an   interpreted   language,   must   be   able   to   call   upon
system   resources   in  a   dynamic   and   interactive   manner.      BASIC   may   need     to
allocate  memory   dynamically.

24-2 PCOS    SYSTEM   PR06RAMMER'S    GUIDE



LANGUAGE   SUPPORT

PASCAL   and   assembled   assembly   language   are     treated     alike     as      "compiled
languages."          After   PASCAL   has   been   compiled,    it   is   equivalent   to  assem-
bled  assembly   language.

In   theory,   PASCAL   and   assembly   language   programs   could   be   allocated   fixed
memory     space   at   execution   time,   because  their   memory   requirements   should
be   known.      1n  practice,   this   is   not   quite   true.      They   can     begin     with     a
fixed     allocation,     but  if  the  routines   interact   dynamically  with  a   user,
the   routines   may  need   to   dynamically   request   and   release   memory   space.

BASIC

BASIC   was   originally   designed   to   work   in   64   Kb   of   memory,      with     approxi-
mately     36     Kb      for     the      interpreter     and     28   Kb   for   user   memory.    1n   the
Olivetti   enhancement   of   BASIC   for   PCOS,   the   BASIC   interpreter      is      loaded
into     Csl   and  the   user   area   is   in  DS2.      Code   execution   takes   place   in   the
interpreter  area   (CS1)   and   the  user   program  and   its   associated     variables
can     be  treated  as  data.      The   user   area   contains   some   overhead  tables  and
other   necessary   information,   so  the   user   has  available     approximately     57
Kb   (the   actual   amount   is   set   by   the   Set   BASIC    (SBASIC)   global   command.

The   fundamental   BASIC   program,   that   is,   the   interpreter  and   its     support-
ing     routines,   are   loaded   into  CS1.      They  then   use   the   rest   of   the   memory
assigned   for   BASIC,   allocating  space   as   required   to   support   user   interac-
tion   or   the   running   of   a   BASIC   program.

For   example,   when   a   user   is   programming   in     BASIC,      the      interpreter      has
three   areas   reserved   in   DS2:      one   for   program   statements,   one   for   program
variables,   and  one   for   strings.      Each  statement   the   user   enters   is   stored
in     the     statement  area.      Inserting,   deleting,   or  modifying   statements   is
done   using  this  area   for   storage.     Whenever  a   statement   creates     a     vari-
able,      space     is     allocated     in     the     variable   area   for   it,   with   overhead
information  so  that   references  from     the     statement     area     can     find     it.
Strings     are     created  and  handled  similarly.      Deleting   or  modifying  vari-
ables  and  strings  affects  these  areas.

The   size   of   these   areas   is   dynamically  modified  when   necessary.        When     a
defined   BASIC   program   is   loaded,   the   associated   variable   and   string   space
is   created  at   the   same   time.      When  a   BASIC   program   is   run,      the     assigned
space     is     used,      and   when   necessary,   BASIC   internally   allocates   space   to
interact  with  user   requests  and  actions  at   run-time.     The  allocations     of
space     in  the  user  area   for  program  statements  and  variables   start  at  the
upper   and   lower   limits   and   grow   towards   the   middle   of  the     area.        There-
fore,   the   user   area   size   cannot   be   changed  while   BASIC   is   active.

This   data   management   is   done   by   BASIC,   and   the   role   of   PCOS   is   merely     to
provide      heap   space   originally,   to   supply  more   if   requested   by   BASIC,   and
to   de-allocate   heap   space  when   BASIC   is   finished.



ffi#j`S*ffiä

COMPILED   LANGUAGES

Compiled     PASCAL     programs,      other      compiled      languages,      and        assembled
assembly-language     programs     are     equivalent.      Modules   of  these   languages
are   processed  by  the   linking  1oader   and     assigned     to     memory     locations.
Space     required  by  a  module   is  based  on   its  actual   code   size  and  the  data
and  buffer   space   it   has   defined.

Generally,   compiled   code   is   relocatable,   and   the  linker   can  assign     space
based     on     its  own   calculations.     Code  and  data   are   f irst  assigned  within
segment   6.      Other   segments   can   be   assigned  as   necessary.        Segment     2     is
assigned  only  as  a   last   resort.

1n  many  cases,   the   exact     memory     requirements     are     known     and     assigned
before   run-time.      The   program  makes   use  of  its  assigned   space   independent
of   PCOS   memory   management.      However,   a   program   may   have   need      to      dynami-
cally     allocate  space  based  on  user   interaction  or  on  processing  require-
ments  that  are  dependent  on  external   factors,   such  as  handling  a  variable
number     of     files.        In   such   cases,   the   language  support   routines   call   on
PCOS  memory  management   functions   to   allocate   and   de-allocate   space.

NUMERICAL   REPRESENTATI0N

The  numerical   representation  for     integers     and     floating     point     values,
which     is   described   below,   was   designed  and   implemented  by  Microsoft.      1t
is   used   in   mathematical   routines   for   BASIC,      and     has     been     extended     to
other     high-1evel     languages.      Each   language   uses  a   different  mathematics
package,   but  all   packages   have   a   common   numerical   representation.

The  floating  point   representation   is  not  an  exact   implementation     of     the
proposed   lEEE   standard,   but   functions   in  a  similar   fashion  and   can   inter-
face  with   lEEE-standard   routines  with  proper   safeguards.     The   differences
are  explained   in   this  discussion.

Four   types  of  numbers  are   represented:      integer,      1ong     integer,     single-
precision     floating  point,   and  double-precision  floating  point.     The  sup-
ported   range   for   each   type   is  as   follows:

1nteger:                     -32,768   to  +32,767

Long   lnteger:         -2,147,483,647   to   +2,147,483,647

Single:                        +/-1.1754944E   -38   to
+/-   3.4028237E   +38   and
0

Double:
:(:  ,2..;:;:|3:::|:::Z§:D-::88t:nd
0

1n  theory,   the   long   integer  would   have     a     negative     limit     that     is     one
greater     in     absolute   value  than   its  positive   limit.      However,   PASCAL   has
the   negative   limit   of   -2,147,483,647.

PCOS    SYSTEM   PROGRAMMER'S    GUIDE

B~ffi#i!=ri.=äi.Hü.^#_



LAN6UAGE    SUPPORT

lNTERNAL   REPRESENTAT10N

The   floating  point   representation   described  here   is     standard,     but     some
mathematics     packages     expand     the   format   during   calculation  which   allows
higher   precision.      Among   the   PCOS   Languages,   BASIC   does   this   but   not   PAS-
CAL.

For   floating  point,   the  exponent   is     biased     by     half     its     total     range.
Negative     values     are     in  the  bottom  half  of  the  exponent   range,   positive
values   in  the  top  half .     The   fractional   part     is     normalized     to     have     a
leading     1      bit     with  an   implied   decimal   point   following   it.      Because   the
one  and   its   decimal   point  are  always     present     in     the     value,     they     are
implied     but     not   represented.      (The   value   of   zero   is   the   only  exception,
and  consists   of  all   zeros.)

