O M zo PERSONAL COMPUTER

PCOS

System Programmer’s Guide

l

M 20 PERSONAL COMPUTER

PCOS

System Programmer’s Guide

PREFACE

This book describes the architecture and design concepts of the Profes-
sional Computer Operating System (PCOS). Moreover, it provides informa-
tion on how to customize PCOS for particular installations or applica-
tions.

The book is directed at system programmers, system analysts, and, in
parts of the book, interested non-programmers. Some parts of the book
assume knowledge of assembly language concepts.

The book comprises three parts.

Part 1 provides a general overview of the software components that make
up PCOS, and of the hardware options that PCOS manages.

Part 11 contains dejailed descriptions of the software modules that make
up PCOS, and of how *hose modules relate to the hardware.

Part 111 provides information that enables the user to customize PCOS.
REFERENCES :

PCOS (Professional Computer Operating System) User Guide
Code 3985280 D

Assembler User Guide
Code 3987670 L

DISTRIBUTION: General (G)
EDITION: December 1983

RELEASE: 3.0

The following are trademarks of Ing. C. Olivetti & C., S.p.A.:
OLICOM. GTL. OLITERM. OLIWORD, OLINUM, OLISTAT, OLITUTOR
OLIENTRY, OLISORT, OLIMASTER, 0L13275.

MULTIPLAN is a registered trademark of MICROSOFT Inc.
MS-DOS and MS-PASCAL are trademarks of MICROSOFT Inc.

CP/M and CP/M-B6 are registered trademarks of Digital
Research Inc.

CBASIC-86 is a frademark of Digitai Research tnc.
PUBLICATION ISSUED BY:

Copyright (© 1983, by Olivetti
All rights reserved

Ing. C. Olivetti & C., S.p.A.
Direzione Documentazione
77, Via Jervis - 10015 1VREA (Italy)

CONTENTS

PAGE
1-1 1. INTRODUCTION
1-1 OVERVIEW

1-1 THIS MANUAL

1-2 FEATURES OF PCOS
2-1 2. SYSTEM OVERVIEW
2-1 OVERVIEW

2-1 INTRODUCTION

2-2 COMMAND LINE INTERPRETER

2-2 COMMANDS AND UTILITIES

2-3 SYSTEM CALL INTERFACE

2-4 DRIVERS

2-5 PCOS KERNEL AND MEMORY MANAGEMENT

3-1 3. COMMAND OVERVIEW
3-1 OVERVIEW

3-2 PROGRAMMING TOOLS

3-3 PCOS CONFIGURING COMMANDS

3-3 SET SYSTEM GLOBAL COMMANDS

3-4 KEYBOARD-RELATED COMMANDS

3-5 FILE MANAGEMENT COMMANDS - VOLUME HANDLING

3-6 FILE MANAGEMENT COMMANDS - FILE HANDLING

3-7 STANDARD INTERFACE HANDLING COMMANDS

3-7 PCOS GRAPHIC FACILITY COMMANDS

3-8 USER AIDS

iii

PAGE

3-8

4-1
4-1

4-1

4-3
4-4
4-4

4-4

4-4

4-5

4-5
4-6
4-7

4-7

5-2

5-2

iv

TV _ADAPTOR COMMANDS (*)

4. HARDWARE CONFIGURATION OPTIONS

OVERVIEW

MINIMUM CONFIGURATION

KEYBOARD

DISPLAY SCREEN

DISK DRIVES

MEMORY
PRINTERS

AUXILIARY INPUT/OUTPUT

RS232
1EEE
ALTERNATE PROCESSOR BOARD

TRADEOFFS

SYSTEM PRINTERS AVAILABLE

DOT MATRIX IMPACT
SPARK INK JET
THERMAL

DALSY WHEEL

5. OVERVIEW
GENERAL OVERVIEW

DETAILED CONTENTS

COMMAND LINE INTERPRETER
COMMANDS AND UTILITY PROGRAMS
MEMORY CONFIGURATION

MEMORY MANAGEMENT

SYSTEM CALLS

PCOS SYSTEM PROGRAMMER'S GUIDE

PAGE

5-2 DEVICE REROUTING

5-2 THE KEYBOARD DRIVER

5-2 VIDEO DISPLAY DRIVER

5-3 DISK DRIVER AND FILE MANAGEMENT

5-3 OTHER DRIVERS

5-3 THE PRINTER DRIVER AND PRINTER MANAGEMENT
5-3 GRAPHICS SUBSYSTEM

6-1 6. COMMAND LINE INTERPRETER

6-1 OVERVIEW

6-1 THE COMMAND LINE

6-1 COMMAND LINE SOURCES

6-1 THE BASIC CALL STATEMENT

6-2 COMMAND LINE PARSING

6-2 DEVICE REROUTING

6-2 PARAMETERS

6-2 REROUTING DIRECTIVES

6-3 STRINGS

6-3 NUMBERS

6-3 NULL PARAMETERS

6-3 MAXIMUM COUNT

6-4 FILENAMES AND EXTENSIONS

6-4 PASSING PARAMETERS

6-4 COMMAND EXECUTION

6-5 RELATIONSHIP OF THE CLI AND CALL USER (77)

6-5 SPECIAL CHARACTERS

7-1 7. COMMANDS AND UTILITY PROGRAMS

7-1 OVERVIEW

PAGE
7-1 BACKGROUND INFORMATION

7-1 RELATED SECTIONS
7-1 COMMAND NAMES
7-2 COMMAND LINE INTERPRETER

7-2 COMMAND SUFFIXES
7-2 .cmd and .sav
7-3 .bas

7-3 PUNLOAD EXCEPTIONS

7-3 EXCEPTION LIST
7-3 THE .sav EXTENSION
7-3 LEGAL FILENAMES

7-4 COMMAND NAME AVAILABILITY

8-1 8. MEMORY CONFIGURATION

8-1 OVERVIEW
8-1 PHYSTICAL MEMORY BLOCKS

8-2 78001 MEMORY CONCEPTS

8-3 LOGICAL-TO-PHYSICAL MEMORY DECODING

8-5 LOGICAL ADDRESSES

8-5 SEGMENT USAGE

8-5 ROM (READ ONLY MEMORY)

8-6 SCREEN BIT MAP

8-% PCOS BLOCKS

8-6 LANGUAGE BLOCKS

8-6 UTILITY AND ASSEMBLY PROGRAMS
8-6 28001 BACKGROUND INFORMATION

8-7 SYSTEM MODE AND NORMAL MODE
8-7 SEGMENTED MODE AND NON-SEGMENTED MODE

vi PCOS SYSTEM PROGRAMMER'S GUIDE

PAGE

8-8

8-9
8-10

8-11

9-3
9-3
9-4
9-4
9-4
9-4
9-5
9-5
10-1

10-1

THE SEVEN FUNDAMENTAL CONFIGURATIONS

OVERVIEW

CONF 1GURATION

-

CONFIGURATION 2:
CONFIGURATION 3:
CONFIGURATION 4:
CONF1GURATION 5:
CONFIGURATION 6:
CONFIGURATION 7:

9. MEMORY MANAGEMENT

OVERVIEW

PCOS MEMORY CONCEPTS

IMPLEMENTATION OF MEMORY MANAGEMENT

WARNING ON BUFFER USE

PCOS NUCLEUS
PCOS STARTUP

OBSOLETE STORAGE ALLOCATION CALLS

STORAGE ALLOCATION CALLS

Dispose (34)

New (120)
BrandNewAbsolute (121)
NewLargeBlock (122)
StickyNew (123)

10. SYSTEM CALLS

OVERVIEW

TYPES OF CALLS

NUMBERING AND LABELS

vii

10-2 FURTHER INFORMATION

10-2 BYTESTREAM 1/0 CALLS

10-2 GENERAL
10-3 FILE IDENTIFIER (F1D) NUMBERS
10-3 FILE AND DEVICE POINTERS

10-3 BYTESTREAM 1/0 CALL OVERVIEW

10-3 LookByte (9)

10-4 GetByte (10)

10-4 PutByte (11)

10-4 ReadBytes (12)
10-4 WriteBytes (13)
10-5 ReadLine (14)

10-5 Eof (16)

10-5 ResetByte (18)
10-5 Close (19)

10-6 SetControlByte (20)
10-6 GetStatusByte (21)
10-6 OpenFile (22)

10-6 Dseek (23)

10-7 DGetLen (24)

10-7 DGetPosition (25)

10-7 BYTESTREAM CALLS AND APPLICABLE DEVICES

10-8 DEVICE REROUTING

10-8 RS232 DEVICE DRIVER

10-9 BLOCK TRANSFER CALLS

10-9 GENERAL
10-9 BLOCK TRANSFER CALL OVERVIEW

viii PCOS SYSTEM PROGRAMMER'S GUIDE

10-10
10-10
10-10
10-10
10-10
10-10
10-11
10-11
10-11
10-11
10-11
10-12
10-12
10-12
10-12
10-12
10-13
10-13
10-13
10-13
10-14
10-14
10-14

10-14

BSet (29)

BWSet (30)
BClear (31)
BMove (32)

STORAGE ALLOCATION CALLS

GENERAL
LIST OF CALLS

DATA MANIPULATION CALLS

GENERAL

NUMERIC DISPLAY CALL OVERVIEW
DHexByte (91)

DHex (92)

DHexLong (93)

DNumld (94)

DLong (95)

STRING HANDLING CALL OVERVIEW
DString (89)

CrLf (90)

StringLen (105)

TIME AND DATE CALLS

SetTime (73)
SetDate (74)
GetTime (75)
GetDate (76)

USER CALL TO PCOS

CallUser (77)

SYSTEM MANAGEMENT

ix

PAGE

10-14
10-14
10-15
10-15
10-15
10-15
10-16
10-16
10-16
10-16
10-16
10-17
10-17
10-17
10-18
10-18
10-18
10-18
10-19
10-19
10-19
10-19
10-20
10-21

10-21

SYSTEM MANAGEMENT CALL OVERVIEW
BExit (0)

Error (88)

BootSystem (107)
SetSysSeg (108)
SearchDevTab (109)
KbSetLock (114)
EXPLANATION

FILE MANAGEMENT

GENERAL

EXPLANATION

1EEE-488 CALLS

GENERAL

SUMMARY OF TEEE SYSTEM CALLS
OBSOLETE CALLS
NewSameSegment (33)
MaxSize (99)

TopFree (100)

ProtRead (101)

InitHeap (103)
NewAbsolute (104)
GRAPHICS CALLS

SUMMARY OF GRAPHICS CALLS
SYSTEM CALL LABELS

THE MASTER TABLE
11. DEVICE REROUTING
OVERVIEW

PCOS SYSTEM PROGRAMMER'S GUIDE

LOCAL AND GLOBAL DEVICE REROUTING

REROUTING PARAMETERS

DEVICE NAMES

FILE NAMES

REROUTING EXAMPLES

DEVICE REROUTING FROM A BASIC PROGRAM

IMPLEMENTATION

USE OF DEVICE REROUTING

12. THE KEYBOARD DRIVER

OVERVIEW

RELATIONSHIP OF KEYBOARD DRIVER AND VIDEO DISPLAY DRIVER

KEYBOARD DRIVER INTERNAL LOGIC

WHAT THE KEYBOARD DRIVER DOES

RAW CODES

THE CONTROL CHARACTERS

THE KEYSTROKE UTILITIES

THE SLANG UTILITY
THE CKEY UTILITY
THE PKEY UTILITY

THE LTERM UTILITY

SLANG UTILITY

OVERVIEW
USE OF THE SLANG UTILITY

CHANGE KEY UTILITY

OVERVIEW

USER INTERFACE DESCRIPTION

THE PKEY UTILITY

xi

xii

OVERVIEW
DEFINE KEY
DELETE KEY
DELETE ALL
DISPLAY KEYS

THE USA ASCI1 KEYBOARD

NATIONAL KEYBOARD DIFFERENCES

SYSTEM CALLS

13. VIDEO DISPLAY

OVERVIEW
DRIVER FUNCTIONS

DISPLAY SCREEN

SCREEN BIT-MAPS AND COLOR
SCANLINE SKIPPING
DISPLAY FONT AND CHARACTER FONT

FONT TABLES

READ AND WRITE FONT UTILITIES

RFONT

RFONT FILE STRUCTURE

WFONT

RFONT AND WFONT — INTERNAL INFORMATION

SYSTEM CALLS

TEXT

GRAPHICS CALLS
GENERAL

CLEAR WINDOW (SCREEN)

CURSORS

PCOS SYSTEM PROGRAMMER'S GUIDE

13-12
13-12
13-12
13-12
13-13
13-13
13-13
13-13
13-14
13-14
13-14
13-14
13-15
13-15
13-15
13-15
13-16
13-16
13-16
13-16

13-17

WINDOWS

GRAPHICS ACCUMULATOR
PAINT GRAPHICS CALLS
COLOR

OVERVIEW OF GRAPHICS CALLS

Cls (35)
ChgCur0 (36)
ChgCur1 (37)
ChgCur2 (38)
ChgCur3 (39)
ChgCur4 (40)
ChgCur5 (41)
ReadCur0 (42)
ReadCur1 (43)
SelectCur (44)
Grfinit (45)
PaletteSet (46)
DefineWindow (47)
SelectWindow (48)
ReadWindow (49)
ChgWindow (50)
CloseWindow (51)
ScaleXy (52)
MapXYC (53)
MapCXY (54)
FetchC (55)

StoreC (56)

xiii

PAGE

13-17 UpC (57)

13-17 DownC (58)

13-17 LeftC (59)

13-17 RightC (60)
13-17 SetAtr (61)
13-18 SetC (62)

13-18 ReadC (63)

13-18 NSetCx (64)
13-18 NsetCY (65)
13-18 NRead (66)

13-19 Nurite (67)
13-19 Pntlnit (68)
13-19 TDownC (69)
13-20 TuPC (70)

13-20 ScanL (71)

13-20 ScanR (72)

13-20 CloseAllWindows (113)
13-21 ClearText (115)
13-21 ScrollText (116)

141 14. DISK DRIVER AND FILE MANAGEMENT

14-1 OQVERVIEW

141 DISK DRIVER AND FILE MANAGEMENT FUNCTIONS

141 DISK DRIVER CAPABILITIES

14-2 DISKETTE AND HARD DISK CHARACTERISTICS

14-2 DISKETTES
14-2 HARD DISK
14-3 INTERFACE DESCRIPTIONS

xiv PCOS SYSTEM PROGRAMMER'S GUIDE

14-4
14-5
14-5
14-5
14-5

14-7

14-9
14-10
14-11
14-1
14-11
14-12
14-12
14-13
14-13
14-13
14-13
14-14
14-15

14-15

DRIVER INITIALIZATION

ASSEMBLY LANGUAGE INTERFACE
COMMANDS

VERIFY AFTER WRITE FLAG OPTION
FLOPPY DISK ERROR CODES

HARD DISK ERROR CODES

CONCEPTS AND BACKGROUND INFORMATION

LOGICAL BLOCK NUMBERS

WRITE PRECOMPENSATION

DISK FORMATS

ECMA COMPATIBILITY

MSDOS, CPM-86, AND IBM PC DISK FORMATS
SYSTEM INTERFACE DESCRIPTION

INITIALIZATION

FLOPPY DISK ERROR RECOVERY
HARD DISK ERROR RECOVERY
MISCELLANEOUS INFORMATION

ROM REQUIREMENTS
HARDWARE CONFIGURATIONS AND VERSIONS
VALID OPERATIONS

FILE MANAGEMENT OVERVIEW

LOGICAL BLOCKS
CONTROL TRACK

VOLUME DESCRIPTOR BLOCK

ALLOCATION OF BLOCKS

FILE DIRECTORY

THE DIRECTORY ENTRY

XV

PAGE

14-15 FILENAME HANDLING

14-15 FILE DESCRIPTOR BLOCK

14-16 OVERVIEW OF FILE MANAGEMENT UTILITIES

14-18 SYSTEM CALL OVERVIEW

14-18 DISK BYTESTREAM 1/0 CALLS
14-19 FILE MANAGEMENT CALLS
14-19 DRemove (26)

14-19 DRename (27)

14-19 DDirectory (28)

14-20 DisectName (96)

14-20 CheckVolume (97)

14-20 Search (98)

14-20 SetVol (102)

14-21 DiskFree (106)

15-1 15. OTHER DRIVERS

15-1 OVERVIEW

15-1 RS-232-C DEVICE DRIVER

15-1 USE

15-1 DESCRIPTION

15-2 HANDSHAKE

15-2 DEVICE PARAMETER TABLE
15-2 INPUT ERROR HANDLING
15-2 SYSTEM CALLS

15-3 1EEE-488 DEVICE DRIVER

15-3 USE
15-3 DESCRIPTION

15-3 IEEE MAILBOX

xvi PCOS SYSTEM PROGRAMMER'S GUIDE

15-6
15-6
15-6
15-7
15-7

16-1

1EEE SYSTEM CALLS
1BSr00 (78)
1BSro1 (79)
1BPoll (80)
1BISet (81)
1BRSet (82)
1BPrnt (83)
1BWByt (84)
1BInpt (85)
1BLinpt (86)
1BRByt (87)
ERROR HANDL ING

16. THE PRINTER DRIVER AND PRINTER MANAGEMENT

OVERVIEW

PRINTER DRIVER DESCRIPTION

PRINTER OUTPUT
PRINTING TEXT
PRINTING GRAPHICS

USING SFORM TO SET THE PRINTING ENVIRONMENT

SUPPORTING TWO PRINTERS

CONNECTING OTHER DEVICES TO THE DRIVER

PRINTING SCREEN TEXT WITH THE LSCREEN UTILITY

USING LSCREEN
IMPLEMENTATION OF LSCREEN
PRINTING TEXT AND GRAPHICS WITH THE SPRINT UTILITY

SPRINT PARAMETERS
SPRINT IMPLEMENTATION

xvii

PAGE

16-10 CORRECTION TO PRESERVE ASPECT RATI1O0
16-10 PRINTING COLOR GRAPHICS

16-11 PRINTER SYSTEM CALLS

17-1 17. GRAPHICS SUB-SYSTEM

17-1 OVERVIEW
17-1 DESCRIPTION OF THE M20 GRAPHICS PACKAGE

17-3 CONFIGURATIONS AND VERSIONS

17-3 HARDWARE
17-3 SOFTWARE
17-3 FUNCTIONAL FLOW DIAGRAMS

17-4 GRAPHICS LIBRARY ROUTINES

17-4 IMPLEMENTATION LANGUAGE

17-5 GENERAL APPLICATION INFORMATION

17-5 STEPS IN MODULE DEVELOPMENT
17-6 ENTERING THE GRAPHICS PROGRAM

17-6 DEFINING COORDINATES

17-7 POSITION LOCATORS
17-9 FURTHER REFERENCES

17-10 GRAPHICS LIBRARY FUNCTIONS: SPECIFICATIONS

17-10 LIST OF ROUTINES

17-11 OUTPUT GENERATION FUNCTIONS

17-11 LINEABS(x,y)

17-12 LINEREL (dx,dy)

17-13 POLYLINE(#points, Xarray, Yarray)
17-14 MARKERABS (x,y)

17-15 MARKERREL (dx, dy)

17-16 POLYMARKER(#points,Xarray,Yarray)

xviii PCOS SYSTEM PROGRAMMER'S GUIDE

PAGE

17-17
17-18
17-18
17-19
17-20
17-21
17-22
17-22
17-23
17-24
17-25
17-25
17-26
17-27
17-27
17-28
17-29
17-30
17-31
17-32
17-33
17-35
17-35
17-36
17-36
17-37

17-39

TEXTCURSOR (column, row)
GRAPHPOSABS (x,y)
GRAPHPOSREL (dx,dy)
GRAPHCURSORABS (x,y)
GRAPHCURSORREL (dx, dy)

PIXEL ARRAY(Xwdth,Yht,arrayname)

GDP (functionnmbr ,numberofpoints,Xarray,Yarray,datarec)

CIRCLE

ELLIPSE

OUTPUT ATTRIBUTE SETTING FUNCTIONS
SET LINE CLASS(classnmbr)

SET TEXTLINE(chrwdth,txtlineht)
SELECT CURSOR{selectnmbr)

SET TEXT CURSOR BLINKRATE(rate)

SET GRAPHICS CURSOR BLINKRATE(rate)
SET TEXT CURSOR SHAPE (arrayname)

SET GRAPHICS CURSOR SHAPE(arrayname)
SET COLOR REPRESENTATION(indx#,colr#)
SELECT GRAPHICS COLOR(nmbr)

SELECT TEXT COLOR(FGnmbr ,BGnmbr)

SET COLOR LOGIC(operatornmbr)
TRANSFORMATION AND CONTROL FUNCTIONS
OPEN GRAPHICS ‘

CLOSE GRAPHICS

SET WORLD COORDINATE SPACE(xform#,x0,y0,x1,y1)

DIVIDE VIEW AREA(div/orient,divpt,xform#)

SELECT VIEW TRANSFORMATION(xform#)

Xix

————

PAGE

17-40
17-41
17-42
17-44
17-44
17-45
17-45
17-46
17-47
17-48
17-48
17-49
17-51
17-52
17-53
17-54
17-54
17-55
18-1

18-1

18-1

18-1

XX

CLOSE VIEW TRANSFORMATION(xform#)

CLEAR VIEW AREA(xform#,err)

ESCAPE({functionnmbr, recordname)

INQUIRY FUNCTIONS

INQ VIEW AREA(err,bytewdth,scanlineht,chrwdth,txtlineht)
INQ WORLD COORDINATE SPACE(err,x0,y0,x1,y1)

INQ CURRENT TRANSFORMATION NUMBER(err,xform#)

INQ ATTRIBUTES(err,grcolr,fgcolr,bgcolr,logop,lineclass)
INQ TEXTCURSOR(err,column,row,blinkrate)

INQ GRAPHPOS(err,x,y)

INQ GRAPHCURSOR(err,x,y,blinkrate)

INQ PIXEL ARRAY(Xwdth,Yht,err,invalidvals,arrayname)

INQ PIXEL COORDINATES(Xworld,Yworld,err,Xpxlcoord,Ypxlcoord)
INQ PIXEL{x,y,err,pxlcolrambr)

ERROR INQUIRY(errorcode)

REFERENCES

LANGUAGE BINDINGS

CONCORDANCE BETWEEN BASIC AND PCOS 3.0 GRAPHICS PACKAGE
18. OVERVIEW

INFORMATION IN PART 3

BRIEF DESCRIPTION OF CONTENTS

CREATING M20 SYSTEM UTILITIES
SYSTEM CONFIGURATION

PCOS ENVIRONMENT AND GLOBAL COMMANDS
CUSTOMIZING A PCOS SYSTEM

DATA PASSING MECHANISM

LANGUAGE SUPPORT

PCOS SYSTEM PROGRAMMER'S GUIDE

19-2
19-3
19-4
19-6
19-7

20-1

20-3

20-4

INSTALLING PCOS ON A HARD DISK
ASCI1

PCOS ERROR CODES

GLOSSARY

19. CREATING M20 SYSTEM UTILITIES

OVERVIEW
OBJECT CODE FORMAT

CODEFILE FORMAT

BANNERS

EXTERNAL REFERENCING
PARAMETER PASSING

ERROR HANDL ING

EXAMPLE UTILITY

20. SYSTEM CONFIGURATION

OVERVIEW
RELATIONSHIP OF CONFIGURATION AND ENVIRONMENT

PCOS

BASIC

OTHER LANGUAGES

MODIFYING THE PCOS ENVIRONMENT
SOFTWARE RE-CONFIGURATION OF HARDWARE

PRINTERS
DISK FORMATS
21. PCOS ENVIRONMENT AND GLOBAL COMMANDS

PCOS ENVIRONMENT
GLOBAL COMMANDS
GLOBAL COMMAND OVERVIEW

Xxi

21-3 PSAVE AND DEFAULT OPTIONS

21-4 INTERACTION OF BASIC AND GLOBAL COMMANDS

21-4 SBASIC
21-4 SSYS (SET SYSTEM) AND DISPLAY MODE

22-1 22. CUSTOMIZING A PCOS SYSTEM

22-1 SOFTWARE CONFIGURATION

22-1 STANDARD INITIALIZATION

22-2 NON-STANDARD INITIALIZATION

22-2 CUSTOMIZING THE KEYBOARD

22-2 CKEY

22-2 PKEY

22-3 GENERAL

22-3 CUSTOMIZING FONT CHARACTERS

22-3 SET SYSTEM GLOBAL COMMANDS

22-4 INCORPORATING TRANSIENT COMMANDS

22-4 SAVING THE RECONFIGURED SYSTEM

22-4 PSAVE
22-4 THE PCOS.SAV STANDARD FILE
22-5 THE PSAVE PROCEDURE

22-5 PSAVE AND MEMORY EXPANSION
22-5 BOOT BLOCK UPDATING

22-6 A _PCOS BOOTABLE FILE

22-6 BOOTSTRAP BACKGROUND INFORMATION

22-6 BOOT ROM 1.0
22-6 BOOT ROM 2.0
22-6 THE PRUN COMMAND
22-7 SUMMARY

xxii PCOS SYSTEM PROGRAMMER'S GUIDE

PAGE

24-1
24-1
24-2
24-2
24-2
24-2
24-2
24-3
24-4
24-4
24-5
24-5
24-6

24-6

23. DATA PASSING MECHANISM

OVERVIEW
USE OF THE STACK

FORMAT OF DATA 1TEMS

NULL PARAMETERS AND DEFAULT VALUES
INTEGER PARAMETERS

LONG INTEGER PARAMETER

STRING PARAMETER

SINGLE-PRECISION FLOATING POINT PARAMETER
DOUBLE-PRECISION FLOATING POINT PARAMETER
SEGMENT BOUNDARIES AND POINTERS

24. LANGUAGE SUPPORT

OVERVIEW

DATA PASSING

AVAILABLE REPRESENTATIONS
LONG INTEGER EXCEPTION
SYSTEM CALLS vs MASTER TABLE

INTERNAL SYSTEM RESOURCES
INPUT/OUTPUT

PCOS AND LANGUAGE MEMORY ALLOCATION

BASIC
COMPILED LANGUAGES

NUMERICAL REPRESENTATION

INTERNAL REPRESENTATION

REPRESENTATION LAYOUTS
EXPONENT BIASING

ROUNDING

xxiii

PAGE
24-6
24-7
25-1
25-1
25-1
25-1
25-1
25-1
25-2
25-2
25-2
26-1
26-1
26-1
26-1
26-2
26-3
27-1
27-1
27-1
27-3
27-4
27-5
27-5
27-5
28-1

28-1

XX1iV

PRECISION
1EEE STANDARD LIMITATIONS
25. INSTALLING PCOS ON A HARD DISK

OVERVIEW

NEW INSTALLATION

LOADING PCOS INTO THE SYSTEM
FORMATTING THE HARD DISK DRIVE
LOADING PCOS ONTO THE HARD DISK
COPY PCOS COMMANDS ONTO HARD DISK

UPDATE INSTALLATION

CONFIGURING THE NEW PCOS

26. ASCII

OVERVIEW
BACKGROUND
ASCII and PCOS

ASCI1 CONTROL CHARACTERS
DISPLAYABLE ASCII1 CHARACTERS
27. PCOS ERROR CODES
OVERVIEW

COMPREHENSIVE PCOS 3.0 ERRORS

CROSS-REFERENCE ERROR TABLES

ERROR CODE CHANGES
SUGGESTIONS TO THE PROGRAMMER

SETTING AND DISPLAYING ERRORS
ERROR CODE SYMBOLIC NAMES

28. GLOSSARY

GLOSSARY OF TERMS

PCOS SYSTEM PROGRAMMER'S GUIDE

1. INTRODUCTION

ABOUT THIS CHAPTER

This chapter provides an introduction to the manual and to the major
features of PCOS.

CONTENTS
OVERVIEW -1
THIS MANUAL 1-1

FEATURES OF PCOS 1-2

INTRODUCTION

OVERVIEW

This section provides an introduction to this manual and to the major
features of PCOS.

THIS MANUAL

This manual is intended to serve as a complete reference to PCOS for the
system designer or system programmer who needs detailed knowledge of the
internal functioning of the system. The information contained herein
should enable a qualified person to modify the system so as to adapt or
enhance its performance for a particular user environment or particular
application. The manual provides a functional description of the overall
system, its component parts, and the relationships among the parts. This
information is different from that in the User Guide, but because some
topics overlap, this manual can also be useful to systems analysts, and
some parts to non-programmers.

Whereas the User Guide provides details on each command, the System
Programmer's Guide differs in that it gives information and strategy on
the use of commands in general approaches. For example, it explains how
settings within the commands Set System (SSYS) and Set BASIC (SBASIC)
interract and how the two commands interract together. With the wrong
settings in SBASIC for memory and files, it is possible to run out of
memory, although PCOS has plenty of memory available. These interrac-
tions are outside the scope of the User Guide.

The System Programmer's Guide is in three major parts: Part 1 gives a
conceptual overview of PCOS, Part 2 gives an extended functional descrip-
tion, and Part 3 provides additional information on PCOS and gives refer-
ence information in a convenient form.

The contents of Part 1 provide the following information:

- The Introduction gives an overview of the manual and the major
features of PCOS

- The System Overview explains the relationship of PCOS to other major
elements of M20 software, and describes the major modules within PCOS

- The Command Overview lists the PCOS commands in functional groups
- The Hardware Configuration Options section gives a concise descrip-
tion of M20 standard configurations, options, and enhancements.

Information is given from a programmer's viewpoint, in terms of sys-
tem functions and capacities.

1-1

FEATURES OF PCOS

Because PCOS was developed for the existing, well-defined M20 computer
system, its design resulted in an integrated and very flexible operating
system.

Flexibility for programmers and users is assured by built-in commands
that permit custom tailoring for specific installation or for specific
applications. Configuration is easily accomplished by non-programmers.
Commands required for a particular task can be loaded and saved, then
written to diskette, so that a customized PCOS system can be used for a
particular application.

Commands can be loaded from diskette into memory and retained so that
they are readily available without the need for reloading each time they
are required.

New commands and utilities are easily developed and configured into the
system. Commands can be developed in assembly language or in BASIC.

PCOS provides internal consistency and design economy. The system, as
supplied, supports 16 national keyboards, and has a built-in mechanism
which permits design of new keyboards and displays. Interpretation of
key codes, display of characters, and printing of characters are all con-
trolled by common tables; therefore, a programmer can design a particular
set of characters for use throughout the system. The national keyboards
use the Roman or Greek alphabet plus any exclusive characters such as
German umlauts and French accents. The system can also provide support
for keyboards which have Cyrillic, Semitic, and Katakana (Japanese) sym-
bols.

Similarly, the use of graphics is well integrated into the system.
Graphics are supported by the monochrome and color monitors and by the
thermal printer and some dot-matrix printers. The fundamental graphics
capabilities, which are extensive, can be interfaced by the novice or
non-programmer through BASIC and by the programmer through the system
calls. A graphics package for PASCAL is also available. The package can
be used separately with Assembly Language.

PCOS system design also provides drivers for extending system capabili-
ties. The RS232-C driver supports communication with remote devices, and
allows interfacing of peripherals or equipment using a serial bus. An
1EEE driver supports interfaces with instrumentation for use in labora-
tory and engineering environments, and requires a parallel bus.

Certain internal system parameters can be adjusted by use of the set sys-
tem global commands. Non-programmers can use these commands to make use-
ful system modifications. These modifications can be temporary or can be
made permanent.

The PCOS system provides extensive data protection, in addition to physi-
cal write-protection of diskettes. PCOS provides write protection of
files and volumes of files on diskettes or the hard disk. In addition,
files and volumes can be password-protected against being read or copied.

1-2 PCOS SYSTEM PROGRAMMER'S GUIDE

2. SYSTEM OVERVIEW

ABOUT THIS CHAPTER

This chapter provides an overview of the major elements of M20 software
and the major functional modules of the Professional Computer Operating
System (PC0S).

CONTENTS

OVERVIEW 2-1
INTRODUCTION 2-1
COMMAND LINE INTERPRETER 2-2
COMMANDS AND UTILITIES 2-2
SYSTEM CALL INTERFACE 2-3
DRIVERS 2-4

PCOS KERNEL AND MEMORY
MANAGEMENT 2-5

SYSTEM OVERVIEW

OVERVIEW

This section provides an overview of the major elements of M20 software
and the major functional modules of the Professional Computer Operating
System (PCOS).

INTRODUCTION

Relationships of M20 software elements are illustrated by Figure 2-1.

e e T T T T R R e e e e o e ey 2 = |
| |
| IMMEDIATE/PROGRAM PCOS PASCAL - TEXT LINES :
| BASIC LINES COMMANDS COMMANDS v comanos |
I JASSEMBLER COMMAND:! _] :
| LINKER COMMANDS |
| [esoats v |
| Lever |
b s s o o i e e e s e e e e o R D e 4
Fm———— e L T I T -
| A v 3 |
' BASIC INTERPRETER com PASCAL "] VIDEO FILE I
COMMA]
: INTERPRETER COMPILER EDITOR :
| | AssemsLer |
: L LINKER :
| LANGUAGE DERUGEER !
| COMPONENTS |
______ [==
[e e o =
| OPERATING |
SYSTEM |
I} \COMPONERTS PCOS UTILITIES |
| ASSEMBLER PROGRAMS

I |
I s '
| |
Yy v v |
| [
| SYSTEM CALL INTERFACE]
| |
| |
VIDEO KEYBOARD DIsK CENTRONICS RS-232.C IEEE 488 REAL TI |

| MEMORY DRIVER DRIVER DRIVER INTERFACE DRIVER DRIVER CEOCLK ME
| DRIVER |
| |
e e e e e e e e e e =

Fig. 2-1 Relationship of Software Elements

Users enter lines of text, which may be PCOS commands, BASIC program
lines, assembly language statements, or text input to an editor program.
PCOS commands are fundamental. The BASIC interpreter, the assembler, and
the text editor are each brought into action by being executed as a PCOS
command that is processed by the command line interpreter before execu-
tion. This manual describes the ramifications of PCOS commands, how they
are entered and processed, and how they are supported by the operating
system.

COMMAND LINE INTERPRETER

The command line interpreter examines a line of text input and interprets
it as a command that may be followed by parameters that provide addi-
tional information for use in execution. The command 1line interpreter
breaks up the 1line into the name of a command and its optional parame-
ters, which are edited into a standard form for use by the command rou-
tine. The interpreter then checks for the presence of the named command
routine in system memory or in the system directory for its diskettes or
optional hard disk. This command routine is a program, usually written in
assembly language but possibly in BASIC. 1f the command routine is
available, the command line interpreter turns system control over to it.
If not, it gives an error message.

A secondary function of the command line interpreter is to edit input
lines. The control functions of backspace, line delete, etc., are taken
care of. The command routine receives edited parameters rather than raw
input.

From a user's viewpoint, a command is an instruction to the system to
perform some action. The command may be the only entry on the line or it
may have additional information. From the system viewpoint, a command is
a module that may accept user-specified parameters and that calls on
lower-level system elements to perform the desired action.

A unique feature of PCOS is the integration of BASIC with the PCOS sys-
tem. 1f the command line interpreter sees a command file that is imple-
mented in BASIC (shown by the .bas extension) then the command 1line
interpreter will check for the presence of BASIC and load it if necessary
before turning control over to the command routine.

Also, PCOS commands can be executed from a BASIC program through the use
of the "EXEC" and "CALL' commands.

COMMANDS AND UTILITIES

In general data-processing usage, the term ''command' typically refers to
a built-in general-purpose system operation and the name "utility" to
some useful special-purpose routine or program.

In PCOS, no distinction is made between ''commands' and ''utilities.'" The
system design allows the user to configure the system, incorporating
those commands needed for their specific '"utility."

Commands are divided into two categories, ‘'resident' and 'transient."
Resident commands are within the operating system and are always avail-
able. A transient command or utility is on a disk file and is available
when the disk is present in the system.

In some systems, a good deal of manipulation of diskettes is necessary to
configure a convenient set of commands and utilities on a diskette in
order to have an appropriate set of commands and utilities available for
a particular task. Doing this copying may require some time and thought.

2-2 PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM OVERVIEW

PCOS has unique features to solve this problem. Two special commands,
PLOAD and PSAVE allow any transient command or utility to be turned into
a resident command. Using PLOAD, command routines can be taken from a
diskette, loaded into memory, and retained by the system. The PLOADED
commands are then 'resident' until the system is rebooted.

1f the user so desires, this configuration can be PSAVED, which copies
PCOS onto a new diskette, providing a customized operating system when-
ever the new diskette is booted. The PSAVE command thus allows permanent
configuration of command sets. An extra value of this feature is that it
can be executed by someone who has no knowledge of system programming.

To ensure maximum user memory capacity, standard PCOS has only three
resident commands that are always loaded into memory during system ini-
tialization. They cannot be removed:

PLOAD loads transient commands into memory.

PUNLOAD removes PLOADed commands from memory.

LTERM, in BASIC programs, differentiates among the
line-terminator keys /CR/, /S1/, and /S2/.

In Part 3 of this manual a section titled 'Creating A Utility'" explains

how to write an assembly-language program that can be called on by the
command line interpreter and can be used as a utility or a command.

SYSTEM CALL INTERFACE

PCOS commands and user-written assembly-language routines perform all
functions such as data input and output, file management, memory alloca-
tion, etc., by the use of system calls passed through a general module,
the system call interface. The interface is given the number of a system
call and, if applicable, parameters that provide additional information.

Assembly-language commands specifying physical port addresses could be
used for input/output functions such as reading from the keyboard and
writing to the printer. Using the system call interface, however, allows
the system to provide a common method for execution of such commands and
for error recovery. The system call interface obviates the need for
repetitious development of these functions and provides comprehensive
services with these functions. The system call interface also provides
internal scheduling in the handling of system functions.

The system call interface and system calls are described in part 2 of
this manual.

2-3

DRIVERS

System drivers control input/output functions such as reading keyboard
codes and writing files to a diskette or hard disk. Driver functions may
be divided into low-level, or physical, and high-level, or logical func-
tions. At the physical level, drivers control details of device opera-
tion; at the logic level, drivers control general system functions.

For example, at the physical level, the printer driver can cause the
printer to advance paper to the top of a fresh page in either of two
ways. If the printer is equipped with top-of-form capability, the physi-
cal driver can send the proper code to the printer to cause this action.
1f the printer does not have top-of-form capability, the physical func-
tion uses carriage returns to move the paper to the top of form a line at
a time. The driver must keep track of its location on the page and be
able to issue the correct count of carriage returns when called on by the
logical driver for the top-of-form function.

The logical function for the printer (or printers) is insulated from such
details of printer functioning. It deals with an idealized or abstract
printer. At the system level, the system call and associated parameters
are processed without regard for printer configuration.

The system call approach works at the logical functional level; the pro-
grammer 1is only concerned with identifying the device, the type of char-
acter, and certain control registers. The physical functional level is
handled by utilities, which identify the printer model (SFORM), or modify
the font (RFONT or SLANG), etc.

Similarly, the physical disk driver functions incorporating such informa-
tion as size of sectors, number of sectors per track, number of tracks
per surface, timing requirements to move from one part of the surface to
another, etc, are handled by the utility commands. At the logical-
driver level, with the appropriate system calls, the programmer merely
treats the hard disk or diskette as a group of sectors or blocks that can
be separately addressed.

Interaction among drivers is facilitated by logical design. For example,
the keyboard driver supports any of a number of national keyboards. Each
national keyboard has an associated table that gives the ASCI1 character
for all keys and for combintations of keys. Combinations result from
pressing a shift or control key in combination with another. The screen
display driver, using the font table, produces the appropriate symbols.
The symbols are defined by font tables. These symbols are stored on the
disk file as standard ASCII codes. The ASCII code is associated with the
raw keyboard input by the conventional relationship between the keyboard
driver tables and the display driver. The keyboard tables and the font
tables are accessible by system utilities. By calling the appropriate
utility, existing keyboards can be modified, new keyboards can be
developed, new character fonts and graphic symbols can be developed.

2-4 PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM OVERVIEW

The printer driver can also interact with the display driver. Certain
printers can output graphic images as well as text. The design of the
drivers allows the printer driver to use screen-driver information.
Driver interaction of the type described in these examples ensures effi-
cient coordination of system resources.

Part 2 of this manual discusses system drivers and lists their associated
system calls.

PCOS KERNEL AND MEMORY MANAGEMENT

The PCOS kernel, so named because it is the nucleus or heart of the sys-
tem, is always resident. The kernel provides essential routines that
permit interpretation of commands, memory management, and essential
input/output. Other PCOS elements can be loaded as needed, but the ker-
nel is required to load those elements.

Memory management is part of the kernel. Memory management keeps track
of what system memory is in use and what is available. Other system rou-
tines call on memory management for memory space as needed and release
space to memory management when done. User programs call on memory
management by means of the appropriate system calls. Most system modules
also use these system calls. To optimize capacity, transient commands
are removed after execution, temporary PCOS tables are purged, and when a
command or user program stops executing its memory space is automatically
freed.

The assembly-language programmer accesses memory through memory manage-
ment rather than directly. A special utility, DCONF1G (%M option),
allows the programmer to find out the actual memory locations.

Part 2 of this manual provides more information on the system kernel and
on memory management.

3. COMMAND OVERVIEW

ABOUT THIS CHAPTER

This chapter 1lists PC0OS commands in functional groups. Each command
is listed with its two-character short form, its full name, and a short
description of its function.

CONTENTS
OVERVIEW 3-1
PROGRAMMING TOOLS 3-2

PCOS CONFIGURING COMMANDS 3-3

SET SYSTEM GLOBAL COMMANDS 3-3

KEYBOARD-RELATED COMMANDS 3-4

FILE MANAGEMENT COMMANDS -
VOLUME HNDLING 3-5

FILE MANAGEMENT COMMANDS -
FILE HANDLING 3-7

STANDARD INTERFACE HANDLING
COMMANDS 3-7

PCOS GRAPHIC FACILITY
COMMANDS 3-7

USER AIDS 3-8

TV ADAPTOR COMMANDS (*) 3-8

COMMAND OVERVIEW

OVERVIEW

This section lists PCOS commands in functional groups. Each command is
listed with its two-character short form, its full name, and a short
description of its function. A PCOS command can be invoked by entering
its first two letters or by entering more of its name. Only the first
two letters are needed for most commands in searching for the command
routine; the exceptions are FDISK, MSCOPY, and PLOT: for each of these at
least three letters are required.

The section '"Commands and Utility Programs' in Part 2 .of this manual
briefly explains how PCOS processes a command. In Part 3, a section
called "Creating a Utility" explains how to develop new commands for
PCOS. For detailed information on individual commands, see the PCOS
Operating System User Guide, Section 13.

The three resident commands have no extensions. They are PLOAD, PUN-
LOAD, and LTERM. PLOAD 1loads commands with the .cmd extension into
memory without executing them. PUNLOAD removes PLOADED commands. Com-
mands with the .sav extension are SAVED the first time called, and stay
in memory. They cannot be PUNLOADED. LTERM is called only from BASIC,
and can be used to distinguish terminator values. This function can be
useful in data-entry applications.

A few commands have .bas extensions. These commands run under the BASIC
interpreter. When the wuser enters a .bas command, if BASIC is not
already in the system PCOS will load BASIC to support execution of the
.bas.

New PCOS commands and special PCOS utilities are continually being added.
The following information cannot remain in current, but does provide a
general overview of commands. For the most current commands, refer to
current release diskettes.

Commands that can be used with a TV adaptor are flagged with (*). See the
explanation at the end of the section.

PROGRAMMING TOOLS

‘ KEYWORD

\
SHORT ‘FULL

' FORM NAME

\
as ASM.CMD
ba BASIC.CMD
bk BKEYBOARD.BAS
bv BVOLUME . SAV
ed EDIT.CMD
hd HDUMP.CMD
1i LINK.CMD
ml ML1IB.CMD
pd PDEBUG.SAV
te TEXTDUMP .CMD
ci CI.SAV

3-2

COMMAND FUNCTION

Runs the Assembler
Loads the BASIC interpreter

Enables BASIC verbs to be entered by using
single alpha key plus /COMMAND/

Allows BASIC to call specific subroutines
Loads the Video File Editor

Prints a file in hexadecimal notation
Runs the Linker

Creates a library of object files

Loads the Program Debugger

Prints a text file

Provides BASIC interface to RS232-C driver
functions

PCOS SYSTEM PROGRAMMER'S GUIDE

COMMAND OVERVIEW

PCOS CONFIGURING COMMANDS

KEYWORD

SHORT FULL

FORM NAME

pl PLOAD
(resident)

pr PRUN. CMD

ps PSAVE.CMD

pu PUNLOAD
(resident)

SET SYSTEM GLOBAL COMMANDS

KEYWORD

SHORT FULL

FORM NAME

sb SBASIC.CMD
sc SCOMM. CMD*
sd SDEVICE.CMD
sf SFORM.CMD*
sl SLANG.CMD*
ss SSYS.CMD*

COMMAND FUNCTION

Loads commands from diskette or hard disk
into semipermanent memory

Reloads an operating system; used to load
an alternate version of PCOS

Saves the current configuration of PCOS in
memory to diskette or disk

Unloads commands that were PLOADed

COMMAND FUNCTION

Sets the BASIC environment

Sets the RS232-C communications port
environment

Changes device names
Sets the printer environment
Sets the national keyboard language

Sets the system environment

KEYBOARD-RELATED COMMANDS

KEYWORD

SHORT FULL

FORM NAME COMMAND FUNCTION

ck CKEY.CMD Changes the ASCI1 value of a key

1t LTERM Returns an integer (0, 1, or 2) depending

(resident) on which of the three carriage return

keys (/CR/, S1, S2) was last used

pk PKEY.CMD* Assigns a string to a key

The following utilities also relate to keyboards:

KEYWORD
SHORT FULL
FORM NAME COMMAND FUNCTION
fo FONT.ALL Data file used by set language utility
ka KANA.SAV For Katakana keyboards
kb KB.ALL Data file used by set language utility

3-4 PCOS SYSTEM PROGRAMMER'S GUIDE

COMMAND OVERVIEW

FILE MANAGEMENT COMMANDS - VOLUME HANDLING

KEYWORD
SHORT FULL
FORM NAME

bv

va
ve
vd
vf
vl
vm
vn
vp
vq
vr

vv

BVOLUME.CMD

VALPHA.CMD
VCOPY.CMD*
VDEPASS.CMD
VFORMAT .CMD*
VLIST.CMD*
VMOVE. SAV*
VNEW.CMD*
VPASS.CMD
VQUICK.CMD
VRENAME .CMD

VVERIFY.CMD*

COMMAND FUNCTION

Searches the volume directory for file
name string, or returns free disk space,
or returns the name of the current volume
(from BASIC only)

Alphabetizes a directory

Copies a volume (drive to drive)

Removes a password from a volume

Formats a volume

Lists a volume directory (full form)
Copies a volume (using one drive)
Initializes a volume

Assigns a password to a volume

Lists a volume directory (filename only)

Renames a volume

Checks the hard disk for faulty blocks

FILE MANAGEMENT COMMANDS - FILE HANDLING

KEYWORD

SHORT FULL

FORM NAME

fc FCOPY.CMD*
fd FDEPASS.CMD
ff FFREE.CMD
fk FKILL.CMD
fl FLIST.CMD
fm FMOVE.CMD*
fn FNEW.CMD

fp FPASS.CMD
fr FRENAME.CMD
fu FUNPROT.CMD
fw FWPROT.CMD
rk RKILL.CMD
fdi FDISK.CMD
msc MSCOPY.CMD
msd MDIR.CMD

COMMAND FUNCTION

Copies a file

Removes a password from a file
Frees unused file blocks
Deletes a file

Lists ASCII files, optionally lists hexa-
decimal files

Copies a file (disk to disk on single
drive system)

Creates a new file (reserves blocks)
Assigns a password to a file

Renames a file

Removes write-protection from a file
Assigns write-protection to a file
Recovers a killed file

Partitions the hard disk unit so it can be
shared by PCOS, MS-DOS, CP/M-86, and UCSD
p-system

Display a MS-DOS directory (from PCOS)

Copy a file from PCOS to MS-DOS, and vice
versa

PCOS SYSTEM PROGRAMMER'S GUIDE

COMMAND OVERVIEW

STANDARD INTERFACE HANDLING

COMMANDS

KEYWORD

SHORT FULL

FORM NAME

ci CI.SAV

ie 1EEE488.5SAV
rs RS232.SAV

COMMAND FUNCTION

Provides the BASIC interface to the
RS232-C driver

Loads the IEEE-488 package

Loads the RS232-C package

PCOS GRAPHIC FACILITY COMMANDS

KEYWORD
SHORT FULL
FORM NAME
dp DPALETTETV.CMD
la LABEL .CMD*
1s LSCREEN.CMD
i RFONT.CMD*
sp SPRINT.CMD*
wf WFONT .CMD*

COMMAND FUNCTION

Defines colors (TVA only)

Displays, magnifies, orients, and pos-
itions a label string

Transfers contents of display screen to
printer

Creates a new ASCI1 font matrix file from
the currently active font

Prints the text and graphic contents of a
specified window

Makes the new font matrix file active

3-7

USER AIDS

KEYWORD
SHORT FULL
FORM NAME COMMAND FUNCTION
dc DCONF1G.CMD* Displays the hardware and/or memory
configuration
ep EPRINT.SAV* Displays error messages

TV _ADAPTOR COMMANDS (*)

Another version of these commands, (commands with *), 1is available for
the TV adaptor. This adaptor enables a reqgular TV set to be used in
place of the video screen. Because of distortions caused by the dif-
ferent interface used, these commands have been modified for the TVA.
When both versions of the command are on the same diskette, the TV ver-
sion will have TV in the command name; for example, SCOMMTV.CMD.

The command DPALETTETV.CMD may be used only with the TVA.
The command LABEL.CMD is available in two additional versions, depending

on the TV screen refresh rate. LABELT5.CMD is for 50 megahertz and
LABELT6.CMD is for 60 megahertz.

3-8 PCOS SYSTEM PROGRAMMER'S GUIDE

4. HARDWARE CONFIGURATION OPTIONS

ABOUT THIS CHAPTER

This chapter gives a concise description of M20 hardware configurations,
including options and enhancements. Information is given from a program-
mer's viewpoint, in terms of system functions and capacities.

CONTENTS

OVERVIEW 41 SPARK INK JET 4-6
MINIMUM CONFIGURATION 41 THERMAL 4-7
KEYBOARD 4-1 DAISY WHEEL 4-7
DISPLAY SCREEN 4-1

D1SK DRIVES 4-2

MEMORY 4-3

PRINTERS 4-4

AUXILIARY INPUT/OTPUT 4-4

RS232 4-4

1EEE 4-4

ALTERNATE PROCESSOR BOARD 4-4

TRADEOFFS 4-5

SYSTEM PRINTERS AVAILABLE 4-5

DOT MATRIX IMPACT 4-5

HARDWARE CONFIGURATION OPTIONS

OVERVIEW

This section gives a concise description of M20 hardware configurations.
It comprises standard configurations, options, and enhancements. The
section includes a list of available printers.

Information is given from a programmer's viewpoint, that is in terms of

system functions and capacities. Hardware specifications are not given.

MINIMUM CONFIGURATION

The M20 system consists of a display screen and keyboard and a chassis
containing the Z8000 CPU mounted on the motherboard.

The motherboard also contains 128 Kbytes of RAM, serial (RS232-C) and
parallel (industry standard) interfaces, and floppy disk control logic.
This board also contains five expansion slots. Two slots are for
optional interface boards or an alternate processor board, and three
slots are for memory expansion.

The standard video display screen is monochrome.

The minimum configuration is one diskette drive, nominal capacity 160
Kbytes, 320 Kbytes, or 640 Kbytes. However, the unit is usually sold
equipped with two drives.

KEYBOARD

There are 16 national keyboards available, based on the Roman alphabet.
Non-Roman versions have been developed for Semitic alphabets, Katakana
characters, etc.

The national keyboards support 95 characters, with additional characters
software-definable. Software utilities allow reconfiguring the keyboard,
reassigning characters and keys, and creating new character fonts and
keyed graphic display elements.

DISPLAY SCREEN

The screen can be monochrome or color. The color display supports eight
possible colors: red, green, yellow, blue, magenta, cyan, black, and
white. Monochrome and color versions have the same alphanumeric and
graphics characteristics and are software compatible. The system sup-
ports two color configurations, four-color and eight-color. Four-color
supports any four colors at a time, eight-color supports all colors.

Color displays require one or two additional memory boards, either 32 Kb
or 128 Kb. One expansion board can support four colors, two boards are
required for eight. Within each 32 Kb or 128 Kb board, 16 Kb are
reserved to support four colors and the remainder is available for system
memory use.

4-1

The screen is 12 inch diagonal with 256 horizontal rows (scanlines) con-
taining 512 dots each. These dots are called 'pixels,' short for '"pic-
ture elements." Text and graphics characters are both built from pixels
and are treated alike by the system. This allows development of new
character fonts for screen display by developing font tables.

PCOS supports either 16 lines of text with up to 64 characters per line,
or 25 lines of text with up to 80 characters per line.

DISK DRIVES

The unit typically has two floppy disk drives, and can support an
optional 5-1/4" Winchester hard disk. The hard disk unit may replace one
of the floppy disk units or may be in a separate enclosure. It requires
additional hardware control logic, which occupies one expansion slot.
The software disk driver program supports the following floppy disk and
hard disk configurations:

1 160-kbyte floppy drive
2 160-kbyte floppy drives

320-kbyte floppy drive
320-kbyte floppy drives
320-kbyte floppy drive, 1 hard disk drive
320-kbyte floppy drives, 1 hard disk drive

N=2N=

1 640-kbyte floppy drive

2 640-kbyte floppy drives

1 640-kbyte floppy drive, 1 hard disk drive
2 640-kbyte floppy drives, 1 hard disk drive

As provided by the factory, the hard disk unit is placed in one of the
diskette drive compartments.

ROM 2.0 is required for support of the hard disk, and for 160 Kb and 640
Kb floppy disk drives.

The floppy disk capacities are nominal unformatted capacities. Formatted
capacities are:

Unformatted Formatted
160 Kb 143 Kb
320 Kb 286 Kb
640 Kb 592 Kb

The hard disk, nominally 11.26 megabytes, has a formatted capacity of
8.85 megabytes.

Configurations with floppy disk drives of different sizes intermixed are
not supported by the disk driver. The driver supports any floppy disk
drive in combination with the hard disk drive. However, Olivetti does
not necessarily market all possible combinations.

4-2 PCOS SYSTEM PROGRAMMER'S GUIDE

HARDWARE CONFIGURATION OPTIONS

The disk driver will work with all memory and display configurations.

The drive identifiers are 0 and 1 for floppy disks and 10 for the hard
disk.

MEMORY

The central processing unit board includes 128 Kbytes of RAM. The mother-
board has three memory expansion slots. Memory expansion boards have a
capacity of 32 Kbytes or 128 Kbytes. Expansion boards cannot be mixed;
all must be 32 Kbytes or 128 Kbytes, giving a system maximum of 224
Kbytes or 512 Kbytes. The color monitor uses expansion memory, one board
for 4-color and two boards for 8-color.

Jumpers are used to inform the system of the memory configuration. The
seven fundamental cases are shown in the table below.

Expansion Jumper

Case Configuration Boards Code
1 Standard 128 Kbyte memory

only 0 5
2 32 Kbyte expansion board(s),

black and white display 1-3 7
3 32 Kbyte expansion board(s),

4-color display 1-3 3
4 32 Kbyte expansion board(s),

8-color display 2-3 2
5 128 Kbyte expansion board(s),

black and white display 1-3 6
6 128 Kbyte expansion board(s),

4-color display 1-3 1
7 128 Kbyte expansion board(s),

8-color display 2-3 0

Table 4-1 Memory Configuration

As the table shows, there are seven fundamental configurations, each with
either no expansion or a range of possible expansion. Actual memory con-
figuration within the possible range is determined by the system diagnos-
tics when the system is started up.

4-3

Details of memory configuration are given in the 'Memory Configuration"
section of Part 2.

PRINTERS

There are four kinds of printers: spark ink jet, dot-matrix impact, ther-
mal, and daisy wheel. Printers are connected to the parallel port, using
the industry-standard Centronics interface method, except for certain
cases where the serial port with the RS232-C interface is used.

The thermal, inkjet, and certain dot-matrix printers support printing of
graphics, and one supports color printing. Printers available are listed
later in this section under the heading 'System Printers Available."

It is possible to connect two printers to the system, one on the parallel
interface and another on the serial RS232 interface. The printer driver
routines can be set to support either printer, in alternation, by using
the SFORM utility. Another approach is to use the printer driver to sup-
port the parallel printer and use the RS232 driver, with appropriate
separate software and support routines for a serial printer.

AUXILIARY INPUT/OUTPUT

These optional interface boards are in addition to the serial and paral-
lel interfaces provided in the basic system. One or both boards can be
placed in the two interface expansion slots on the motherboard.

RS232

Dual serial interface (RS232-C) and/or Current Loop. The board supports
any of these combinations:

-- Two RS232-C interfaces
-- Two current loop interfaces
-- One RS232-C and one current loop interface

1EEE

1EEE 488 parallel interface.

ALTERNATE PROCESSOR BOARD

Uses the 8-MHz 8086 CPU and supports alternate operating systems, CP/M-
86, MS-D0S, and UCSD p-system. This board is placed in one of the inter-
face expansion slots, and requires ROM 2.0 or later.

4-4 PCOS SYSTEM PROGRAMMER'S GUIDE

HARDWARE CONFIGURATION OPTIONS

TRADEOFFS

System configuration tradeoffs are summarized below:

Color displays require one or two memory expansion boards. Four-
color systems require 16 Kbytes of dedicated memory; eight-color sys-
tems require two boards and use 16 Kbytes from each.

The two interface expansion slots support any two of the following
four boards. Only one board of each kind is supported:

Hard disk controller board
Dual serial board

1EEE board

Alternate processor board

As provided by the factory, the hard disk replaces one diskette
drive.

SYSTEM PRINTERS AVAILABLE

DOT MATRIX IMPACT

Mnemonic Description

PR 1450 Dot-matrix printer with graphics capability

-normal characters (7 x 7) printed within a 9 x 7 dot
matrix

-10, 12.5, or 16.6 characters per inch
-80 or 132 characters per line

-6 printed lines per inch

Speed: 80 characters/second at 10/inch;

100 characters/second at 12.5/inch;
132 characters/second at 16.6/inch

4-5

PR 1471 Dot-matrix printer with graphics capability

-normal characters (7 x 7) printed withina 9 x 7 dot
matrix

-double width characters (under program control)
-10, 12, or 16.6 characters per inch
-132, 158, or 220 characters per line
-6 or 8 lines printed per inch
-140 characters per second print speed
PR 1481 Dot-matrix printer with graphics capability

-normal characters (7 x 7) printed within a 9 x 7 dot
matrix

-double width characters (under program control)
-10, 12, or 16.6 characters per inch

-132, 158, or 220 characters per line

-6 or 8 printed lines per inch

-140 characters per second print speed

-two and four color printing

SPARK INK JET

Mnemonic Description

PR 2300 Dot-matrix printer with graphics capability

-characters printed within either 7 x 7 or 7 x 5 dot
dot matrix

-80, 97, or 147 characters per line
-10, 12.2, or 18 characters per inch

-double width and double height character options

4-6 PCOS SYSTEM PROGRAMMER'S GUIDE

HARDWARE CONFIGURATION OPTIONS

THERMAL

Mnemonic

PR 2400

DAISY WHEEL

Mnemonic

PR 320

-6, 8, or program controlled printed lines per inch

-50 lines (of 80 characters) per minute, average

Description

Dot-matrix printer with graphics capability
-characters printed within a 7 x 5 dot matrix
-80 characters per line

-10 characters per inch

-6 printed lines per inch

-240 lines per minute print speed

Description

Bidirectional printer

-10, 12, or 15 characters per inch or proportional
spacing

-132 characters per line at 10 characters per inch; 158
characters/line at 12 characters/inch; 197
characters/line at 15 characters/inch

-6 printed lines per inch

25 characters per second print speed, average; 30
characters/second peak

a-7

5. OVERVIEW

ABOUT THIS CHAPTER

This chapter describes the contents of Part 2, which is the heart of
the System Programmer's (Guide, and contains an extended functional
description of PCOS.

CONTENTS

GENERAL OVERVIEW 5-1 GRAPHICS SUBSYSTEM * 5-3
DETAILED CONTENTS 5-1

COMMAND LINE INTERPRETER 5-1

COMMANDS AND UTILITY

PROGRAMS 5.1
MEMORY CONFIGURATION 5-1
MEMORY MANAGEMENT 5-2
SYSTEM CALLS 5-2
DEVICE REROUTING 5-2
THE KEYBOARD DRIVER 5-2
VIDEG DISPLAY DRIVER 5-2

DISK DRIVER AND FILE
MANAGEMENT 5-3

OTHER DRIVERS 5-3

THE PRINTER DRIVER AND
PRINTER MANAGEMENT 5-3

OVERVIEW

GENERAL OVERVIEW

Part 2 is the heart of the System Programmer's Manual. It contains an
extended functional description of PCOS, starting from the outside and
moving in.

Part 2 begins with general discussion of major system elements: the com-
mand line interpreter, commands and utilities, memory management, the
system call interface, and device rerouting. Then the device drivers,
which underly the system calls, are discussed with a section each for the
major drivers.

At the end of Part 2 is an explanation of the graphics subsystem, which
is implemented for PASCAL, and its library of subroutines which can be
used by assembly-language programmers. The graphics subsystem is based on
the graphics system calls, which are described briefly in the Video
Driver section. The graphics subsystem, useful in its own right, is also
an example of how the system resources present in PCOS can be used to
develop further resources.

DETAILED CONTENTS

COMMAND LINE INTERPRETER

The command line interpreter is the part of PCOS that works directly with
the user. 1t gives the user access to PCOS commands and utilities and to
other programs that make use of PCOS capabilities. This section
describes the functions of the command line interpreter and provides some
information about its implementation.

COMMANDS AND UTILITY PROGRAMS

This section gives background information on the distinctions between
resident and transient commands and on the use of the PCOS utilities
PLOAD, PUNLOAD, and PSAVE. The section includes information about com-
mand name conventions and requirements.

MEMORY CONFIGURATION

This section explains the physical implementation of system memory in
functional terms. The information is provided for background, and is not
necessary for making use of memory when using the PCOS system calls for
storage allocation. This section bridges the gap between information
about Z8000 memory handling concepts in the vendor literature and the
PCOS implementation of memory management.

5-1

MEMORY MANAGEMENT

This section is a companion to the prior one, and gives practical
system storage allocation.

mation about the wuse of

infor-
1t provides some

information about how these functions are implemented.

SYSTEM CALLS

System calls are PCOS procedures

manage system resources such as
calls can be accessed by assembly
access to privileged instructions

This section gives an overview of

used to handle input/output and to
memory and the real-time clock. System
language calls. They provide indirect

that cannot be directly used.

the system calls grouped by general

functions, and provides background information on their use.

DEVICE REROUTING

Device rerouting allows the rerouting of standard input
or standard output (the display screen), or both.

output devices can be substituted
plement them.

This section gives information on

(the keyboard),
Certain other input or
for these two devices or used to sup-

how and why to use device rerouting,

and provides some information on how this capability is implemented.

THE KEYBOARD DRIVER

This section is the first of five
board driver routines

takes raw codes generated by the keyboard and interprets

characters.
SLANG (Set Language) provides the
needed to support any

VIDEO DISPLAY DRIVER

The video display driver supports
section describes
ties, RFONT and WFONT.
small graphics

characters, and

WFONT is used to select an alternate display font.

information about the
graphics capabilities.

5-2

PCOS supports numerous national keyboards.

national
(Change Key) and PKEY (Program Key)
enhancement of keyboard functions.

driver sections. It describes the key-

and their related utility programs. The driver
them as ASCII

A utility called

keyboard driver with the information

keyboard.
allow easy

Two other utilities, CKEY
user modification and

both text and graphic display. This

the capabilities of the driver and its related utili-
RFONT allows creating customized characters

and
can be used to create entire alphabets.
The section 1includes

system calls used to display text and to provide

PCOS SYSTEM PROGRAMMER'S GUIDE

OVERVIEW

DISK DRIVER AND FILE MANAGEMENT

The disk driver controls the floppy disk drives and the optional hard
disk drive. Based on the disk drive functions, PCOS provides file
management capabilities. This section explains the capabilities of the
disk driver, and gives information about the system calls for using it
and the file management capabilities.

OTHER DRIVERS

This section contains background information on two device drivers, the
RS232-C driver and the 1EEE-488 driver. These drivers are not seen
directly by the user. The RS232 driver supports the SCOMM package and
the CI calling BASIC. The 1EEE driver supports the 1EEE commands in
BASIC. The programmer could, if necessary, access these drivers through
system calls. System call information is given in this section.

THE PRINTER DRIVER AND PRINTER MANAGEMENT

This section describes the capabilities of the printer driver and the use
of 1its associated utility programs. The driver supports the printing of
ASCII text and (on certain printers) of graphics, using either a parallel
or serial interface. The SFORM wutility gives the user control over
printer configuration parameters. LSCREEN allows the printing of display
screen text and SPRINT allows the printing of the entire screen contents,
including graphics.

GRAPHICS SUBSYSTEM

This section describes an extensive set of library routines that are used
in PASCAL to provide graphics. These routines can also be accessed via
assembly language calls. In addition to describing the capabilities of
these routines, the contents of this section provide an example of the
use of the PCOS graphics system calls which underlie these routines.

5-3

6. COMMAND LINE INTERPRETER

ABOUT THIS CHAPTER

This chapter provides a functional description of how the command line
interpreter works.

CONTENTS

OVERVIEW 6-1 COMMAND EXECUTION 6-4
THE COMMAND LINE 6-1 RELATIONSHIP OF THE CLI
AND CALL USER (77) 6-5
COMMAND LINE SOURCES 6-1
SPECIAL CHARACTERS 6-5
THE BASIC CALL STATEMENT 6-1
COMMAND LINE PARSING 6-2
DEVICE REROUTING 6-2
PARAMETERS 6-2
REROUTING DIRECTIVES 6-2
STRINGS 6-3
NUMBERS 6-3
NULL PARAMETERS 6-3
MAXIMUM COUNT 6-~3
FILENAMES AND EXTENSIONS 6-4

PASSING PARAMETERS 6-4

COMMAND LINE INTERPRETER

OVERVIEW

The command line interpreter (CL1) receives keyboard input from the user,
interprets the user request, and calls on PCOS command routines to ful-
fill the request. This section provides a functional description of how
the command line interpreter works. The section "Creating A Utility," in
Part 3 of this manual, contains more detailed information on the internal
appearance of the parameter information that the command line interpreter
passes to the command routine.

THE COMMAND LINE

The command line interpreter operates on a command line, which is a
string of characters ended with a carriage return. The command line is
assumed to begin with a command and may have parameters to be passed to
the command routine for processing or use. 1t may also have directives
for use in device rerouting. (A later section, 'Device Rerouting,'" gives
information about this system facility.)

COMMAND LINE SOURCES

Commands are most commonly received from the keyboard by direct user
input. Commands can also be be received from the RS232-C interface, from
a disk file, or from the 1EEE-488 interface, by means of the device
rerouting capability. Commands can be received from BASIC, via the EXEC
statement. All characters between the double-quote marks 1in the EXEC
statement are sent to the CL1 as a command line. Commands can be
received from assembly language programs using the Call User (77) system
call.

THE BASIC CALL STATEMENT

The CALL statement in BASIC can also be used to call a command routine
for execution. However, it bypasses the CLI and handles the command and
its parameters directly. BASIC implements the CALL statement by process-
ing the parameters itself and 1issuing a Call User (77) system call.
There are several differences between EXEC and CALL in the handling of
commahds and their parameters:

- The maximum number of parameters allowed is different

- The identification of hexadecimal numbers is different. PCOS uses an
ampersand (&) and the CALL statement an ampersand H (&H) to identify
hexadecimal numbers

- Parameter syntax is different

For information on these syntactical differences, see the BASIC manual.

There is another difference in the capabilities of CALL and EXEC. Only
CALL can use BASIC program variables as parameters.

6-1

COMMAND LINE PARSING

From the viewpoint of the CLI, command lines from the keyboard, from an
RS232-C or 1EEE-488 interface, from a disk file, from a Call User (77)
system call, and from a BASIC EXEC statement, are all indistinguishable.
All send the CL1 a command line with the same format.

The CLI scans the command line and separates strings, numbers (decimal
and hex), and rerouting directives (parameters beginning with '+' or '-
'). Commas or spaces are the separators which break the command line
into separate elements. The first (non-directive) word in a line will
always be interpreted as the name of the command to be executed, the
other characters on the line as parameters for the command itself or as
rerouting directives. The command name will be first searched for in
memory and, if not found, will be searched for as a disk file.

The parsing logic assumes that items starting with + or - are rerouting
directives, that the first string encountered identifies the command rou-
tine, and that other non-directive items on the line are command parame-
ters. These parameters can be identified by the first character. A
decimal digit implies a decimal number, an & implies a hexadecimal
number, and other items are strings. 1If appropriate, the string might be
a file name. If it contains special characters, the string must be
within quotation marks.

DEVICE REROUTING

The effect of, and implementation of, rerouting directives is described
in "Device Rerouting'" in Part 2. The rerouting directives go to the PCOS
routines which support device rerouting. Rerouting is independent of the
fundamental CLI functions, which are to process command parameters for
the command routine.

PARAMETERS
The CLI checks for syntax consistency of every parameter, processes the
parameters into a standard form, and then pushes all the parameters onto

the stack. A brief overview of the types of parameters allowed 1is given
below. For more details, see '"Creating A Utility," in Part 3.

REROUTING DIRECTIVES

Device rerouting directives begin with '+' or '-' and may appear anywhere
in the command line. Currently, the directives are:

6-2 PCOS SYSTEM PROGRAMMER'S GUIDE

COMMAND LINE INTERPRETER

+|-prt
+|-Sdevicename:
+|-Ddevicename:
+|-Sfilename
+|-Dfilename

These directives may be in uppercase or lowercase. The default device
names are shown below. Other names can be assigned by using SDEVICE.

prt: coml:
cons: com2:
com: ieee:

The file name can be any valid disk file name.

STRINGS

Strings may be enclosed in single or double quotes, or may be any
alphanumeric sequence containing some character which is not a space,
comma, ampersand, plus sign, minus sign, or quote character. These char-
acters can be inserted only in a quoted string. A quoted string can also
contain the quote sign of the opposite type from that used to delimit the
string. That is, a string delimited by double-quotes can contain a sin-
gle quote, and vice versa.

NUMBERS

Numbers must be integers, either decimal or hexadecimal (shown with the
'&' identifier).

NULL PARAMETERS

Commas in sequence, or separated only by spaces, are evaluated as null

parameters. If there are N + 1 commas in a sequence of spaces and com-
mas, N 'null' parameters will be pushed onto the stack.

MAXIMUM COUNT
The maximum number of parameters allowed in a command line is 20 (PCOS

2.0f and following releases). The maximum number of parameters allowed
in a command line for previous versions of PCOS was 11.

6-3

FILENAMES AND EXTENSIONS

Only a portion of the command routine filename is needed by the CLI (at
least the first two characters, and sometimes more). The CLI checks
first for the resident commands, including those commands made resident
by PSAVE or by being PLOADED during the current working session. Then it
searches the disk files. Both diskettes are searched, the current
diskette first.

The search logic treats upper and lower case letters as equal. 1t looks
for the portion of the name given and (except for three built-in resident
commands) assumes a filename extension unless the full command name is
supplied. Command extensions are .cmd and .sav, and .bas, when the rou-
tine is implemented in BASIC. The search logic will make up to three
passes, looking first to match the filename portion and .cmd, then to
match with the .sav extension, and finally with the .bas extension. In
the case of ambiguous names, the CL1 uses the first one it finds. For
example, 'fc" will match either 'fcopy.cmd" or "fcopynew.cmd.'

PASSING PARAMETERS

Parameters are processed into a standard form and pushed on the stack.
They conform in format to the specifications described in ''Data Passing
Mechanism'" in Part 3. A parameter appears on the stack as a three-word
entry; the high byte of the first word contains a type identifier (O:
null, 2: integer, 3: string -- and others not used by the CL1), and the
second and third words contain a pointer to the data item. The item must
be in the same segment.

1f the item is an integer, the pointer points directly to the high byte
of a 16-bit integer which is not necessarily word-aligned. 1f the item
is a string, the pointer points to a 3-byte string descriptor: the first
byte contains the string length in bytes, and the second and third bytes
contain the offset of the first byte of the string in the same segment as
above. 1f the item is null, the value of the offset of the pointer will
be -1 (%FFFF).

When the CL1 calls the command routine, the stack contains the CL1 return
address, a one-word parameter count, and the parameters (processed into
Microsoft standard parameters as described above). See the section
"Creating A Utility" or '"Data Passing Mechanism' in Part 3 of this manual
for a more detailed description of parameter format.

COMMAND EXECUTION

1f the command routine is present in memory, the CLI turns control over
to 1it. If the command routine is on a disk file, the CLI reads it into
memory and turns control over to it.

If the command routine is in BASIC (has a .bas extension) the CL1 checks
to see if BASIC is in memory, and loads it first if necessary.

6-4 PCOS SYSTEM PROGRAMMER'S GUIDE

COMMAND LINE INTERPRETER

The command routine makes use of any parameter information on the stack.
At the conclusion of its processing, it returns control to the CLI1 by
using the return address given on the stack.

RELATIONSHIP OF THE CL1 AND CALL USER (77)

Call User (77) is recursive; it can call itself. When Call User (77) is
invoked with a single string parameter, it passes control to the CLI.
The CLI parses the string, puts the individual items on the stack, and
returns control to Call User (77). Call User (77) then calls the command
routine, which executes using the parameter information on the stack.

The CL1 handles rerouting directives by 1invoking the appropriate PCOS
routines. If the command line contains only rerouting directives, only
the rerouting routines are called and the effect is to set global rerout-
ing.

CLI and Call User (77) are designed to work together, and can be thought
of as co-routines. When Call User (77) is invoked with one string param-
eter, it calls on CLI to do its parsing; wken it is invoked with parame-
ters in a stack, it invokes the appropriate command routine which then
executes using the parameter. So, the CLI is a subroutine for Call User
(77). The two work together as the complete PCOS command line inter-
preter. When PCOS receives a command line (from any source) it passes
the command 1line to Call User (77) as one string. Call User (77) calls
CLI to parse the string into a parameter stack, and when control returns
to it, Call User (77) calls itself with that parameter stack.

SPECIAL CHARACTERS

The characters _listed below have special meaning. They are not allowed
in a string, unless the string is delimited by quote marks.

- SYMBOL: USED FOR:
- plus sign device rerouting identifier
- minus sign device rerouting identifier
- ampersand hex number identifier
- space parameter separator
- comma parameter separator
- double quote string delimiter
- single quote string delimiter
Either single or double quotes can delimit a string. Quotes inside a

string must be of the opposite type.

6-5

7. COMMANDS AND UTILITY PROGRAMS

ABOUT THIS CHAPTER

This chapter gives background information on the distinction between
resident and transient commands and on the PCOS utilities PLOAD, PUNLOAD,
and PSAVE. 1t includes information about command name conventions and
requirements.

CONTENTS

OVERVIEW 7-1
BACKGROUND INFORMATION 7-1
RELATED SECTIONS 7-1
COMMAND NAMES 7-1
COMMAND LINE INTERPRETER 7-2
COMMAND SUFFIXES 7-2
.cmd and .sav 7-2
.bas 7-3
PUNLOAD EXCEPTIONS 7-3
EXCEPTION LIST 7-3
THE .sav EXTENSION 7-3
LEGAL FILENAMES 7-3

COMMAND NAME AVAILABILITY 7-4

COMMANDS AND UTILITY PROGRAMS

OVERVIEW

This section gives background information on the distinction between
resident and transient commands and on the PCOS utilities PLOAD, PUNLOAD,
and PSAVE. 1t includes information about command name conventions and
requirements.