REPRESENTATI0N   LAYOUTS

lnteger:           (2   bytes)

S   =     Sign   Bit
Value  =      15   Bits

Negative   numbers   are   in   two's   complement   form.

Long   lnteger:                  (4  bytes)

|    S    |         valueo      (15bits)          |       |              valuel       (16bits)               |

S   =   Sign   Bit
Value   =   31   Bits

Negative   numbers   are   in   two's   complement   form.      The   two   words   are   treated
as  one   32-bit   word,   using  the   Z8000   32-bit   instructions.

Single   precision:         (4   bytes)

Lower   Word Upper   Word

S     =   Sign   Bit
E     =  8  bit   exponent   biased   by  127
MO   =  Most   significant   7  bits   of  Mantissa
M1   =  Least   significant   16   bits   of  Mantissa

M0   and  Ml   combined   are  a   23   bit   mantissa   which   follows   an   implied   leading
1   and   decimal   point.



Double   precision:      (8  bytes)

S               E                M0                                  Ml                         1

Lower   Word

M2 M31

Upper   Word

S     =  Sign  Bit
E     =  11   bit   exponent   biased   by  1023
MO  =  Most  significant  4  bits   of  Mantissa
M1   =  Next  significant   16   bits   of  Mantissa
M2  =  Next  significant  16  bits   of  Mantissa
M3  =  Least   significant   16  bits   of  Mantissa

MO,   M1,   M2   and  M3   combined   are   a   52   bit   mantissa   which   follows   an   implied
leading  1   and  decimal   point.

EXPONENT   BIASIN6

1n  single-precision,   an   exponent   of  127  equals  an   unbiased   zero   exponent.
The  negative  exponents   (unbiased)   from  -128  through  -1   are   represented  by
O  through  l26.        ln     double-precision,1023     represents     zero,     and     the
exponents     from     0     through     1022     represent  -1024  through   -1.      (However,
there  are   limits  on  actual   use  of  the     largest     and     smallest     exponents.
See  the   discussion   on   lEEE   limitations,   below.)

ROUNDING

ln  floating  point  formats  the  low  order  bits  of  the  fraction     serve    only
as     guard     bits     in     calculations     and  are  not   intended  to  be  used  in  the
final   result.        Though  these  bits  may  be  kept  in     intermediate       results,
rounding     of    at     least     the   low-order   four  bits  should  take  place  before
assigning  the  f inal   number  or  printing.

PRECISION

The  precision   of  calculation   varies     among     mathematics     packages.        Some
packages     extend  the  numerical   representations  shown  with   additional   bits
during  calculation  and  then   round   to  a   lesser   number   of   bits  after.      Here
is    a  table  of  floating-point  precision  in  bits  and  digits   (bits/digits),
as   implemented   for   Z8000   BASIC:

Variable         Actual            Effective          IEEE   stored         Printed

Single             32/9.6                  28/8.4                    24/7.2               19.9/6

Double              64/19.3                60/18.1                 53/15.95             49.8/15

PCOS    SYSTEM   PROGRAMMER'S    GUIDE



LANGUA6E    SUPpof!T

lnput  numeric   constants  are   rounded  to   28  and  58  bits.     Output   is   rounded
to     6   and   15   digits.      PAK  and  UNPAK   routines   convert   between   internal   and
external   format;   for   IEEE,   this   involves   rounding  to  24  and  53   bits.      The
scientific     functions     are     calculated     to    a   precision  in  excess  of  8.25
digits,   except  for  ATN  at  7.69.

1EEE   STANDARD   LIMITAT10NS

The  math  package   routines  are  meant   to   interface   to     IEEE     standard     rou-
tines.        However,     some   IEEE  features   such  as     -0,   +/-   infinity,   and  not-
a-number   values  are   NOT  supported.     To  meet  these   constraints,   the   inter-
nal   form  must  obey  certain   restrictions:

1.      The   maximum   exponent   value   (FF   or   7FF     hexadecimal)      is     never      used.
Machine     infinity     is     an  exponent   of  FE  or  7FE  and  a   mantissa   filled
with  binary  ones.

2.     A  value  of   zero   is   represented,   by  convention,   as     all      zeros.        When
the  exponent   is   zero,   the  sign  and  mantissa   are   also   zero.

The  BASIC  mathematics   package   preserves   these   assumptions,      if     initially
true,     but     the     UNPAK     routines     do     not     check  the   validity  of   incoming
numbers.      The   PASCAL   mathematics   package     also     preserves     these     assump-
tions.        The     only     place  where  problems   can  arise   for   either   language   is
when   reading  values   from  external   files   written   in  another   form.





25.  lNSTALLING  PCOS  ON  A  HARD  DISK



ABOUT   THIS   CHAPTER

This    chapter    describes    the    procedure    for    installing    PCOS    or    updating
PCOS   on   a    hard   disk   M20    system.    1nformation    is   given   on   how   to   maintain

prior   PCOS   reconfigurations   in   the   new   PCOS.

CONTENTS

OVERVIEW 25-1

NEW    INSTALLAT10N                                             25-1

LOADING    PCOS    INT0    THE

SYSTEM

FORMATTING    THE    HARD    DISK

DRIVE

LOADING    PCOS    0NT0    THE    HARD

DISK

COPY    PCOS    COMMANDS    0NT0

HARD    DISK

UPDATE    INSTALLATION

CONFIGURING    THE    NEW    PCOS

25-1

25-1

25-1



1NSTALLING   PCOS   0N   A   HARD   DISK

OVEIWIEW

This   section   describes   the  procedure   for   installing  PCOS  on  a     hard     disk
M20  system.     Both  the   first   installation  and  updating  the   hard   disk   drive
with  a  new  version   of  PCOS  are   covered.      1nformation   is   given   on     how     to
maintain   prior   PCOS   reconfigurations   in   the   new  PCOS.

Hardware   considerations   for   installing  the   hard  disk  are     not     discussed.
lnstructions  are  provided  with  the  drive.

The   hard   disk   comes   with  a   PCOS   system   diskette   which     has     all      routines
necessary     to     make     use  of   it.     The   installation  procedure   is   simple  and
makes   use  of  existing  PCOS   utilities.

Before   installing,   make   a   note   of   the   current   CKEY,   PKEY,      and     BKEYB0ARD
values     that     you   wish   to   have  on   the   new  PCOS.      They  will   need   to  be   re-
entered .

NEW   INSTALLATI0N

The   following  procedure   installs   PCOS   on  a   new     hard     disk     system.        The
hard  disk   identifier   is  10.

LOADIN6   PCOS   INTO   THE   SYSTEM

To  format  the   hard  disk  you  must   first   load  PCOS   from     the     diskette     you
received     with  the  system.     Do  this  by   inserting  the   PCOS  system  diskette
in  the   floppy  disk  drive  and  turning  on   the  power.      Press   the   "f"   key     on
the     keyboard     before  the  two  beeps  are  heard,   to   cause  the  Bootstrap  ROM
to   load  PCOS   from  the   floppy  disk   rather   than   from  the   hard  disk.

FORMATTIN6   THE   HARD   DISK   DRIVE

After  PCOS   is  loaded,   type

vf   10:

This   tells   PCOS   to   run   the   VFORMAT   program  and   to   format   drive   number   10.
VFORMAT  will   display   each   cylinder   on  the   hard   disk  that   is   being   format-
ted.

LOADIN6   PCOS   0NT0   THE   HARl)   DISK

When   the   VFORMAT   program   is   complete   (as   signified   by   the     message,      For-
matting    Complete),     the  next  step  is  to  put  a  bootstrap   file  on  the  hard
disk.      Do  this  by  typing

ps      10:

which   invokes  the  PSAVE   utility  to   install   the  current   version  of  PCOS  on
the     hard     disk     drive.        When     the     PSAVE     utility     is  complete,   it  will

25-1



automatically   re-boot  the  PCOS  on  the   hard  disk.

COPY   PCOS   COMM"DS   0NT0   HARD   DISK

The   next  step   is   to   to   copy  all   the   PCOS   commands   to   the   hard   disk   drive.
This      is      done     by      using  the   PCOS   FCOPY   command.      To   copy   all   the   floppy
disk  files  to  the  hard  disk,   type

fc   0:*   10:

UPDATE   INSTALLATION

1f  the     hard     disk     drive     has     been     through     the     initial     installation
described    above,     all  that  is  required  is  to  place  the  latest  version  of
PCOS  and  the  utilities  on  the  hard  disk.     For     this     the     following     pro-
cedure  should  be   used.

Boot  the  hard  disk  system  and  then   place   the  new     PCOS     diskette     in     the
floppy  disk   drive.     Type

fc   %f   0:*   10:

FCOPY  will   copy  all   the   files   from  the   floppy  diskette   to  the   hard     disk.
The     "6f"     (force)     option  will   cause  FCOPY  to  copy  the   files  to  the   hard
disk  even  though  the   files  may  already  exist     on     the     hard     disk.        When
FCOPY  is  done,   so  is  the   installation.

Notice  that  the   hard  disk   is  NOT  formatted   in  this  procedure.     Formatting
would     destroy  all   files  on  the  hard  disk.      ln  this  update  procedure,   the
only  files  affected  are     those     commands     and     utilities     that     may     have
existed     on     the     hard     disk     until   replaced  by  new   files   copied  from  the
diskette,

CONF16URIN6   TIJE   NEW   PCOS

The  newly   installed  PCOS  will   have   its  own  settings   for     the     Set     System
global     commands.      1t   is  a  good   idea  to   use  these   utilities   to   review  the
current   settings  and  make  any  appropriate   changes.      Current   font     changes
made   using  RFONT   should   remain   untouched   in  their   files,   but   will   need   to
be   attached   to   the   new   PCOS   with   WFONT.       CKEY,    PKEY,    and   BKEYB0ARD   change
values  will   have  to  be   reassigned.

25-2 PCOS    SYSTEM   PROGRAMMER'S    GUIDE



26.  AScll



AB0UT   THIS   CHAPTER

This    chapter    describes    the    ASCIl    standard    for    information    interchange
as    used    in    the    PCOS    system    and    gives    information    on    its    general    use
and   modification.

CONTENTS

OVERVIEW

BACKGROUND

ASCIl   and   PCOS

AScll    CONTROL    CHARACTERS                 26-2

DISPLAYABLE    ASCII    CHARACTERS    26-3



ASCI1

OVERVIEW

This  section  describes   the  ASC11   standard   for   information   interchange     as
used     in     the     PCOS     system     and  gives   information  on   its   generäl   u-se  and
modi f ication .

BACKGROUND

ASCII,   American   Standard  Code   for   lnformation   lnterchange,   was   a   national
standard     code     in  the  United  States  and  is  now  an  international   standard
code.      Originally   comprised   of  128   seven-bit   values,      ASC11   is     now     gen-
erally  encountered  in  eight-bit   form,   having   256  possible   values.

The  high-order  eight-bit   is   not  defined   in   standard     ASC11.        It     can     be
used     for     parity  or  can  be  set  to  zero  or  to  one   for  all  characters.     In
eight-bit   form,   the   128  ASC11   characters   each   have   two     codes.        However,
the  PCOS   utility  CKEY  may  be  used  to  assign  other   values   for  the   range  of
codes   from  128   -255,    (or   for   standard  AScll   codes).

ASCIl  and  PCOS

The   values   for   0   through   127   are   shown.      Unless   modified,   values   for     128
through     255     correspond   in  the   same   order.     That   is,128   is   Null,   255   is
Delete.

The   displayable   portion   of   the  ASC11   table   shows   the  M20   keyboard     values
used  for  the  United  States.     Certain  displayable  characters  are  different
on  other  national   keyboards,   and  are  noted   in  the  table.

PCOS   allows   reconfigurating   the   keyboard   with   CKEY   and   PKEY   and     develop-
ing   new   fonts   for   display  and   printing   with   RFONT   and   WFONT.      These   util-
ities   allow  the   development   of   non-ASC11   and     non-Roman     character     sets.
However,   the   internal   codes   for   characters   are   in   the  ASC11   range.      ASC1..
is  widely  used  as  a   standard  for   interchange  among  computer   systems,     and
the     M20     system   can   exchange  ASCIl   with   other   systems.      For   reconfigured
PCOS  systems  certain  practical   difficulties     arise.       These     difficulties
can     be     ameliorated  by  use  of  PSAVE,   which  allows   the   retention  of  stan-
dard  ASCIl  systems  while   using  non-AScll   systems.     Also,   care   in   redefin-
ing  systems  can  help  preserve   interchange  difficulties,   especially   if  the
character   codes   in  the   range  0  -   127  are   not  changed.

26-1



ASCII   CONTROL   CHARACTERS

These  codes  are   used   for   device  and  telecommunications     control     and     for
providing  device   functions.

Decimal      ,1          Hexadecimal

Null
Start   of   Header
Start  of  Text
End   of  Text
End   of  Transmission
Enquiry
Acknowledge
Bell
Backspace
Horizontal   Tab
Linefeed
Vertical   Tab
Formfeed
Carriage   Return
Shift  Out
Shift   ln
Da{a   Link   Escape
Device   Control   1
Device   Control   2
Device   Control   3
Device   Control   4
Negative   Acknowledge
Synchronous   ldle
End   of  Transmission   Block
Cancel
End   of   Message
Substitute
Escape
Field  Separator
Group   Separator
Record   Separator
Unit   Separator

Table   26-1        ASCII   Control   Characters



AScll

DISPLAYABLE   ASCII   CHARACTERS

Ninety-five  of  the  following  characters  are  displayable,   that   is,   can     be
shown  on  the  display  screen  or  printed.     The   last  character   is  the  Delete
character,   and   is  not  usually  displayed.