BACKGROUND INFORMATION

PCOS has resident and transient commands. Resident commands are built
into PCOS or are placed into PCOS by use of the PSAVE command. Transient
commands are resident on disk. They are brought into system memory and
executed by the command line interpreter when the user enters the command
name.

The user can PLOAD the command, which brings the transient command rou-
tine 1into system memory as a temporary resident command. The routine
stays in system memory, available for immediate use, until it is removed
using the PUNLOAD command or until the system is reset or turned off.
PLOADED commands can be made resident by PSAVING them.

A command routine is loaded into space allocated from the memory heap.
During the time it is in memory, the amount of heap space remaining for
the user is diminished. The command routine must be relocatable (must not
depend on being in a fixed memory location), because the memory location
assigned for it can vary.

A command routine is a utility program written in such a way that it can
be called by the command line interpreter, can make use of the parameters
passed to it by the command line interpreter, and can properly return
control to PCOS when it has finished its task. For information on
developing such a utility program, see 'Creating A Utility'" in Part 3.

RELATED SECTIONS

"Command Overview' in Part 1 provides an overview of PCOS commands
grouped by general functions. "Commmand Line Interpreter' in Part 2
explains the mechanism by which commands are invoked. ''Creating A Util-
ity" in Part 3 gives information on developing a utility program that can
be called as a PCOS command.

COMMAND NAMES

The minimum identification necessary to invoke a command is the first two
characters. The PCOS standard requires that these characters be unique.
1t is not always possible to meet this requirement. Some special purpose
commands may have duplicate characters in the first two positions. How-
ever, in most applications duplicates will not be found because the com-
mands in general use meet this standard. Letters may be lower case or
upper case. For example, the command for file copying 1is ‘'fcopy." It
can be invoked by '"fc," ‘'fcopy,'" "FC," or "FCOPY." 1f the first two
letters of a command are the same, then more letters must be wused to

7-1

properly identify that command. 1n any event, the command line inter-
preter makes use of as much command identifications as it is given.

The parameters to be used by the command routine are included in the com-
mand line. For example, if a user wanted to copy from 0:filel to 1:file2
the command line could be

fc 0:filel 1:file2

or
fcopy 0:filel 1:file2

COMMAND LINE INTERPRETER

The PCOS command line interpreter (CL1) interprets the first item on a
line as the command, and everything following the command as parameters.
Then it relays the parameter information to the utility by pushing onto
the stack the number of parameters given and what they are, before
transferring control. The utility itself is responsible for parameter
error checking.

The command line interpreter does have the responsiblity for finding the
proper command. 1f it is already PLOADED, then nothing more is neces-
sary but to transfer control there. However, the search of the disk files
needs to be explained. Disk files which are PCOS utilities have one of
these extensions: .sav, .cmd, or .bas. The command 1line interpreter
searches for the first file with one of those extensions that begins with
the same two (or more) characters the user gave. It takes the first
matching entry it finds. Letters are matched exactly, treating upper and
lower case as equivalent. Any number of characters greater than two can
be specified to distinguish a command. and the last character used can be
the first character in the file name which is not a duplicate. For exam-
ple, to distinguish between fcopy.cmd and fconnect.cmd, the commands can
be entered as fcop and fcon.

COMMAND SUFFIXES

.cmd and .sav

The difference between the .cmd and .sav extensions deserves some expla-
nation. Most utilities are in the category which use .cmd as a suffix.
Utilities with .cmd extensions are removed from system memory after they
return control to the system. Utilities with .sav extensions remain in
memory (the CL1 PLOADS them). Usually, the .sav extension indicates
utilities which, when loaded, alter the PCOS system in some permanent way
which remains in effect until the system is reset or powered off. For
example, RS232 1is a driver that provides RS-232-C communications. Once
loaded, it must remain to service communications it has begun.

7-2 PCOS SYSTEM PROGRAMMER'S GUIDE

COMMANDS AND UTILITY PROGRAMS

.bas

The .bas suffix indicates that the command routine is written in BASIC.
The CLI will check for the presence of the BASIC interpreter, and if
necessary will load BASIC and then the command routine. A BASIC routine
cannot have a .sav extension.

PUNLOAD EXCEPTIONS

The PUNLOAD command, available in PCOS 2.0 and later verions, reverses
the effect of PLOAD (or in theory, the .sav extension) and frees, if p®s-
sible, the memory space formerly occupied by the command routine.

EXCEPTION LIST

However, some commands change PCOS tables and cannot be removed after
having been PLOADED. Their TLOC attribute is set to 9. PUNLOAD examines
the attribute and does not remove them. The commands are:

ci.sav RS232 driver user routines

rs232.sav RS232 driver basic routines

ieee.sav 1EEE driver routines

eprint.sav Print error messages

kana.sav Katakana keyboard table

vmove.sav Volume copy on one drive system command
pdebug.sav Debugger

Resident commands cannot be PUNLOADED:

lterm pload punload

THE .sav EXTENSION

Usually, commands with the .sav extension cannot be removed from memory.
However, the .sav extension does not imply the command is unloadable.
This extension means only that the system does not automatically unload
the command after its execution. The user can use the .sav extension as
desired. Unloadability is controlled by the TLOC attribute.

LEGAL FILENAMES

Legal filenames must start with a letter. The remaining characters can
be letters or numbers. Both upper and lower case characters are allowed
as filenames, and are treated as equivalent. The following special char-
acters are NOT allowed within the filename:

= (equals) - (minus) + (plus sign)

, (comma) : (colon) # (pound or hash)
\ (backslash) / (slash) ' (single quote)
* (asterisk) ? (question mark) "' (double quote)
/space/ /any control character/

COMMAND NAME AVAILABILITY

Despite a few exceptions, the PCOS standard requires characters of a com-
mand name to be wunique for the command to be properly accessed when
called in its short form. The following table shows the commands gen-
erally furnished with PCOS. All other two letter combinations are avail-
able. 1In fact, all combinations of a letter followed by a number are
also available.

as ASM.CMD fu FUNPROT.CMD sc SCOMM.CMD
ba BASIC.CMD fw FWPROT.CMD sd SDEVICE.CMD
bk BKEYBOARD.BAS hd HDUMP.CMD sf SFORM.CMD
bv BVOLUME.SAV ie 1EEE.SAV sl SLANG.CMD
ci CIL.SAV la LABEL.CMD sp SPRINT.CMD
ck CKEY.CMD 1i LINK.CMD ss SSYS.CMD
dc DCONFIG.CMD 1s LSCREEN.CMD te TEXTDUMP.CMD
ed EDIT.CMD 1t LTERM va VALPHA.CMD
ep EPRINT.SAV ml MLIB.CMD vc VCOPY.CMD
fc FCOPY.CMD pd PDEBUG.SAV vd VDEPASS.CMD
fd FDEPASS.CMD pk PKEY.CMD vf VFORMAT.CMD
ff FFREE.CMD pl PLOAD vl VLIST.CMD
fk FKILL.CMD pr PRUN.CMD vm VMOVE.CMD
fl FLIST.CMD ps PSAVE.CMD vn VNEW.CMD
fm FMOVE.CMD pu PUNLOAD vp VPASS.CMD
fn FNEW.CMD rf RFONT.CMD vq VQUICK.CMD
fp FPASS.CMD rk RKILL.CMD vr VRENAME.CMD
fr FRENAME.CMD rs RS232.SAV vv VVERIFY.CMD
sb SBASIC.CMD wf WFONT.CMD

7-4 PCOS SYSTEM PROGRAMMER'S GUIDE

8. MEMORY CONFIGURATION

ABOUT THIS CHAPTER

This chapter explains the physical implementation of system memory in
functional terms, providing background information.

CONTENTS
OVERVIEW 8-1 SEGMENTED MODE AND

NON-SEGMENTED MODE 8-7
PHYSICAL MEMORY BLOCKS 8-1

THE SEVEN FUNDAMENTAL
28001 MEMORY CONCEPTS 8-2 CONFIGURATIONS 8-8
LOGICAL-TO-PHYSICAL MEMORY OVERVIEW 8-8
DECODING 8-3

CONFIGURATION 1: 8-9
LOGICAL ADDRESSES 8-5

CONFIGURATION 2: 8-10
SEGMENT USAGE 8-5

CONFIGURATION 3: 8-11
ROM (READ ONLY MEMORY) 8-5

CONFIGURATION 4: 8-12
SCREEN BIT MAP 8-6

CONFIGURATION 5: 8-13
PCOS BLOCKS 8-6

CONFIGURATION 6: 8-14
LANGUAGE BLOCKS 8-6

CONFIGURATION 7: 8-15

UTILITY AND ASSEMBLY
PROGRAMS 8-6

28001 BACKGROUND INFORMATION 8-6

SYSTEM MODE AND NORMAL MODE 8-7

MEMORY CONFIGURATION

OVERVIEW

This section explains the physical implementation of system memory in
functional terms. The information is provided for background, and is not
necessary for making use of memory when using the PCOS system calls for
storage allocation. These calls are described in the companion section,
""Memory Management,' which follows. ''Memory Configuration'' bridges the
gap between information provided about Z8000 memory handling concepts in
the vendor literature and the PCOS implementation of memory management.
The section also has information about the actual storage location of
certain PCOS system elements, which is not usually needed by the program-
mer but which may be needed for certain programming tasks. This section
does not contain hardware information except for a small amount of back-
ground information necessary to explain certain memory functions.

PHYSICAL MEMORY BLOCKS

The M20 system memory is allocated in 16 Kb blocks. Standard memory on
the motherboard is 128 Kb (8 blocks). Up to three memory expansion
boards can be added. All expansion boards added must be of the same
capacity, which is either 32 Kb (2 blocks) or 128 Kb (8 blocks).

Jumper options on the motherboard inform the system software that the
system contains one of the seven fundamental memory configurations shown
below.

Expansion Jumper
Case Configuration Boards Code

1 Standard 128 Kbyte memory only 0
2 32 Kbyte expansion board(s),

black and white display 1-3
3 32 Kbyte expansion board(s),

4-color display 1-3
4 32 Kbyte expansion board(s),

8-color display 2-3
5 128 Kbyte expansion board(s),

black and white display 1-3
6 128 Kbyte expansion board(s),

4-color display 1-3
7 128 Kbyte expansion board(s),

8-color display 2-3

. As the above list shows, the jumper code informs the system either that
no memory expansion boards are present or that expansion capacity exists
with a particular maximum potential. The system determines the actual
size within the potential size when it is started up. It does this by
writing a word of zeros at the low address for each block and reading the
value at that address. 1f the value of all ones is read, no memory block
exists. (The unconditioned value of the data lines will be read as
ones.)

28001 MEMORY CONCEPTS

The 78001 CPU allows extensive manipulation of actual memory addresses in
order to provide system designers with flexibility, compartmentalization,
and security. The fundamental memory addressing scheme is segment and
offset: A memory segment can be up to 64 Kb (addressed by 16 bits), and
there can be up to 128 segments, (addressed by 7 bits). The M20 uses 32
segments, addressed by 5 bits. 1In the interests of execution speed, PCOS
does not use the Z8001 security code provisions for user memory. Because
the M20 is a single-user system, such provisions should not be necessary.

Furthermore, memory can be differentiated between ''code' and ''data' seg-
ments. The Z8001 has a code/data signal which changes state according to
whether the CPU is executing an instruction code or accessing data. This
distinction is meant to provide the designer with a tool for system secu-
rity. The designer can reserve certain logical memory locations for data
only, and the machine will refuse to allow code execution in those loca-
tions.

In practice, there are some difficulties with this distinction. When the
loader 1is placing programs in memory, those programs are data (they are
not executing). When those programs are executing, they must be in
""code" segments. Therefore, certain 'code'" and ''data'" segments must be
equivalent for the system loader to work.

The distinction between code and data segments is wuseful 1in high-level
languages, where the code may be processing buffers of data or large
arrays of numbers. 1In assembly language programs, code and data informa-
tion is often intermingled and must all be placed in a code segment for
Aactual execution.

PCOS design makes use of the code/data distinction in certain cases. One
example, discussed in ''Language Support' in Part 3, is the implementation
of the BASIC interpreter. As developed, the 1interpreter and 1its user
area were both fitted within 64 Kb. The PCOS enhancement places the user
area in a second 64 Kb segment which is a data segment. The user-entered
BASIC statements can all be treated as data by the interpreter which
actually executes code.

8-2 PCOS SYSTEM PROGRAMMER'S GUIDE

MEMORY CONFIGURATION

LOGICAL-TO-PHYSICAL MEMORY DECODING

The M20 provides for the physical memory (up to 512 Kb, 32 blocks) to be
addressed within a logical framework of two megabytes, one megabyte for
"'code' memory and one for ''data.' Many physical blocks have more than
one logical address.

Figure 1, below, shows how logical addresses are decoded into physical
block addresses.

7
6 SEGMENT
5 ADDRESS
2 (8 BITS) 4
- 3 PHISICAL
28001 2 2 s
i 1 . ADDRESS
g MEMOR :
Y
LL} > MAPPING
A15 L ROM
CODE/DATA (8x) R T,
———— ROM
*1|*2|*3

CONFIGURATION

JUMPERS

Fig. 8-1 Logical to Physical Address Decoding

A The Z8001 provides 8 bits for segment address. The low four bits are
sent to the memory mapping ROM and the high bits are ignored. Two
address bits, A14 and A15, are also sent.

B The 28001 code/date signal is sent to the memory mapping ROM.
C The configuration jumper setting is read by the memory mapping ROM.

D These input bits (A, B, and C) are used as an index into a table and
the ROM table entry provides 8 bits of output. There are 16 tables.
The table is selected by the three configuration jumper settings and
the code/data signal. Within the selected table, the four segment
address bits index a table entry which is output. Output consists of
a 5-bit physical block address (0-1F; 0-31 in decimal) and three sig-
nal settings described below.

E These two signal lines are used by the M20 hardware. They indicate
whether the physical block is ROM or dynamic RAM. A third signal,
currently unused, is available for future development.

The figure below shows the logical-to-physical configuration for the
eight blocks on the motherboard. The portions shown are the same for all
PCOS systems. Other logical-to-physical assignments vary according to
memory configurations. At the end of this section, logical-to-physical
memory maps are provided for the seven fundamental cases.

Code Segments

B B] S B e e B R R Bl
BN JE T R o N R R A o LRkl
e B e e e E e e B e L P By
LA TR0 N i Y S T] s N S S R S
e e e B B B B e e Py
(2 d 2 i 1 F 13 G3pz{e] | =1 "1 0
O e e e Bl o El ISR) B POy
|11 2] 5|50 |-Ro-] | 20-Ro-| 2] 6] 2| | | | | |

S oy U R (R B e B el el B

€SO €51 (€S2 (€S3 (€S4 (CS5 (CS6 €S7 (€S8, CS9 CS10 €511 €S12 CS13 €514 CS15

Data/Stack Segments

[y S S S e jrssiadfsiafc
[| 4] 4] | | | | | | | \ | | | | |
B e e e o B B e e (e
BN P T Y RS e R A
B B Lo B e e B B B B B B B
P e) s hal s s B E o b e
D B B e e e S e L B B B E Bl B
|11 5| 5 sof-Ro-| 2| 2 |Ro-| 6] 6] 2] | | | | |
| e | e [e | e f e | e [e [[[| e e

DSO DS1 DS2 DS3 DS4 DS5 DSé DS7 DS8 DS9 DS10 DS11 DS12 DS13 DS14 DS15

Fig. 8-2 Motherboard System Memory

8-4 PCOS SYSTEM PROGRAMMER'S GUIDE

MEMORY CONFIGURATION

The figure above shows the logical access paths for 8 Kb of ROM (RO) and
eight blocks of system memory (SO, S1, S7). As can be seen, some
physical blocks can be accessed in more than one path and may be accessed
in either a code segment or a data segment. The diagrams also show that
logical segments may contain no memory or from one to four blocks (16 Kb)
of physical system memory.

LOGICAL ADDRESSES

A logical address consists of a segment and an offset. Segment values
range from 0 through %F and offsets from 0 through %FFFF. The distinc-
tion between code and data segments depends on the state of the code/data
signal from the Z8001.

Physical blocks within a segment start at one of these offsets: 0ly
%4000, %8000, or %C000. For example, physical block 6, which is in the
same location in both CS2 and DS2, starts at <<2>>%4000 and ends at
<<2>>%7FFF. The block boundary does not matter to the programmer so long
as it is not an end of the segment. A data string lying from <<2>>%7FEO
through <<2>>%813A could be manipulated without regard for block boun-
daries.

When using the storage handling system calls, the programmer does not
need to be concerned with logical boundaries. PCOS treats all memory as
a "heap' without boundaries, and takes care of the boundary effects
internally.

SEGMENT USAGE

The following discussion gives some information about usage of ROM and
some of the system memory segments. This information is provided as
background. The application programmer would never need to know these
details. The information may be useful to the system programmer in cer-
tain cases.

ROM (READ ONLY MEMORY)

The startup routines, including startup diagnostics and the bootstrap
loader, are in ROM. They occupy 8 Kb of the physical block shown as RO,
which is present in logical segments CS4, CS7, DS4, and DS7. The ROM
routines must be in a code segment in order to execute, and in a data
segment in order for the system routines to extract data provided there.

8-5

SCREEN BIT MAP

SO is a 16 Kb block which is dedicated for screen display, and is present
in both CS3 and DS3. The video display is memory-mapped, which means
that data placed in SO displays on the screen.

Further screen bit-map blocks to support color graphics would go into the
same segment.

For display purposes, SO is in a data segment. It is also in a code seg-
ment because during startup the ROM routines use half of SO for work
space. (Therefore, only half the display screen is active during startup
diagnostics.)

PCOS BLOCKS

PCOS code is executed from physical block 4, which is the third block in
CS1 and CS6. The bootstrap routines and other loader routines can also
access this block via a data segment address in order to load the PCOS
nucleus or other PCOS routines.

PCOS uses physical block 1 for data. This can be located as the first
block of both CSO and DSO.

LANGUAGE BLOCKS

The BASIC interpreter goes into CS1 and its user area into DS2. The
loader routines place other languages in the highest segment available
and work down. The loader skips the BASIC segments, and uses them only
as a last resort.

UTILITY AND ASSEMBLY PROGRAMS

These routines use physical blocks 5, 6, and 7, which can be accessed in

both code and data segments. See, for example, CS2 and DS2.

28001 BACKGROUND INFORMATION

The memory concepts discussed briefly here are provided for background
information. The information is available in reference documentation on
the 78000 family of CPU and supporting integrated circuit chips. The
PCOS memory management software handles these hardware capabilities and
buries them from view of the programmer.

8-6 PCOS SYSTEM PROGRAMMER'S GUIDE

MEMORY CONFIGURATION

SYSTEM MODE AND NORMAL MODE

The 28001 has two modes of operation, system mode and 'normal' mode. In
system mode, all 2Z8001 1instructions can be executed. In normal mode,
certain instructions, such as direct input/output, are not allowed. PCOS
runs under system mode and user programs under normal mode. The PCOS
system calls allow user programs to perform, indirectly, system mode
operations.

The memory management subsystem of PCOS performs operations in system
mode to control memory allocation. These operations include setting of
logical-to-physical translation and setting of attributes for portions of
memory. Memory attribute settings allow reserving portions of memory for
system use only and the prevention of unauthorized memory access.

The stack control registers, R14 and R15, are actually different regis-
ters 1in system mode and normal mode. A programmer using system mode and
a programmer using normal mode can both set values into R14 and R15 and
work with stack operations. The stack handling instructions appear to
refer to the same registers, but actually do not. The two stacks will be
handled independently.

SEGMENTED MODE AND NON-SEGMENTED MODE

Memory addressing in the Z8001 is done using ''segments' and ''offsets." A
segment can contain a maximum of 64 kilobytes of memory. The offset
pointer is 16 bits and can address any byte within the maximum segment
size. A complete segmented memory address consists of a 7-bit segment
identifier and the 16-bit offset:

| Seg | Offset |
Segment 0-127
Offset 0-65534

In segmented mode, the programmer provides both segment and offset
values. In non-segment mode, the programmer provides only the offset
value. The 'current segment' is implied. The current segment value is
obtained from the program status word (PSW). The segment value is main-
tained in the PSW in either mode. Specifying a segment in segmented mode
does not change the PSW segment identifier.

The M20 design uses the‘ibw)four bits of the segment address, and there-
fore has segment values from 0 through 15.

0

8-7

THE SEVEN FUNDAMENTAL CONFIGURATIONS

OVERVIEW

The tables that follow give the seven fundamental configurations possible
for system memory. The expansion configurations show the maximum possi-
ble expansion. Actual capacity is determined by the startup diagnostic
routines and saved for use by the system memory management routines.

The tables show three underlying conditions: no expansion. 32 Kb expan-
sion, and 128 Kb expansion. When expansion boards are available, the
layout depends on the type of display because 4-color and 8-color
displays require one or two blocks to be dedicated for additional screen
memory.

CONFIGURATION OVERVIEW

Expansion Jumper
Case Configuration Boards Code
1 Standard 128 Kbyte memory only 0 5
2 32 Kbyte expansion board(s),
black and white display 1-3 7
3 32 Kbyte expansion board(s),
4-color display 1-3 3
4 32 Kbyte expansion board(s),
8-color display 2-3 2
5 128 Kbyte expansion board(s),
black and white display 1-3 6
6 128 Kbyte expansion board(s),
4-color display 1-3 1
7 128 Kbyte expansion board(s),
8-color 2-3 0

The jumper code shown refers to motherboard jumpers, and is used when
computing the effective address. Strapping or jumper arrangements on the
expansion boards are not discussed.

8-8 PCOS SYSTEM PROGRAMMER'S GUIDE

MEMORY CONFIGURATION

CONFIGURATION 1:

Standard 128 Kb, no expansion, black and white display.

Jumper Selection: Switches Read: 5
X1 to X8 = OFF
X2 to X7 = ON
X3 to X6 = OFF

Code Segments

e] e e e e e e B el el EEES B
ETI S (O N I T NN Ul R e R e e e
B e e L B B B B B]]] B B
EIKT 2 R S T I O B S TN e GO s A
e e S B B e e el el E] EE] B B B B
121 3] 61 | | 131 3172031 | | | |
| === | mmmm | | e [[e [omm [oo | 2o | e | e [e [e | e
|11 2] 510 |-Ro-| | 2|-Ro-| 2| 6] 2] | | | | |

e B B T B R e

CSO €S €S2 'CS3. 'CS4 (CS5. CS6 C€CS7 (Cs8 CS9 CS10 CS11 €S2 CSA3 (€514 CS15

Data/Stack Segments

B L e [e I] B B B

KIETEN R T B N S e
T e et Lt Il B E R B P B
BEIEIEEE I TR B R R e S
R R [[y Y P R—— S S B PR
BRI TR I IR IR s O
[=== [=mmm [o m [[oo | ommm | mmm | o om [e m [e [| e [e | 2 [
|1] 5] 5[So[-Ro-| 2] 2|-R-| 6] 6 20 | | | | |

B S B L L] e

DSO DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DS10 DS11 DS12 DS13 DS14 DS15
Physical arrangement:
Main M20 board = RO, 805 15 2; 35 4; 5y 65 7

No Expansion boards

Note: RO is the ROM Memory on the main board
SO indicates screen bitmap area

8-9

CONFIGURATION 2:

32 Kb expansion board(s) (1-3), black and white display.

Jumper Selection: Switches Read: 7
X1 to X8 = OFF
X2 to X7 = OFF
X3 to X6 = OFF

Code Segments

B et L L e I B e B B e B Bl
lal 181 | 1 I 1 w2} | | | | |
e e e Lt e B B e e By
130 4] 70 | | | &4 1 9imi9ol | | | | |
e e e e B B e B e R
l21 31 61 | | 13 |3/ 701 3] | | | | |
[=== [==mm | == | mmm [mmmm | o emmm [e | 2o [mmm | [[e | e e [e
|11 2| 5|0 (-Ro-| | 2|-Ro-| 2| 6] 2 (3] | | |

B e T ol et S By B B

CS0O CS1 (€S2 CS3 CS4 (S5 (CS6 CS7 (€S8 (€S9 CS10 CS11 €S12 CS13 CS14 CS15
Data/Stack Segments

|=—I| I |
[17 | 8| 2 (12|10 | | l | | I

S R R P [
el 1 A ke g
e e e B e e ol e B
Mo | 7] 7] [13] 4] 4] Mm99l | | | |
e e Lo) F Sy B B B
191 6 61 [12] 3| 3| |71 7] 3] | | | |
e B e e e [B B B o
|1] 5| 5[S0|-Ro-] 2| 2|-Ro-] 6] 6| 2[13] | | |
s o f e i o o it i i f e

DSO DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DS10 DS11 DS12 DS13 DS14 DS15

Physical arrangement:

Main M20 board RO; SO; 15 25 3; 45 5, 6, 7

First expansion board = 8, 9
Second expansion board = 10, 11
Third expansion board = 12, 13
Note: RO is the ROM Memory on the main board

SO indicates screen bitmap area

8-10 PCOS SYSTEM PROGRAMMER'S GUIDE

MEMORY CONFIGURATION

CONFIGURATION 3:

32 Kb expansion board(s) (1-3), 4-color display

Jumper Selection:

| == =mmm | mmm | [mmm | mmmm [| | e | e | e o 2o

Switches Read: 3

Code Segments

| mmmm | mmm [e | [mmmm | e | e |
EAEIE R e s
e el S B B B B
l1o 21w | | | |
I e L
(s z| 8 | 1 1 1 |
] e e B B B e
R-| 2] 6] 2] | | | | |
B e S EE B B

CS2 CS3 CS4 CS5 CS6 CS7 (S8 (€S9 CS10 CS11 €S12 CS13 CS14 CS15

Data/Stack Segments

X1 to X8 = OFF

X2 to X7 = OFF

X3 to X6 = ON
| === | mmmm | mmm | mmmm | |
lal 191 | |
B e e
|31 4] 71 | |
e ey
e
[1] 2| 5| SO |-RO-|
| == fmmm [mmmm [ommm |- |
€S0 Cs1
2l 91 9] |
e P [
CREA2NE NN
| ==m | mmmm | e 2 [e |
0| 6] 6]58] |
| =m | e [mmmm | e o= |
|11 5] 550 |-Ro-|
[) B
DSO DS1

| === |
EERERE R
R e I e D] o B
EIEE R ERS N
e e Dl Lol I PR B
F 2l o) s &f | 1« |
e B P s e
RO-| 6| 61 2| | I I | |
B B] e

DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DS10 DS11 DS12 DS13 DS14 DS15

Physical arrangement:

Main M20 board
First expansion board

Second expansion board

Third expansion board

Note:

RO SO 1y 25 By 4 By iy T
S8, 9
10, 11
12, 13

RO is the ROM Memory on the main board
S0, S8 indicate screen bitmap areas

8-11

CONFIGURATION 4:

32 Kb expansion board(s) (2-3), 8-color display

Jumper Selection: Switches Read: 2
X1 to X8 = ON
X2 to X7 = OFF
X3 to X6 = ON

Code Segments

e by T D IS I IR [B B
la| |9l w2 | | |y f2] | | | | |
e e e B B Y ey,
|3 a4 70sw0 | | a] Jmjwin; | | | | |
| mmm | = | [[[[mmmm | mmmm | e [e [[[| e | o
2] 3] 61s8| | | 3] | 3] 7|3 | | | |
B o o R B Y S Y I
1] 2| s|so|Ro-| | 2|-Ro-| 2] 6| 2| | | | |
- [mmm | mme e e m [mme [[e mm [oen

CSO CS1 (CS2 (CS3 (CS4 CS5 CS6 CS7 CS8 (CS9 CS10 CS11 €S12 CS13 CS14 CS15

Data/Stack Segments

| === | == mmmm | mmmm | mmm | mmmm | mm | ommm mmmm | e | e | mmm | o | 2o [e |

EEISCN N T (N S 8 e AN) R A R
L e o B B e e B B B B B e
|1 7] 70sw0 | 4] 4] Jwjwin; | | | | |
e B B et i B B e B R e
|10 6 6fs8| | 3] 3| |7l 713 | | | |

|1] 5| 5] S0 |-RO-|] 2| 2 |-RO-|] 6| 6| 2| | | | [|

DSO DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DS10 DS11 DS12 DS13 DS14 DS15

Physical arrangement:

Main M20 board RO,1S0Y: 1L, 2, 3y 4, 5, 164 T

First expansion board = S8, 9
Second expansion board = 510, 11
Third expansion board = 12, 13
Note: RO is the ROM Memory on the main board

S0, S8, S10 indicate screen bitmap areas

8-12 PCOS SYSTEM PROGRAMMER'S GUIDE

R T e

MEMORY CONFIGURATION

CONFIGURATION 5:

128 Kb expansion boards (1-3), black and white display

Jumper Selection: Switches Read: 6
X1 to X8 = ON
X2 to X7 = OFF
X3 to X6 = OFF

Code Segments

T e sl a s
a2l 1 Tl TSialsie wie 2l
aANEENEnEnnEIn Iy
rrrzﬁ"yyaw;;y"w";F@%";Ttﬁ";{;ﬁ??yzwzsy;ﬂ

€S0 CS1 CS2 CS3 (CS4 CS5 CS6 CS7 CS8 CS9 CS10 CS11 €CS12 CS13 CS14 €515

Data/Stack Segments

|17 { 8 { 8 1 l I 1 I ’ 12 ; 12 l 10 I 16 I 20 l 24 1 28 1 24 |
5l 2l 2] 1B A &l iwinraimierizsia st
ONDEDIERREGIernr:
rry:j“;Y5w;ay;ﬁ";Fﬁq"zy:j";yaﬁﬁ:rzﬁz;y;ﬂ

DSO DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DS10 DS11 DS12 DS13 DS14 DS15

Physical arrangement:

Main M20 board

First expansion board
Second expansion board
Third expansion board

RO, SO, 1, 2, 3, 4, 5, 6, 7
8, 9, 10, 11, 12, 13, 14, 15

16, 17, 18, 19, 20, 21, 22, 23
24, 25, 26, 27, 28, 29, 30, N

mn nn

Note: RO is the ROM Memory on the main board
SO indicates screen bitmap area

CONFIGURATION 6:

128 Kb expansion board(s) (1-3), 4-color display

Jumper Selection: Switches Read: 1
X1 to X8 = OFF
X2 to X7 = ON
X3 to X6 = ON

Code Segments

|mmmm | mmmm | mmmm | [e e [e oo | oo | e e e [oo

4		9					9	93] 1	97	20	25	29	25	
mmm [= [e e [mmmm	2	2o o e e [e	e	e										
3t). 4	7				4		10	12	10	16	20	24	28	24
===	mmmm	mmmm	e [e [[mmm [e	e	o [[e e o								
28 s [Rt	= o307 i 3 5 19	23027	31											
B e el] I B B B														
11 2] 5	SO	-RO-		2	-RO-] 2	6	2	14	18	22	26	30	
mmm	mmmm	[e e	o	e	o	omm [e								

CSO (CS1 (€S2 (CS3 (CS4 CS5 C(CS6 CS7 (€S8 (€S9 CS10 CS11 CS12 CS13 CS14 CS15

Data/Stack Segments

|24 I 9 { 9 i I 1 { i 25 ‘ 13 i 13 } 11 } 17 1 21 1 25 1 29 1 25 |
P8 e BT N N Y Y S P el T Y s s e vl
PR R PR O e W) i g B S R LT LB R
rr‘“;'E";'i';;;:.:;a:',“;‘E“;}:;;:E";‘}";",";'i';:;:,';a'lk';;'i';;";‘;a'i

DSO DST DS2 DS3 DS4 DS5 DSé6 DS7 DS8 DS9 DS10 DS11 DS12 DS13 DS14 DS15

Physical arrangement:

Main M20 board

First expansion board
Second expansion board
Third expansion board

RO,~S0,, 1, 2, 3, 4, 5, 6,.7

S8 9y 105, 115 125135014, 15
16, 17, .18, 19, 20, 21, 22, 23
24, 25, 26, 27, 28, 29, 30, 31

Note: RO is the ROM Memory on the main board
S0, S8 indicate screen bitmap areas

8-14 PCOS SYSTEM PROGRAMMER'S GUIDE

MEMORY CONFIGURATION

CONFIGURATION 7:

128 Kb expansion board(s) (2-3), 8-color display

Jumper Selection: Switches Read: 0
X1 to X8 = ON
X2 to X7 = ON
X3 to X6 = ON

Code Segments

| 4 f ; 9 ’ 24I : I { 25 i] i 13 ; 1 f 18 { 22 : 26 : 30 ; 26 |
(51 Al Flswl | &l |wlie miwial=rale,
20 Bl alml b o Talilzitlo % 2 &
FrTSW";yaﬁxay“W";F%%“;T:ﬁ“;{ﬁﬁ?:yzw:7y;ﬂ

CSO CS1 (€S2 (CS3 CS4 (S5 CS6 (CS7 (€S8 (€S9 CS10 CS11 CS12 CS13 CS14 CS15

Data/Stack Segments

| 24: 9 } 9 I 241 = } = 25 } 13 I 13 1 1 1 18 = 22 I 26 I 30 l 26 |
ol 7| leE | A &l M8l miori: e
%%l o1 & | 5| 3l |7l 7 3| |2 |24 | |2
Try?ﬁ“;yawxay;w“;F@q"zy:w";yajﬁ;Y5WG:T;W

DSO DS1 DS2 DS3 DS4 DS5 DSé DS7 DS8 DS9 DS10 DS11 DS12 DS13 DS14 DS15

Physical arrangement:

Main M20 board

First expansion board
Second expansion board
Third expansion board

RO, SO, 1, 2, 3, 4, 5, 6, 7
s8, 9, 10, 11, 12, 13, 14, 15
s16, 17, 18, 19, 20, 21, 22, 23
24, 25, 26, 27, 28, 29, 30, 31

Note: RO is the ROM Memory on the main board
S0, S8, S16 indicate screen bitmap areas

8-15

9. MEMORY MANAGEMENT

+ABOUT THIS CHAPTER

This section presents the memory management functions available to the
programmer that allow use of system memory resources as a 'heap", without
regard for segment boundaries. It includes implementation concepts.

CONTENTS
OVERVIEW 9-1
PCOS MEMORY CONCEPTS 9-1

IMPLEMENTATION OF MEMORY

MANAGEMENT 9-1
WARNING ON BUFFER USE 9-2
PCOS NUCLEUS 9-3
PCOS STARTUP 9-3
OBSOLETE STORAGE ALLOCATION

CALLS 9-3
STORAGE ALLOCATION CALLS 9-4
Dispose (34) 9-4
New (120) 9-4
BrandNewAbsolute (121) 9-4
NewLargeBlock (122) 9-5

StickyNew (123) 9-5

MEMORY MANAGEMENT

OVERVIEW

This section is a companion to the prior section, ''Memory Configuration.'
"Memory Management' presents the system functions available to the pro-
grammer that allow use of system memory resources as a 'heap,'" without
regard for segment boundaries. It gives some information on implementa-
tion and briefly describes the system calls for storage allocation.

PCOS MEMORY CONCEPTS

The "heap" concept allows the programmer to request a block of memory of
a particular size and to release it back to the system when done. Avail-
able system memory is treated as a heap from which portions can be taken
and to which portions can be added. Most of the details given in the
prior section are hidden. The system calls given at the end of the sec-
tion operate without regard for segment boundaries.

IMPLEMENTATION OF MEMORY MANAGEMENT

The PCOS nucleus includes the memory management routines. When PCOS is
initialized the memory management routines are initialized also and used
by the nucleus to load the rest of PCOS and the associated routines and
tables (resident commands, RFONT tables, etc.).

Memory management takes all of memory available after initialization and
links it together as large buffers forming one large heap. Then it allo-
cates memory from the heap and, when allocated memory is returned to it
(by the Dispose call), returns the memory block to the heap. Memory
management starts by allocating chunks of memory constrained only by seg-
ment boundaries, which it hides from users. As user programs and system
programs receive memory buffers, the allocation of memory begins to
resemble a patchwork quilt.

Memory buffers look like this:

| overhead | buffer space

The overhead information is concise. 1t contains a special marker, the
length of the buffer space, and information linking it to other buffers.
When a buffer is requested, memory management takes space from the heap,
sets up a buffer of the requested size, and allocates it to the caller.
Unused space is allocated to the heap in the same fashion as to any other
user. When a using program disposes of a buffer, memory management allo-
cates it to the heap. When a program finishes execution, PCOS 1informs
memory management which then releases all buffers used by the program and
allocates them to the heap. (StickyNew allocations are an exception.)

Certain points can be summarized from this.

* All system memory is allocated, either to a user program, system pro-
gram, or the heap.

* Memory management hides details. Users request memory of a particu-
lar size, receive it, use it, and return it. The actual location of
memory buffers is not a matter of user concern.

The DCONFIG utility program can be used to find actual memory locations,
if desired.

WARNING ON BUFFER USE

As described above, there is no unallocated space in the system and there
is no guard space around buffers. The design of the memory management
system emphasizes small overhead and speed of execution. Memory manage-
ment does not guard against a program accessing memory past its buffer
boundaries.

In the figure below, we see that at the end of a buffer is the overhead
informtion for the next.

| overhead| buffer space 1 | overhead| buffer space 2 |

1f the user of buffer space 1 writes information past the end of the
buffer, the overhead information on buffer space 2 is destroyed.

This can happen in assembly language programs through programmer error,
and to some degree in languages such as BASIC when using arrays or simi-
lar data structures and attempting to access with a subscript incremented
or decremented just past the proper range. Such errors are less likely
in PASCAL, which has rigorous internal checks.

To some degree, memory management can recover from difficulties caused by
desroyed overhead information. However, the buffer space information
that depended on the lost overhead information is lost. The effects of
this may not show up until later, usually when the program terminates,
and the cause may not be understood. That is, it is possible to destroy
buffer information and not realize it, and to later suffer the conse-
quences and not realize why. This kind of problem can be one of the most
difficult to detect and remedy. A special command, TEXTHEAP.SAV, can be
very valuable in this situation. It can give the address of destroyed or
invalidated information. Contact Olivetti for this program.

In summary, be careful not to exceed buffer boundaries.

9-2 PCOS SYSTEM PROGRAMMER'S GUIDE

MEMORY MANAGEMENT

PCOS NUCLEUS

The PCOS nucleus, or kernel, is a fundamental part of PCOS required to
handle input/output for the system peripherals (keyboard, display,
printer, and disks), to decode command lines and execute commands, and to
manage memory. Other system software modules are loaded by the kernel
when needed.

The kernel resides in permanent memory. The permanent memory area also
contains the resident commands and any system elements made permanent by
the PSAVE utility, such as command routines, programmed key (PKEY) defin-
itions, ‘and user designed fonts (RFONT utility).

PCOS STARTUP

The diagnostic ROM determines the size of memory for each segment and the
total size of memory and saves these values for memory management. If
there is not enough memory to load the current PCOS, PCOS will not exe-
cute. This can happen when a user has saved material on a larger system
and attempts to load it on a smaller one.

When a PSAVED PCOS is booted onto a system with more memory, the memory

management descriptor table 1is modified to include the additional free
blocks in the heap.

OBSOLETE STORAGE ALLOCATION CALLS

Certain obsolete system calls operate within segment boundaries. They
are listed in '"System Calls" in Part 2, under '"Obsolete Calls.'" These
calls are presently supported, but should not be used for development
work. When modifying older programs, these calls should be replaced with
the system calls described at the end of this section. For convenience
in understanding the obsolete calls in order to replace them, some infor-
mation on segment handling is given below.

The major constraint is the segment boundary and therefore the remaining
memory capacity in the segment. Most of the obsolete system calls
operate within the 'current segment.' The current segment can be changed
to a new segment by issuing a new segment call requesting memory. The
request can be for zero length, which merely changes the segment and
allows determining such matters as how much memory is available in the
new segment.

Remember that although a segment has a maximum size of 64 Kb, it may
actually be made up of fewer physical blocks or even be empty. Moreover,
even in a full-sized segment the system may have taken memory space for
its own use or for memory management overhead.

STORAGE ALLOCATION CALLS

The following system calls are the programmer's interface to the memory
management system. These calls treat all of system memory as a heap,
without regard for segment boundaries. For further details, see the
Assembly Language Manuals.

Dispose (34)

Releases heap space.

Input:
RR8 <- address of block pointer
Output:
@RR8 -> hex FFFFFFF
RS -> error status
New (120)

Allocates a block of bytes from heap.

Input:
RR8 <- address of block pointer
R10 <~ length

Output:
R5 -> error status
@RR8 -> block pointer
BrandNewAbsolute (121)
Allocates a block at a specified address.
Input:
RR8 <- address of block pointer
R10 <~ 1length
Output:

R5 -> error status
@RR8 -> block pointer

9-4 PCOS SYSTEM PROGRAMMER'S GUIDE

MEMORY MANAGEMENT

NewlLargeBlock
Allocates the largest free block of bytes from heap.
Input:
RR8 <- address of block pointer
Output:
@RR8 -> block pointer
R10 -> 1length
R5 -> error status
StickyNew

Allocates a block of bytes from heap that remains allocated after
program doing this call terminates.

Input:
RR8 <- address of block pointer
R10 <~ length
Output:
@RR8 -> block pointer
RS -> error status
Examples

The following examples show how the stack can be used to hold the
pointer.

Example 1. All calls except Dispose

dec r15, #4 //make room for pointer
1d1 rr8, rr14 //addr of ptr to rr8

1d r10, #S1ZE NEEDED

sc #New

pop rr2, @rri14 //rr2 has ptr to block

Example 2. Dispose

push @rr14, rr2

1d1 rr8, 4414 //rr8 has addr of ptr
sc Dispose
pop rr2 //rr2 will contain nil (-1)

(122)

(123)

the

block

9-5

10. SYSTEM CALLS

ABOUT THIS CHAPTER

This chapter gives an overview of the PCOS system calls grouped by gen-
eral functions and provides background information on their use by the
programmer. System calls are used to handle input/output and to manage

system resources.

CONTENTS
OVERVIEW 10-1 ReadlLine (14) 10-5
TYPES OF CALLS 10-1 Eof (16) 10-5
NUMBERING AND LABELS 10-2 ResetByte (18) 10-5
FURTHER INFORMATION 10-2 Close (19) 10-5
BYTESTREAM 1/0 CALLS 10-2 SetControlByte (20) 10-6
GENERAL 10-2 GetStatusByte (21) 10-6
FILE IDENTIFIER (FID) OpenFile (22) 10-6
NUMBERS 10-3

Dseek (23) 10-6
FILE AND DEVICE POINTERS 10-3

DGetten (24) 10-7
BYTESTREAM 1/0 CALL OVERVIEW 10-3

DGetPosition (25) 10-7
LookByte (9) 10-3

BYTESTREAM CALLS AND
GetByte (10) 10-4 APPLICABLE DEVICES 10-7
PutByte (11) 10-4 DEVICE REROQUTING 10-8
ReadBytes (12) 10-4 RS232 DEVICE DRIVER 10-8
WriteBytes (13) 10-4 BLOCK TRANSFER CALLS 10-9

GENERAL

BLOCK TRANSFER CALL OVERVIEW

BSet (29)
BWSet (30)
BClear (31)

BMove (32)

STORAGE ALLOCATION CALLS

GENERAL

LIST OF CALLS

DATA MANIPULATION CALLS

GENERAL

NUMERIC DISPLAY CALL
OVERVIEW

DHexByte (91)
DHex (92)
DHexLong (93)
DNuml

DLong (95)

STRING HANDLING CALL
OVERVIEW

DString (89)
Crlf (90)
Stringten (105)

TIME AND DATE CALLS

10-9

10-9

10-9

10-9

10-9

10-10

10-10

10-10

10-10

10-10

10-10

10-11

10-11

10-11

10-11

10-1

10-12

10-12

10-12

10-12

10-12

10-13

SetTime (73)
SetDate (74)
GetTime (75)
GetDate (76)

USER CALL TO PCOS

CallUser (77)

SYSTEM MANAGEMENT

SYSTEM MANAGEMENT CALL

OVERVIEW

BExit (0)

Error (88)
BootSystem (107)
SetSysSeg (108)
SearchDevTab (109)
KbSetLock (114)

EXPLANATION

FILE MANAGEMENT

GENERAL

EXPLANATION

1EEE-488 CALLS

GENERAL

SUMMARY OF I1EEE SYSTEM

CALLS

OBSOLETE CALLS

10-13
10-13
10-13
10-14
10-14
10-14

10-14

10-14
10-14
10-15
10-15
10-15
10-15
10-16
10-16
10-16
10-16
10-16
10-17

10-17

10-17

10-18

NewSameSegment (33)
MaxSize (99)

TopFree (100)

ProtRead (101)

InitHeap (103)
NewAbsolute (104)
GRAPHIC CALLS

SUMMARY OF GRAPHIC CALLS

SYSTEM CALL LABELS

THE MASTER TABLE

10-18

10-18

10-18

10-19

10-19

10-19

10-19

10-20

10-21

10-21

SYSTEM CALLS

OVERVIEW

System calls are PCOS procedures used to handle Input/Output and to
manage system resources such as memory or the real-time clock. System
calls can be accessed by assembly language programs via the Z8000 System
Call instruction. The System Call instruction includes a one-byte
request code which indicates the function to be performed. For example:

sc #3 System call, request code = 3

System operations done by BASIC, PASCAL, and other high-level languages
make use of system calls, as do PCOS command routines and utility pro-
grams.

Parameters to be used by the system call are generally passed 1in regis-
ters numbered from R5 to R13. If strings or other large data structures
are to be passed, pointers to the structures are passed as parameters in
the registers.

In general, parameters are passed as 16-bit unsigned values. ASCII char-
acters are passed occupying the lower bytes of a register.

All system calls that return an error condition use register R5. Zero
indicates no error; a non-zero integer gives the error code. Error codes
are listed in Part 3, under "PCOS Error Codes."

TYPES OF CALLS

In the discussions which follow, the system calls have been grouped by
type as follows:

Bytestream Calls

Block Transfer Calls
Storage Allocation Calls
Data Manipulation Calls
Time and Date Calls

User Call to PCOS

System Management
File Management
1EEE-488 Calls
Obsolete Calls
Graphics Calls

0 Q0 oW
x .- T Q

The section also has supplementary discussions on Device Rerouting and on
the RS232 driver support. These topics are related to the bytestream
calls.

All system calls from PCOS 1.X through PCOS 3.X are included in the dis-
cussion in this section.

NUMBERING AND LABELS

For purposes of identification, each system call has been assigned a
label as well as a number. A list of these labels is given at the end of
the section.

1t is recommended that this list be made into an include file and that
programmers use the symbolic label rather than the number when coding
system calls. For example, SC 9 can also be referenced by 1its 1label:
'LookByte. "'

FURTHER INFORMATION
The remainder of this section gives an overview of system calls and gen-

eral information about them. For detailed information on each system
call, see the Assembly Language Manual.

BYTESTREAM 1/0 CALLS

GENERAL

Bytestream 1/0 calls are used to interface with the disk, printer, RS232
communications port, and console (keyboard and video). These calls are
used to:

a) Transfer bytes of data to or from an 1/0 device

b) Send control information to a device or to a device driver

c) Receive status information from a device

The bytestream calls are:

LookByte (9) Close (19)

GetByte (10) SetControlByte (20)
PutByte (11) GetStatusByte (21)
ReadBytes (12) OpenFile (22)
WriteBytes (13) DSeek (23)

ReadLine (14) DGetLen (24)

Eof (16) DGetPosition (25)

ResetByte (18)

10-2 PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CALLS

FILE IDENTIFIER (FID) NUMBERS

A FID is a small integer used to identify the keyboard, the console, the
printer, an open disk file, or other 1/0 device. The operating system
maintains a table associating FIDs with a File Pointer. That pointer
refers to a control structure comprised of pointers to data structures
and to routines. The FID is required with bytestream calls.

FILE AND DEVICE POINTERS

Opening a disk file creates a stream data structure, and places a pointer
to it 1in the File Pointer Table (FPT). Closing the disk file sets this
pointer to nil, and releases any table space associated with the file.
Some '"files" or devices are always open. For example, the keyboard and
the screen (the default window) are always open. They can, however, be
closed and re-opened by use of the PCOS Device Rerouting feature.

The following table describes the allocation of F1Ds. Some of these F1Ds
represent devices which are always open: others are assigned to files or
screen windows by system calls.

0-15 BASIC files
16 Reserved system file
i Console
18 Printer
19, 25, 26 RS232 Communications (Com, Com1, Com2)
20-24 PCOS files

BASIC file numbers translate simply into PCOS F1Ds, but BASIC window
numbers for the screen are distinct from FIDs. The PCOS file ID's cannot
be accessed in BASIC.

BYTESTREAM 1/0 CALL OVERVIEW

LookByte (9)

Returns the next byte from designated device buffer without removing the
byte from the buffer.

Input:
R8 <- FID

Output:
RL7 -> returned byte
RH7 -> buffer status
R5 -> error status

10-3

GetByte (10)

Returns the first byte from designated device, removing the byte from the
device buffer.

Input:
R8 <- F1D
Output:
RL7 -> returned byte
(H7 always zero)
R5 -> error status

PutByte (11)

Transmits a byte to specified device.

Input:

R8 <- FID

RL7 <- input byte
Output:

RS -> error status

ReadBytes (12)

Reads and counts bytes, from a device, into a buffer in memory.

Input:
R8 <- FID
R9 <= count to be read
RR10 <- ptr to memory buffer
Output:
R7 -> count returned
R5 -> error status

WriteBytes (13)

Writes a specified number of bytes from memory to a file or device.

Input:
R8 <- FID
R9 <= count
RR10 <- start
Output:
R7 -> count returned
R5 -> error status

10-4 PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CALLS

ReadLine (14)

Reads and counts bytes input from keyboard, until the first <CR>, into a
memory buffer (at a specified address).

Input:
R8 <- FID
R9 <- count
RR10 <- destination
Output:
Ré -> count returned
R5 -> error status

Eof (16)

Checks if input character is available from file.

Input:
R8 <- F1D

Output:
R9 -> returned status
R5 -> error status

ResetByte (18)
Resets input file or device.

Input:
R8 <- F1D

Output:
R5 -> error status

Close (19)
Closes specified disk file or device.
Input: R8 <- FID number

Output: R5 -> error status

10-5

SetControlByte (20)

Writes a word into device parameter table.

Input:
R8 <-
R9 <-
R10 <=
Output:
R5 ->

GetStatusByte (21)

F1D
word number
word

error status

Reads a single word from the Device Parameter Table.

Input:
R8 <-
R9 <-
Output:
R10 ->
RS ->

OpenFile (22)

F1D
word number

word read
error status

Opens designated file or device for read, write, etc.

Input:
(Files) (Device)
R6 <- extent length
R7 <- mode
R8 <- FID R8 <- FID
R9 <- fileidentifier
length
RR10 <- address
Output:
R5 -> error status R5 -> error status
Dseek (23)

Positions file pointer as specified.

Input:
<_
RR10 <~

Output:
RS ->

10-6

F1D
position

error status

PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CALLS

DGetLen (24)

Returns length of file or number of bytes in the input buffer.

Input:

(Files)

| R8 <- FID
| Output:

RR10 -> 1length
R5 -> error status

R8

R10
R11
R5

(Device)

<-F1D

-> zero status
-> number
-> error status

DGetP

Gets postion of next byte to be read or written.

Input:
R8 <-
Output:
RR10 ->
R5 ->

BYTESTREAM CALLS AND APPLICA|

F1D

position
error status

BLE DEVICES

ices. The devices are:

Printer The system printer, FID 18.

|
| Console FID 17. (File ldentification 17.)

| The console includes the keyboard (key)
and the screen display (disp).

Disk BASIC disk files (B), FIDs 0-15;
PCOS disk files (P), FIDs 20-24.

RS232 The RS232-C ports; COM, COM1, and
CoM2; F1Ds 19, 25, and 26.

osition (25)

The table below shows which bytestream calls can be used with which dev-

10-7

Bytestream Calls and Applicable Devices

Bytestream Console Disk RS232 Printer
Call key disp B P

LookByte (9) X
GetByte (10) X
PutByte (11) X
ReadBytes (12)

WriteBytes (13) X
ReadLine (14)
Eof (16)
ResetByte (18)
Close (19) X X
SetControlByte (20)
GetStatusByte (21)
OpenFile (22)

DSeek (23)

DGetlLen (24)
DGetPosition (25)

xX X X
> X X X X
= X X X X
X X X X X X X X X X X
x

xX X X X
D63 D
=

DEVICE REROUTING

Standard M20 system devices are the keyboard, the display screen, the
disks and their files, the printer, and an RS232 interface. Optional
system devices include extra RS232 interfaces and an 1EEE-488 interface.
The PCOS Device Rerouting commands permit the user to declare any of
these devices or files as a replacement or additional source or destina-
tion, depending upon 1its type and the parameters of the command. The
source or destination can replace or supplement the fundamental input
source and output destination which is the keyboard and the display
screen (the console).

In general, the bytestream commands that can use FID 17 (the console) are
capable of being modified by the device rerouting capability to accept
another bytestream FID in addition to or in place of FID 17.

For further information, see the '"Device Rerouting" section in Part 2.

RS232 DEVICE DRIVER

The RS232 device driver is a general purpose asynchronous communication
package that allows the user to specify baud rate, parity, stop bits, and
data bits for the communication line. The bytestream calls interface
with this driver. The user accesses this driver by the SCOM command,
described in the PCOS User Manual. The programmer can make use of the

SCOM package (via Call User) or the Cl1 command in BASIC, or can access
the driver via the appropriate FIDs and bytestream calls.

10-8 PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CALLS

This driver is discussed in the 'Other Drivers' section of Part 2.

BLOCK TRANSFER CALLS

GENERAL

The block transfer system calls allow the programmer to set portions of
memory to a fixed value, to transfer data from one portion to another,
and to clear memory. For example, block transfer calls are used by the
PCOS system to transfer the BASIC interpreter's fixed tables from ROM to
RAM, and by BASIC to transfer other initialization tables from ROM to
RAM.

BLOCK TRANSFER CALL OVERVIEW

BSet (29)
Sets a block.of bytes to a specified value.
Input:
RL7 <- n (byte value)
RR8 <= start
R10 <- length
Output:
R5 -> error status
BWSet (30)
Sets a block of words to a value.
Input:
R7 <- n (word value)
RR8 <- start
R10 <- length
Output:
RS -> error status
BClear (31)

Sets specified block of memory to zeros.

Input:

RR8 <- start

R10 <= length
Output:

RS -> error status

10-9

BMove (32)

Moves a block of bytes from one location to another.

Input:

R7 <- length

RR8 <- start

RR10 <- destination
Output:

R5 -> error status

STORAGE ALLOCATION CALLS

GENERAL

The storage allocation calls are supported by the memory management rou-
tines. User programs and system programs make use of these calls to
request and release buffer space in system Memory. Memory management
makes system memory available as a 'heap' without regard for segment
boundaries.

LIST OF CALLS
The Storage Allocation calls are:
Dispose (34) NewLargestBlock (122)
New (120) StickyNew (123)
BrandNewAbsolute (121)
For background information and for details on these calls, see the

"Memory Management' section in Part 2.

DATA MANIPULATION CALLS

GENERAL

Numerical Display calls convert the internal form of numeric values into
a displayable form. They operate on bytes, words, long words, and
integers. String handling calls display a string, perform a carriage
return and line feed, and provide the length of an input string.

10-10 PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CALLS

NUMERIC DISPLAY CALL OVERVIEW

The system calls are:

Displays a byte in hexadecimal.

Input:
R12 <~

Output:

RS ->

Displays a word in hex.

Input:
R12

Output:
RS

byte

error status

<- word

-> error status

Displays long word in hexadecimal.

Input:
RR12 <=
Output:
R5 ->
Displays integer.
Input:
R12 <~
R13 <~
Output:
RS ->

long word

error status

integer
field width

error status

DHexByte (91)

DHex (92)

DHexLong (93)

DNumi (94)

10-11

DLong (95)
Displays number as unsigned integer.

Input:
RR12 <- 1long integer

Output:
R5 -> error status

STRING HANDLING CALL OVERVIEW

DString (89)

Displays a string message.

Input:
RR12 <- address
Output:
R5 -> error status
crLf (90)

Does a carriage return <CR> and linefeed <LF>.

Input:
(there are no parameters)

Output:

R5 -> error status

StringLen (105)
Returns the length of the input string.

- Input:
RR12 <- pointer

Output:

R7 -> length
R5 -> error status

10-12 PCOS SYSTEM PROGRAMMER'S GUIDE

TIME AND DATE CALLS

The M20 has a real-time clock which maintains both date and time. This
clock must be reset each time the system is turned on.

Setting the time or date is done by passing the address of an ASCII
string to the operating system. Likewise, the time or date may be read by
receiving an ASCII string from the operating system. The formats of
these strings are defined by the calls listed below. These correspond to
the string values passed in BASIC by TIMES and DATES.

These system calls read and set data and time:

SetTime (73)
Sets the system clock.
Input:
RR8 <- address
R10 <- length
Output:
R5 -> error status
SetDate (74)

Sets the system date-clock.
Input:
RR8 <- address
R10 <~ length
Output:
R5 -> error status
GetTime (75)
Returns the system time.
Input:
RR8 <- address
R10 <~ length

Output:
R5 -> error status

10-13

GetDate (76)
Returns the system date.
Input:
RR8 <- address
R10 <~ 1length
Output:

R5 -> error status

USER CALL TO PCOS

One system call has been provided to allow the user to execute any wutil-
ity or command routine available that could be executed from the PCOS
command line. The utility or routine may be transient or resident. The
call is:

CallUser (77)

Calls user or PCOS utility or command.

Input:
RR14 <- pointer

Output:
R5 -> error status

The call can be used in assembler utilities to process PCOS user com-
mands. The "Command Line Interpreter' section in Part 2 gives further
information about this call. A detailed explanation of the call is given
in the discussion of CallUser (77) in the Assembly Language Manual.

SYSTEM MANAGEMENT

These calls are used for internal PCOS management and are available for
general use as needed.

SYSTEM MANAGEMENT CALL OVERVIEW

BExit (0)
Exit from Basic.

(this procedure has no parameters)

10-14 PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CALLS

Error (88)
Displays standard error message.
Input:
RH5 <- parameter number #
RL5 <- error code
Output:
(no outputs)
BootSystem (107)

Reboots (initializes) system.

Input:
(this call has no parameters)

Output:
R5 -> error status
SetSysSeg (108)
Returns caller to segmented system mode.

Input:
(this call has no parameters)

Output:
R5 -> error status

SearchDevTab (109)

Searches system device table.

Input:
RR10 <- ptr to device name
R9 <- device name length
Output:
RL5 -> entry number

RHS -> device type
‘ RR8 -> ptr table entry
| RS -> error status

10-15

KbSetLock (114)

Sets the state of both the shift lock and the cursor lock flags.

Input:
R6 <- 1integer flag
Output:
R7 -> previous flag
RS -> error status
EXPLANATION

BExit exits from BASIC to PCOS.

initializes
returns the system to segment mode.
RbSetLock sets the state of the shift-lock and cursor-lock

sages. BootSystem

device table.
flags.

FILE MANAGEMENT

GENERAL

These calls are used intenally to manage

available for general use.

The file management calls are:
DRemove (26)
DRename (27)

DDirectory (28)
DisectName (96)

EXPLANATION

DRemove removes a file name from a directory.
DDirectory displays
CheckVolume forces a check of disk
disk directory for a file name.
DiskFree returns the number of free

a directory.
names.

access.

error mes-
SetSysSeg
search the

Error displays system call
or reinitializes the system.
SearchDevTab is used to

volumes and files, and are

CheckVolume (97)
Search (98)
SetVol (102)
DiskFree (106)

DRename renames a file 1in
a directory. DisectName parses file
volumes. Search searchs a
SetVol sets the active volume for next
sectors on a disk. For

further information, see the 'File Management' section in Part 2.

10-16

PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CALLS

1EEE-488 CALLS

GENERAL

The 1EEE-488 package supports use of an optional 1EEE-488 interface
board. The package consists of a group of programs which execute the
following BASIC I1EEE statements:

ISET, IRESET, ON SRQ GOSUB, POLL, PRINTe,
WBYTE, RBYTE, INPUT@, and LINE INPUTE.

These statements allow the user to perform the following operations on an
1EEE-488 bus:

a) Control the IFC (interface clear) and REN (remote enable) lines
b) Receive a service request from another device on the bus, identify
the requesting device through serial pooling, and process the service

request

‘c) Write control bytes (e.g., '"Device Clear', '"Device Trigger", etc.) to
other devices

d) Address, write data to, and read data from, other devices
e) Allow the devices within an IEEE-488 network to transfer data on the

bus (that 1is, assign 'Talker" status to one de-vice, and 'Listener"
status to one or more devices)

SUMMARY OF IEEE SYSTEM CALLS

The following system calls are assigned for the 1EEE package:

1BSrQo (78) 1BPrnt (83)
1BSrQ1 (79) 1BWByt (84)
1BPoll (80) 1BInpt (85)
1BISet (81) 1BLinpt (86)
1BRSet (82) 1IBRByt (87)

For further information, see the '"Other Drivers" section in Part 2.

1f the system does not have an 1EEE option board, register R5 will con-
tain error 34 on exiting from any IEEE system call.

10-17

OBSOLETE CALLS

The following calls are obsolete. Their functions have been replaced
with newer system calls. These calls are still active to provide support
for older software. However, they should not be wused for current
development work and should be replaced when encountered in programs that
are being redone. Later versions of PCOS may no longer support these
calls.

NewSameSegment (33)

Allocates a block of bytes from heap in the current segment.

Input:
RR8 <- pointer to address variable
R10 <= size

Output:
R5 -> error status

address variable-> buffer start address

MaxSize (99)

Returns maximum free heap size.

Input:

(there are no parameters)
Output:

R8 -> size

R5 -> error status

TopFree (100)
Gets top of heap.

Input:
(there are no parameters)

Output:

RR8 -> top
R5 -> error status

10-18 PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CALLS

ProtRead (101)

Verify protection pattern on track 35.

Input:
R7 <- volume number
R9 <- string length
RR10 <- ptr to string
Output:

R5 -> error status

InitHeap (103)
Sets new address for top of heap.

Input:
R9 <- address

Output:
R5 -> error status
NewAbsolute (104)

Allocates a block at a specified address.

Input:
RR8 <- address of block pointer
R10 <- 1length
@RR8 <- block pointer

Output:

RS -> error status

GRAPHICS CALLS
The graphics system calls are discussed in detail, with background, in

the 'Video Display' section of Part 2. A summary of the calls is given
below.

10-19

SUMMARY OF GRAPHICS CALLS

System
Call No.

43
44

45
46

47
49
50
51
52

53

54

55
56

57
58
59
60
61
63

64
65

10-20

Mnemonic

CLS

Chg Cur
Chg Cur
Chg Cur
Chg Cur
Chg Cur
Chg Cur
Read Cur 0

b wN =0

Read Cur 1
Select Cur

Grf Init
Palette Set

Define Window
Select Window
Read Window
Chg Window
Close Window
Scale XY

Map XY

Map CXY

Fetch C
Store C

Up C

Down C
Left.C
Right C
Set Atr
Set C

Read C

NSet Cx
NSet Cy

Description

Clears current window

Positions text cursor

Positions graphics cursor

Sets text cursor blink rate

Sets graphics cursor blink rate

Sets text cursor shape

Sets graphics cursor shape

Returns text cursor positon (column, row)
and blink rate in current window

Returns graphics cursor position (column,
row) and blink rate in current window
Selects graphics or text cursor, or turns
off current cursor

Initializes screen and sets defaults
Selects a global four-color set (only for
four-color systems)

Creates a new window

Selects another window

Reads attributes of current window
Changes window colors

Closes the selected window

Checks coordinates against window bound-
boundaries

Converts x-y coordinates to absolute
values and stores results in graphics
accumulator

Converts C-value in graphics accumulator
to X-Y coordinates

Returns contents of graphics accumulator
Sets graphics accumulator to a specified
C-value saved by 'fetch'

Moves position (as stored in graphics
accumulator) up by one pixel

Moves position (as stored in graphics
accumulator) down by one pixel

Moves position (as stored in graphics
accumulator) left by one pixel

Moves position (as stored in graphics
accumulator) right by one pixel

Sets the current color value

Plots a single point

Returns the color attribute of the
current point

Draws a horizontal line

Draws a vertical line

PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CALLS

66 NRead Reads a screen rectangle into an array

67 NWrite Transfers a graphics rectangle from an
array to the screen

68 Pnt Init Specifies global color attributes for
PAINT routines

69 TDown C Moves graphics accumulator down by one
pixel after checking the window boundary

70 Tup C Moves graphics accumulator up by one
pixel after checking the window boundary

71 Scan L Paints left on a scanline up to a border

72 Scan R Paints right on a scanline up to a border

113 Close All Closes all existing windows (from 2 to

Windows 16)

115 Clear Text Clear a specified rectangle of text in
the current window

116 Scroll Text Copies a rectangle of text characters in
a window to another position of the same
window

SYSTEM CALL LABELS

On the following pages is a sample include file that gives a suggested
symbolic label for each system call number. This sample can be made into
an include file so that programmers may use labels rather than numbers
when coding system calls. Using a standard set of labels makes source
code easier to read and maintain. The sample shows certain labels ‘'com-
mented out." Some managers may wish to do this as a matter of policy, in
order to discourage the use of obsolete calls and the inadvertant use of
calls not required within a programming group, such as the graphics calls
or ieee calls.

THE MASTER TABLE

After the list of system calls a sample PCOS master table is provided for
background information. PCOS 1internal routines make use of the master
table and system calls. They read and update master table values. The
sample table gives an idea of the information used by and available to
system calls. Master table locations change with every release of PCOS.
Therefore, the master table is not available for programmer use, except
for certain programmers working directly on the internal PCOS routines.
Location address are not given in the sample table in order to avoid con-
fusion.

The PCOS system calls allow programmers access, indirectly, to all master
table values necessary for developing programs under PCOS. System calls
will continue to work, regardless of PCOS changes, because they are not
location dependent.

10-21

//

// Sample System Call Include File
//

CONSTANT

//BExit
LookByte
GetByte
PutByte
ReadBytes
WriteBytes
ReadLine
//GetFP

Eof

//Eom
ResetByte
Close
SetControlByte
GetStatusByte
OpenFile
DSeek

DGetLen
DGetPosition
DRemove
DRename
DDirectory
//BSet

BWSet
//BClear
//BMove
NewSameSegment
Dispose

Cls

ChgCur0
ChgCur1
ChgCur2
ChgCur3
ChgCur4
ChgCur5
ReadCur0
//ReadCur1
SelectCur
Grflnit
//PaleteSet
//DefineWindow
//SelectWindow
ReadWindow
ChgWindow
//CloselWindow
//ScaleXY
//MapXYC
//MapCXY
//FetchC
//StoreC

10-22

LTI T T T T T T T T T T T T R T TR

WO

// exit to PCOS

// look at what is in buffer

// get byte from file

// put byte in files

// read n bytes from file

// write n bytes to file

// read a line from screen

// get file pointer

// test for end of file

// test for end of medium

// clear ring buffer for keyboard

// close specified file

// set comm port device param table entry
// get comm port device param table entry
// open specified file

// seek to nth byte

// get length of file

// get current file position

// remove specified file

// rename specified file

// list volumne directory

// block memory seg

// block word set

:= 31 // clear memory

// block memory move

// allocate heap storage in same segment
// dispose of heap storage

// clear screen

// update text cursor position

// update graphics position

// set text-cursor blinkrate

// set graphics-cursor blinkrate

// set text-cursor shape

// set graphics-cursor shape

// fetch attributes of text cursor

// fetch attributes of graphics cursor

// select graphics or text cursor

// initialize graphic system

// select color palete

// define a new window

// change window

// read window characteristics

// change window forground and background color
// close window

: // check on window boundaries

53 // map x& into graphic accumulator
54 // map graphic accumulator into x&y
55 // fetch graphic accumulator

56 // store graphic accumulator

PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CALLS

//UpC = 57 // move graphic accumulator up one pixel

//DownC = 58 // move graphic accumulator down one pixel
//LeftC =59 // move graphic accumulator left one pixel
//RightC := 60 // move graphic accumulator right one pixel
//SetAtr = 61 // set current attribute

//SetC := 62 // plot graphic accumulator position on screen
//ReadC := 63 // read current attribute

//NSetCX := 64 // set n pixels on x axis

//NSetCY = 65 // set n pixels on y axis

//NRead 1= 66 // read n pixels into memory

//NWrite = 67 // write n pixels from memory to screen
//Pntlnit := 68 // paint initialization

//TDownC := 69 // move graphic acc down one pixel & check
//TupC := 70 // move graphic accumulator up one pixel & check
//ScanL =71 // scan to the left

//ScanR =72 // scan to the right

SetTime =73 // set time

SetDate =74 // set date

GetTime =75 // get time

GetDate =76 // get date

CallUser =77 // call on PCOS transient file

//1BSrQ0 := 78 // enable ieee-488 interrupt

//1BSrQ1 := 79 // disable ieee-488 interrupt

//1BPoll := 80 // poll listeners

//1B1Set = 8l // 1SET call

//1BRSet := 82 // IRESET call

//1BPrnt := 83 // output parameter to IEEE-488

//1BWByt =84 // write n bytes out to IEEE-488
//1Blnpt v= 85 // input off 1EEE-488 bus

//1BLinpt =86 // input a line off 1EEE-488

//1BRByt := 87 // read bytes of 1EEE-488

Error := 88 // print error message

Dstring := 89 // print string

CrLf := 90 // print carriage return and line-feed
DHexByte := 91 // display hex byte

DHex 1= 92 // display hex word

DHexLong := 93 // display hex long

DNuml := 94 // display decimal word

DLong := 95 // display decimal long

DisectName = 96 // file system

CheckVolume := 97 // force check of disk volume

Search 1= 98 // file system

MaxSize := 99 // display max free heap block size
TopFree := 100 // display top of heap

ProtRead := 101 // verify protection pattern on track 35
Setvol := 102 // set active volume

InitHeap := 103 // set top of heap

NewAbsolute := 104 // allocate block at specified address
StringlLen := 105 // return length of input string
DiskFree := 106 // free sectors on disk

BootSystem := 107 // boot default system with no disk parameters
SetSysSeg := 108 // caller is returned in segmented system mode
SearchDevTab := 109 // Routine to search system device table
SetHFlag := 110 // set heap flag value (for PSAVE, etc)

DsplCtlChar

111 // switch screen driver mode to display control chars

s 84000000 =

)2 -
2L 5300000p =

InitWTree = 112
DispWRoot = 113
kb set lock =114
ClearText =115
ScrollText =116
//WarmBootSys =117
NetCall =118
GetVol = 119
New 2= 120
NewAbsAnySegment:= 121
NewLargestBlock := 122
StickyNew := 123
1/
1
1/
//
1/ Sample of Master
//
CONSTANT
// This is the PCOS
psabase
// These are linkag
/! disk init
// dsk io
// rtc init
// rtc intr
1/ scn init
1/ scn_putbyte
// scn_putstr
cold boot
warm_boot
1/ System data size

mail box size
sc table size
fp_table size
nil

TYPE
mastab record [ZT—J
Z mtBoot
mtlnit
mtChkpt
mtRomtab
mtMaxsc
[mtSCtab

Y

S

£ & \/ 000 ﬁ_" 77 ,f; ’/':" Cop Lol A 540

<35 0000 Schiri ke LRO0D fpl, 2 7&

// calls pwindo initwtree (for PSAVE)

// ~alls pwindo disproot (for PSAVE)

// set shift and cursor lock.

// clear a rectangle of characters to background
// copy a rectangle of characters within a window
// Warm boot of system with disk parameters

// Access the Local Area Net

// Returns current volume number as a string

// allocate block in any segment

// newabs not restricted to seg 2

// new for largest block anywhere in mem

// block to stick around forever

Table -- Without Addresses

PSA Table location

1= %8200XxxxX // Master Table Pointer Location

o &/ ™A AALSAM -5 oy > 71949
es to the rom routines b &40L - L A

a000 : . T .
%8400 XX XX // Disk Driver Initialization Call
%8400 XX XX // Disk Driver 1/0 Call
%8400X XXX // Real Time Clock Initialization Call
%8400 XX XX // Real Time Clock Interrupt routine
%8400 XX XX // Rom Screen Driver Initialization Call
%8400 xxxX // Rom Screen Driver Character display
%8400 XXXX // Rom Screen Driver String display
%8400 X XXX // Reboot PCOS from first file on disk
%8400 XX XX // Reboot PCOS from specified file

constants
= 11 // 11 words
1= 124 // system calls 0 .. 123
=20 // file pointers of double longs
= -1 // system nil definition (ffffffff)
100 exthitl Adwessw onf I
long // system start address -- one of following:

long # // either: normal start address
long 2 // or: checkpoint restart address
long 2 // address of Rom linkage table [1]
word 7% // maximum system call

long /% // address of system call table [2]

PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CALLS

mtExtsc long /> // address of 'extra' system call handler
mtSaveregs long * # // address of register save area (sc r0) [3]
mtCursc Z ~word " // contains current system call number
7 mtMaxfp Z -~ word // largest file ID allowable
mtFPtab long // address of FP table [4]
mtSegtab long // address of segment table for PSAVE [7]
mtHeaptab long // address of heap table [8]
mtlnitlist long // head of initialization list [9]
- mtChktab long 0 // pointer to (future) checkpoint table [10]
mtPkey long “ %+ // pointer to Pkey Link Table [11]
mtMonlink long 2 // pointer to Monitor Link Table [12]
mtMailbox long 52 // pointer to mailbox [33]
mtCurwind long -~ // pointer to current window table
mtFonttab long // pointer to font table
2 gmtScntran long // pointer to screen translation table
mtKbdtran long // pointer to keyboard translation table
>mtConfig long // ptr to system configuration table
“mtWFheap long // ptr to Write Font heap allocation record
mtPrinter long // ptr to printer driver variables
mtClock long // ptr to real time clock variables
mtCurwindadr long // adr(current window num. in pwindo.p)
2 mtWindtab long/?" // adr(table of window pointers in pwindo.p)
mtSysGetatt long72¢ // entry point of 'getatt'
mtSysPutatt long~ . // entry point of 'getatt'
~mtFsVol long = // pointer to current-volume structure
mtSysinitfils long” © // file system initialization entry
- mtSysxfrblk long // file system remap block transfer entry
mtSysbitinmap long // file system bit map routine (?)
mtKbdEntries long // pointer to table of keybd routine entries
mtKbdVar long // pointer to keybd variables
mtSysfstime long // file system '"random'" number generator.
mtExtErrProc long // external error handler
mtSysdsk io 77 long // system dsk io routine
v mtDiskTrace long // external disk trace routine
mtSysVar long // system extent and display type pointer
mtDevTable long // system device table
> mtGetSymbol long // routine to get two char symbol of last cmd
<~ mtExtUsage long ~ // external usage printing utility
> mtExtDsk long /"7 // External disk driver hook
. mtFsVoltab long- = // Pointer to voltableadr (cur voltab ptr)
" mtRamfont long <" // Pointer to system font data area
“mtPSaveBlockFlag word/"7// tells PSave whether it can proceed or not
‘mtVolTable long ' °7// Pointer to volume table for psave deallocate
'mtRealErr word = // The last error code reported by "error"

1 // end of 'mastab' type declaration

780

© A :‘Z

= 49D Y

10-25

11. DEVICE REROUTING

ABOUT THIS CHAPTER

This chapter gives information on how and why to use device rerouting,
and provides some information on how this capability is implemented.