Decimal             Hexadecimal                   Code              Comment

SPACE      '     Blank
'
',

Different   on  National   Keyboards
'    Different  on  National   Keyboards

Single   quote

Comma

Different  on  National   Keyboards

26-3



Different  on  National   Keyboards
Different   on  National   Keyboards
Different  on  National   Keyboards

)   Dif ferent   on   National   Keyboards

----- L+

PCOS    SYSTEM    PROGRAMMER'S    GUIDE



ASCII

26_5

Table   26-2     Displayable  ASC11   Characters





27.  PCOS  ERROR CODES



AB0UT   THIS   CHAPTER

This   chapter   provides   a   comprehensive   table   of   error   codes   with  an   indi-
cation    of   which   are    used   by   PCOS,    by   BASIC,    and   by   both.    There    is   also
a    cross-reference    table    showing    the    differences   between   the   3.0   error
codes  and   those   of   earlier   versions.

CONTENTS

OVERVIEW

COMPREHENSIVE    PCOS    3.0

ERRORS

CROSS-REFERENCE    ERROR

TABLES

ERROR    CODE    CHANGES

SUGGEST10NS    TO    THE

PROGRAMMER

SETTING    AND    DISPLAYING

ERRORS

27-5

27-5

ERROR   C00E    SYMB0LIC    NAMES              27-5



PCOS   ERROR   CODES

OVEIWIEW

The  error  codes   listed  in  the  first  table  are   for  PCOS  3.0  and  later   ver-
sions.      The  table  provides  an   indication  of  which  codes  are   used  by  PCOS,
by   BASIC,   and   by   both.

BASIC  and   PCOS   display  errors   differently.      BASIC   gives     the     description
only     and     PCOS     the     number     only,      unless  the  EPRINT   utility   is   active.
EPRINT  causes   PCOS  to   display  both  number   and   description.

Error   codes  were  somewhat   different     in     earlier     versions     of     PCOS.        A
cross-reference  table  follows  showing  these  differences.

Suggestions  to  the  programmer  on  the  use  of  error  codes  are  given  at     the
end  of  this  section.

COMPREHENSIVE   PCOS   3.0   ERRORS

)l   code Meanin9

No  error
NEXT   without   For
Syntax  error
RETURN   without   GOSUB/111egal   Function
Out   of   DATA
lllegal   function  call
Overflow
Out   of  memory
Undefined   line   number
Subscript  out  of  range
Duplicate  Definition
Division  by  zero
I11egal   direct
Type   mismatch
Out  of  string  space
String  too  long
String   formula   too  complex
Can't  continue
Undefined  user   function
No   RESUME

RESUME   without   error
Unprintable   error
Missing  operand
Line  buffer  overflow
FOR   Without   NEXT
WHILE   without   WEND
WEND   without   WHILE
IEEE:   1nvalid  talker/1istener  address

BASIC/PCOS



27-2

1EEE:   talker   =   1istener   address
IEEE:   Unprintable   error
lEEE:   Board   not   present
Window   not   open
Unable   to   create   window
lnvalid  action-verb
Parameter   out  of   range
Too   many   dimensions
FIELD   overflow
lnternal  error
Bad   file   number
File  not   found
Bad   file   mode
File  already  open
Disk   1/0  error
File  already  exists
Disk  type  mismatch
Disk  not   initialized
Oisk  filled
End  of   file
lnvalid   record  number
lnvalid  file  name
Direct  statement  in  file
Too  many   files
lnternal  error
Volume   name   not   found
F`ename   error
lnvalid   volume   number
Volume   not   enabled
lnvalid  Password
111egal   disk   change
Write  Protected  File
Error   in  Parameter
lnvalid  number  of  parameters
File   not   OPEN
Printer  error
Copy  Protected  File
Paper  Empty
Printer  Fault
Command   not   found
Control   C   from  console
Bad  load  file
Error   in  time  or  date
Call   User   error
Time   Out
lnvalid   Device
Missing  Transporter   Board   (LAN)
Reserved   for   LAN
Server   Address   error   (LAN)
Illegal   0p   on   Satellite   (LAN) -   --L ----- +L,

pcos   sysTEM   pROGRAmER's   GulDE



PCOS    ERROR   CODES

11111-

Reserved   for   LAN
Reserved   for   LAN
Protection   Violation   (LAN)
Protection   Violation   (LAN)
Reserved   for   LAN
Reserved   for   LAN
Reserved   for   LAN
Non  existent   Directory   (LAN)
Invalid   PCOS   System  Call

Table   27-1      PCOS   Error   Messages

CROSS-REFERENCE   ERROR   TABLES

HH

___ __-

This  table  cross   references  differences   in  the  use  of  error   codes  between
PCOS     1.x     and  3.x.      1n  most   cases   the   error   code   functions   are  the   same,
and  are   not   shown.      1n   some   cases   PCOS   3.x  provides   new  codes,   these     are
flagged     with     an     asterisk     (*).     For   seven  errors  the   code   has  changed.
Those  seven  cases  are   flagged  with   (**)   and   repeated   in
table.

F3_s____=_____pc_:3.X
Error  Messages
( 1  . X/3 . X)

2                                 */syntax  error

a     supplementary

i+
:               il               :(::::?::wfunction  caii
9                                 */out  of  range

10                ,                */duplicate  definition
13                                   bad  data  type/type  mismatch
15                                  */string  too  long
18                  ii                  */undefined   function
22                                   */missing  operand
23                                   */1ine  buffer   overflow
35                    1                    *,.'window   not   open
36                                   */unable  to  create  window
54                                    bad   file  open  mode/bad   file  mode
59                  '                 */disk  type  mismatch
63                                    bad   record  number/invalid   record  number
64                                   bad   filename/invalid   filename
67                  1                  */too  many   files
68                                */internal   error

;;               |               %T:::m:a::m:o:o:o::ä7:nva|id  vo|ume
number

*/volume   not   enabled
invalid   volume   number/invalid   password    ij

L_±l=:-:=±k--=ne-e----------

27-3



volume  not  enabled/write  protected  file
password  not  valid/error   in  parameter
illegal   disk   change/invalid   number  of

parameters
write  protected  f ile/f ile  not  open
copy  protected  file/printer  error
*/copy  protected  file
*/paper   empty
*/printer  fault
error   in  parameter
too  many   parameters
*/control   C  from  console
file  not  open
time  or  date/error   in  time  or  date
function  key  already  exists

Table   27-2      PCOS   1.X   to   PCOS   3.X   Error   Messages   Cross   Referenced

*        Error   code   used   in   PCOS   3.x   only.      All   codes   greater   than   111
appear   only   in   PCOS   3.x.

**     Change   in   function   for   same   error   number.      See   the   following
table.

ERROR   CODE   CHANGES

ln  the  following  cases  different  error  codes  are   used   for   the  same  er`-or.

PCOS

1.X Error  Message

volume   name   not   found
invalid   volume   number
volume   not  enabled
invalid  password
illegal   disk  change
write  protected  file
copy  protected  file

\

Table   27-3      PCOS   1.X   to   PCOS   3.X   Error   Code   Changes

2:J-4

+
_J

PCOS   SYSTEM   PROGRA"ER'S   GUIDE



PCOS    ERROR   CODES

SU66ESTIONS   TO   THE   PRoeRAMMER

SETTIN6  AND   DISPLAYIN6   ERRORS

Error   codes,   values   from  0  -127,   are  placed   in  the   low  byte   of  R5.        The
high     byte     can     be     used  to  hold  a  number   identifying  the  parameter  that
caused  the  error,   if  desired.     Otherwise,   the   high  byte  must  be   zero.        A
system  call,   number   (88),   is   used  to   display  PCOS   errors.