CONTENTS
OVERVIEW 11-1

LOCAL _AND GLOBAL DEVICE

REROUTING 11-1
REROUTING PARAMETERS 11-1
DEVICE NAMES 11-3
FILE NAMES 11-3
REROUTING EXAMPLES 11-3

DEVICE REROUTING FROM A
BASIC PROGRAM 11-5

IMPLEMENTATION 11-6

USE OF DEVICE REROUTING 11-6

DEVICE REROUTING

OVERVIEW

Device rerouting allows the rerouting of standard input (the keyboard)
and standard output (the display screen), or both. Certain other devices
can be substituted for these two devices or wused to supplement them.
Rerouting can be local (for the duration of a single command) or global
(for all commands entered during a work session or until other rerouting
is specified).

This section gives information on how and why to use device rerouting,
and provides some information on how this capability is implemented.
Further information on the use of device rerouting is available in the
PCOS Operating System User Guide.

LOCAL AND GLOBAL DEVICE REROUTING

Local device rerouting changes input and/or output devices for one PCOS
command only. Following execution of the command, the rerouting command
is cancelled. Global device rerouting remains in effect for all commands
entered during the rest of the working session or until other rerouting
is specified. The difference in specifying local and global rerouting is
simple. Rerouting parameters entered with a command take effect only for
that command. Rerouting parameters entered without a command take effect
globally.

REROUTING PARAMETERS

Device rerouting is implemented by specifying parameters for the devices
involved. A plus sign (+) indicates that a device is to be enabled; a
minus sign (-) indicates that a device is to be disabled (cancelled). A
second 1indicator--S for source or D for destination--specifies whether
the device will be used for input or output.

SYNTAX ELEMENT MEANING

command a PCOS command to be executed using the rerouting
capability. (Implies local rerouting.)

command parameter a parameter for the PCOS command

+ the device or file specified is t® be enabled

- enabling of the device or file specified 1is to
be cancelled

S specifies the source (input) device (upper or
lower case)

D specifies the destination (output) device (upper
or lower case).

device name a string of 13 or fewer printable ASCII charact-
ers, the first character alphabetic, specifying
the device to be used. The device name must be
followed by a colon (:), with the exception of
prt.

file identifier any valid file identifier. A destination file is
created, if none exists.

No spaces separate + or -, S or D, and device or filename; these ele-
ments constitute one parameter. Rerouting parameters are separated
by commas. Upper- and lower-case letters are equivalent.

1f additional devices are enabled without disabling the currently active
device(s), devices are active simultaneously. Caution must be exercised
in input rerouting to prevent intermixing of data from several devices.

The keyboard can be disabled by specifying '-SCONS:'". Control cannot be
regained, however, unless a '"+SCONS:" command is issued by an external

11-2 PCOS SYSTEM PROGRAMMER'S GUIDE

DEVICE REROUTING

active device or the system is reset.

DEVICE NAMES

The standard (default) device names are:

prt: Printer

cons: Keyboard input, video output

com: Standard RS232-C communications port
coml: Second optional RS232-C port

com2: Third optional RS232-C port

ieee: 1EEE-488 optional communications

The com1, com2, and ieee devices require optional hardware.

Because the printer can be a destination device only, the D prefix is
optional for prt.

The standard device names can be changed by using the SDEVICE utility.
For information, see the PCOS Operating System User Guide. 1f a standard
device name has been changed, the new name must be used in rerouting.

FILE NAMES

A file name must meet PCOS standards. A source file contains text with
the desired commands and parameters. A destination file will receive the
output. 1f a file of the specified name does not exist, one will be
created on the disk specified or the disk in the drive last selected.
Only one source and one destination file may be open at one time.

REROUTING EXAMPLES
The position of the rerouting parameter in the command line is arbitrary.
+DPRT: FL 1:prun.cmd
or

FL 1:prun.cmd +DPRT:

+DPRT: may also be written as +PRT
(in upper- or lower-case letters).

The examples below show local rerouting.

ENTRY

VL 0:,-DCONS:,+DPRT:

SS +PRT /CR/

MEANING

the directory of the disk in drive 0 is printed
(+DPRT:) but is not displayed (-DCONS:)

the Set System global parameters are displayed
and printed

The examples below show global rerouting.

ENTRY

+SCOM: ,+DCOM: /CR/

-DCOM: ,+DPRT: /CR/

+D1:fileA /CR/

+SANYFILE/CR/

MEANING

input is received from both the keyboard and
and the built-in RS-232-C communications port
(provided it has been initialized. Output is
displayed and rerouted to the RS-232-C
communications port.

the RS232-C port (previously enabled) is can-
celled as a destination device and the printer
is enabled. Other devices designated as
source or destination devices remain enabled.

fileA on the disk in drive 1 1is enabled for
output. If no fileA exists, ii is created. All
output is displayed and rerouted to fileA.

the system loads the file, ANYFILE, and takes
input from it and the keyboard. 1f ANYFILE
contains the following lines:

BA

LOAD MYFILE
LIST 100-200

PCOS SYSTEM PROGRAMMER'S GUIDE

DEVICE REROUTING

the system will execute the command in
sequence, first loading the BASIC interpreter,
then 1loading the BASIC program stored as
MYFILE, and then listing lines 100-200. The
system remains in the BASIC environment.

+DPRT: /CR/ the printer is enabled for output (+DPRT:)

+D1:output /CR/ the file named "output" on the disk in drive 1
is enabled to receive output (+D1:output)

-DPRT: /CR/ the printer (-DPRT) and the file (-D) are can-
-D /CR/ celled. When a file is cancelled, the identi-
fier can be omitted because it it not checked.

DEVICE REROUTING FROM A BASIC PROGRAM

A1l device rerouting in BASIC is global and remains effective until a
command 1is issued to alter it or until the system is no longer operating
in BASIC. The EXEC or call statements are used to execute rerouting com-
mands in BASIC.

ENTRY MEANING
ba /er/ the BASIC mode is entered (ba). The first

EXEC "vl 1:,+D1:0UT" /cr/ EXEC statement executes a VLIST command
. on the disk in drive 1 and routes the
volume list to the OUT file on the same

disk and to the display. All subsequent

output is routed to the file wuntil the

EXEC "-D1:0UT" /er/ command is cancelled by the second EXEC
statement.

ba /Jer/ the BASIC mode is entered (ba). The dir-

EXEC "v1 1:,+dprt:" /cr/ ectory of the disk in drive 1 is printed

. (EXEC statement). All subsequent output

is also routed to the printer until a
. SYSTEM command cancels the printer.
SYSTEM /cr/

IMPLEMENTATION

Any bytestream call that can be used for FID 17 (the console) can be used
with device rerouting. PCOS maintains a table of input devices and out-
put devices to be used with these calls when FID 17 1is specified. The
tables contain entries for the standard devices: the console (keyboard
and screen) and the printer. The tables also have space reserved for
disk filenames, one for 1input and one for output. When the RS232-C
driver is loaded, or the 1EEE-488 driver, additional table entries are
added. The table entries use the standard device names or the names
specified by the SDEVICE utility.

Associated with the device tables are flags used for rerouting. The
flags show whether the device or file is enabled or disabled, afd if
enabled the flag shows whether the device is a source or destination.
Ordinarily, only the console is enabled, for keyboard input and screen
output. Device rerouting adds and/or removes flags.

For local rerouting, the flags are reset when the command finishes exe-
cuting to use only the console entries. For global rerouting, the flags
are not reset unless changed. However, their settings are not saved by
PCOS after the working session ends. Local rerouting can supercede glo-
bal rerouting for one command, and then return the system to the speci-
fied global rerouting.

USE OF DEVICE REROUTING

Device rerouting can be used for minor conveniences, such as printing
information displayed on the screen or saving console output for debug-
ging. Device rerouting is far more than a convenience. It is a very
powerful and general tool for programmer use. The opportunities avail-
able can be grasped when the programmer realizes how general it is. For
example, one system can control another system connected by an RS232-C or
1EEE-488 communications facility.

Entire files of commands can be set up and run. Canned procedures can be
developed for use by entry of a simple command. This can be done to sim-
plify repetitive operations and to assure accuracy.

Remember that device rerouting can be done from within programs. Exam-

ples of rerouting in BASIC have been given. Rerouting can be done within
assembly language by using Call User (77).

11-6 PCOS SYSTEM PROGRAMMER'S GUIDE

12. THE KEYBOARD DRIVER

ABOUT THIS CHAPTER

This chapter describes the keyboard driver functions and capabilities
This chapter is the first of five chapters

and its related utilities.
devoted to system drivers.

CONTENTS
OVERVIEW
RELATIONSHIP OF KEYBOARD

DRIVER AND VIDEQ DISPLAY
DRIVER

KEYBOARD DRIVER INTERNAL
LOGIC

WHAT THE KEYBOARD DRIVER
DOES

RAW CODES

THE CONTROL CHARACTERS

THE KEYSTROKE UTILITIES

THE SLANG UTILITY
THE CKEY UTILITY
THE PKEY UTILITY
THE LTERM UTILITY

SLANG UTILITY

12-1

12-2

12-3

12-4

12-5

12-5

12-6

12-6

12-6

12-6

OVERVIEW

USE OF THE SLANG UTILITY

CHANGE KEY UTILITY

OVERVIEW

USER INTERFACE DESCRIPTION

THE PKEY UTILITY

OVERVIEW

DEFINE KEY

DELETE KEY

DELETE ALL

DISPLAY KEYS

THE USA ASCII KEYBOARD

NATIONAL KEYBOARD
DIFFERENCES

SYSTEM CALLS

12-10

12-10

12-11

12-11

12-13

12-13

THE KEYBOARD DRIVER

OVERVIEW

The keyboard driver is a set of routines devoted to handling the input of
characters from the keyboard. The keyboard driver has several tasks. It
interprets keystroke input according to the requirements of many national
keyboards with different keys and keyboard layouts. PCOS comes with 17
national keyboards, selectable with the set language (SLANG) utility.
The driver allows redefinition of keys (done by the CKEY utility): it
allows one-key entry of "alias strings" (strings defined with PKEY com-
mands); and it handles some control characters (such as control C, con-
trol S, and reset) by taking direct action. Finally, it supports the
LTERM utility, which returns a code corresponding to the last line termi-
nator key pressed. These utilities, SLANG, CKEY, PKEY, and LTERM, are
described in this section.

RELATIONSHIP OF KEYBOARD DRIVER AND VIDEO DISPLAY DRIVER

Text characters from the keyboard driver's buffer are displayed by the
video driver using font tables that describe the appearance of characters
on the display screen. A font table contains a matrix for each display-
able character. Within each matrix is a pattern of zeros and ones used
to generate a pattern of pixels (picture elements = individual dots) on
the display screen. Text characters are passed to the video display
driver by kernel routines. The two drivers are independent and do not
interact.

The programmer can create new font tables for custom character sets or
for graphic wuse. The RFONT and WFONT utilities, which allow font-table
creation and change, are described in the next section, "Video Display."
The keyboard utilities CKEY and PKEY and the display utilities RFONT and
WFONT can be used together to extend system capabilities, to support cus-
tomized keyboards, and to create entirely new keyboard configurations.

KEYBOARD DRIVER INTERNAL LOGIC

Every time a key is pressed, an interrupt is generated. When the CPU
acknowledges the interrupt, it jumps to a memory location defined by the
"interrupt table" and executes a routine called "keyboard service inter-
rupt routine.'" This routine receives the character from the serial
interface and acts as follows:

1. Translates the raw (physical) keyboard code into the code associated
with the key. The raw code is used as an index into a translation
table. The associated code may be one specified by the current
national keyboard or it may have been changed by use of CKEY. - (The
current national keyboard may be specified by SLANG.)

2. 1f the character is a control character (in the range %A0 - %AF), the
driver executes the routine for this specific character.

3. If the character is a printable character, it adds this character to

the keyboard buffer. Displayable characters will be sent to the
screen by the video display driver.

12-1

4. However, there may be an "alias" created by use of PKEY. If so, the
driver replaces the single ASCII character in its buffer with the
alias string. This string might contain a complete command, which
will be executed by PCOS as if it had all been entered character by
character.

5. Finally, if the keystroke entered was one of the three terminator
characters, the driver sets the associated integer value in a mailbox
location available to LTERM. The value %0D (the ASCII /CR/) is
placed in the keyboard buffer.

After these operations the routine completes and returns control to PCOS,
which returns to the interrupted program.

ASC11 characters are listed in Part 3; ASCII character equivalences are
listed in Appendix B to the PCOS User Guide.

WHAT THE KEYBOARD DRIVER DOES

The M20 keyboard sends the keyboard driver a code called 'raw key code."
This code depends merely on the physical position of the key on the key-
board and on whether or not a shift or control key was pressed together
with the key itself. Every key in the same position on all keyboards
will generate the same raw code in all countries. The raw codes are shown
later in this section. Refer to the PCOS Operating System User Guide,
Appendix B, for the corresponding codes for each national keyboard. The
raw codes and the associated translation codes are independent. Because
of a design artifact, the raw key codes and the translation codes for the
USA national keyboard happen to be in the same order. The USA national
keyboard is given at the end of the section.

The translation table contains, for each raw key code, the corresponding
ASCI1 character to be inserted into the buffer. This table contains two
elements:

- A small table (3 words) called cap-lock table
- A large table (256 bytes) containing the translation codes.

In the cap-lock table, every key is represented by a bit; if the bit is 1
this means that this key must be reversed when in cap-lock state. 1f this
bit is 0, this means that the key will not be affected by the cap-lock
operation.

The keyboard tables for all countries are contained in a file called
"kb.all" in the PCOS diskette. The PCOS diskette officially distributed
contains the USA ASCII table. The SLANG utility allows the user to change
the table and customize the PCOS with other country keyboards. SLANG
replaces both the cap-lock table and the translation table. The only
differences among national keyboards are that these tables are different
and different markings are on the keytops.

12-2 PCOS SYSTEM PROGRAMMER'S GUIDE

THE KEYBOARD DRIVER

The keyboard buffer is a 6é4-character ring buffer used by the driver to
store the characters just typed and not yet required from PCOS. When the
buffer is full, all further characters typed in are lost and a beep sig-
nals the buffer-full condition. The buffer contains the translated codes
from the national language table and the CKEY changes to that table.
PKEY strings are picked up indirectly. 1f the translated code in the
buffer refers to a PKEY string, the driver then looks into a second table
that holds PKEY strings, picks up the associated alias string, and makes
the alias string available when responding to a request for keyboard
input.

If the translated code is a line terminator code, the keyboard driver
inserts a %0D into the buffer in its place. 1t also updates the mailbox
area with the code for this particular line terminator. A layout of the
mailbox is given in the "Other Drivers" section of Part 2, in the discus-
sion of the 1EEE-488 driver.

to requesting

raw code translated code char. routine
| |
+ +V o+ +V o+ + v
| keyboard |--->| kbd driver |--->| kbd buffer |--+--->ASCI1
+-—+ ==t | | B + |
+ + + +
. . +--=>0/1/2
| | -
o= + - +
| kb | |PKEY | to mailbox
|table| |table| (memory location used

| [1 | by LTERM utility)

Fig. 12-1 Key Code Generation

The keyboard driver services requests for keyboard input by providing
pointers into its internal key buffer. The pointer, when an outside rou-
tine requests characters from the keyboard, looks into the buffer and
sees the code of the next character.

RAW CODES

The raw codes are the same for all keyboards. The illustration below
shows the raw codes, in hexadecimal.

12-3

60 90\ (70 aD\| (7€ A€\ [7F AF\| (80 B0\ (81 81| (82 B2\ (B3 B3 85 85\ [7c ac) [86 86\ [B7 87\ [EB c3 ¥s co\ (Fe ce) (F7 cF\ (F8 DO
00 30/ \10 4D/ \1E 1F aF) \20 50/ \21 s1) \22 52/ \23 53, 25 ss) \uc 4c) \26 s6) \27 571/ \c3 07 co £1) \ce €2/ \cF €3] \Do E4
72 A2\ (78 a8\ [66 96 74 AR 6a 9a) (70 20| (71 ar) &8 B8 (89 B9 [EA cC2 F2 ca) [¥3 c8) (Fa cC
12 42) \18 48/ \06 36 U a 34) \10 40/ \nn 41 \28 s8) \20 s9) \c2 ©os ca oe/ \c8 oF/ \cc EO,
62 92 65 95\ (67 97\ (68 98) (69 99) (68 98) [6C oc) (60 90\ [8A BA)| (88 BB\ [8C BC EF c7\ (Fo c8) [F1 c9) [Fa 02
02 32 05 35) \o7 37/ \o8 38/ \o9 39/ \os 38/ \oc 3c/ \op 30/ \2a sa/ \28 s8/ \2c sC <7 8 co oo/ \p2 E6
78 4B\ (79 A9 77 a7\ (63 93\ [6F 9F D 80\ (8BE BE| (8F BF Ec ca) (Ep c5) [EE ce) (Fe 03
SHIF SHIFT
18 19 49, 17 47/ \03 33/ \oF 3F 20 50 \2e 5e) \2F sE c4 o8) \cs pg) \ce oa/ \o3 E7
€8 co
co D4

o
7
=

8

'

Key struck Key struck
with with
e
62 92
LEGEND:
02 32
Key struck
7 X with

Key struck

on its own SHIFT

Fig. 12-2 Raw Key Codes

THE CONTROL CHARACTERS

The control characters are keys that cause the keyboard driver to take a
specific action. These characters are executed directly by the driver
and are never seen by a requesting routine. The control characters
correspond to ASCI1 codes in the range %A0 to %AF and can be disabled by
using CKEY to change (delete) those codes in the keyboard translation
table. The table is given below.

KEY ASCII CODE FUNCTION

/CTRL/ /RESET %A0 Logical reset. Boot PCOS again

/CTRL/ /B/ %A1 Reserved. Jump into debug routine, if
present.

/CTRL/ /C/ %A2 Break facility. Clear keyboard buffer,

place 03 in first location.

12-4 PCOS SYSTEM PROGRAMMER'S GUIDE

THE KEYBOARD DRIVER

/CTRL/ f€/ %A0-. 2, Halt display. Any key causes scrolling

to resume.
/CTRL/ /?/ %A4 Cursor lock. Equivalent to shift lock

for numeric keyboard.

/COMMAND/ /2/ %A5 Shift lock. All keys go to shifted
mode. Pressing again returns to un-
shift.

/00/ %A6 Two zeros. Two zeros are placed in key-

board buffer.

/S1/ %A7 End of line. CR in keybeard buffer, 0
in LTERM buffer.
/S2/ %A8 End of line. CR in keyboard buffer, 1
in LTERM buffer.
/CR/ %A9 End of line. CR in keyboard Luffer, 2
in LTERM buffer.
/51/ %AA End of line. CR in keyboard buffer, 0
in LTERM buffer. (DATEV keyboard)
/52/ %AB End of line. CR in keyboard buffer, 1
in LTERM buffer. (DATEV keyboard)
/CR/ %AC End of line. CR in keyboard buffer, 2
in LTERM buffer. (DATEV keyboard)
%AD Reserved
%AE Reserved
%AF No operation

Table 12-3 Control Characters

THE KEYSTROKE UTILITIES

Keystroke utilities are described briefly below. More extensive descrip-
tions of SLANG, CKEY and PKEY are given later.

THE SLANG UTILITY

The set language utility selects one of the national keyboards to be the
current keyboard. It replaces the cap-key table and the translation
table.

12-5

THE CKEY UTILITY

The change key utility is used to change a single code 1in the keyboard
translation table. CKEY takes effect after SLANG. It is possible to
rearrange all the keyboard, changing the meaning of each key including
the control keys.

THE PKEY UTILITY

The PKEY utility is used to replace a character generated by the keyboard
with a string. PKEY takes effect after CKEY.

THE LTERM UTILITY

The LTERM utility returns the contents of a memory location called mail-

box. The keyboard driver maintains the mailbox location. It provides an
integer value of 0, 1, or 2 for the three line terminators.

SLANG UTILITY

OVERVIEW

The M20 is marketed with 17 different physical keyboard layouts identi-
fied with national requirements. The software generation of the font
patterns for all these national keyboards is included with PCOS and can
be invoked by the SLANG utility regardless of the actual keyboard used.
The SLANG utility may be invoked

- in direct command mode

- in BASIC

- by an Assembly Language subroutine

USE OF THE SLANG UTILITY
The SLANG utility allows displaying the country codes available or

selecting a country code for use as the current keyboard. Entering
s1/CR/ will display the menu, similar to the example below.

12-6 PCOS SYSTEM PROGRAMMER'S GUIDE

THE KEYBOARD DRIVER

Country Code Numbers

Italy 0 Yugoslavia 10
West Germany 1 Norway 1
France 2 Greece 12
Great Britain 3 Switzerland/France 13
United States 4 Switzerland/Germany 14
Spain 5 Germany (Original) 15
Portugal 6 Datev 16
Sweden/Finland 7 Delta 17
Denmark 8

To select a keyboard, provide SLANG with a country code.
sl [country code #]
To maintain the new keyboard translation after powering off the system,

the PSAVE utility can be used to make the condition permanent.

CHANGE KEY UTILITY

OVERVIEW

The change key (CKEY) utility is used to change a single code in the key-
board translation table. It is possible to rearrange the complete key-
board, including the control keys, by using this utility.

The raw key code is used as an index into a table 1identified with the
particular national keyboard in wuse. CKEY changes the character code
associated with any or all the raw key codes in the table.

The M20 keyboard generates 252 raw codes, 0 through 251. The associated
translation table entry can be any 8-bit value, that is, any integer
ranging from 0 to 255.

USER INTERFACE DESCRIPTION

The user specifies a raw key code in the range 0 to 251 and an associated
translation code in the range 0 to 255. Refer to the chart of raw key

codes shown above.

If the user enters only the raw key code, the current character code is
printed out.

When changing key codes, be cautious with these special cases:

a) The ASCII codes for 0 through 31 (hex 0 through 1F), which ASCII uses
for control purposes.

b) The special PCOS system codes described above. They are in the range
160 through 175 (hex A0 through Af).

12-7

The form of the change key command is as follows:

ck {[%f SHIFTFLAG%[,OLDVALUE%]] | [RAWKEY% [,NEWCODE% | NEWCODES$1]}*

where:

SHIFTFLAG% = AN INTEGER FROM 0 TO 3.

OLDVALUE%
RAWKEY% =

NEWCODE®%

NEWCODE$

3

= both flags cleared

= shift lock (alphabetic characters)
set, cursor lock (numeric characters)
cleared

= cursor lock set, shift lock cleared

= both flags set

previous setting of flags.

an integer that defines the desired key.

an integer that defines the new desired
character code.

a one-character string that defines the
new character.

The following examples illustrate the use of CKEY from BASIC:

CALL "ck"
CALL '"'ck"
or

CALL "CK"

(II%FH'

shiftflag% , @OLDVALUE%)

(RAWKEY% , NEWCODE%)

(rawkey% , NEWCODES)

Here are a few of the more useful examples of CKEY:

PCOS

ck &C3,8 CALL

ck &64,8&A8 CALL

ck &64,8A3 CALL

ck &60,8A8 CALL

ck &60,8A1 CALL

BASIC
"CK'" (8HC3
"ck" (&H64
"CK" (8H64
"ck'" (&H60
"ck" (&H60

, 8)

, &HA8)
, &HA3)
, &HA8)

, &HA1)

COMMENT
S2 to backspace
disable CTL C
enable CTL C
disable CTL RESET

enable CTL RESET

CKEY works on all M20 configurations except KATAKANA.

12-8

PCOS SYSTEM PROGRAMMER'S GUIDE

THE KEYBOARD DRIVER

THE PKEY UTILITY

OVERVIEW

The PKEY utility allows replacing a single keyboard character with a
string of characters. When the user presses the redefined key, the PKEY
function replaces the entered character with the string of characters.
The PKEY function can be used to create one-key command entries, for
example. For practical reasons, PKEY is often used to redefine a shift
or control version of a key, rather than the fundamental keystroke entry.

The replacement string could be a single character. However, for a sin-
gle character change, using CKEY would be recommended.

The string that substitutes for a character is called the 'alias" string
and 1is returned automatically when the character is typed. Note that
CKEY changes the translation between the physical keyboard code and the
generated translation code, while PKEY converts a translated code into a
different code or string. 1In other words, PKEY works after CKEY.

When PKEY is invoked, a new table is created in memory; 1in this table
will be stored the code that we want to change and the memory address for
the alias string. This 26-entry table will contain the first 26 charac-
ters changed by PKEY and their associated strings. When there are more
than 26 alias strings, the table can chain to another table, and so on,
using a link mechanism. When outside routines request characters from
the keyboard driver, the driver returns the first character ready on
buffer after checking the alias table. 1If this character is substituted
with an alias string, the driver returns all the characters in the alias
string. In this manner, an alias string can be larger than the keyboard
buffer: 255 bytes compared to 64.

PKEY has four functions that are described below:
DEFINE KEY
DELETE KEY

DELETE ALL
DISPLAY ALL

DEFINE KEY
The syntax is:

pk char|int,string...

The char|int portion specifies the keystroke entry, and the string por-
tion specifies the alias string.

To define the keystroke entry, specify a character or an integer in the
range of 0 - 255. Any key may be defined. 1n the case of control shift
or command shift, an integer must be specified because they do not gen-
erate displayable characters.

12-9

The string portion of the syntax may be a series of integers or strings
or a combination of each. The maximum number of bytes used must not
exceed 255.
Examples
The following examples are written in BASIC and assume a USA ASCII key-
board is being used. These examples all do exactly the same thing. They
define the capital "A" key to print '"clear' followed by CR which causes
immediate execution.

CALL "pk" ("A",clear,13)

CALL "pk" (65,clear,13)

CALL "pk" (65,99,108,101,97,114,13)

CR% = 13

AS$ = "clear"

CALL "pr' ("A",A$,CR%)
To re-define a key it is not necessary to clear it first. Simply invoke
PKEY using the integer format to specify the key since its original char-
acter is no longer in effect.
DELETE KEY
The syntax is:

pk int
The parameter is an integer representing the key to be cleared. If the
key has not previously been defined, the key retains the original code
and the next prompt appears.
DELETE ALL
The syntax is:

pk %c
A1l previously defined keys will be returned to their normal state. 1f

no keys have been defined then all keys retain their original code and
the next prompt appears.

12-10 PCOS SYSTEM PROGRAMMER'S GUIDE

THE KEYBOARD DRIVER

DISPLAY KEYS
The syntax is:
pk
Invoking PKEY with no parameters will cause all the currently defined
keys to be displayed with their definitions. If no keys have been

defined the next prompt appears.

If there are defined keys, the screen will be cleared and set up for 80
column display mode. (All windows will be closed.)

At this point a small window at the top of the screen 1is created to
prevent the heading from scrolling off the screen in the event that there
is more than a screenfull of information to display.

The keys and their definitions are then displayed in the main window.
There are three fields in the display, the Code field, the Char field,
and the String field.

The Code field represents the numeric value of the key that has been
defined.

The Char filed will be blank unless the key defined has a displayable
character associated with it.

The String field will display the definition of the key as PCOS sees it.
This will not always appear ekactly as entered. For example, if one
enters the following command:

pk 65,66 | define "A" to be '"B"

the display will show:

Code Char String

65 A :B

THE USA ASCII KEYBOARD

The keyboard translation table for USA ASCIIl is given below. The layout
and tables are organized in ascending numerical order based on the raw
key code. This corresponding order is a design artifact. The order of
the translation tables is independent of the raw code order, as is shown
in other national keyboards.

12-1

Main keyboard keys.

RE A B C D E F 6 H I J K L M N
0o P Q@ R.'S T U ¥ W x Y Z 0 1 2Z 3
4 5 6 7 8 9 - o e [; =5 /

This is the cap-lock table; each bit corresponds to a key in the
table.

0011111111111111 1111111111110000 0000000000000000

Main keyboard UNSHIFTED. Raw key range %00 - %2F.

%DD,' I’lal,lbl'lcl'ldl'|el'lfl'lgl"
lol'lpl,Iql'lrl'lsl'ltl,lulylvl’lwl'
I4l'l5',l6l,l7l,l8l'l9l,l_l,IQI'I@I'I

jl,lkl,lll,lml'lnl'
ZI’IOI’I1I"2I,I3"
:l,l]l,gazc'l.l'l/l,
Main keyboard SHIFTED. Raw key range %30 - %5F.
%DE'III’IAI'IBI'ICI'IDI'IEI,IFI'IGI'IHI,III’IJI'IKI’ILI'IMI'INI'
IOI'IP',IQI'IRI’ISI'ITI'IUI’IVI'INI'IXI'IYI’IZI'I_I’%Z‘I'II'I'I#I'
' l'%zs'l&l’%27'I(l'l)l'l=l'ltl"I'I{l,I+I'I*I'I}l'l<l'l>l,I?l'
Main keyboard CONTROL shift. Raw key range %60 - %8F.

%A0,%7F ,%01,%A1,%A2,%04,%05,%06,%07 ,%08 ,%09 ,%0A ,%0B, %0C ,%0D , %0E ,

%0F ,%10,%11,%12,%A3,%14,%15,%16,%17,%18,%19,%1A,%E0,%E1 ,%E2,%E3,
%E4,%ES,%E6,%E7 ,%E8 ,%E9 ,%EA,%EB,%00,%FB,%1E,%1F,%1D,%FE,%FF ,%A4,

Main keyboard COMMAND shift. Raw key range %90 - %BF.
%DF ,%F8,%80,%81,%82,%83,%84,%85,%86,%87 ,%88,%89,%8A,%8B,%8C,%8D,

%8E ,%8F ,%90,%91,%92,%93,%94,%95,%96,%97,%98, %99, %EC ,%ED, %EE , %EF ,
%F0,%F1,%F2,%F3,%F4,%F5,%F 6,%F7,%13,%1C,%FC,%FD,%9F ,%F9,%FA, %A5,

The following keypad keys generate only three unique codes each. Pressing
COMMAND and one of these keys generates the same code as unshifted.
SP CR S1 S2

Keypad: 0

N
I Nwo
*»00O HO

NOo ;-

12-12 PCOS SYSTEM PROGRAMMER'S GUIDE

THE KEYBOARD DRIVER

UNSHIFTED - raw key range %C0 - %D3.
%20,%A7 ,%A8,%A9, (Note 1)

%2E,%30,%A6,%31, (Note 2)
%32,%33,%34,%35,
%36,%37,%38,%39,
%2B,%2D,%2A,%2F ,

SHIFT - raw key range %D4 - %E7.
%20,%A7,%A8,%A9, (Note 1)

%2E,%30,%A6,%1C, (Note 2)
%9A,%1D,%98B,%9C,
%9D,%1E,%9E,%1F,
%2B,%2D,%2A,%2F ,

CONTROL - raw key range %E8 - %FB.
520,%A7 ,%A8,%A9, (Note 1)

%B0,%B1,%B2,%B3,
%B4,%B5,%B6,%18B,
%B8,%B9,%BA,%BB,
%BC,%BD, %BE, %BF ,

Note 1. %A7, %A8, and %A9 will all be interpreted
as %0D, an ASCI1 /CR/. The distinction
among these keys is maintained in the mailbox
and is accessible by LTERM.

Note 2. %A6 will be interpreted as %3030, two ASCII
zeros.

NATIONAL KEYBOARD DIFFERENCES

All national keyboards are shown in Appendix B of the PCOS Operating Sys-
tem User Guide. The translation table and font display is the same for
national keyboards, except for eleven keys. The table below shows them.

SYSTEM CALLS

Bytestream Calls are used for reading text from the keyboard. The key-
board FID is 17. The system calls are:

LookByte (9) Eof (16)
GetByte (10) ResetByte (18)
ReadLine (14)

For further information, see the discussion of Bytestream Calls in the
chapter entitled "System Calls" in Part 2. Details on using these calls
are in the Assembler User Guide.

12-13

13. VIDEO DISPLAY

ABOUT THIS CHAPTER

This chapter describes the capabilities of the driver and its related

utilities, RFONT and WFONT. The chapter

includes information about the

display screen characteristics and about the system calls used to display
text and to provide graphics capabilities.

CONTENTS

OVERVIEW

DRIVER FUNCTIONS

DISPLAY SCREEN

SCREEN B1T-MAPS AND COLOR
SCANLINE SKIPPING

DISPLAY FONT AND CHARACTER
FONT

FONT TABLES

READ AND WRITE FONT
UTILITIES

RFONT
RFONT FILE STRUCTURE
WFONT

RFONT AND WFONT - INTERNAL
INFORMATION

SYSTEM CALLS

TEXT
GRAPHICS CALLS
GENERAL

CLEAR WINDOW (SCREEN)
CURSORS

WINDOWS

GRAPHICS ACCUMULATOR
PAINT GRAPHICS CALLS
COLOR

OVERVIEW OF GRAPHICS CALLS

Cls (35)
ChgCur0 (36)
ChgCur1 (37)

ChgCur2 (38)

13-10

13-11

13-1

13-12

13-12

13-12

13-12

13-12

ChgCur3 (39)
ChgCurd (40)
ChgCur5 (41)
ReadCur0 (42)
ReadCur1 (43)
SelectCur (44)
6rflnit (45)
PaletteSet (46)
DefineWindow (47)
SelectWindow (48)
ReadWindow (49)
ChgWindow (50)
CloselWindow (51)
Scalexy (52)
MapXYC (53)
MapCXY (54)
FetchC (55)
StoreC (56)

UpC (57)

DownC (58)

LeftC (59)
RightC (60)

SetAtr (61)

13-12

13-13

13-13

13-13

13-13

13-14

13-14

13-14

13-14

13-15

13-15

13-15

13-15

13-16

13-16

13-16

13-16

13-17

13-17

13-17

13-17

13-17

13-17

SetC (62)
ReadC (63)
NSetCx (64)
NsetCY (65)
NRead (66)
NWrite (67)
Pntlnit (68)
TDownC (69)
TUPC (70)
ScanL (71)

ScanR (72)

CloseAllWindows (113)

ClearText (115)

ScrollText (116)

13-18

13-18

13-18

13-18

13-18

13-19

13-19

13-19

13-20

13-20

13-20

13-20

13-21

13-21

VIDEO DISPLAY

OVERVIEW

The video display driver supports both text and graphic display. This
section describes the capabilities of the driver and its related utili-
ties, RFONT and WFONT. RFONT allows creating customized characters and
small graphics characters, and can be used to create entire alphabets.
WFONT is used to select an alternate display font. The section includes
information about the display screen characteristics and about the system
calls used to display text and to provide graphics capabilities.

DRIVER FUNCTIONS

The video display is memory-mapped. The screen display hardware reads a
pattern from an area in system memory called the screen bit-map and
displays that pattern. The video display driver maintains the screen
bit-map. It receives both text and graphics material to display.

Text is received as a code, usually in the ASCI1 range 32-127, and is
displayed by means of a font table which has a bit-map pattern for each
displayable code. (RFONT can extend the range of displayable codes past
127.) Text codes are passed in R7 to the driver by various kernel rou-
tines, system utilities, and user programs. Most of these sources send
text via byte-stream system calls. One kernel routine monitors the key-
board buffer and sends newly-entered displayable characters to the video
display driver.

Graphics patterns are drawn on the screen bit-map. All graphics input
comes to the screen driver by means of system calls. Screen driver rou-
tines interpret the graphics call requests in terms of the current state
of the driver pointers to the screen bit-map and other internal informa-
tion, and modify the bit-map to fulfill the request.

DISPLAY SCREEN

The video display screen contains 256 horizontal scanlines, each consist-
ing of 512 pixels (picture elements). There are two display modes:

Mode 0: 16 lines of 64 characters (64 columns)
Mode 1: 25 lines of 80 characters (80 columns)

Mode 0 is mapped across all pixels in a scanline (256 x 512). Mode 1 is
mapped across 480 pixels (256 x 480). These modes are set as a global
parameter choice by the Set System (SSYS) Utility and their implementa-
tion is handled by M20 hardware and PCOS software. For example, when
mode 0 is changed to mode 1, the trailing 32 pixels for each scanline are
automatically cleared.

SCREEN BIT-MAPS AND COLOR

The video display is memory-mapped, which means that an 1image 1is con-
structed within system memory, read by the display hardware, and shown on
the display screen. Black and white displays use 16 K of screen bit-map
memory. Each bit represents one pixel; 0 is black, 1 is white. Mapping
starts at the upper left of the screen, which is the low memory address,
and proceeds across and down. Scanline lengths are according to the mode
setting, 512 or 480.

Color systems use two or three 16 K bit-map memories, for four-color or
eight-color displays. Mapping is the same, the additional screen or
screens provide additional color information. As the figure below shows,
for every pixel position on the screen there are either two or three bits
in the same relative location in the screen bit-maps. These provide
either four or eight values which determine the pixel color.

(3) 8000

1/°(3) 8932
A bit 3

a4 (3) BFFF
(3) 4000 Z

//// (3) 7FFF

(3) 0000 i;
(2%
(3) 0932
bit 3

(:3) 3EEE

Fig. 13-1 Color Bit Plane Coding
Screen bit-maps are in memory segment 3. The figure shows three bits in

three bit-maps that together specify the color of one pixel. Color
values are:

13-2 PCOS SYSTEM PROGRAMMER'S GUIDE

VIDEO DISPLAY

Four-Color Eight-Color
0 color A 0 black
1 color B 1 green
2 color C 2 blue
3 color D 3 cyan
4 red
5 yellow
6 magenta
7 white
Four-color values are selected from the set of eight. More information

on color is given later in this section, in the discussion of graphics.

SCANLINE SKIPPING

Pixels are organized into display fonts that are 8 pixels wide by 10 pix-
els high in mode 0, 6 x 10 in mode 1. 1In both modes, text lines are 10
scanlines high. 1n mode 0, the 16 textlines are automatically spaced
within bands of 16 scanlines. The extra scanlines are automatically
skipped. 1In mode 1, the 25 textlines 1leave only 6 extra scanlines.
These extra lines are automatically skipped at appropriate positions on
the display screen.

DISPLAY FONT AND CHARACTER FONT

The programmer who is defining display fonts must be aware of the dif-
ferent use of the display font matrix in these two modes. The display
font matrix is 8 columns by 10 rows. The character font is 5 x 7 and is
placed 1in the 5 right-hand columns as shown below. When the 8 x 10 font
is displayed in 25 x 80 display mode, the two left-most columns are not
used. The result is as follows:

16 by 64 Characters 25 by 80 Characters
(8 x 10) (6 x 10)
X X% 5 X X X X X X
X X X X X X X X X X
X X X X X XX X X X
X X X X X X X X X X
X X X X X XX X X X
X X X X X X XK X
X X X X X X X X X X

All characters used in the 16 national keyboards are delineated within
the 5 x 7 character font in the position shown. This convention assures
vertical and horizontal spacing for text lines. However, it is possible
to use the full font when spacing is not required. Font displays can be
used to define primitive graphic elements that can be used in construct-
ing graphic displays. These graphic elements provide another method of

implementing graphics displays, independent of the BASIC or PASCAL graph-
ics facilities and the underlying graphics system calls used to implement
them.

Such fonts would be suitable for defining symbols to be used singly or in
groups as an adjunct to text or for simple displays. Because of
automatic scanline skipping in mode 0 display, or the shortened width of
the screen in mode 1, such characters cannot be used for full-screen
displays.

PCOS makes available two utilities, RFONT and WFONT, that can be used to
define extensions or replacements for the display characters furnished in
the national keyboards. These facilities have been used to define entire
non-Roman alphabets. As mentioned above, they can also be used to define
graphic elements.

FONT TABLES

The standard national font tables correspond to the national keyboards.
Most of them have 95 displayable characters, corresponding to the ASCII
values from 32 to 127. (The Greek, Katakana, and Datev tables are non-
standard and have more. Greek and Katakana support display of both Roman
and national characters, and Datev has additional special characters.)

The tables are kept internally in binary form. A 95-character font set
consists of 95 display fonts in sequence, starting with the font for
ASCII 32. 1In other words, a 95 character font table can be considered as
10 rows of binary values, each row 8 times 95 bits in length.

To display a text value, the driver indexes into the font table and picks
up the character font corresponding to the value. (Taking either an 8x10
or 6x10 font, according to mode setting.) The driver places the charac-
ter font at the current text character location in the bit-map and
updates its location pointer, which displays as the text cursor.

READ AND WRITE FONT UTILITIES

The RFONT and WFONT utilities, combined with CKEY and PKEY, enable a pro-
grammer to define, call, and use any character fonts desired. These
fonts can be customized character sets, non-Roman character sets, or
graphics characters. A personalized font thus created can be called from
the PCOS environment, called from BASIC or an assembler subroutine, or,
if PSAVED, initialized on booting the system.

The standard character sets of the M20 national keyboards use the codes
for ASCI1 32 through 127 (hexadecimal 20 - 7F). 1In general, additional
character or display fonts are assigned within the range of codes 80 hex
to 9F hex, and BO hex to FF hex. These new characters or display ele-
ments would be supplementary to the existing national keyboard font. 1f
it 1is desired to create an entirely new font, the range of codes from 20
hex to 9F hex and BO hex to FF hex would be available. Codes 0 hex
through 19 hex are used by ASCI1 for control functions, and PCOS makes
special use of the codes from A0 hex to AF hex.

13-4 PCOS SYSTEM PROGRAMMER'S GUIDE

VIDEO DISPLAY

A brief description of RFONT and WFONT usage follows. For details, see
the PCOS Operating System User Guide.

RFONT

The RFONT utility is used to create a text file that forms the base for
the customized font set. When invoked, a file is created using the char-
acter set of the current keyboard or personalized font pattern. To
create a customized font, use RFONT (rf) to read the existing font into a
file, then edit the file.

RFONT reads the selected display font table and converts the binary
display fonts into an ASCII file. The RFONT file is a sequential file
that uses a pattern of "-'" and "X" to display the fonts. This file can
be edited to change or add display fonts.

The ASCII file can be converted to binary for system wuse by the WFONT
utility, which is described later.

For information on the use of RFONT, see the PCOS Operating System User
Guide.

RFONT FILE STRUCTURE

The RFONT file has the structure shown in the example below. In this
example, the current character set is the USA ASCII. The first character
is ASCII 32, the SPACE character (20 hex). Each character 1is shown in
dot-matrix form, with '"-'" and "X" used to delineate the character.

For reference, the "ASCII" section in part 3 shows the full USA keyboard

values. The RFONT utility can be used to display the character fonts for
any national keyboard of interest.

13-5

USA

country 4

matrix height = 10
95 characters

32

13-6

PCOS SYSTEM PROGRAMMER'S GUIDE

VIDEO DISPLAY

The meanings of the first four lines of the file are as follows:

Line 1 Reference text name, not used by WFONT and may be used as con-
venient.

Line 2 Country code from which the original RFONT utility was invoked.
Not used by WFONT and is useful as reference.

Line 3 The line height of a valid character font matrix. Reminder only,
not used by WFONT.

Line 4 The character count. A number followed by a word (i.e., 'charac-
ter'"). This character count must be equal to the total number of
matrices in the file to be read by WFONT. Any characters beyond
this figure will be ignored.

The remaining lines of the file, from line 5 to the end, are sets of 11-
line matrix blocks, each set comprising the character code in decimal
followed by an 8 x 10 matrix describing the actual character.

Characters must be defined in sequence and cannot be skipped. Blank
displays can be provided for unused values, such as the characters for
160-175 (hexadecimal AO-AF).

WFONT

The WFONT utility does two tasks. First is converts an RFONT file from
ASCIT to a binary display font set which it places in system memory.
Then it changes a system pointer causing PCOS to use the new font set 1in
place of the prior. The other font set 1is not harmed, and can be
restored to use.

The new font set can be stored on disk and saved for later wuse. The
PSAVE command can be used to configure the system so that the new font is
the initial font available.

For information on using WFONT, see the PCOS Operating System User Guide.

RFONT AND WFONT — INTERNAL INFORMATION

PCOS reserves a 6-byte area for use by WFONT. This global pointer holds
the size and location of the last font set generated by WFONT. When
WFONT is invoked it clears that pointer and releases the space to memory
management. 1f WFONT is invoked without a filename, this has the effect
of restoring the initialization font to use. When invoked with a
filename it converts the ASCI1 file to a font table and places the size
and location information in that pointer space. PCOS then uses the WFONT
pointer in place of the pointer to its initialization font set. PSAVE
preserves the pointer and the font set.

Any number of RFONT files can be saved as text files and made active by
WFONT whenever desired.

SYSTEM CALLS

TEXT

For writing text to the display screen, use these Bytestream Calls with
FID 17:

PutByte (11)
WriteBytes (13)

For information, see the discussion of Bytestream Calls in the section on
"System Calls" 1in Part 2. For details on the system calls, see the
Assember User Guide.

The text cursor can be modified by system calls (as can the graphics cur-
sor). The cursor shape may be changed and the rate at which it blinks.
For information on both cursors, see the discussion on cursors under
"Graphics Calls,'" below. System calls for modifying the text cursor are
grouped with the calls for modifying the graphics cursor and explained
below.

GRAPHICS CALLS

Graphics system calls are discussed in this section. Later in Part 2 of
this manual 1is an extended discussion of a graphics package that runs
under the PASCAL language, and can be used by assembly language programs.
That graphics package uses these system calls, and so do the BASIC graph-
ics routines.

GENERAL

The screen area for the M20 display has 256 scanlines by 512 pixels, for
either black-and-white or (optional) color. 'Pixel," or 'picture ele-
ment' is the fundamental unit of screen display. It is a dot capable of
being set to black or white, or to a color on color screens. Both mono-
chrome and color displays have two different display modes: 256 scanlines
by 512 pixels, used for 64 character by 16 row text mode; and 256 scan-
lines by 480 pixels, used for 80 character by 25 row text mode.

A brief overview of the graphics system calls, including background

information, 1is given below. A summary table of calls follows the over-
view.

13-8 PCOS SYSTEM PROGRAMMER'S GUIDE

VIDEO DISPLAY

CLEAR WINDOW (SCREEN)

System call CLS (35) clears the screen (or current window) and positions
the cursor(s).

CURSORS

The PCOS system provides two cursors for the screen, one for text and one
for graphics. These may be placed anywhere and XORed with the normal
contents of the screen. The cursor may be blinking or nonblinking.
There 1is only one cursor displayed for the whole screen at a given time.
However, each window will maintain two cursor positions and two cursor
bitmaps.

The standard cursor bitmap is 8 bits wide and 12 scanlines high. The
shape may be changed to suit the user's preference, and each cursor may
have its own blinkrate. The blinkrate value defines the number of ''state
changes" per second, and is twice the number of blinks.: (Blink and no
blink are two states.) A blink rate of 6 gives 3 blinks per second.

During BASIC INPUT and Line INPUT, the text cursor is used. If it was
off, it will be turned on, and upon exit will be turned off again. When
using BASIC, the cursor is always a standard block, and non-blinking.

System calls 36 through 44 provide the capability to select the text or
graphics cursor, select blinkrate, and update its position:

ChgCur0 (36) ChgCurl (37) ChgCur2 (38)
ChgCur3 (39) ChgCur4 (40) ChgCur5 (41)
ReadCur0 (42) ReadCurl (43) SelectCurl (44)

WINDOWS

The screen is initialized to obtain one window by Grflnit (45) which sets
default global attributes for both screen and windows, and returns a
color flag and a pointer to the '"mailbox.'" The mailbox also contains
other flags, indicating the M20 model, etc. A layout of the mailbox is
given with the 1EEE-488 driver described in the "Other Drivers" section
of Part 2 of this manual.

The screen may be divided into windows by splitting along horizontal or
vertical lines. There may be a maximum of sixteen windows on the screen,
which are assigned window numbers 1 to 16 in order of creation.

A new window is created by splitting the current window into two parts.
The current window remains the one selected. A quadrant system is used
to identify the new window and the part of the old from which it was
created.

In addition to Brflnit(45), system calls 47 through 51 and 113 are pro-
vided to define, select, return attributes and/or close windows:

13-9

Grflnit (45) ChgWindow (50)
DefineWindow (47) CloseWindow (51)
SelectWindow (48) CloseAllWindows (113)
ReadWindow (49)

GRAPHICS ACCUMULATOR

The graphics routines make use of a global variable referred to as the
""graphics accumulator' to define the current absolute screen location.

This graphics accumulator is said to be of type '"C'". A C-variable is a
32-bit variable containing a memory address and a bit mask for the speci-
fied group of pixels at that address. The memory address and the bit
mask are each 16 bits in size.

The memory address selects a word in the Bit-Map area, and 1is 1in the
range %0 to %3FFE (8192 words). The bit mask relates a pixel on the
screen to a bit in that area of the Bit-Map specified by the memory
address. A bit value of one means ON, zero means OFF.

For example, if the graphics accumulator is assigned the value %20208000,
then the first word identifies the sixteen pixels at the center of the
screen and the second word sets the first of these sixteen pixels ON.

Conversion routines are provided for converting local x-y coordinates for
windows to or from the C-type variable in the graphics accumulator. Most
plotting routines manipulate the graphics accumulator in an abstract and
machine-independent way. In general, the plotting of a point is at the
position defined by the contents of the graphics accumulator.

Likewise, the 'current attribute' is a global variable representing the
current foreground color. Any plotting or painting routine will set this
to the color specified in the high-level BASIC (or other) routine by
using SetAtr (61) (set attribute), or is assumed to be the current
window's current foreground color by default.

Several system calls (52 through 67, 115, and 116) are provided for scal-
ing or converting coordinates, for manipulating the accumulator, and for
drawing lines:

ScaleXY (52) DownC (58) NSetCX (64)
MapXYC (53) LeftC (59) NSetCy (65)
MapCXY (54) RightC (60) NRead (66)
FetchC (55) SetAtr (61) NWrite (67)
StoreC (56) SetC (62) ClearText (115)
upC (57) ReadC (63) ScrollText (116)

13-10 PCOS SYSTEM PROGRAMMER'S GUIDE

VIDEO DISPLAY

PAINT GRAPHICS CALLS

The PAINT operation fills an area of a window bounded by a specified
boundary color (and the window boundaries) with another specified brush
color. These system calls implement the PAINT operation:

Pntlnit (sc 68) ScanL (sc 71)
TDownC (sc 69) ScanR (sc 72)
TUpC (sc 70)

PntInit (68) is called first, and sets the paint and border colors. The
colors selected must be legal screen colors (see Color, below).

The remaining calls move the position of the graphics accumulator up or
down (checking first if the move is within the boundaries of the current
window; if not, an error is returned), and scan left or right to paint
the window.

COLOR
There are two color systems, one allowing the display of four colors
simultaneously and the other allowing eight colors. 1In the four-color

system, the colors are selected from the full set of eight.

A color code is a value from 0 to 7, expressed 1in three bits (2,1,0).
The color codes for the different systems are:

Black/White Four-Color Eight-Color
0 black 0 color A 0 black
1 white 1 color B 1 green
2 color C 2 blue
3 color D 3 cyan
4 red
5 yellow
6 magenta
7 white

The four-color selections are chosen from the eight color possibilities
by using PaletteSet (46).

Where a color code exceeds the specified range, the assignment 1is com-
puted as follows. For a black and white system, codes 2 through 7 are
computed by ORing the three bits together. For all cases the result is
one. For a four-color system, codes 4 through 7 are computed by ORing
bit 2 with bit 0. The result is:

100 = 01 4=1
101 = 01 5=1
110 = 1 6=3
M =1 7=3

13-11

OVERVIEW OF GRAPHICS CALLS

Cls (35)
Clears the current window.

(this call has no parameters)

ChgCur0 (36)

Positions the text cursor.

Input:
R8 <- column
R9 <- row
Output:
RS -> error status
ChgCur1 (37)
Positions the graphics cursor.
Input:
R8 <- x
RO <- y
Output:
(no output)
ChgCur2 (38)

Sets blink rate of the text cursor.

Input:
R8 <- rate
Output:
(no output)
ChgCur3 (39)

Sets blink rate of the graphics cursor.

Input:
R8 <- rate
Output:
(no output)
13-12

PCOS SYSTEM PROGRAMMER'S GUIDE

VIDEO DISPLAY

Sets shape of the text cursor.

Input:
RR8 <- address

Output:
(no output)

Sets shape of the graphics cursor.

Input:
RR8 <- address

Output:
(no output)

Returns the position (column and row), and the blinkrate of

window's text cursor.

Input:
RR10 <- address
Output:
R7 -> blinkrate
R8 -> column
R9 -> row

ChgCurd (40)

ChgCur5 (41)

ReadCur0 (42)

the current

ReadCur1 (43)

Returns the position (column and row), and the blinkrate of the current

window's graphics cursor.

Input:
RR10 <- address
Output:
R7 -> blinkrate
R8 -> x position
R9 -> y position

13-13

SelectCur (44)
Selects graphics or text cursor, or turns off current cursor.

Input:
R8 <- select

Output:
(no output)
6rfinit (45)
Initializes screen and sets defaults.

Input:
(no inputs)

Output:
R8 -> color flag
RR10 -> pointer
PaletteSet (46)

Selects a global four color set (only for four color systems).

Input:
R8 <- color A
R9 <- color B
R10 <- color C
R11 <- color D
Output:

R5 -> error status

DefineWindow (47)

Creates a new window.

Input:

R8 <- quadrant

R9 <- position

R10 <~ vertical spacing

R12 <~ horizontal spacing
Output:

R11 -> window number

RS -> error status

13-14 PCOS SYSTEM PROGRAMMER'S GUIDE

VIDEO DISPLAY

SelectWindow (48)
Selects another window.

Input:
R8 <- window number

Output:
R5 -> error status

ReadWindow (49)

Returns attributes of current window.

Input:
(no inputs)
Output:
R7 -> window
R8 -> X
R9 -y

R10 -> foreground
R11 -> background
R5 -> error status
ChgWindow (50)

Changes window colors.

Input: R8 <- foreground
R9 <- background

Output: R5 -> error status

CloseWindow (51)
Closes the selected window.

Input:
R8 <- window

Output:
(no outputs)

13-15

ScaleXY (52)

Checks coordinates against window boundaries.

Input:
R8 <= X
R9 <=y
Output:
R10 -> return value
MapXYC (53)

Converts x-y coordinates to absolute values and stores result in
graphics accumulator.

Input:
R8 <- X
R9 <=y
Output:
(no outputs)
MapCXY (54)
Convert C-value in graphics accumulator to x-y coordinates.
Input:
(no inputs)
Output:
R8 -> X
R9 -> Y
FetchC (55)

Returns contents of graphics accumulator.

Input:
(no input)

Output:
RR8 -> C-value

the

13-16 PCOS SYSTEM PROGRAMMER'S GUIDE

VIDEO DISPLAY

StoreC (56)
Sets graphics accumulator to a specified C-value saved by 'fetchc'.

Input:
RR8 <~ C-value

Output:
(no outputs)

upC (57)
Moves position (as stored in graphics accumulator) up by one pixel.

(this procedure has no parameters)

DownC (58)
Moves the position (as stored in graphics accumulator) down one pixel.

(this procedure has no parameters)

LeftC (59)
Moves the position (as stored in graphics accumulator) left one pixel.

(this procedure has no parameters)

RightC (60)
Moves the position (as stored in graphics accumulator) right one pixel.

(this procedure has no parameters)

SetAtr (61)
Sets the current color value.

Input:
R8 <- color

Output:
R5 -> error status

13-17

SetC (62)

Plots a single point.

Input:
R8 <- operation
Output:
(no outputs)
ReadC (63)

Returns the color attribute of the current point.

Input:
(no inputs)
Output:
R8 -> color
NSetCx (64)

Draws a horizontal line.

Input:
R8 <- count
R9 <- operation
Output:
(no outputs)
NsetCY (65)

Draws a vertical line.

Input:
R8 <- count
R9 <- operation
Output:
(no outputs)
NRead (66)

Reads a screen rectangle into an array.

13-18

PCOS SYSTEM PROGRAMMER'S GUIDE

VIDEO DISPLAY

Input:

Output:

Transfers a

Input:

Output:

Input:

Output:

R8 <- width (in pixels)
R9 <- height (in pixels)
RR10 <- pointer to byte array

@RR10 -> address of byte array
RS -> always cleared (no error
conditions)

Nurite (67)

graphics rectangle from an array to the screen.

R7 <- logical operation

R8 <- maximum width of rectangle
in pixels

R9 <- maximum height of rectangle

in scanlines
RR10 <- pointer to a byte array

RS -> always cleared (no error
conditions)

Pntlnit (68)

Specifies global color attributes for PAINT routines.

R8 <- paint color
R9 <- border color
RS -> error status

TDownC (69)

Moves graphics accumulator down by one pixel after checking the window

boundary.

Input:

Output:

(no inputs)

R8 -> check value

13-19

TUPC (70)

Moves graphics accumulator up by one pixel
boundary.

Input:
(no inputs)
Output:
R8 -> check value
ScanL (71)

Paints left on a scanline up to a border.

Input:
(no inputs)
Output:
R9 -> count-1
R10 -> margin flag
R11 -> painted flag
ScanR (72)

Paints right on a scanline up to a border.

Input:
R8 <- maxcount
Output:
RR6 -> C-type
R8 -> maxcount
R9 -> count-r

R10 -> margin flag
R11 -> painted flag

CloseAllWindows (113)

Closes all existing windows (from 2 to 16).

Input/Output:

This call has no parameters

13-20

after checking the window

PCOS SYSTEM PROGRAMMER'S GUIDE

VIDEO DISPLAY

ClearText (115)

Clears a specified rectangle of text in the current widow.

Input:

Output:

R10
R11
R12

R13

RS

<- Column (left edge of
cleared rectangle)

<- Row (top row of cleared
rectangle)

<- Column count (width of
rectangle)

<- Row count (height of rectangle)

-> error status

ScrollText (116)

Copies a rectangle of text characters in a window to another position of

the same window.

Input:

Output:

Ré6
R7

R8

R9
R10

R11
R12
R13

RS

=

Color Plane Mask

Logical function (0 for
normal copy)

Source column (Left edge of
source)

Source row (top row of source)

Destination column (left edge
of destination)

Destination row (top row of
destination)

Column count (width of rectangle)

Row count (height of rectangle)

Error status

13-21

14. DISK DRIVER AND FILE MANAGEMENT

ABOUT THIS CHAPTER

This chapter explains the capabilities of the disk driver and PC0S file

management. 1t provides

information about related utilities,

system

calls used for doing disk file input/output, and system calls used for

file management.

CONTENTS
OVERVIEW

DISK DRIVER AND FILE
MANAGEMENT FUNCTIONS

DISK DRIVER CAPABILITIES

DISKETTE AND HARD DISK
CHARACTERISTICS

DISKETTES

HARD DISK

INTERFACE DESCRIPTIONS

DRIVER INITIALIZATION

ASSEMBLY LANGUAGE INTERFACE

COMMANDS

VERIFY AFTER WRITE FLAG
OPTION

FLOPPY DISK ERROR CODES

HARD DISK ERROR CODES

14-1

14-1

14-1

14-3

14-4

14-4

14-4

14-5

14-5

CONCEPTS AND BACKGROUND

INFORMATION

LOGICAL BLOCK NUMBERS
WRITE PRECOMPENSATION
DISK FORMATS

ECMA COMPATIBILITY

MSDOS, CPM-86, AND 1BM PC
DISK FORMATS

" SYSTEM INTERFACE DESCRIPTION

INITIALIZATION

FLOPPY DISK ERROR RECOVERY

HARD DISK ERROR RECOVERY

MISCELLANEOUS INFORMATION

ROM REQUIREMENTS

HARDWARE CONFIGURATIONS AND

VERSIONS

14-5

14-5

14-7

14-8

14-8

14-9

14-9

14-9

14-10

14-11

14-11

14-11

14-12

VALID OPERATIONS

FILE MANAGEMENT OVERVIEW

LOGICAL BLOCKS

CONTROL TRACK

VOLUME DESCRIPTOR BLOCK

ALLOCATION OF BLOCKS

FILE DIRECTORY

THE DIRECTORY ENTRY

FILENAME HANDLING

FILE DESCRIPTOR BLOCK

OVERVIEW OF FILE

MANAGEMENT UTILITIES

SYSTEM CALL OVERVIEW

DISK BYTESTREAM 1/0 CALLS
FILE MANAGEMENT CALLS
DRemove (26)

DRename (27)

DDirectory (28)
Disechame (96)
CheckVolume (97)

Search (98)

SetVol (102)

DiskFree (106)

14-12

14-13

14-13

14-13

14-13

14-14

14-15

14-15

14-15

14-15

14-16

14-18

14-18

14-19

14-19

14-19

14-19

14-20

14-20

14-20

14-20

14-21

DISK DRIVER AND FILE MANAGEMENT

OVERVIEW

The disk driver supports floppy disk and the optional hard disk drives.
Based on the disk drive functions, PCOS provides file management capabil-
ities. This section explains the capabilities of the disk driver and
gives information about the system calls for doing disk file input/output
and file management.

DISK DRIVER AND FILE MANAGEMENT FUNCTIONS

The disk driver manages the physical resources of diskettes and the hard
disk. File management routines are structured on top of the driver capa-
bilities in a hierarchical fashion. At the lower levels, the driver pro-
vides file management with the functions that convert logical blocks to
physical address. At a higher level, file management handles files and
directories of files. Some file management utilities operate on a
diskette or disk full of files, which is called a volume.

This section starts with a discussion of the driver and then gives infor-

mation about file management, including an overview of file management
utilities. System calls are given at the end.

DISK DRIVER CAPABILITIES

The driver features include write precompensation for the 640KB drive,
and support for disk operation on the 512 byte sector diskettes (CPM-86
and MSDOS types) as well as 256 byte sectors.

This driver supports the following disk drive configurations, not all of
which are actually provided by Olivetti.

1 160-kbyte floppy drive

2 160-kbyte floppy drives

1 160-kbyte floppy drive, 1 hard disk drive
2 160-kbyte floppy drives, 1 hard disk drive
1 320-kbyte floppy drive

2 320-kbyte floppy drives

1 320-kbyte floppy drive, 1 hard disk drive
2 320-kbyte floppy drives, 1 hard disk drive
1 640-kbyte floppy drive

2 640-kbyte floppy drives

1 640-kbyte floppy drive, 1 hard disk drive
2 640-kbyte floppy drives, 1 hard disk drive

ROM 2.0 is required for support of the hard disk, 160KB, and 640KB floppy
disk drives.

14-1

Configurations with floppy disk drives of different sizes intermixed are
not supported by the disk driver. The driver supports any floppy disk
drive in combination with the hard disk drive. However, not all possible
drive combinations are actually marketed. For example, the 160-kbyte
floppy drives are not used with the hard disk.

This driver will work with all memory and display configurations.

DISKETTE AND HARD DISK CHARACTERISTICS

DISKETTES

A1l diskettes are 5-1/4 inches in diameter, have a transfer rate of 250
Kbits per second, and an average access time of 303 ms. The individual
characteristics are:

160 Kbytes 320 Kbytes 640 Kbytes
Sides single-sided double-sided double-sided
Density double-density double-density quadruple-density
Read/write
heads 1 2 2
Tracks per 40 40 80

7 -
v

surface (35 used) (35 used)

All diskettes have 16 blocks per track, with 256 bytes per block, except
for track zero of side zero. This track is not used. 1Its 16 blocks have
128 bytes per block, filled with Olivetti control data.

HARD DISK

The hard disk is also 5-1/4 inches in diameter, and can be substituted
for a 5-1/4 diskette drive. 1t is a Winchester-type drive, with the
rotating memory and the access heads sealed inside a protective casing.
It has three platters with six recording surfaces. Its characteristics
are:

14-2 PCOS SYSTEM PROGRAMMER'S GUIDE

DISK DRIVER AND FILE MANAGEMENT

Read/write heads 6
Track density 10 tracks per mm

(254 tracks per inch)
Tracks per surface

(cylinders) 180

Access times track to track —- 1.1 ms
average -- 66 ms
maximum -- 158 ms

Rotation speed 3,600 revolutions per minute

Latency time average -- 8.33 ms

Data transfer rate 5 Mbits per second

Capacity, nominal 11.26 Mbytes

Capacity, formatted 8.85 Mbytes

256 bytes per block

32 blocks per track
8.192 Kbytes per track
1.475 Mbytes per surface

Drive identifiers:
0, 1 floppy

10 hard disk

INTERFACE DESCRIPTIONS

The following information is provided for background. User calls to the
disk driver are actually done by bytestream system calls. These calls
are listed later in this section.

DRIVER INITIALIZATION

The global name for this procedure is ''disk init". This routine is
called at system initialization time. Any active disk drives are turned
off and RAM variables are initialized so that upon the first disk opera-
tion the restore operation will be done.

14-3

ASSEMBLY LANGUAGE INTERFACE

The global call name of this procedure is '"disk io'". This call is the
general interface that allows all of the commands described in the Com-
mands section below to be executed. All parameters to and from the
driver are passed in registers.

The following registers are used for parameter passing to the driver and
returning information from the driver. The driver does not save register
values.

Parameters:
RL7 Driver command
RH7 Physical drive number (0, 1, or 10)
R8 Number of blocks to transfer
R9 Logical block number
RR10 Buffer address
Return:
RH6 1If retry count is not zero, this is the
type of error
RL7 Error code: final result after retry
attempts
RH7 Number of retries attempted
COMMANDS

The following commands can be issued using the general assembly language
call:

Read block(s) command
Write block(s) command
Format track command
Verify block(s) command
Initialize driver

HwrNn—=0O

VERIFY AFTER WRITE FLAG OPTION

A global flag byte with the name '"dsk vfy flag" will determine if a ver-
ify operation should be done after a write operation. 1f this flag is
zero no verification will take place. 1f the flag is non-zero the verif-
ication will take place.

This flag is initially zero but can be changed with the SSYSTEM PCOS com-
mand and PSAVED.

14-4 PCOS SYSTEM PROGRAMMER'S GUIDE

DISK DRIVER AND FILE MANAGEMENT

FLOPPY DISK ERROR CODES

The following is a list of bits that can be set by the driver in the
return status byte to reflect error conditions. ,A zero status byte
reflects no errors. NOTE: Bit 0 is the least significant bit.

Bit 0 1Illegal parameter(s) error

Bit 1 Not track 0 after restore error
Bit 2 Seek error

Bit 3 Data transfer error

Bit 4 Record not found error

Bit 5 Write fault error

Bit 6 Write protect error

Bit 7 Drive not ready error

HARD DISK ERROR CODES

The following is a list of bits that can be set by the driver in the
return status byte to reflect error conditions. A zero status byte
reflects no errors. NOTE: Bit 0 is the least significant bit.

Bit 0 Illegal parameter(s) error

Bit 1 Not track 0 after restore error

Bit 2 Abort error

Bit 3 Data transfer error

Bit 4 Record (sector) not found error

Bit 5 CRC on sector id error

Bit 6 CRC on data error

Bit 7 Bad block error OR Drive not ready error

CONCEPTS AND BACKGROUND INFORMATION

The following discussion gives general concepts and specific information
useful in understanding the disk drives.

LOGICAL BLOCK NUMBERS

Many operations performed by the driver require the calling program to
furnish a '"logical block number'. This number is a device independent
way of representing block of data. Each valid 1logical block number
refers to a . physical disk address (a set of sector head, track, and
numbers). Valid logical block numbers comprise an unbroken sequence,
beginning with 0. The file system may therefore increment or decrement
any logical block number within this sequence and produce another valid
logical block number designating the next or previous sector, respec-
tively.

The PCOS 1.0 driver mapped 1logical block numbers into physical disk
addresses as follows:

XXXXX TTTTTT H SSSS
bit: 15 11 10 543 0

14-5

where S = sector number (range 0 - 15), H = head number (range 0 - 1), T
= track number (range 0 - 34), and X = unused. This scheme accommodated
all valid disk addresses on the 320-kbyte disk, which had 16
sectors/track, 2 sides, and 35 tracks/side.

A new method accommodates all valid disk addresses on the optional drive
types. Their parameters are:

Media Type Floppy Dlsk | Hard Disk

Drive Type 160 Kbyte|320 Kbyte|640 Kbytel 8 Mbyte

Disk Format ECMAIIBMI ECMAIIBMI ECMAIIBMI ECMA

+

——— —— + —+ — + — +

+
¥
b
+
P
+ g
+

Bytes/sector 256 |512| 256 |512] 256 |512] 256
Sectors/track 16 | 8| 16 | 8| 16 | 8 | 32
Bytes/track 4,096 | 4,09 | 4,09 | 8,192

| | |
Tracks/head(side) 40 | 40 | 80 | 180
Heads(sides)/drive 1 | 2 | 2 | 6
Tracks/drive 40 | 80 | 160 | 1,080

| | |
Capacity (KB) 160 | 320 | 640 | 8,640
Capacity (Bytes) 163,840 | 327,680 | 655,360 | 8,847,360

As shown above, an independent ''track number' field requires 7 bits for
the 640-kbyte floppy drive, and 8 bits for the hard disk. An independent
"heads'' field requires 3 bits for the hard disk.

The method currently used maps disk addresses as follows:

14-6 PCOS SYSTEM PROGRAMMER'S GUIDE

00 38 00 88 1E 00
B0 22 00 00 00 22
00 10 50 43 4F 53
DO 00 00 00 00 00
FF FF & 00 02 FF
*F FF FF FF FF FF
*F FF FF FF FF FF
—~F FF FF FF FF FF

0AOOFECO
DAOOFEDRD

00FEED
7 A00FEFD
DAODFFOD
ORDOFF10
0ADOFF20
OROOFF30

00 00 00 00 00 0O 0O 00 00 00 OO 00 00 0O 00 00
00 00 00 00 0O 0O OO OO 0O 0O OC OO OO 0O OC 0O
00 00 00 00 00 00 00 0D OO 00 00 00 0O 00 00 00
00 00 0O 00 00 0O OO0 0D OO 00 OC 00 OO 0O 0O OO
{0 00 00 00 00 OO 00 00 OO0 0D 00 00 0D 0D 00 00
00 0O 0O DO 0O 0OC DO 0O 0O OO OO OO DO 0D 00 OO
00 00 00 OO0 00 00 0O OO0 OO 0O 0O OC 00 00 00 0D
00 00 0C 00 0D 0O 00 0OC OO0 00 00 00 0D 0O 00 0O

EEEE R R E R N

|||||||||||||||

1r1rrtreERERREELEN

xxxxxxxxxxxxxxx

::::::::::::::::

IR N |

xxxxxxxxxxxxxxxx

||||||||||||||||

Treck -3¢ e

So8o Blocke o

#%% Diskettenblocke anzeigen #¥¥

nib Laufwerksnummer 31
ib Blocknummer -0

QADOFE4D 9% 01 0B 23 02 10 01 00 00 10 00 38 00 88 1E 00
DAOOFESC FF FF 00 00 00 00 0O 00 00 01 00 22 00 00 00 22
OADOFEAD FF FF FF FF FF FF FF FF 00 00 00 10 30 43 4F 53
OROOFE70 0D 00 0O 02 00 00 0O 00 00 00 00 00 00 00 00 00
0ADOFESD 00 00 00 00 00 00 00 00 00 01 FF FF 0% 00 02 FF
OADOFESD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
OADOFEAD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
OAGOFEBD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
noQOFECO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

J0FEDO 00 00 00 00 00 00 00 00 00 00 0C 00 0O DO 00 00

OOFEEQ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DAOOFEFC 00 0D 00 0O 00 00 00 0D 00 00 00 00 00 00 00 00
JAO0OFFOD 0O 00 00 00 0O 00 00 00 00 00 00 0C 00 00 00 00
DAOOFF10 (00 0O 00 0O 00 00 00 00 0O 00 00 OO 00 00 00 00
JAOOFF20 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00
OACOFF30 0O 00 0O 0C 00 00 00 0O 00 00 0O 0D OO 00 00 0O

DISK DRIVER AND FILE MANAGEMENT

Hard disk:

AAAAAAAAAAA 55SSS
bit: 15 5 4 0

Floppy disks: (ECMA type)

160-kbyte:
XXXXXX TTTTTT SSSS
bits 15 10 9 4 3 0
320-kbyte:
XXXXX TTTTTT H SSSS
bit: 15 11 10 543 0
640-kbyte:
XXXX TTTTTTT H SSSS
bit: 15 12 11 543 0

Floppy disks: (IBM PC type)

160-kbyte:
XXXXXXX TTTTTT SSS
bit: 15 9 8 3 20
320-kbyte:
XXXXXX TTTTTT H SSS
bit: 15 10 9 4320
640-kbyte:
XXXXX TTTTTTT H SSS
bit: 15 11 10 4320

For the hard disk, A = (track X 6) + head; (range = 0 - 2047). Track and
head values are determined by dividing the A-field by 6; track value is
the quotient, head value the remainder.

WRITE PRECOMPENSATION

Write precompensation is used both on the 640KB floppy disk drive and
with the hard disk drive.

For the 640KB drive, the write precompensation bit (bit 7 in general pur-
pose disk output port) is set to one whenever a write operation is occur-
ring on tracks 43 through 80.

For the hard disk, the write precompensation byte is written to the

Western Digital controller at initialization time. The track at which
the write precompensation is begun is track 128.

14-7

DISK FORMATS

Both floppy disks and the hard disk are formatted one track at a time, by
repeated ''format track' commands issued from the utility VFORMAT.

Any sector interleaving is done when the diskette is formatted. This
allows for many different interleave formats that can be optimized for a
particular application. The driver software is independent of the inter-
leave and will work with any interleave scheme. Therefore the driver
supports the ECMA standard of having the sectors in numerical order, as
well as supporting different interleave schemes.

The format program contains tables that have interleave schemes for the
various types of disks. For the PCOS 3.0 floppy diskettes, VFormat uses
the following interleave table:

Physical 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Logical 09 01 10 02 11 03 12 04 13 05 14 06 15 07 16 08

For the PCOS 3.0 hard disk, VFormat uses the following interleave table:

Physical 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Logical 00 04 08 12 16 20 24 28 01 05 09 13 17 21 25 29

Physical 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Logical 02 06 10 14 18 22 26 30 03 07 11 15 19 23 27 31

The floppy disk interleave is an interleave by 2. This allows about 12
milliseconds of processing time between sectors. The hard disk inter-
leave is an interleave by 8. This allows about 4 milliseconds of pro-
cessing time between sectors. These interleaves have been optimized for
the PCOS file system.

ECMA COMPATIBILITY

The physical format of the diskette can be written according to the
ECMA-70 Standard if the format program that uses the write track command
sets up the data to be written properly. NOTE: The floppy disk driver
writes and reads only the FB data mark and does not support the F8
deleted data mark on normal sector reads and writes. However, when the
write track command is executed. The driver will write whatever data is
supplied by the user, so deleted (F8) type sectors can be written in this
way.

The format program currently used by the PCOS operating system creates an
interleave by 2, which 1S NOT the ECMA-70 standard. 1f the ECMA standard
is required, a user supplied format program can be used. Also, ECMA-70
diskettes generated on other machines can be used as long as they do not
use the F8 deleted data mark. This may cause a difference 1in operating
efficiency because there may not be any interleave on diskettes made on
other machines.

14-8 PCOS SYSTEM PROGRAMMER'S GUIDE

DISK DRIVER AND FILE MANAGEMENT

MSDOS, CPM-86, AND IBM PC DISK FORMATS

The APB1086 board using MSDOS and CPM-86 and the IBM PC all use disk for-
with 8 sectors of 512 bytes per track. The PCOS 3.0 disk driver is
This is done by

mats
also capable of reading MS-DOS and CP/M-86 diskettes.
specifying diskette type 4 for the 160KB diskette, type 5 for the 320KB

diskette, and type 6 for the 640KB diskette.
X

SYSTEM INTERFACE DESCRIPTION

INITIALIZATION
identified. Two

At initialization time, the attached drive types are
flags, "drive 0 type" and 'drive 1 type', are set, using these values

drive not present or type unknown

160-kb floppy
320-kb floppy & /
640-kb floppy.