ERROR   CODE   SYMB0LIC   I\LAMES

Although  error   codes  are  passed  to  PCOS   in   R5  as     a     numeric     value,      the
preferred     approach     is     to   use  symbolic   names.     A   file  of  symbolic   names
and  the  corresponding  codes   can  be  developed  for  all     programmers     in     an
installation     to     use     as     an   include   file.     The  name   is  used  to  load  the
corresponding  code   into   R5.      This  makes   source     code     more     readable     and
protects  against  changes  in  error  code  assignments.     When   it   is  necessary
to  change  existing  error   codes,   only  the  one   include     file     needs     to     be
changed.      The  affected  programs  are  then   reassembled.

An   example   include   file   for   PCOS   3.0  error   codes   is   shown   on   the     follow-
ing   pages.

Sample   Error   Code   lnclude   File

CONSTANT
nxt  wo  for
syntax_err

:::-::i:::b
ill€gaT_funcall
overflow
mem   full   err
und€f  liFe
out_of_range
dupl   def

:i¥a::T:direct

:::E::::E:?:;--
str_1eng_err

:::F::::1:F:rr
undef  fuFction
no   resume
resume   wo  err
unprinlabTe  err

T:::L::F°:::iw

for  wo  nxt :=26

27-5

//  BASIC   next  without   for

//  BASIC   return  without  gosub

//  BASIC   illegal   function   call

//  exceeded  memory   limit
//   BASIC   undefined   line   number

//  duplicate  definition

type  mismatch
out  of  string  space
string  too  long
string  too  complex
can't  continue
undefined   user   function

BASIC   resume  without   error
??
missing  operand
line  buffer   overf low

//  BASIC   for   without   next



while   wo   wend
wend  7o  7hile
ieee-inv adr
ieee-t  1-same

::::-::p:::::e-err
wind=noE_open_err
wind  create  err
invaTid  aveFb
param_range_err

:::i:a:#:m
int  eFr
inv-file  number
fil€  not-found  err
bad fiode-err    -
fila_opefi_-_err

disk  io  err
f ile-exTsts  err
vol  ffiismatcF
bad-disk  err
disR  fulT  err
eof Err   -
bad-rec  num  err
bad-filFam €rr

direct  in  file
too  maFy  Tiles
intErnal-err
volnam  n6t   found  err
rename   err
volnum-err
vol  not  enab  err
invälid-striFg  err
illegal=disk_cfing_e

err_wr_prot
param_err
too_many_param_err
file  not  open  err
prinEer  €rr   -
err_cp_prot

3::::g:mi:rff:r:rr

cmnd  not   found  err
ctrrc  hTt      -

bad  ld  file  err
timE  däte  eFr

calluser  err

time  out  err

27-6

:=   29        //   BASIC   while   without   wend
:=   30        //   BASIC   wend   withoiit   while
:=  31        //   1EEE   invalid  talk/listen  adr
:=   32        //   1EEE   talk=1istem  adr
:=  33        //  IEEE  unprintable  error
:=   34        //   1EEE   board   not   present
:=  35        //  nonexist  window  selected
:=   36       //  unable   to  create  window
:=  37       //  invalid  action   verb
:=  38       //  parameter   out   of   range
:=   39        //   too  many  dimensions
:=50
:=  51        //  internal   error
:=  52       //  invalid   file   number
:=53       //filenot   found
:=   54        //  bad   file   open   mode
:=  55       //   file  alreadyopen

•.-_ E;fl        | |   dis,k h|w  ±|o  error
:=  58       //  file  already  exists
:=  59       //  src/dst  are  diff  disk  type
:=  60       //  disk  not   initialized
:=  61        //  disk   is   full
:=62       //endof  file
:=  63        //   invalid   record   number
:=  64       //   invalid   filename

:=75
•. -_  7 6
:=77
:=78
:=79
:=80

//  direct  statement  in  file

internal   error
volume   name   not   found
fname  exists/  across   volume
volume   number   invalid
volume   not   enabled
invalid   password
disk  not  verified  same  with
open  files
file  is  write-protected
error   in  parameter
wrong   number   of   parameters
file  not  open

//  file  is  copy-protected
:=  81        //  paper   empty  on   printer
:=  82       //  printer   fault  error

:=   92        //   command   not   found
:=  93       //  control   c   from  console

:=99       //  invalid   load  file
:=   101      //  bad   time   or   date

:=  108     //  error   in  calluser   interface

:=  110     //  time   out   error

PCOS    SYSTEM   PROGRAMMER'S    GUIDE



PCOS   ERROR   CO0ES

invalid   device :=  111      //   invalid   device

errors   129  -140   reserved   for   LAN

network  err
protectTon  err
file  lockea  err
fs  hff  err
fs-sw-err

:::€:c::-:i:eerr
local_op_err

;:E:!;i:i!:i:g=:::
illegal_op_err

invalid_sys_call

:=  129     //  missing  transporter
:=  130     //  network  protection  violation
:=   131      //   file   locked
:=  132     //  file  server   hardware   error
:=  133     //  file  server  software  error
:=   134     //   not   PCOS   compatible
:=  135     //  directory  contains   files
:=  136     //  illegal   operation

//          in   local   mode
:=  137     //   file   server   PCOS   error
:=  138     //  missing   net   hardware
:=  139     //  missing  net   software
:=  140     //  illegal   operation

:=   255

27-7





28.  GLOSSARY



AB0UT   THIS   CHAPTER

This    chapter    contains    definitions    of    terms    used    in   this    manual.    Some
of    these    terms    have    more    general    meanings    in    general    data    processing
use.

CONTENTS

6LOSSARY    0F    TERMS 28-1



GLOSSARY

GLOSSARY   OF   TERMS

The   following  terms  are   defined  as   used   in  this  manual.        Some     of     these
terms   have  more  general   meanings   in  general   data   processing   use.

ASC11

assembler

assembly  language

block

boot

bootable  file

bootstrap  loader

American     Standard     Code     for        lnformation
lnterchange.   An   international   standard   code
for   data   representation     used     by     the     M20
system.

There  are     128     defined     ASC11     characters.
They     include     control   codes,   such  as  Back-
space   or  Carriage   Return,      and     displayable
characters.     Displayable  characters   include
the  digits  0  through  9,   upper-     and     lower-
case     alphabetic  characters   (A  through  Z,   a
through  z),   and  special   characters,   such  as
#     and   %.      All   displayable  ASC11   characters
are   found   on   the  USA   keyboard   for   the  M20.

A  program  that   translates  assembly   language
statements       into       executable     form.       See
assembly   language.