A third flag, '"hard dsk drives', is set to 0 if no hard Q1sk dr1ves. are

=ffached. * if one is attached In future releases, this flag may indi-
‘-t A-ivee attached, if a mult1p1e -hard-disk

f JL:»E‘+EanéCk~ :,;51]~n ¥4%

wmN = O

e
e

b Laufwerksnummer -
gib Blocknumser -)p

0A00FE4o . IBEOTIR -7 o
=4 02 10 01 00 00 10 g9 39 gg gg 1E 00

DADOFESD il fn mn
ADOFESO FF FF 00 0g g gg 00 00 00 01 00 22 gg
- WU Ol 00 22 00 og pp oo :

FEItEdNidggqy

DADOFESD. FF FF FF FF FF FF fF pr oo
0ANNEE . "CrPrE FF 00 00 00 10 sp 47 .
52355555 gf 0000 02 00 00 0p 0g gy og Qﬁ fﬁ 55 :3 gﬁ ff G PO
ROOFESD fr £ pr o 0 00 00 00 00 ot fF Pl 0 02 fr
0ADOFERD Fr ;E ii FFFF FF FF FF FF FF FF f FFF FF FF éﬁ
qQﬂﬂFEC[EL ;F ;; FF FF FF FF F FF FF FF FF FF FF p# ;f PO e e
OFECD g 00 0 gﬁ FF FF-FF FF FF FF FF FF FF FF £ Fr e
DAOOFEDO 00 09 gg gp 33 ol pmmwwmog

0000 00 00 00 00 0 0 0 gp g g 0 0 x -

C

m ™

0R0OFFO0 00 00 00 0g 0y gg gg gy ¢ sl
gug?ff:? 00 00 00 00 09 g9 5g gg oo .., "
YROCFF20 00 00 00 00 00 09 g g gg g, oo

%@ﬁﬂmmwwmﬁmwgm£$ ------ B

So00

sys conf tab:

sp0% country % byte // keyboard country
mem size 5 byte // total number of 16k memory
- // blocks
key / byte // saves any key pressed at startup
num drives 7 byte // number of ready disk drives
staEk_ﬁop S word // offset of system stack top
colorsyst /. byte // color/bw flag
dsk vfy flag 7 byte // verify after write flag
dr1ve 0 type C byte // drive 0 floppy drive type

// 0 = type unknown
// 1 = 160-kb floppy
// 2 = 320-kb floppy
// 3 = 640-kb floppy

drive 1 type

LR byte // drive 1 floppy drive type
disk 0 type

byte // drive 0 floppy disk type

Mt

// 1 = 160-kb diskette (ECMA type)

// 2 = 320-kb diskette (ECMA type) %y Jreel s
// 3 = 640-kb diskette (ECMA type) 7
// 4 = 160-kb diskette (1BM PC type)

// 5 = 320-kb diskette (IBM PC type)

// 6 = 640-kb diskette (IBM PC type)

disk 1 type Fbyte // drive 1 floppy disk type
hard dsk drives’byte // number of hard disks in system

The system configuration table can be accessed through the master table
pointer "mtConfig'. x

FLOPPY DISK ERROR RECOVERY

The following is a list of various types of floppy disk drive errors and
error recovery.

Data Lost Error

This error will result when an interrupt occurs just prior to the begin-
ning of a sector read or write. This error does not increment the retry
count and does not in any way reflect on the performance of the floppy
disk interface. Whenever this error occurs an immediate retry will be
done.

Seek Error
This error results when the track desired is not reached correctly. The

recovery for this error is to first restore the drive and then attempt
the seek again. This will be repeated up to 6 times.

14-10 PCOS SYSTEM PROGRAMMER'S GUIDE

f;@;’\%fh &
/
o INT
pé' olr'e
N, =
./a/ 70
done to recover from this error.
: L) 3
Mewn 6'9}"\] W 8’4 - tempted without head movement.
i rformed and the desired track is reached
o @ D~ ~8A ration.
9
:f‘ en attempted.
P
- 1telligent controller has built in error
t programmable. The disk driver adds another
]
A YA Lo /.“n, - e b -ite command, if the WD-1000 does not find a
4 Cd ‘s a CRC error in either the 1D field or the
sequence is done. First the operation is
,Mf'__,f L mment 16 more times. A restore operation is
N] TR isued. The operation 1is then attempted
rer will cause the above sequence to happen
. returned to the caller.
(» 7[@ - r,mi/”"{ﬁ ;?,Z (s ot track 0 errors, the driver returns the
o L//’ 7/ K / no retries.

ﬂ‘/o&wo oo F ou Stecke]

A
r/gc = f,, P Y JW / t of the hard disk, 160KB, and 640KB floppy
/’%"” /‘”f‘f K ¢ // works properly witl,1 the ROM 1.0 if only the

o iy o + 9},% 9%, (/@, 6,(f the Bootstrap ROM 1.0 1is present, the
\

(V; g y | o 320KB disk drive type, without looking at

/\-"(/J,'{. /L/G = ,‘1/" C'/". ,D(‘

Bos, ¢;638’o/(wr Leser .
N m LeSth .

Y SYSTEM CONTAINING BOOTSTRAP ROM 1.0 WILL
IVES. Note, though, that the software will
Urlader >otstrap ROM 1.0, although the bootstrap

ol Block 416 ~ 633 Aerchl Dy
Aq;v‘llu’-\o-w 7 } M

vk Black @-831 7[4”"”}/
L, St Q{ /P05~ Z” Lisko

14-11

HARDWARE CONFIGURATIONS AND VERSIONS

Two jumpers are used to indicate the type of floppy disk drive present in
the M20 system. The four floppy disk drive jumper configurations are as
follows:

Jumper Settings

X4 to X5 ZA to System Interpretation
ON ZA1 Skip diagnostics, and query
(0) (0) user for floppy drive type.
ON ZA2 Floppy disk drive configur-
(0) 1) ation #1 -- 160 kbyte.
OFF ZA1 . Floppy disk drive configur-
1) (0) ation #2 -- 320 kbyte.
OFF ZA2 Floppy disk drive configur-
(1) (1) ation #3 -- 640 kbyte.

VALID OPERATIONS

The following chart shows the valid combinations of disk drive types,
diskette types, and possible operations. The codes have the following
meanings:

160 kbyte = 1,320 kbyte = 2,640 kbyte = 3,read = R,and write = W.

drive diskette
type type support

1 1 R, W

2 NONE (side 1 cannot be accessed)
1 3 NONE (side 1 cannot be accessed)

(too many tracks for stepping mech.)

2 1 R, W
2 2 R, W
2 3 NONE (too many tracks for stepping mech.)
3 1 R ONLY
3 R ONLY
3 3 R, W

drtype = dktype-->R, W;

drtype > dktype-->R ONLY (e. g., 320 kb diskette on 640 kb drive)
except (2, 1) --> R, W;

drtype < dktype-->NONE. (e. g., 640 kb diskette on 320 kb drive)

14-12 PCOS SYSTEM PROGRAMMER'S GUIDE

£\

DISK DRIVER AND FILE MANAGEMENT

FILE MANAGEMENT OVERVIEW

File management routines use and maintain certain tables of information.
File management capabilities and methods can be understood by describing
these tables and explaining how certain entries are used. These descrip-
tions and explanations are given below.

LOGICAL BLOCKS

The concept of logical blocks should be explained first. A logical block
is 256 bytes of disk space. Each block is uniquely identified by a
number starting with’ zero and ending with the capacity of the diskette or
disk; that number requires four bytes for storage. A logical block
number can be converted to a unique physical address. Finally, logical
blocks are often linked in groups of associated logical blocks by placing
the next block number in the last four bytes of each block. A nil
pointer, hexadecimal FFFFFFFF, ends such a group.

CONTROL TRACK

The control track is in a central location on the diskette or hard disk.
The track contains the first blocks of the directory and the bit-map
which shows block allocation. File management often needs the informa-
tion on this track, and its central location minimizes seek-time going
between it and the other files.

Note:

The two diskette type numbers used by for MSDOS/CPM diskettes, 4 and 5,
are equivalent to types 1 and 2 respectively. Type 4 is the 160KB
diskette, and type 5 is the 320KB diskette.

For 160 Kb and 320 Kb diskettes, track 16 is the control track. For 640

Kb diskettes, track 32 is used. The control track is on side 0.

VOLUME DESCRIPTOR BLOCK

The Volume Descriptor Block (VDB) is the first block on the control
track, and is logical block zero. Important locations within the block
are described below. Locations are given in hexadecimal.

14-13

Locations Contents

0-0D Optional volume name, left-justified, zero filled.

0E-1B Optional password, left-justified, zero filled.

1C-1D Code used to detect whether diskette has changed
since last disk 1/0. Used to prevent damage to the
bit-map.

1k Diskette type code. 1=160 Kb, 2=320 Kb, 3=640 Kb.

38 Start of bit map.

The bit-map has one bit for each logical block on the diskette or disk,
and the sequence of bits corresponds to the logical block numbers. Bits
are 0 if the corresponding block is available, 1 if allocated. The bit-
map 1is 1initialized with all zeros except for bytes 38 and 39, which are
all ones because logical blocks 0-15 are the control track blocks. As
blocks are allocated and de-allocated, the bit-map changes. File manage-
ment routines looking for available disk space search the bit-map for
free blocks.

Diskette bit-maps fit into logical block 0 with the VDB, except for 640
Kb diskettes, whose bit-maps extend into block 1.

ALLOCATION OF BLOCKS

Blocks are allocated by extents. An extent is a group of logically con-
tiguous blocks on the diskette. The number of blocks in an extent is a
Set System parameter setting, and starts out at 8.

Blocks can be chained together by using a 4-byte pointer at the end of
each block containing the next block number to use. Therefore, allocated
blocks do not have to be physically contiguous. Changing the extent
value does not affect blocks allocated under the prior value. The extent
value just tells file management how many blocks to allocate when creat-
ing or extending a file.

Extents are logically contiguous groups of blocks; that 1is, they are
linked in succession with a 4-byte pointer at the end of a block pointing
to the next block. They are often assigned in sequential logical block
numbers, especially during early use of the volume. When a volume has
seen much use, with files being created and deleted, the extent linkages
will skip so that the 1logical block components of files seem to be
intertwined. If this begins to slow file access, FCOPY can be wused to
make a more contiguous set of files on a new diskette.

The number of blocks in an extent is usually 8, but can be set larger or
smaller. The theoretical upper limit is 65,535. When a file is created,
the first block of the extent contains the File Descriptor Block and the
following blocks contain file data. Extent handling is discussed later
under '"File Descriptor Block."

14-14 PCOS SYSTEM PROGRAMMER'S GUIDE

DISK DRIVER AND FILE MANAGEMENT

FILE DIRECTORY

The file directory starts in logical block 2, the third block of the con-
trol track. The remaining blocks in the track are allocated to it with
pointers at the end of each block linking to the next. 1f additional
directory space is needed eventually, more blocks can be linked without
regard for their actual location. Directory blocks are initialized to
hexadecimal FFs, or nil characters. Such a directory appears empty.

THE DIRECTORY ENTRY

The directory entry contains a filename of up to 14 characters and a 4-
byte pointer to the File Descriptor Block. Each directory block can con-
tain 14 entries and ends with a 4-byte link to the next directory block.
The original directory blocks, 2-F, can contain up to 196 entries.
Further blocks are linked as needed. A nil pointer, FFFFFFFF, indicates
the last directory block allocated.

FILENAME HANDLING

The filename can be up to 14 characters, and is used as the reference to
the file.

When a file is deleted (by FKILL), a nil character, FF, replaces the
first character 1in the filename. That character goes to the end of the
filename.

The associated logical blocks are de-allocated in the bit-map. The file
can be restored, so 1long as those blocks have not been re-allocated.
RKILL restores a file by checking the bit-map and, if all 1is well,
replacing the first character in the filename. 1f there had been a 14th
character, it is lost.

When a file is hidden, the first character of the filename is replaced
with an ASCII /CR/, hexadecimal 01). That first character is saved in
the FDB.

FILE DESCRIPTOR BLOCK

The File Descriptor Block (FDB) has the following information. Locations
are given in hexadecimal.

14-15

Location Contents

0-1 File size in bytes. The actual size, not the allo-
cated size

2-3 The number of extents, usually 1

4 Reserved for '"hiding" a file. The first character of
the name of the hidden file goes here

5 Write protect flag; 00 means writable, FF means pro-
tected
6-9 Pointer 1. Points to the first extent
A-B Length 1. The number of blocks in that extent

From this point, the FDB is available for additional pointers and lengths
up to Pointer 37 and Length 37. These values are usually zero, and must
be zero if the file has no further extents. The last four bytes of the
block are available for a pointer to a linked extent descriptor block
which could contain up to 42 more extent pointers and lengths, and
another pointer to yet another block. There is no theoretical limit for
having extents, except the limit of blocks available. 1In actual use, it
is very wunusual for an FDB to have a link to an extent continuation
block, and this pointer is usually set to nil characters, FFFFFFFF.

OVERVIEW OF FILE MANAGEMENT UTILITIES

A brief overview of file and volume wutility programs is given below.
Where appropriate, concise information on the internal working of the
utility is included.

FCOPY Copies file by file. Can copy between diskettes of dif-
ferent capacities (unlike VCOPY). Copying from a diskette
that has had file activity to a clean diskette will make
the files more compact, and more efficiently accessible,
because the destination space is allocated in contigu-

ously.
FDEPASS File delete password. Must know password.
FFREE Frees unused blocks on diskette for use.
FKILL Delete a file. De-allocates the sectors. The filename is

flagged deleted in the directory, but the name is
preserved. RKILL can be used to recover the file so long
as the file space is still unused and the directory entry
is not changed (by VALPHA, for example).

FLIST Lists file contents on display screen.

FMOVE The equivalent of FCOPY for single-drive systems. Holds
files in memory while diskettes are swapped in drive.

14-16 PCOS SYSTEM PROGRAMMER'S GUIDE

DISK DRIVER AND FILE MANAGEMENT

FNEW
FPASS
FRENAME

FSAVE

FUNPROTECT
FWPROTECT

RKILL

VALPHA

VCOPY

VDEPASS

VFORMAT

VPASS

VNEW

VLIST

VQUICK

Pre-allocates space for a file, with file name.
Set password for file.
Changes file name in directory.

For file transfer between systems. Uses RS-232 connec-
tion.

Unprotect a protected file.
Write-protect a file.

Restores killed file, if possible. FKILL replaces the
first character of the filename with a nil character, hex-
adecimal FF, and places that character at the end of the
name entry. RKILL checks to see if the file space has
been re- allocated, and if not, restores the original
filename. A 13-character filename can be restored unambi-
guously. The last character filename is lost.

Alphabetizes the directory and squeezes the entries
together, compacting them. A killed file cannot be
restored after VALPHA.

Copies between diskettes of the same capacity, placing
logical blocks in the same locations without compacting.
Copies control and boot information, but not serialization
data. Determines the maximum size of system memory avail-
able, reads logical blocks into memory, writes from
memory. Much faster than FCOPY. Cannot be used between
diskettes of different capacities because of control track
and boot track differences.

Volume delete password. Must know password.

Formats diskette or hard disk. Creates sectors and tracks
with proper address information, handles interleave of
sector address. For hard disk, flags bad sectors. When
finished, calls VNEW to set up file system information.

Volume assign password.

Sets up clean file system by initializing the control
information including the bit map. Requires formatted
diskette or disk, replaces any existing file system infor-
mation.

Lists all files in volume, for diskette or hard disk, with
size and allocation information.

Concise version of VLIST, gives only filenames and number
of blocks left in volume.

14-17

VMOVE Equivalent of volume copy (VCOPY) for a single-drive sys-

tem. Allocates maximum memory available, and will
overwrite PCOS. Reads logical blocks into memory, writes
out when diskette swapped. Will do multiple passes as

necessary, depending on size of diskette relative to
memory capacity.

VRENAME Names or renames a volume.

VVERIFY Non-destructive test of diskette or disk.

SYSTEM CALL OVERVIEW

For the general wuser, actual disk input/output operations and file
management operations are done using system calls. The calls are
described below. For additional information on the bytestream calls, see
the "System Calls" section in Part 2. For additional information on
these calls and file management calls, see the Assembler User Guide.

DISK BYTESTREAM 1/0 CALLS

Disk input and output are all done by bytestream system calls. A stream
structure for an open file maintains a 32-bit pointer to the current
position in the file at which tih: next byte will be read or written.
Files will be extended automatically as they are written, in increments
specified by the Set System global parameter for extents.

The following calls are used for disk files. Those marked ''ds'" are disk
specific, used only for disk files. The other calls can be also used for
other devices (printer, console, or communication ports).

Close (19) DGetLen (24)
OpenFile (22) DGetPosition (25) ds
DSeek (23) ds

The bytestream calls are described in the "System Calls" section, Part 2.
The disk FIDs are:

1-15 BASIC files
20 - 24 PCOS files

PCOS can use F1Ds 1-15, but BASIC cannot use FIDs 20-24.

14-18 PCOS SYSTEM PROGRAMMER'S GUIDE

DISK DRIVER AND FILE MANAGEMENT

FILE MANAGEMENT CALLS

The file management system calls do not have FIDs.
dle file and volume names, to work with directories, and to handle disks

and volumes.

Removes specified file
Input:

R9 <-

RR10 <-
Output:

RS ->

Renames specified file.

Input:
RR6 <-
R8 <-
RR10 <-
R9 <-
Output:
R5 <=

Displays list of files
Input:

R9 <-

RR10 <=
Output:

RS ->

name

from

from disk directory.

length
address

error status

old address
old length
new address
new length

error status

specified disk.

file identifier length
file identifier address

error status

They are used to han-

DRemove (26)

DRename (27)

DDirectory (28)

14-19

DisectName (96)

Parses file or volume name.

Input:

R9 <- string len

RR10 <- string addr

RR12 <- names record addr
Output:

@RR12 -> names record

R7 -> volume number

R5 -> error status

CheckVolume (97)

Forces a check of disk volumes.

Input:
(there are no parameters)
Output:
R5 -> error status
Search (98)

Searches on a specified disk for a file name supplied by user.

Input:
R6 <- drive
R7 <- search mode
R9 <- length
RR10 <- pointer to buffer for output file name
RR12 <- 'name pointer' (pointer to input file
name)
Output:

RR10 -> pointer to file name

RR12 -> fdb logical block

R5 -> error status

R9 -> length of output file name

SetVol (102)
Sets the active volume for the next access.

Input:
R7 <- vol number

Output:
R5 -> error status

14-20 PCOS SYSTEM PROGRAMMER'S GUIDE

DISK DRIVER AND FILE MANAGEMENT

Returns number of free sectors on disk.

Input:
R7 <- volume number
Output:
RR10 -> number of sectors
R5 -> error status

DiskFree (106)

18-21

15. OTHER DRIVERS

ABOUT THIS CHAPTER

This chapter contains information on the RS-232-C driver, the 1EEE-488
driver, and the system calls through which these drivers can be accessed.

CONTENTS
OVERVIEW

RS-232-C DEVICE DRIVER

USE

DESCRIPTION

HANDSHAKE

DEVICE PARAMETER TABLE
INPUT ERROR HANDLING
SYSTEM CALLS

1EEE-488 DEVICE DRIVER

USE

DESCRIPTION

1EEE MAILBOX

1EEE SYSTEM CALLS

185r00 (78)
1BS5r01 (79)
1BPo11 (80)
1BISet (81)
1BRSet (82)
1BPrnt (83)
1BUByt (84)
1Blnpt (85)
IBLinpt (86)
1IBRByt (87)

ERROR HANDLING

15-6

15-7

15-7

OTHER DRIVERS

OVERVIEW

This section contains background information on two device drivers, the
RS-232-C driver and the 1EEE-488 driver. These drivers are not seen
directly by the user. The RS232 driver supports the SCOMM package and
the Cl calling BASIC. The 1EEE driver supports the 1EEE commands in
BASIC. The programmer could, if necessary, access these drivers through
system calls. System call information is given in this section.

These drivers support the following devices in the PCOS device table:

Default
Driver Name Description
RS-232-C Com: Standard RS-232-C communications port
Com1: First RS-232-C communications port on Twin Board
Com2: Second RS-232-C communications port on Twin Board
1EEE-488 ieee: 1EEE-488 communications port

Com1, Com2, and ieee require expansion input/output boards. These dev-
ices can all be used in device rerouting as a source or destination.

More information on these drivers is available in the "1/0 with External
Peripherals User Guide."

RS-232-C DEVICE DRIVER

USE

The user generally accesses this driver via the SCOMM command or by cal-
ling CI in BASIC. Before SCOMM or CF can be used, the RS-232-C driver
must be loaded using the RS232.SAV command. Once loaded, the driver
stays in memory until the end of the working session.

The driver can also be accessed using bytestream system calls.

DESCRIPTION

The RS-232-C device driver is a general purpose asynchronous communica-
tion package. 1Its implementation allows the user (by means of the SCOMM
command or the CI call) to specify the baud rate, parity, stop bits, and
data bits for the communication line. 1n addition, it also supports the
standard XON/XOFF handshake, a variable-length input buffer, and both
full (character echoing) and half (no character echoing) duplex.

A1l driver parameters are specified in the Device Parameter Table so that
accessing the parameters is simplified. The receive mechanism is inter-
rupt driven and maintains an input ring buffer. The output routine is
not interrupt driven.

15-1

HANDSHAKE

Handshaking can be enabled or disabled. When handshaking is enabled, the
RS-232 device driver implements the standard XON/XOFF serial handshake.
Wher the input buffer is 75% full, the receiving routine will send an
XOFF (DC3 = 13 hex) to the transmitting device. When the buffer becomes
less than 50% full, the XON (DC1 = 11 hex) character is sent to the send-
ing device.

The receive interrupt routine scans incoming characters for either the
XON or XOFF characters, and sets or resets a flag to indicate the
handshake status. The transmitting routine looks at this flag prior to
transmitting a character and will wait until the XON character has been
received before sending the character.

DEVICE PARAMETER TABLE

A table of values called the Device Parameter Table (DPT) is used by the
driver to control the serial 1/0 port. This table contains the port
status word, all the 1/0 port addresses and device commands, and the
receive buffer control parameters. The SCOMM command will use the DPT to
set the port parameters. A ResetByte call to the driver causes the
hardware and input buffer to be reset based on the parameters in the DPT.
An OpenFile command initializes the hardware and also allocates the input
buffer on the heap. If handshaking is enabled, an OpenFile command will
also transmit an initial XON.

INPUT ERROR HANDLING

Errors that occur when a character is input (a ring buffer overflow, or
a hardware parity, overflow, or framing error) will cause flags to be set
in the driver. The first operation that performs a read from the input
buffer will return the error code for Disk 1/0 Error.

This allows the calling program running to know that an error has
occurred, but not on which character the error has occurred. (This
approach eliminates the need to store an extra byte in the buffer as a
status for each character received).

SYSTEM CALLS

The RS232 driver is accessed by bytestream system calls. The FIDs are
19, 25, and 26 for Com, Com1, and Com2, respectively. The system calls
are:

LookByte (9) ResetByte (18)
GetByte (10) Close (19)

PutByte (11) SetControlByte (20)
ReadBytes (12) GetStatusByte (21)
WriteBytes (13) OpenFile (22)

Eof (16) DGetLen (24)

15-2 PCOS SYSTEM PROGRAMMER'S GUIDE

OTHER DRIVERS

For general information, see the description of bytestream calls in the
"System Calls" section Part 2. For further details, see the Assembler
User Guide.

1EEE-488 DEVICE DRIVER

USE

This driver package supports devices on the IEEE-488 channel. The com-
mand IEEE.SAV 1is used to load and initialize the package. Once loaded,
the package stays in memory until the end of the working session. The

functions supported by this package can be accessed using BASIC commands.
A set of system calls also accesses the 1EEE package. They are described
below and in more detail in the Assembly Language manual.

DESCRIPTION

This command loads and initializes the 1EEE-488 package -- a group of
programs that execute the BASIC 1EEE statements ISET, IRESET, ON SRQ
GOSUB, POLL, PRINT@, WBYTE, RBYTE, INPUT@, and LINE INPUT@. These state-
ments allow the user to perform the fol- lowing operations on an 1EEE-488
bus:

a) Control the IFC (interface clear) and REN (remote enable) lines.
b) Receive a service request from another device on the bus, identify
the requesting device through serial polling, and process the service

request.

c) MWrite control bytes (e. g., 'Device Clear", 'Device Trigger", etc.)
to other devices.

d) Address, write data to, and read data from other devices.

e) Allow the devices within ah 1EEE-488 network to transfer data on the
bus (i. e., assigning "Talker" status to one device, and '"Listener'
status to one or more devices).

It should be noted that 1E, when called, stays in memory. The display

flag option is NOT used with this call.

1EEE MAILBOX

A mailbox area (9 bytes) is used by the 1EEE driver to communicate with
the BASIC interpreter.

Format of Mailbox Area

Bytes Description

0-5 array "I1EEE'"; values set by 1EEE driver for use by BASIC
interpreter

6 flag "srq 488"; value set by IEEE 1interrupt service routine

"ibsrq92', tested by BASIC interpreter. Indicates that service
request has been received.

7 S1/S2 key depression flag, set by the keyboard driver. 1 = S1
depressed, 2 = S2 depressed. Zero 1is returned for ANY key
except SR1 or SR2.

8 reserved for system use
For information on the array '"IEEE" and the flag ''srq-488'" see the dis-

cussion of system calls 78 through 87 in the Assembly Language Manual.

When BASIC calls GRFINIT (45), it is passed the mailbox address in RR10.

1EEE SYSTEM CALLS

1f the system does not have an IEEE option board, these system calls gen-
erate error 34, "IEEE: Board Not Present.'" For further information on
these calls, see the Assembler User Guide.

1BSr00 (78)

Disables the service request (SRQ) interrupt.

Input:
(no input parameters)

Output:
R5 -> error status

15-4 PCOS SYSTEM PROGRAMMER'S GUIDE

OTHER DRIVERS

1BSr01 (79)
Enables the service request (SRQ) interrupt.

Input:
(no parameters)

Output:
R5 -> error status

1BPoll (80)
Polls a specified device on an instrument bus.
Input:
R8 <- talker addr
Output:
RR10 -> ptr to status
RS -> error status
1B1Set (81)

Causes remote enable (REN) or interface clear (IFC) to be sent.

Input:
R8 <- operand

Output:
R5 -> error status

1BRSet (82)
Causes remote enable (REN) message to be sent false.
Input:
(no parameters)
Output:
RS -> error status
1BPrnt (83)

Checks address and then causes output of data bytes.

15-5

Input:
RR6 <- buffer addr
R8 <- listener addr
R9 <- buffer len, in bytes
R10 <~ delimiter

Output:
RS -> error status
1BWByt (84)

Outputs commands (optional) and writes data bytes (optional).

Input:
RR6 <- numval addr
R8 <- comlist length
R9 <- numval length
RR10 <- comlist addr
Output:

R5 -> error status

1BInpt (85)

Places bytes received, into a buffer.

Input:
R7 <- buffer length
R8 <- talker addr
R9 <- listener addr
RR10 <- buffer addr
Output:
R5 -> error status
R7 -> number of bytes not read

1BLinpt (86)

Places bytes received into a buffer as a single line of data.

Input:
R7 <- buffer length
R8 <- talker addr
R9 <- listener addr
RR10 <- buffer addr
Output:
R5 -> error status
R7 -> number of bytes not read

15-6 PCOS SYSTEM PROGRAMMER'S GUIDE

OTHER DRIVERS

1BRByt (87)

Outputs commands (optional) and reads data bytes (optional).

Input:
RR6 <- buffer addr
R8 <- comlist length
R9 <- buffer len, in bytes
RR10 <- comlist addr
Output:

R5 -> error status

ERROR HANDL ING

Possible IEEE call errors are:

).

Incomplete data handshake. The handshake was aborted by operator
input.

No active device. An attempt was made to output data without any
addressed listeners or to input data without an addressed talker.

An illegal function call. Bad parameters.
Bad file data. More parameters than data.
Communications buffer overflow. Too many bytes in line.

Type mismatch. Variable and data of different type.

15-7

16. THE PRINTER DRIVER AND
PRINTER MANAGEMENT

ABOUT THIS CHAPTER

This chapter describes the capabilities of the printer driver and the
use of its associated utilities.
porting two printers and on using the printer driver to drive special

devices, such as plotters.

CONTENTS
OVERVIEW

PRINTER AND DRIVER
DESCRIPTION

PRINTER OUTPUT

PRINTING TEXT

PRINTING GRAPHICS

USING SFORM TO SET THE
PRINTING ENVIRONMENT

SUPPORTING TWO PRINTERS

CONNECTING OTHER DEVICES
TO THE DRIVER

PRINTING SCREEN TEXT WITH
THE LSCREEN UTILITY

USING LSCREEN

IMPLEMENTATION OF LSCREEN

PRINTING TEXT AND GRAPHICS

WITH THE SPRINT UTILITY

16-4

16-5

16-6

16-6

16-6

16-7

16-7

SPRINT PARAMETERS

SPRINT IMPLEMENTATION

CORRECTION TO PRESERVE
ASPECT RAT10

PRINTING COLOR GRAPHICS

PRINTER SYSTEM CALLS

Included is a brief discussion on sup-

16-10

16-10

16-11

THE PRINTER DRIVER AND PRINTER MANAGEMENT

OVERVIEW

This section describes the capabilities of the printer driver and the use
of its associated utilities. The utilities include SFORM, which gives
the user control over printer configuration parameters; LSCREEN, which
allows the printing of display screen text; and SPRINT, which allows the
printing of both text and graphics from the display screen contents.
LSCREEN and SPRINT use system capabilities outside the printer driver,
and their implementation is briefly discussed.

This section includes a brief discussion on supporting two printers and
on using the printer driver to drive special devices, such as plotters.

PRINTER DRIVER DESCRIPTION

The printer driver supports printing both ASCI1 text and graphics (on
certain printers) using either parallel or serial output, and provides a
variety of printing options. The SFORM utility can be used to set or
display the parameters which control the driver functions. Figure 16-1
below, shows these interrelationships.

PRINTER DRIVER

A~
Input 4 Output
I Parameters]
\ N
Phisical «Text
Driver, *Graphics
-ASClIIText Logical Parallel
*Graphics ;
X Driver
(screen bit map) Phisical
N oText
Driver, «Graphics
// Serial

Fig. 16-1 Printer Driver

PRINTER OUTPUT

The standard M20 has both a parallel and a serial interface available for
connecting printers. The parallel interface is Centronics compatible, and
any compatible parallel printer may be connected. The serial interface
uses the RS-232-C standard. Part 1 of this manual provides a list of
available printers in the '"Hardware Configuration Options" section. In
general, dot matrix printers are connected via the parallel interface,
and the daisy-wheel printers via the serial interface. Some printer
models are available with either parallel or serial interface. Parity,
when present, is handled by hardware.

PRINTING TEXT

The driver transmits text to the printer in a stream of ASCI1 bytes. The
driver may receive information from the printer in the form of a status
byte, which contains information on whether the printer 1is ready to
receive data and on error conditions.

The printer receives ASCI1 codes, interprets them, and prints them as
characters according to 1its internal control mechanism. Dot-matrix
printers have internal fonts separate from the PCOS fonts, often in a 7 x
7 matrix. The ASCII code 1is wused to look up the equivalent font.
Daisy-wheel printers interpret the ASCII code as a position on the wheel.
For further information on the printer's display of the ASCII codes, the
documentation for the printer must be consulted.

The ASCII1 values are printed according to the ASCIl assignments wused by
the video display. These assignments are set and modified by SLANG,
CKEY, and PKEY. Non-ASCI1 fonts developed using RFONT cannot be printed
as text. (The assigned code may print as some ASCII character.) Those
printers that can print graphics print RFONT characters in the same
manner as other graphics. Figure 16-2 below gives an overview of text
printing.

16-2 PCOS SYSTEM PROGRAMMER'S GUIDE

THE PRINTER DRIVER AND PRINTER MANAGEMENT

TEXT PRINTING

Other
Text
Sources

ASCI1

Keyboard ASCLL)| ASCL Parallel Y| Printer
SLANG -

YEY Text Printer
OE File Driver
PKEY

Printer

s S

Serial

|

via
Put Byte (11)
System Call

Fig. 16-2 Text Printing

PRINTING GRAPHICS

Graphics printing is handled according to the constraints of those
printers which can print graphics. The driver builds a block of dots
based on the contents of the screen bit-map in pixels and the require-
ments of the printer, and sends that block to the printer as a succession
of bytes. Figure 16-3 below, gives an overview of graphics printing.
More details are given in the discussion of SPRINT later in this section.

16-3

GRAPHICS PRINTING

Parallel)w’\
Serial > Printer

\f

Zcteen Printer
Bit map(s) SPRINT Bytes ,
. :/\ : Driver
(pixels)

Fig. 16-3 Graphics Printing

USING SFORM TO SET THE PRINTING ENVIRONMENT

The SFORM command specifies the type of printer being used, the inter-
face, and the printing format, and allows the user to change parameters
in the printer driver. If the SFORM command is invoked without specify-
ing parameters, it gives a display of the current values for the printing
environment.

SFORM parameters are:

auto The AUTO parameter shows the status of the SFORM parameters,
and can be used to change that set of values. OFF indicates
that the default values are in effect. ON indicates that new
values (selected by SFORM) are in effect. This is true even
if new values are PSAVED. Setting OFF returns to the default
values, setting ON selects the new values.

ptype The ptype parameter specifies the type of printer: PR1450
(the default value), PR1471, PR2400, PR1481, PR2300, ET-121,
ET-231, PR-430, PR2835, PR320, or TRANSP (transparent mode).
In transparent mode, file contents are printed exactly as
specified in the file independent of the type of printer. No
additional end-of-line characters or form feed characters are
added.

16-4 PCOS SYSTEM PROGRAMMER'S GUIDE

THE PRINTER DRIVER AND PRINTER MANAGEMENT

lines The lines parameter specifies the number of lines to be
printed on each page before software-generated automatic form
feed. Zero implies that no form feed will be issued. The

default value is 60.

spacing This parameter specifies the number of inter-line spaces
between printed lines. Its value can be 1 (single spacing);
2 (double spacing), etc. The default is 1.

compress This parameter specifies which of six styles of characters
are to be used. 1t is made up of two characters, the first
of which must be either w = wide (bold) or n = narrow width.
("Wide" printing is only supported on certain printers; for
example, PR1450, PR1471, PR1481.) The second character speci-
fies the pitch at narrow width and must be ¢ = compressed;
that is, 16.6 characters per inch; e = elite; that 1is, 12.5
characters per inch; or p = pica; that is 10 characters per
inch. At "wide'" width, the printer will print two horizon-
tally adjacent dots for each one that would have been printed
at narrow width. The default values are n,e.

interface This parameter specifies whether the printer is to be con-
nected to the serial (RS-232-C) or parallel (Centronics-like)
interface. 1Its value must be either se = the serial (RS-
232-C) 1interface or pa = the parallel (Centronics-like)
interface. The default value is pa.

title This parameter defines the title to be printed at the top of
each page. It can comprise as many as 24 characters and must
be enclosed in quotation marks. Entering a value of '}'
deletes the current title. The default value is no title.

The SFORM settings take effect during later working sessions according to
the current auto setting. The prior SFORM settings saved by PSAVE take
effect when the current auto setting is ON. For more complete informa-
tion on SFORM, see the PCOS Operating System User Guide.

SUPPORTING TWO PRINTERS

It may be desirable to support both a dot-matrix printer with graphic
capabilities and a daisy-wheel printer, or some other combination of
printers. PCOS assumes the presence of only one printer, FID 18. How-
ever, SFORM allows switching between printers and interfaces. One
printer could be used on the serial interface and one on the parallel.
Two PCOS versions can be configured, one for each, using SFORM and PSAVE.
Then whichever system is desired can be loaded, either by booting or by
using PRUN.

An alternative method allows using two printers without switching between
them. A parallel printer is connected as FID 18 and controlled by the
printer driver. A serial printer is driven using the RS232 driver. This
approach requires special programming to support the serial printer and
does not provide support for the printer utilities: SFORM, LSCREEN, and
SPRINT.

16-5

CONNECTING OTHER DEVICES TO THE DRIVER

The printer driver can be used in transparent mode to drive special dev-
ices. For example, a plotter could be connected as FID 18. 1In tran-
sparent mode, (the SFORM setting of TRANSP for the ptype parameter), the
plotter would receive exactly the characters sent to FID 18 without
change, addition, or deletion. Using the printer driver in this fashion
can be very useful for the programmer who must provide interface and con-
trol routines for a special device, so long as the device is appropriate.

PRINTING SCREEN TEXT WITH THE LSCREEN UTILITY

LSCREEN dumps the text contents of any screen window onto any
alphanumeric printer supported by the M20 PCOS system. 1t works with the
current system font, which may be any 95-character font set.
The utility is presently limited to 95-character font sets, although the
fundamental approach could be extended for additional characters. It
works by reading the screen bitmap and, in effect, comparing the screen
bits with the current system font to determine the corresponding charac-
ter codes.
USING LSCREEN
The command syntax is as follows:
1s [window_number] /CR/

The text in the specified window will be printed. 1f no window number is
given, the text in the current window will be printed. Window O refers
to the entire screen.
For example, type

1s /CR/
to display the current window. To display window 3, type

1s 3 /CR/

The following are some examples of BASIC calls to this utility:

100 EXEC "LS" ' print current window
200 EXEC "LS 5" ' print window 5
300 CALL "LS"(windnum) ' print window %windnum

The specified window may have text with any spacing in it. Any screen
data within the normal 5 by 10 character dot matrix not recognizable as
text will be printed as blanks. On a color system, only screen plane 0
will be read; if the background color is even, the foreground color must
be odd and vice versa.

16-6 PCOS SYSTEM PROGRAMMER'S GUIDE

THE PRINTER DRIVER AND PRINTER MANAGEMENT

The utility does not distinguish highlighted displays on the screen, but
does recognize and print both 'normal' and 'inverse video' characters.

LSCREEN works with 95-character fonts, a limit which could be changed if
necessary. The 95-character 1limit is based on the actual internal
representation of fonts, which is horizontal across the entire set of
font characters. Decoding any other length of font set with LSCREEN
yields scrambled characters.