A  programming  language  that     uses     symbolic
statements     for     machine   instructions,   con-
stants,   addresses,   and  work     space     alloca-
tions.        1n     the   M20,   the   assembly   language
used   is   that   of   the  ZSO00   CPU   family.        The
programmer     works     directly  with  details   of
the     CPU     functioning.        Assembly     language
cannot     be     run  on  a   different  type  of  CPU,
but  has  advantages     in     efficiency     due     to
close     control     of  the   CPU   resources.     Com-
pare   to  high-1evel   language.

When   referring     to     M20     system     memory,      a
block     is     16     Kb.        1n   the   context   of   disk
space,   a   block   is   256  bytes.

"Boot"  or   "boot  the  system"  means  to     start
the  system.     See  bootstrap   loader.

A    file     of    a    specific     format     that     the
bootstrap     loader     can     load   into  memory  to
initialize  the  system.

A  routine  available  in  ROM  that   initializes
the     system  by  loading  a  r.ootstrap   file  and
turning  control   over  to  it.       That     routine
then  loads  other  routines  to  initialize  the
system.        ("Bootstrap"       comes       f rom       the
expression     "to     lift     oneself  by  one's  own
bootstraps . ")

28-1



byte

character  font

CLI

command   line   interpreter

command   routine

commai.ids    (1  )

commands    (2)

commands   (3)

compiler

28-2

Eight  bits  of  data.     The     fundamental     cell
size     in     system     memory.      Memory  addresses
refer  to  bytes.

A  byte   can   hold   one   ASC11     character,      such
as     the     letter     "A"     or  the  decimal   number
"3."     lt  can     hold     binary     values     ranging

from   0  to   255   decimal.

A  5   x  7  matrix  of  dots   or   pixels.        Charac-
ters    are  delineated  by  selecting  a  pattern
of  dots  within  this  matrix  to  be     displayed
or     printed.       The     character     font   is  con-
tained  within  the  display  font.      (See     also
display   font.)

See  command  line   interpreter.

The  PCOS     system     routine     that     interfaces
most     closely     with     the     user.       The     user
enters   the  name   of  a  command  and  any     other
desired     or     required     information   (parame-
ters)     and     the     command     line     interpreter
translates  the  request  into  the  appropriate
form   and   calls   the     command     routine     which
performs  the  requested   function.

A  program  that  executes  a   function   required
by     the     PCOS     system  or  the   user.     Usually
command   routines  are     written     in     assembly
language.        The     routine  must  be  capable  of
being  called  by     the     command     line     inter-
preter,   of  accepting  any  necessary  informa-
tion   (parameters)      from     the     CL1,     and     of
returning  control  to  the  CLl  when  finished.

Functions  useful   to  the     user     or     to     PCOS
that     can     be     called  by  name  and  executed.
See  command   line   interpreter,   command     rou-
tine.

1n  the     context     of     assembly     language     or
machine     code,     the  word  refers  to  commands
which     are     issued     to     peripheral     devices
using     output    or     control     instructions.   A
command  may  be  a   special     purpose     instruc-
tion     or  a   "command  code"   sent  by  an  output
instruction.

1n   BASIC,   a   command   is   a   BASIC   verb.

A     program     which       translates       high-1evel
language   statements   (PASCAL   or   C,   for   exam-
ple)   into  groups     of     machine     instructions
and       into      calls     for     support     routines.

PCOS    SYSTEM   PROGRAMMER'S   GUIDE



GLOSSARY

compiler   language

configuration      (1)

configuration   (2)

configuration   (3)

CPU

CPU   board

daisy-wheel   printer

default

default  name

default  value

device

device   re-routing

diskette

Compare       to         interpreter,          interpreter
language.

A   high-level   language,    such   as   PASCAL   or   C,
that     is  processed  by  a  compiler  to  produce
executable     code,     similar       to       assembled
assembly   language.

Hardware     configuration     refers       to       the
hardware   resources  available   for  a  particu-
1ar   M20   system,   such   as   black   and   white     or
color     display,     memory     extension     boards,
input/output  options,   peripherals,   etc.

Configuration  can  also     refer     to     software
resources,     such     as   languages  and  applica-
tion   programs.

PCOS  configuration   refers  to  the     selection
of     global   parameters  defining  a   particular
PCOS   system.

"Central   processing   unit."     1n  the  M20,   the

Z8001      chip.      The   CPU  provides   central   sys-
tem  control  and     arithmetical     and     logical
operations   for   the  M20.

See   motherboard.

Printer   in  which  characters  are     struck     by
fully-formed  typefaces.     The  type  faces  are
on   the   spokes   of  a   wheel.      Compare   to     dot-
matrix  printer.

A  default  value  or  default  name   is  a     stan-
dard     value     or      name   used  when   no   value   or
name   is   specified.

See  default.

See   default..

See  peripheral   device.

A  system   facility  that  enables   input  to     be
accepted     from     devices  or   files  other  than
the  keyboard,   and  output  to  be  directed     to
devices     and     files     other     than     the  video
display.

1n  the  M20  system,   a   single   or   double-sided
5     1/4   inch   floppy  disk.      In   other   systems,
diskettes  of  other   sizes  are   used  as  well.

28-3



display  font

dot-matrix  printer

double   word

drive  number

environment   (1)

environment   (2)

extension

file  extension

FID

FID   number

28-4

A  bit  pattern  describing  the  shape     of    the
character       or       graphic       pattern       to    be
displayed  on  the     video     screen.        The     M20
font     pattern  is  an  s  by  10  matrix  of  dots.
The  character   font   is  a   5   x  7  matrix  within
the  display  font.

Printer   in  which  characters  are     formed     by
striking     a     pattern     of     dots.     Compare  to
daisy-wheel   printer.

Same  as   long  word;    four   bytes.

An  integer   referring  to  a  diskette  drive  or
the   hard  disk   drive.

0  --  right-hand  diskette  drive
1   --  1eft-hand  diskette  drive

10   --   hard  disk

An  operational   environment   in  which   the   M20
provides    particular     capabilities    to    the
user.   PCOS   support   for   the  M20     system     has
three  distinct  environments.

PCOS
BASIC
Video  File  Editor

PCOS   is   the   fundamental   environment.      BASIC
and     the     editor  are   supported  by  PCOS   ser-
vices.

In   this  manual,   "environment"     also     refers
to     the     user   environment   for   which  PCOS   is
being  configured.     The  combination   of     user
application     needs   and  the  M20   hardware   and
software  resources  available  constitute    an
environment     for     which  PCOS   can   be  adapted
and  enhanced.

See   f ilename  extension.

See   filename  extension.

See   FID   number

"File   identifier"  number.     An   integer     used
by  PCOS   to   identify  peripherals.

0-15                    BASIc   files

16,   20-24       Reserved  system   files

PCOS    SYSTEM   PROGRAMMER'S    GU10E



6LOSSARY

filename

filename  extension

font

global,   globally

global   command

global   parameter

hard  disk

17                         Console   (keyboard   or   display)

18                        Printer

19,    25,    26      RS232   communication    (Com,    Coml,
Com2 )

System  calls   that  do   input  or     output     with
disk   files   or  with  more  than   one   device   use
an   FID   number.

The   name   of     a      file,      which     may     have     an
extension,        "filename.ext",      for     example.
The   filename  must   start   with  a   letter.     The
remaining     characters     can     be     letters     or
numbers,   up  to  a  total     of     14     characters.
The   extension   follows   a   ".".

An  optional   portion   of     a     filename,     which
follows     a     "."  and  can  be   up  to  14  charac-
ters  in  length   (although  usually  it  is  1   to
3  characters).      Extensions   to  the   filenames
of   commands   have   a   special   meaning:

xxxxx.cmd       lndicates  an  ordinary  transient
command .

xxxxx.sav        lndicates   a     transient     command
which     it   stays   in  memory  after
being   loaded.

xxxxx.bas       lndicates  a   routine  written     in
BASIC .

See   display   font.

A  modifier   (adjective     or     adverb)      meaning
system-wide.      In  this   manual,   means  affect-
ing     PCOS.         See      global      command,         9lobal
parameter.   Contrasted  with   local,   locally.

A   PCOS   command     that     allows     the     user      to
change     the     global     parameters  that  def ine
the   PCOS   environment.

A  parameter  that   def ines  a   feature     of     the
PCOS   environment.

1n   the   M20   system,   a   51/4   inch     Winchester
disk     unit.      The   recording  surfaces   and   the
read/write  access   heads   and  arms   are   sealed
within     a     container  that  provides  security
from  contamination.      Hard     disks     of     other
sizes  are   in  general   use.



high-1evel   1anguage

initialization

initialization  file

instruction

interpreter

interpreter   language

kb

kernel

kilobyte

28-6

A   language  which   is   translated   into  execut-
able     form     by     an   interpreter   or   compiler.
For      example,       BASIC,       PASCAL,       and      C.          A
high-1evel   language   is   somewhat   independent
of  the  system  on  which   it   runs,   and     allows
transporting     programs     across     systems  and
types   of  CPU.     To  be  transportable,   a     rou-
tine       or     program     written     in     high-level
language   (HLL)     must     avoid     using     system-
dependent     features.        Compare     to  assembly
language.     See  also   interpreter,   compiler.

The   process   of   starting   up   PCOS.      When     the
M20       diagnostics     have     successfully     com-
pleted,   the   PCOS'   nucleus      is     loaded.        1t
initializes     itself  according  to  the  memory
available  and     its     global     parameter     set-
tings.       At    the     end  of  the   initialization
process,   it  reads  and  executes  an  initiali-
zation  file,   if  present.

A   file  writen   in  either     assembly     language
or     BASIC     that   is  automatically   loaded  and
executed  on  system   initialization.      It     may
have   one   of  the   following   names:

--    1NIT.CMD
--   1NIT.SAV
--   INIT.BAS

A  machine   instruction   is  a  binary  bit     pat-
tern      (or   "machine   code")   recognized  by  the
microprocessor  that  causes  a   defined  action
to     occur.        "1nstruction"  is  also  used  for
an  assembly     language     statement     which     is
translated   to  machine   code.

A     language     translator     which       interprets
statements      (BASIC   statements,   for   example)
into     calls     on     supporting     routines       and
parameters  to  be  passed  to  those  supporting
routines.      Compare     to     compiler,      compiler
language.

A   high-1evel   1anguage,   such  as   BASIC,      that
requires  an  interpreter  in  order  to  be  exe-
cuted.

Abbreviation  of   kilobyte,   or     sometimes     of
keyboard .

Another   term   for   PCOS   nucleus.

1024  bytes  of   data.

PCOS    SYSTEM   PROGRAMMER'S    GUI0E



GLOSSARY

letter-quality  printer

1ocal,   locally

1ogical   reset

long   word

machine   code

memory   block

mothe rboa rd

nil   parameter

non-standard  initialization

nucleus

null   parameter

parameter

A     printer     suitable     for     use     in     sending
letters     or     doing   finished  work;   for   exam-
ple,   a   daisy-wheel   printer.

A  modifier   (adjective     or     adverb)     meaning
"of  limited,   immediate   effect."     Contrasted
with   global,   globally.      For   example,   device
rerouting     can  be  of  local   effect,   applying
to   only   one   command.

A  reset  of  all     global     parameters     (except
those     controlled    by     the   real-time  clock)
and       re-initialization       of       the       system
(without     performing  diagnostic  tests).      1t
is     caused     by     pressing     /CTRL/        /RESET/,
simultaneously.

Four   bytes;   32   bits.      Accessed   in   memory   on
an   even   address  boundary.

See   instruction.

16   Kb   of   system   memory.      A   memory   block   has
a     starting     address     that  is  a  multiple  of
400   hexadecimal.

The   fundamental   M20     board     which     contains
the   Z8001    CPU,   128   Kb   of   system   memory,   the
start  up     ROM,      and     lnput/Output     control.
System     expansion  boards   plug   into   slots   on
this  board.      Also   called  the   CPU  board.

Same   as   null   parameter.

A  system     initialization    where     /L/,     /D/,
/F/,   /8/,   or   /S/  is  pressed  during  power-up
diagnostics,   or   following  a   PRUN   command.

A  term   used     interchangeably     with     kernel.
See   PCOS   nucleus.

An   unspecified     parameter.        The     receiving
routine     substitutes    a  default  or  standard
value.      In   the   case   of   global   commands,   the
command     routine   uses   the  value   last   speci-
fied.

A  data   item  passed     between     routines.        ln
high-level      1anguages,     a   function  may   have
parameters   (constants   or   variables).     These
parameters       are     passed     by     the     language
translator     to     the     called     routine     which
implements     the     function.        1n  system  pro-
gramming  the  term     is     used     for     all     data
items  passed   between  system  elements  or   the

28-7



PCOS   nucleus

peripheral

peripheral   device

permanent   memory   area

physical   reset

pixel

Program

programmed   key

28-8

operating       system       and       its         supported
languages.

The   PCOS   nucleus,   or   kernel,    is  a   fundamen-
tal        part       of     PCOS     required     to     handle
input/output   for  system     peripherals     (key-
board,     display,     printer,     and     disks),   to
decode   command   lines   and   execute     commands,
and     to  manage   system  memory.      It   is   loaded
into  memory  when  the  system   is     initialized
and   remains  there   until   the  working  session
is     terminated.        Other       system       software
modules     are     loaded     by     the     kernel     when
needed.

See  peripheral   device.

A  hardware   resource   controlled  by  the     sys-
tem,      or     at   least   communicated  with  by  the
system.      A  peripheral     device     may     provide
input,      such     as     the     keyboard,   or   output,
such  as  the  display  or  printer,   or  storage,
such     as     disks.      1n  addition  to  these   dev-
ices   (called  the     system     peripherals),     an
M20     may  use  a  great   variety  of   other   peri-
pherals     such       as       plotters,       laboratory
instruments,     machine     tools,   magnetic   tape
drives,   etc.

That   part   of   memory   occupied     by     the     PCOS
nucleus,      and     by     those     command   routines,
assembler   programs,   programmed   key     def ini-
tions  and   user   defined   fonts  made   permanent
by   a   PSAVE   command.

A  system   re-initialization  caused  by  press-
ing    the     physical     reset     button.       1t     is
equivalent   to   powering  on   the   system.        The
subsequent   initialization   includes   diagnos-
tic  tests  and  a  reset  of  all   global   parame-
ters     (including     those     controlled    by  the
real-time  clock).

"Picture  element."     The   fundamental   unit  of

screen     display.        1t     is     adotcapableof
being  set  to  black  or  white,   or   to  a     color
on  color   display  screens.

A  sequence  of     instructions     coded     by     the
programmer   directing  the  computer   system  to
carryouta  set     of     functions.       See     also
assembly   language,   high-1evel   1anguages.

A  key  that  has  either     had     its     associated
ASC11      code      changed      by     means      of     acKEY

PCOS    SYSTEM   PROGRAMMER'S    GUIDE



GLOSSARY

RAM

raster

raw  key  code

resident   command

ROM

scanline

screen  bit-map

command,   or   had  a   string  assigned  to   it     by
means   of   the   PKEY   command.

"Random     access     memory."       Refers     to     the

read/write     memory     chips   in   system  memory.
lnformation   in   M20   RAM   is   lost      when     power
is   turned   off .      Compare   to   ROM.

Thegrid  of     pixels     (dots)     used     for     the
display     screen,     organized     as   rows   (scan-
lines)   and     columns.         Each     pixel      can     be
addressed     and  set  individually  by  its  grid
location.      See  also  screen   bit-map.

The   immediate   code   generated  by  a     key     (or
the     key     in     combination  with   /Control/  or
/Shift/)     corresponding     to     the       physical
position       of     the     key     on     the     keyboard,
independent  of  system  tables.

A  command   always   available   in      PCOS     system
memory.        PCOS      comes     with     three   resident
commands    (PLOAD,    PUNLOAD,    and       LTERM),       and
the     user     can     make     other     commands     tem-
porarily     or     permanently     resident       using
PLOAD      or   PSAVE.      Compare   to   transient   com-
mand .

"Read   only     memory."        Memory      chips     which

store     a     pattern     permanently,   even  though
power   is   off .      1nformation   in   ROM  cannot   be
written     over     or     changed   by   M20   commands.
1n   the  M20,   ROM  holds   the   initializing   rou-
tines     such  as  start  up  diagnostics  and  the
bootstrap   loader.

A   row  of  pixels   (dots)   across     the     display
screen.

A  section  of  system  memory     that     holds     an
image     of  the  display  screen;   the   source   of
the  display.     The   display  can     be     modified
by        changing        the        bit-map.        Monochrome
displays   have   one     bit-map     of     16K;      color
displays     have     2  or   3  bit-maps   of   16K  each
(for  4-color   or  8-color).        Each     pixel     on
the     screen     is     represented     by    a  one-bit
location   in  the  bit-map   or  bit-maps.     Mono-
chrome     displays     set     a     pixel   to  white   or
black  based  on  the   presence   of   zero  or     one
in     the     location.        Color   displays  combine
the  2   or   3   values     for     each     location     and
produce  the  appropriate   color.

28-9



segment When   referring   to  M20   system  memory,   a   seg-
ment     is     potentially     64  Kb.      Segments  are
built   using  16   Kb  blocks,   and  may     actually
contain   16   Kb,    32   Kb,   48   Kb,   or   64   Kb.

semi-permanent  memory   area          That   part  of  memory   occupied   by   loaded   com-
mands        and        assembler        programs,      PKEYed
strings  and  user-defined  fonts  that  will  be
released     on     termination     of     the     current
working  session.

standard  initialization

standard   PCOS

system       call

system  peripherals

text  file

thermal     printer

transient  command

28-10

Initialization   following  switch-on  physical
reset,     or     logical     reset:   not  having  /L/,
/D|,     /Fl,     |8|,    cir      |S|     pressed      dNr±rrq
power-up   diagnostics.

The  PCOS  configuration   supplied   by  Olivetti
on  the  system  diskette.

A        PCOS        procedure        used        to        handle
input/output  and  to  manage  system  resources
such  as  memory  and  the   system  clock.        Sys-
tem     calls     can     be     accessed     by     assembly
language   programs   via   the   ZSOOO   System  Call
instruction.

The  M20   keyboard,   display,   disk   drives,   and
printer.

An  ASC11   file   whose   records     are     separated
either     by    CR/LF,     or     by   record  separator
(RS)   characters.

A    printer    that    uses       specially-treated
heat-sensitive     paper.       Printed   images  are
developed  on  the  paper   by     applying     minute
amounts     of     heat     rather     than     by  impact,
which   results   in  especially  quiet  printing.
Heat     is     applied     in     dots,   similar  to  the
operation  of  a   dot-matrix   impact  printer.

A  command  that   is  not   loaded   into  memory  at
initialization,       but     is    available    on    a
diskette  or  the  hard  disk.       This     includes
commands     that  are   loaded  and  purged   (those
with  cMD  extension),     and     those     that     are
loaded,     but     remain   in  memory  after  execu-
tion   (those   with   SAV     extension).        Compare
to   resident  command.

A  useful   special-purpose     routine     or     pro-
gram.      May   be   a   transient   command.

The  entire  contents  of  a  diskette     or     hard
disk .

PCOS    SYSTEM   PROGRAMMER'S    GUIDE



volume   name

wild-card   character

word

working   session

An  optional   name     assigned     to     identify     a
volume.

Aspecial     symbol     used     for     referring     to
filenames        in        groups.           The        ?     symbol
represents     any     single     character     and       *
represents  any  string  of  characters.

Two   bytes;    16   bits.      Accessed   in   memory     on
an   even   address  boundary.

The   time   between   booting   PCOS   and   the     next
boot   of   PCOS   or   turning   power   off .





NOTICE

lng.    C.    01ivetti    &   C.    S.p.A.    reserves   the   right   to   make   improvements   in
the   product   described   in   this   manual   at   any   time   and   without   notice.

This   material    was   prepared   for   the   benefit   of   Olivetti   customers.    1t   is
recommended   that   the   package   be   test   run   before   actual   use.

Anything    in    the    standard    form   of    the    Olivetti    Sales    Contract    to   the
contrary   not    withstanding,    all    software    being    licensed   to   Customer    is
licensed     "as     is".     THERE     ARE     NO    WARRANTIES     EXPRESS     0R     IMPLIED     INCLUDING

WITHOUT      LIMITATI0N       THE       IMPLIED      WARRANTY      0F      FITNESS      FOR      PURPOSE      AND

0LIVETTI     SHALL     NOT     BE     LIABLE     FOR    ANY    DIRECT,     1NDIRECT,    CONSEQUENTIAL    0R

INCIDENTAL    DAMAGES     IN    CONNECTI0N    WITH    SUCH    SOFTWARE.

The   enclosed   programs   are   protected   by   Copyright   and   may   be   used   only   by
the    Customer.     Copying    for    use    by    third    parties    without    the    express
written   consent   of   Olivetti   is  prohibited.



Cod®  3985100  F (0)
Printed  in  ltaly

olivetti





Code 3985100  F (0)
Printed  in  ltaly

olivetti