Therefore, LSCREEN cannot print the Greek or Katakana fonts. These fonts
both have a full Roman character font set followed by the Greek or the
Katakana characters. The full font tables extend past the 95-font limit.
For the same reason, special RFONT character sets longer (or shorter)
than 95 characters cannot be printed. Modified RFONT characters within a
95-character font set would be detected, but would print as ASCII charac-
ters.

IMPLEMENTATION OF LSCREEN

The utility accesses the font table via the font pointer data structure
referenced in the master table. 1t also accesses the parameters for the
specified window, which define the size, position, and character and line
spacing of the window. Hence, the PCOS master table, font pointer table,
and window data structures are used by the utility. Also, the character
format (the exact positioning of characters within a window, given the
horizontal and vertical spacing) is determined by reading screen memory
to locate the placement of the character bitmaps.

A hash-code mechanism is used to speed the font table lookup. The hash
table used is constructed at the beginning of execution ofi the program
from the current system font. Font characters are evaluated into hash
numbers which are wused to look up a small set of corresponding values;
typically, a has number has fewer than half a dozen corresponding values.
The corresponding values are ASCII codes. The printer receives ASCI1
codes and prints them according to its own fonts or its daisy-wheel char-
acters.

PRINTING TEXT AND GRAPHICS WITH THE SPRINT UTILITY

This utility prints an image of all text and graphics displayed on the
screen or within a specified window. The display is transferred pixel by
pixel. SPRINT can only be used with printers that have graphics capabil-
ities. This command can specify the "polarity" of the printout; that is,
white on black printout for white on black display, or black on white
printout for white on black display. Printouts from color screens are
printed in black and white, one value used for the foreground color and
the other value for all other colors. A title can also be specified to
appear at the top of the printout with or without date and time.

16-7

SPRINT PARAMETERS
The specific parameters for SPRINT are as follows:

window number from 0 through 16, inclusive, representing the window to
be printed. 0 indicates the entire screen, whether or
not the screen is divided 1into windows. The default
value is 0 (the whole screen).

polarity n or p, describing the paper image 1in monochromatic
terms. Positive (p) gives black on paper for black on
screen, negative (n) gives black on paper for white on
screen. The default value is '"p."

title is an optional alphanumeric title string, no longer than
24 characters, shown above the graphic output. The
default is no title.

date/time is specified by dt, or no, determining whether or not the
current date and time are to be printed above the graph-
ics output. The default is '"no."

SPRINT IMPLEMENTATION

To dump the contents of the screen or window, SPRINT takes a sequence of
bits from the screen bit-map as input and manipulates the information
according to the need of the printer. SPRINT finds the printer model in
the parameter information maintained by SFORM. There are two fundamen-
tally different approaches used by Olivetti printers when printing graph-
ics. The '"raster-format'" printers receive a line of pixels, from left to
right or right to left, sent in bytes. The 'column-format" or 'band-
format" printers receive a succession of vertical columns of pixels, from
top to bottom and then from one side to the other, sent in bytes. Figure
16-4, below, is a general illustration of the two approaches.

16-8 PCOS SYSTEM PROGRAMMER'S GUIDE

THE PRINTER DRIVER AND PRINTER MANAGEMENT

byte 1 byte §

[x 1T 1T o001 1 0]x0o 000 I 00})colum-fornat
= T (band)
byte 1 byte @

[t 00 1 00 10Joo0o00 I 01 0} jraster—format
= o

001 01 0[1 001 001 0.
. R CAEEN etc.

© o0 ©0=-=o0]|0O

o
1
[l (55
ol- -
ob -
J..
Heete.
etc.

Screen bit-map

Fig. 16-4 Encoding Pixels

a) Raster-oriented printers receive a series of lines of dots, from one
side to the other, shown here as left to right. 1In the example, the
printer is being sent 8-bit bytes (as for the PR2300), but it could
be sent fewer bits (7 bits for the PR2400).

b) Band-oriented printers receive a band of parallel columns of 6 or 7
dots, from top to bottom, then from one side to the other, shown here
from left to right. The PR1450 uses 6-dot columns. The PR1471 and
PR1481 use 7-dot columns.

c) Printers that use fewer than 8 bits receive 8-bit bytes with fill-
bits, shown by x's.

Here are some examples of these two approaches. The thermal printer,
PR2400, 1is raster-format, and writes a scan line of pixels at a time.
The spark ink-jet printer, PR2300, 1is also raster-format but buffers
several lines of pixels and writes a scan line at a time. It uses a
print head which is a graphite cylinder that sweeps horizontally. The
PR1450 1is band-format, and prints 6-line bands. The PR1471/81, also
band-format, prints 7-line bands.

In addition to encoding the pixels, it is necessary to fill out bytes for
those printers that receive 6 or 7 bits. The driver always sends 8-bit
bytes. SPRINT provides data bytes with a high-order 01 or 1, for 6-bit
or 7-bit data. Control codes are given a high-order 00 or 0.

16-9

CORRECTION TO PRESERVE ASPECT RATIO

In the graphics printers supported, horizontal and vertical pixel density

are the same. Therefore, in PR2300 output image, there are 108 pixels
per inch horizontally and vertically; in a PR2400 or PR1481 output image,
70; etc. Consequently, to print a square, the number of horizontal and

vertical pixels must be equal. However, in an M20 screen image, the hor-
izontal pixel density is greater than the vertical print density, since
512 horizontal pixels are crowded into a length less than twice as great
as the screen image height (which contains 256 pixels). A rectangle con-
taining an equal number of pixels horizontally and vertically would be
longer vertically than horizontally, not square; and the full screen
(which has an aspect ratio of 3:2) would produce an output image with an
aspect ratio of 4:2.

To produce output images without noticeable aspect ratio distortion,
SPRINT adds a correction line after every 5 screen image lines. This
stretches the image vertically, compensating for the horizontal
decompression in the output image. The content of the correction line is
calculated from those of the screen image lines immediately above and
below it.

PRINTING COLOR GRAPHICS

Color values shown on the display are built by combining the pixel values
of two or three screen bit-maps (two for four-color, three for eight-
color). The value of the associated bits designates the color. In an
eight color system, 111 specifies white, 101 yellow, etc., SPRINT com-
bines bits also, by looking at the same pixel position in all bit maps
and combining the two or three values. (The figure below illustrates
this.) At present, it produces either a zero or one from the combination
and reduces the color to white or black. Future printers will support
color printing and so will SPRINT.

16-10 PCOS SYSTEM PROGRAMMER'S GUIDE

THE PRINTER DRIVER AND PRINTER.MANAGEMENT

(3) 0000

Fig.

(3) 4000

(3) 8000

(3) 0932
bit 3

PRINTER SYSTEM CALLS

There is only one printer system call, the bytestream call PutByte

The printer FID is 18.

(3) 3FFF

16-5 Color Bit Plane Coding

//j;(ls) 8932
Vs

A bit 3

(3) 7FFF

(3) BFFF

(11).

16-11

17. GRAPHICS SUB-SYSTEM

ABOUT THIS CHAPTER

This chapter describes the PASCAL graphic routines that make up the

graphics sub-system.

CONTENTS
OVERVIEW

DESCRIPTION OF THE M20
GRAPHICS PACKAGE

CONFIGURATIONS AND VERSIONS

HARDWARE

SOF TWARE

FUNCTIONAL FLOW -DIAGRAMS

GRAPHICS LIBRARY ROUTINES

IMPLEMENTATION LANGUAGE

GENERAL APPLICATION
INFORMATION

STEPS IN MODULE DEVELOPMENT

ENTERING THE GRAPHICS
PROGRAM

DEFINING COORDINATES

POSITION LOCATORS

17-3

17-4

17-4

17-5

17-5

17-6

17-6

17-7

FURTHER REFERENCES

GRAPHICS LIBRARY FUNCTIONS:

SPECIFICATIONS

LIST OF ROUTINES
OUTPUT GENERATION FUNCTIONS
LINEABS(x,y)

LINEREL (dx, dy)

POLYLINE(# points, Xarray,
Yarray)

MARKERABS (x,y)
MARKERREL (dx,dy)

POLYMARKER &points,Xarray,
Yarray)

TEXTCURSOR(column, row)
GRAPHOSABS(x,Y)

GRAPHPOSREL (dx, dy)

17-9

17-10

17-10

17-11

17-12

17-12

17-13

17-14

17-15

17-16

17-17

17-18

17-18

GRAPHCURSORABS(x,y)
GRAPHCURSORREL (dx,dy)

PIXEL ARRAY(Xwdth,Yht,array-
name)

GDP functionnmbr,numberof-
points,Xarray,Yarray,
datarec)

CIRCLE

ELLIPSE

OUTPUT ATTRIBUTE SETTING
FUNCTIONS

SET LINE CLASS(classnmbr)

SET TEXTLINE(chrwdth,
txtlineht)

SELECT CURSOR(selectnmbr)

SET TEXT CURSOR BLINK-
RATE(rate)

SET GRAPHICS CURSOR
BLINKRATE(rate)

SET TEXT CURSOR
SHAPE(arrayname)

SET GRAPHICS CURSOR
SHAPE(arrayname)

SET COLOR
REPRESENTATION(indx#, colr#)

SELECT GRAPHICS COLOR(nmbr)

SELECT TEXT
COLOR(FGnmbr , BGnmbr)

17-19

17-20

17-21

17-22

17-22

17-23

17-24

17-25

17-25

17-26

17-27

17-27

17-28

17-29

17-30

17-31

17-32

SET COLOR
LOGIC(operatornmbr)

TRANSFORMATION AND
CONTROL FUNCTIONS

OPEN GRAPHICS
CLOSE GRAPHICS

SET WORLD COORDINATE
SPACE(xform#, x0,y0,x1,y1)

DIVIDE VIEW AREA(div/orient,
divpt,xform#

SELECT VIEW
TRANSFORMATION(xform#

CLOSE VIEW
TRANSFORMATION(xform#)

CLEAR VIEW AREA(xform#err)

ESCAPE(functionmbr,
recordname)

INQUIRY FUNCTIONS

INQ VIEW AREA(err,bytewdth,
scanlineht,chrwdth,
txtlineht)

INQ WORLD COORDINATE
SPACE(err,x0,y0,x1,y1)

INQ CURRENT TRANSFORMATION
NUMBER(err,xform#)

INQ ATTRIBUTES(err,grcolr,
fgcolr,bgcolr,logop,
lineclass)

INQ TEXTCURSOR(err,column,
row,blinkrate)

17-33

17-35

17-35

17-36

17-36

17-37

17-39

17-40

17-41

17-42

17-44

17-44

17-45

17-45

17-46

17-47

INQ GRAPHPOS(err,x,y) 17-48

INQ GRAPHCURSOR(err,x,y,
blinkrate) 17-48

INQ PIXEL ARRAY(Xwdth,Yht,
err,invalidvals,arrayname) 17-49

INQ PIXEL COORDINATES(Xworld,
Yworld,err,Xpxlcoord,
Ypxlcoord) 17-51

INQ PIXEL(x,y,err,
pxlcolrnmbr) 17-52

GRAPHICS SUB-SYSTEM

OVERVIEW

This section describes an extensive set of library routines that are used
in PASCAL to provide graphics. These routines can also be accessed via
assembly language calls. 1n addition to describing the capabilities of
these routines, the contents of this section provide an example of the
use of the PCOS graphics system calls which underlie these routines.

The graphics system calls are described in the '"Video Driver' section of
Part 2, with accompanying background information on cursor use,
blinkrate, and other such concepts.

In this section, preliminary discussion covers the basic methods used 1in
applying the graphics program. Each of the functions is listed with a
detailed description of its use, register assignments, possible error
messages, and examples. Reference information at the end of this section
gives development language binding and compare this package to the BASIC
graphics package.

DESCRIPTION OF THE M20 GRAPHICS PACKAGE

The M20 Graphics Package 1is a graphics library for M20 development
languages (currently PASCAL). The package preserves the functionality of
the graphics developed for M20 BASIC, which means, for example, that a
PASCAL user is able to achieve the same graphics results as a BASIC user.
Directions contained in this section guide the programmer through the
necessary steps of writing and compiling source code, linking the object
code compiled from the source code, and finally running the linked, exe-
cutable module. The executable module uses PCOS system calls to create
screen graphics.

The graphics package can be used for both business and scientific appli-
cations. It is currently supported under the PASCAL language and can be
accessed using assembly language. It can be used with black and white,
four-color, and eight-color configurations.

The creation of screen graphics results from manipulation of compiled,
executable modules which include routines from the graphics library
(GL1IB) as well as necessary PCOS system calls.

Even though M20 BASIC functionality is maintained, the syntax of the
language 'bindings' reflects that of GKS, an emerging 1S0 and ANSI graph-
ics standard. The M20 graphics library is not an implementation of GKS,
but it does reflect GKS syntax and organization. M20 graphics library
differs from GKS on the concept of color organization as well as other,
more complex details. Some functional differences are summarized in the
following chart:

17-1

Graphics
FUNCTION Package GKS

1. Maintains color logic operators YES NO

2. Direct pipeline from world coordinate
space to viewing surface YES NO

3. Permits single-element graphic entry
as in LINEABS YES NO
(Has only
POLYLINE)

For a complete description of the GKS standard, see the GKS Draft Inter-
national Standard document (DIS 7942), available from ANS1, 1430 Broad-
way, New York, N. Y. 10018. A quick overview of this standard is also
given 1in 1EEE Computer Graphics and Applications, July 1982: '"GKS -- The
First Graphics Standard,' pp 9-23.

17-2 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

CONFIGURATIONS AND VERSIONS

HARDWARE

The Graphics Package works across all M20 configurations: black-and-
white, four-color, and eight-color. The minimum confi- guration may
limit program size (and prohibit some compilers). Color systems will
require their usual expansion-board configura- tions.

SOFTWARE

The initial level of this Graphics Package is 'Version 3.0a," and
is designed to run under PCOS 3.0 or later versions of PC0S. There are
no special ROM requirements, except that the ROM must support PCOS 3.0 or
later.

FUNCTIONAL FLOW DIAGRAMS

| source | / | | object | /
| code | | com- | | module;|-->|....# L |
| (incl. |--->|pil-|--->|unrslved| | # |
|graphics | | er | |graphics| | #
| calls) | |/ |referen-|-->|....# |
—————————— -- | ces | | # |
Qe | # 1|
| | # |
----------- | # |
|"include"| | # | —m—m———-
file		# [EXECUTABLE			
of all	= ;e	# N		MODULE;		
graphics		language-		. #		includes
procedure		to-graphics	<-—-	. #		run-time
names		interface		#	-->	references
-----------	object		#		to PCOS	
modules	--># K		graphics		
-------------	#		system			
#		calls				
# I ———						
#						
# E						
----------	#					
GRAPHICS		. #				
LIBRARY	<--]. #					
ROUTINES		#				
(object	--># R				
[modules)| | 74

17-3

language-to-graphics interface:

/ 1 module for
| source |-->| com- |-->| object | each graphics
| code | | piler | | modules| function call

GRAPHICS LIBRARY ROUTINES

— / 1 module for
| source |-->| com- |-->| object | each graphics
| code | | piler | | modules| function call

IMPLEMENTATION LANGUAGE

The PCOS 3.0 Graphics Library Package is implemented in PLZ/ASM segmented
code.

17-4 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

GENERAL APPLICATION INFORMATION

STEPS IN MODULE DEVELOPMENT

An applications programmer creates graphic output using his compiled
development language program and the following steps:

1. MWrite the source code. Currently, the graphics package is supported
under PASCAL and can also be accessed by using assembly language.
For other development languages, if the language supports inclusion
of assembly language subroutine calls, it may be possible to provide
graphic routines in that manner. Should the language require it
(e.g., PASCAL), insert, in each module which includes graphics calls,
a section declaring the graphics routine names as 'externals.' A file
of graphics routine names is provided for each language with graphics
support, so that external declaration may be accomplished by using an
"include" statement. (See the Reference information on language bind-
ings.)

2. To minimize the size of the run-time requirements, a user may wish to
edit this file so that it references only those routines actually
used. Then create the appropriate procedures, subroutines, or other
algorithm wunits, incorporating graphics calls that create the images
desired.

3. Compile the source code. If the above-mentioned 'include' statements
are used for declaring the graphics calls as externals, the file con-
taining that list must be included on the same diskette as the source
code module.

4. Link the object code compiled from source code with the required
external object modules, specifically including both a file which
contains the source-language-to-graphics interface object modules and
the GRAPHICS LIBRARY ROUTINES object modules.

5. RUN the linked, executable module under PCOS 3.0.

A graphics programmer has several types of routines available 1in this
package to create graphic output. One class of routines is graphic out-
put, which places geometric coordinate information. A second class is
output attributes which modify the graphic output (color, for example).
A third class is transformation & control, which largely have to do with
the transformation (mathematical) of coordinates from the dimensions of
the application program to the physical dimensions of the display device
(more about these transformations in a moment). The fourth class is a
set of inquiry routines, whereby the application program can consult
tables and variables 1in the Graphics Package for various data such as
color, current position, and dimensions of the coordinate space.

17-5

ENTERING THE GRAPHICS PROGRAM

Any application program using any Graphics Package routine must enter the
"OPEN GRAPHICS' routine as the first Graphics Package routine to be pro-
cessed. This latter call may be used to clear away previous graphics
work and start afresh. The application may recover memory space and
clear no longer needed graphics work with the CLOSE GRAPHICS routine.

DEFINING COORDINATES

A fundamental relationship is the one between the dimensions of the
object in real space (WORLD COORDINATE SPACE, given typically in real
numbers), and the dimensions of the object as it appears on the viewing
surface (given in device coordinates* -- see footnote below for differen-
tiation between viewing surface, window, and view area). In the Graphics
Package, a defined rectangle in world coordinate space is 'pipelined" to
a defined rectangle on (all or part of) the view area. World coordinates
are mathematically transformed into device coordinates as graphic output
flows from the pipeline.

Experienced M20 users will recognize 'view area' as equivalent to M20
Basic's "window.'" The term "window" is not used in this document, since
graphics standards documents (such as GKS) use the term in a different
sense. In GKS, for example, the model is that of a pipeline in which
graphic output flows from within a frame in world coordinate space
through the pipeline (a mathematical transformation) to a viewport. The
term "window" is used to mean the input to the pipeline, the world-
coordinate-space-frame, rather than the output of that pipeline (the
viewport).

There is a lot of flexibility in mapping world coordinate space to view
area. The view area can take up the full screen or some rectangular part
of it. There can be up to 16 view areas, each with a mapping (or
transformation) from a world coordinate space to that area. Each view
area and its mapping are identified by transformation number.

A view area is formed by dividing an existing view area horizontally or
vertically into two parts, and whereas view areas need not be the same
size, they are not allowed to overlap. One part retains the transforma-
tion number of the original view area, and the other is assigned a new
transformation number. The two views also inherit some of the charac-
teristics of the pre-division view area, such as character spacing, line
height, color attributes, graphics cursor shapes, and world coordinate
space definition. Of these inherited characteristics, the last one
requires further commentary.

The world coordinate space definition (see SET WORLD COORDINATE SPACE) is
a set of real numbers that define a rectangle; it establishes the scaling
basis on which the graphical output is described. However, it 1is the
world coordinate space definition along with the shape of the view area
which determines the proportions of the objects within that view (see
DIVIDE VIEW AREA).

17-6 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

Note:

Note that world coordinate space defines a Cartesian plane, that is, a
rectangular surface on which the scale of each of two axes (x and y) is
determined. The plane may contain an origin, a point of crossing of the
x- and y-axes at which the coordinates are (0.0,0.0).

The relative magnitude of the width units to the height units has NO
bearing on the ultimate view area size or proportions; an x-axis could be
defined as extending from 0.0 to 100,000.0 while a y-axis is from +0.023
+0.097, yet the result on the viewing surface could be a square.

POSITION LOCATORS

Current Position Locators and Cursors

The Graphics Package maintains two current positions, one each for text
and graphics, and also two cursors, one each for text and graphics, and
also two cursors, one each for text and graphics. One cursor or the
other (or neither) displays at one time. While the text current position
and text cursor are always at the same location (the point at which the
next text output will appear), the graphics current position (the point
at which the next graphics output will appear) and the graphics cursor
are not coincident. This separation makes it possible to use the graph-
ics cursor as a locator in interactive applications: use of the INQ
GRAPHCURSOR routine can return graphics cursor coordinates with which the
current graphics position can be updated. Note that the current graphics
position will be used in many but not all graphics output routines (e.gq.,
POLYLINE will establish its own starting point rather than use that of
the current graph- ics position).

Absolute and Relative Coordinates

Some graphics routines use "absolute' coordinates, others use ''relative"
coordinates. The distinction is that absolute coordinates are distances
along the x- or y-axis from the origin point of the Cartesian plane,
while relative coordinates are distances along the x- or y-axis from the
last coordinate (which last coordinate could be either absolute or rela-
tive). Thus, LINEABS draws a line from the current graphics position to
an absolute point (a point referenced in terms of the Cartesian plane's
origin), whereas LINEREL draws a line from the current graphics position
to a relative point (a point referenced in terms of distances from the
current graphics position). 1n both cases, the current graphics position
is updated to the end of the new line.

Referencing Positions Outside View Area
The Graphics Package always references the current graphics position. It
maintains this position itself instead of referencing the PCOS graphics

accumulator. For this reason, it is possible to specify points that are
outside the world coordinate space rectangle defined in SET WORLD

17-7

COORDINATE SPACE. When the current graphics position ends up outside the
view area, the PCOS graphics accumulator is 'undefined;' that is, its
contents no longer reflect the Graphics Package's current graphics posi-
tion. No problem arises, because the Graphics Package never relies on
the PCOS graphics accumulator to re-establish the current graphics posi-
tion. Note that in interactive applications, a user may have difficulty
understanding what is happening when the current position is outside the
view area, especially if required to make a response at that moment.

Color Attributes

Most of the output routines are affected both by the color attributes and
by the current logic-operator attribute. The "foreground" color deter-
mines the color of the text output, the 'background' color determines the
color behind the letter, and the 'graphics' color determines the color of
the graphics output (lines, dots, etc.). Note that the background color
is the color of choice when the view area is cleared. These attributes
are selectable from the range of colors on any given M20 configuration.
For further details, see SET COLOR REPRESENTATION, SELECT GRAPHICS COLOR,
and SELECT TEXT COLOR.

Logic Operators

The logic-operator attribute determines which color will appear in the
view area, considering the following: the type of graphic routine (text
or graphic output); the setting of the foreground, background, or graph-
ics color attribute; and the color of the targeted pixel(s) in the view
area.

There are six logic operators; some use only one operand (either a color
attribute or the targeted pixel), others use two (both the targeted pixel
and a color attribute). The logic operator acts on a pixel-by-pixel
basis 1in determining what the actual final color of each pixel shall be
(see SET COLOR LOGIC for more details).

Exchanging Data with the Host Language

This Graphics Package uses three number types in exchanging data with the
host language: integer, real, and address pointer. The integers are
signed single-word integers in the range of -32768 through +32767. One
exception to this format is the cursor arrays, in which a word stores a
pair of eight-bit patterns, and thus is a 16-bit unsigned integer; in
these arrays, the high-order byte must come first (i.e., have the lower
index number). The real numbers are always 1EEE single-precision two-
word elements; the 32 bits are as follows, from most-significant to
least-significant bit: 1 sign bit, eight bits of exponent, and 23 bits of
mantissa. The mantissa is 'dehydrated', in that it is the 23 low-order
bits of a 24-bit mantissa whose most-significant-bit (always a "1") is
missing. (The Graphics Package math package 'reconstitutes' the mantissa
by adding back the high-order bit.) In array storage, the high-order byte
must precede and the high order word must precede (have the low index

number). The address pointers are Z-8000 segmented addresses; consult

17-8 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

the standard Z-8000 literature for their format.

Errors

Error reporting is handled in two ways. For all routines, an error
status is reported in register 5; the value '"0" means 'no error'". For
most routines, this status value is transferred to an error status vari-
able maintained by the graphics package; the ERROR INQUIRY routine
returns the current value of this variable (that is, the error status of
the most recent Graphics Package routine other than the INQ... routines).

The INQ... group of routines handles error reports differently. These
routines never touch the error status variable (except ERROR INQUIRY,
which retrieves it). Rather, these routines report any error status
directly through an "err" parameter. Thus, INQ... routines cannot ''gen-
erate an error status'. The "err' parameter is maintained in all INQ...
routines as a matter of form (in keeping with the practice of the GKS
standard), even though in this package there are several routines for
which the "err'" routine can return no other value than "0" ('no error").

FURTHER REFERENCES

Notice that in the routine descriptions, neither the routine headings nor
the examples are drawn from any specific language. For the language
bindings of these routines, see the reference section.

For those familiar with M20 BASIC graphics, the reference section also

has a concordance linking BASIC graphics calls with the routines in this
package.

17-9

GRAPHICS LIBRARY FUNCTIONS: SPECIFICATIONS

LIST OF ROUTINES

Output Generation Functions

LINEABS(x,y)

LINEREL (dx,dy)

POLYLINE (#points,Xarray,Yarray)

MARKERABS (x,y)

MARKERREL (dx,dy)

POLYMARKER (#points,Xarray,Yarray)

TEXTCURSOR(column,row)

GRAPHPOSABS (x,y)

GRAPHPOSREL (dx, dy)

GRAPHCURSORABS (x,y)

GRAPHCURSORREL (dx, dy)

PIXEL ARRAY(Xwdth,Yht,arrayname)

GDP (functionnmbr,numberofpoints,Xarray,Yarray,datarec)
[Defined GDP's: 1=circle, 2=ellipse]

Output Attribute Setting Functions

SET LINE CLASS(classnmbr)

SET TEXTLINE(chrwdth,txtlineht)
SELECT CURSOR(selectnmbr)

SET TEXT CURSOR BLINKRATE(rate)

SET GRAPHICS CURSOR BLINKRATE(rate)
SET TEXT CURSOR SHAPE(arrayname)

SET GRAPHICS CURSOR SHAPE(arrayname)
SET COLOR REPRESENTATION(indx#,colr#)
SELECT GRAPHICS COLOR(nmbr)

SELECT TEXT COLOR(FGnmbr,BGnmbr)

SET COLOR LOGIC(operatornmbr)

Transformation & Control Functions

OPEN GRAPHICS
CLOSE GRAPHICS
SET WORLD COORDINATE SPACE(xform#,x0,y0,x1,y1)
DIVIDE VIEW AREA((div/orient,divpt,xform#)
SELECT VIEW TRANSFORMATION(xform#)
CLOSE VIEW TRANSFORMATION(xform#)
[(xform#=0)-->close 2--16]

CLEAR VIEW AREA(xform#,err)
ESCAPE (functionnmber, recordname)

[Defined ESCAPE: 1=flood]

17-10 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

Inquiry Functions

INQ VIEW AREA
(err,bytewdth,scanlineht,chrwdth,txtlineht)

INQ WORLD COORDINATE SPACE(err,x0,y0,x1,y1)

INQ CURRENT TRANSFORMATION NUMBER(err,xform#)

INQ ATTRIBUTES
(err,GRcolr,FGeolr,BGeolr,logop,lineclass)

INQ TEXTCURSOR(err,column,row,blinkrate)

INQ GRAPHPOS(err,x,y)

INQ GRAPHCURSOR(err,x,y,blinkrate)

INQ PIXEL ARRAY(Xwdth,Yht,err,invalidvals,arrayname)

INQ PIXEL COORDINATES
(Xworld,Yworld,err,Xpixcoord,Ypixcoord)

INQ PIXEL(x,y,err,pxlcolrnmbr)

ERROR INQUIRY(errorcode)

OUTPUT GENERATION FUNCTIONS

The following 13 routines have a geometric influence on the view area --
that is, they determine either directly, or indirectly, the placement and
shape of output to the view area.

OUTPUT GENERATION FUNCTIONS

LINEABS (x,y)
LINEREL (dx,dy)
POLYLINE (#points,Xarray,Yarray)
MARKERABS (x,y)
MARKERREL (dx,dy)
POLYMARKER (#points,Xarray,Yarray)
TEXTCURSOR (column, row)
GRAPHPOSABS (x,y)
GRAPHPOSREL (dx, dy)
GRAPHCURSORABS (x,y)
GRAPHCURSORREL (dx, dy)
PIXEL ARRAY(Xwdth,Yht,arrayname)
GDP (functionnmbr,numberofpoints,Xarray, Yarray,
datarec)
[Defined GDP's: 1=circle, 2=ellipse]

Each of these functions is described in detail in the following pages,
with register assignments, possible error messages and examples.
LINEABS(x,y)
Draws a line from the current graphic position to the absolute position
(xyy) s Several default conditions apply: coordinate space, color, logic

operator, and line class conditions (see output attribute and transforma-
tion function calls).

17-11

Register assignment:

Input rr0 <== X
rr2 <--y
Output r5 <-- error code

Inputs are 1EEE single-precision real; output is integer.
ERRORS

0 (no error)
38 ""Parameter out of range'

EXAMPLE

LineAbs(2.33,-6.8)

LineAbs (xdisp,ydisp)
[where xdisp and ydisp have been assigned
real-number values in a world-coordinate-space]

Each of these sample calls will create a line from the current graphics
position to an absolute point in the view area. The first example would
draw a line to a point that could be in any direction from the starting
point, and might extend for any length. The length and directicn of the
line depend on the currently-defined world coordinate spz:e.

1f the coordinates imply a point outside the view area but are within the
range of a single-precision floating-point number, a line will appear,
drawn in the direction of the specified point but clipped at the edge of

the view area. The specified point becomes the current graphics posi-
tion.
LINEREL (dx,dy)

Draws a line from the current graphic position to a position displaced by
the amount dx parallel to the x-axis and dy parallel to the y-axis.
Several default conditions apply: co-ordinate space, color, logic opera-
tor, and 1line class conditions (see output attribute and transformation
function calls).

Register assignment:

Input rr0 <-- dx
rr2 <-- dy

Output r5 <-- error code

Inputs are 1EEE single-precision real; output is integer.

17-12 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

ERRORS
0 (no error)
38 "Parameter out of range"

EXAMPLE

LineRel(2.33,-6.8)

LineRel (xdisp,ydisp)
[where xdisp and ydisp have been
assigned real-number values in a
world-coordinate-space]

Each of these sample calls will create a line from the current graphics
position to a point relative to that current position. The first example
would draw a line to a point to the right and below the starting point.
The 1length of the line depends on the currently-defined world coordinate
space.

If the coordinates imply a point outside the view area, yet are within
the range of a single-precision floating-point number, a line will appear
drawn in the direction of the specified point but clipped at the edge of
the view area. The specified point becomes the current graphics posi-
tion.

POLYLINE (#points, Xarray, Yarray)

Draws lines connecting the points specified by the two arrays (parameters
two and three). '"#points' is an integer specifying the number of points.

The points are absolute locations in world coordinate space. Thus the
two arrays are the same size and contain (single precision) real numbers.
Correspondingly indexed values in the arrays (e.g., Xarray[32], Yar-

ray[32]) constitute a number pair that specifies a point in world coordi-
nate space. Several default conditions apply: coordinate space, color,
and logic operator (see output attribute and transformation function
calls).

Register assignment:

Input rré <-- Xarray pointer

rr2 <-- Yarray pointer

rd <-- number of points, =>2
Output r5 <-- error code

Pointers are segmented addresses; other values are integer.

ERRORS
0 (no error)
9 "Subscript out of range"
38 "Parameter out of range"
76 "Error in parameter"

ARRAY STRUCTURE

17-13

The application program must declare and allocate the two coordinate
arrays. Each array contains 1EEE single-precision numbers; the high-
order word must precede the low-order word. The size of each array must
be at 1least large enough to store as many double-word numbers as there
are points.

EXAMPLE

["pts" is type integer and equals 10]

['"Xvals" and "Yvals' each are one-dimensional arrays
of size 10; each contains 10 single-precision real
numbers representing distances along the x- or y-axis
from the original Cartesian plane defined in world
coordinates.]

Polyline(pts,Xvals,Yvals)
Polyline(10,harry,varry)

Each of these sample calls will create nine lines contiguously connecting
ten points. The figure will not be 'closed" unless the first and last
points specified by the arrays happen to coincide. The application pro-
gram calculates coordinates and deposits them in two arrays, then calls
"Polyline' once to draw the line series.

1f the coordinates imply points outside the view area but are within the
range of single-precision floating-point numbers, the figure will not be
distorted but it will be clipped at the edge of the view area. When the
last point is outside the view area, the current graphics position is set
at that point.

1f "pts" were to be less than the value '2'", error #38 would be generated
and no lines would be drawn.

MARKERABS (x,y)

Places a visible point at the absolute (world coordinate) position speci-
fied by parameters x and vy. Several default conditions apply: co-
ordinate space, color, and logic operator (see output attribute and

transformation function calls).

Register assignment:

Input rr0 <= X
rr2 <K==y
Output r5 <-- error code

Inputs are IEEE single-precision real; output is integer.

17-14 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

ERRORS

0 (no error)
38 "Parameter out of range"

EXAMPLE

MarkerAbs(2.33,-6.8)

MarkerAbs (xdisp,ydisp)
[where xdisp and ydisp have been assigned
real-number values in a world-coordinate-space]

Each of these sample calls will display a point at the absolute locations
specified by their parameters. 1f the coordinates imply a point outside
the view area but are within the range of a single-precision floating-
point number, no point will appear. However, the specified point becomes
the current graphics position.

MARKERREL (dx,dy)

Places a visible point displaced in world coordinate space by the amounts
dx parallel to the x-axis and dy parallel to the y-axis from the Graphics
Package's current position, as specified by parameters dx and dy.
Several default conditions apply: coordinate space, color, and logic
operator (see output attribute and transformation function calls).

Register assignment:

Input rr0 <-- dx
rr2 <-- dy

Output S <-- error code
Inputs are IEEE single-precision real; output is integer.
ERRORS

0 (no error)
38 ""Parameter out of range"

EXAMPLE

MarkerRel (2.33,-6.8)

MarkerRel (xdisp, ydisp)
[where xdisp and ydisp have been assigned
real-number values in a world-coordinate-space]

Each of these sample calls will display a point displaced relative to the
current graphics position. The first example would place a point to the
right and below the current graphics position. The length of the dis-
placement depends on the currently-defined world coordinate space. If
the coordinates imply a point outside the view area but are within the
range of a single-precision floating-point number, no point will appear.
However, the specified point becomes the current graphics position.

17-15

POLYMARKER (#points,Xarray,Yarray)

Places the visible points specified by the two arrays (parameters two and
three). "#points'" 1is an integer specifying the number of points. The
points are absolute locations in world coordinate space. Thus the two
arrays are the same size and contain (single precision) real numbers.
Correspondingly indexed values in the arrays (e.g., Xarray[32], VYar-
ray[32]) specify a point in world coordinate space. Several default con-
ditions apply: co-ordinate space, color, and logic operator (see output
attribute and transformation function calls).

Register assignment:

Input rré <-- Xarray pointer

rr2 <-- Yarray pointer

r4 <-- number of points, =>1
Output r5 <-- error code

Pointers are segmented addresses; other values are integer.

ERRORS
0 (no error)
9 "Subscript out of range"
38 ""Parameter out of range"
76 "Error in parameter'

ARRAY STRUCTURE

The application program must declare and allocate the two coordinate
arrays. Each array contains 1EEE single-precision numbers; the high-
order word must precede the low-order word. The size of each array must
be at 1least 1large enough to store as many double-word numbers as there
are points.

EXAMPLE

["pts' is type integer and equals 10]

['"Xvals" and "Yvals" each are one-dimensional arrays
of size 10; each contains 10 single-precision real
numbers representing distances along the x- or y-axis
from the origin of a Cartesian plane defined in world
coordinates.]

Polymarker (pts,Xvals,Yvals)
Polymarker(10,harry,varry)

Each of these sample calls will create ten visible points. The applica-
tion program calculates coordinates and deposits them in two arrays, then
calls "Polymarker' once to place the points.

Coordinates that imply points outside the view area but within the range

of single-precision floating-point numbers will not appear, nor will an
error message be generated. However, the current graphics position will

17-16 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

track these non-visible points. Should the last point be outside the
view area, it nevertheless becomes the current graphics position.

If "pts'" were to be less than the value '"1", error #38 would be generated
and no points would be drawn.

TEXTCURSOR (column, row)

Moves the text cursor and thereby determines the next screen position at
which text will appear. Note that the text cursor will appear only if
the latest cursor selection has set the text cursor to be displayed (see
SELECT CURSOR).

Maximum ranges for a full-screen view area are the default text parame-
ters currently active: 64 columns by 16 rows or 80 columns by 25 rows.
1f the current view area is smaller than full-screen, then the maximum
text parameters are commensurately smaller.

Register assignment:

Input r8 <-- text column (1..64 or 80)
r9 <-- text row (1..16 or 25)
Output r5 <-- error code

All values are integer.
ERRORS

0 (no error)
38 ""Parameter out of range"

EXAMPLE

Textcursor(33,17)
Textcursor(X,Y)

The first of these calls will cause the next text output to appear in
column 33, row 17, of the current view area. 1f the current view area is
the full screeen and character spacing is 64 by 16, then text will start
one character below and right of the mid-screen point. The second exam-
ple assumes that X and Y are integers.

If the coordinates imply a point outside the current view area, an error

message 1is generated in r5, and the current text cursor and position are
unchanged.

17-17

GRAPHPOSABS (x,y)

Redefines the current graphics position, that is, the current position
for subsequent graphics output (for text, see (TEXTCURSOR). Coordinates
x and y define an absolute location in world coordinate space. Thus, any
subsequent graphics output that uses the current graphics position as a
starting point will use this point. Note that this position 1is not
automatically associated with the position of the graphics cursor; the
two positions coincide only when both are explicitly assigned the same
coordinates (see GRAPHCURSORABS, GRAPHCURSORREL). The separation of
current graphics position and graphics cursor permits the application
program to use the graphics cursor as a locator in interactive applica-
tions.

Register assignment:

Input rr0 <-- X
rr2 <==y
Output rS <-- error code

Inputs are 1EEE single-precision real; output is integer.
ERRORS

0 (no error)
38 "Parameter out of range"

EXAMPLE

GraphPosAbs(2.33,-6.8)

GraphPosAbs (xloc,yloc)
[where xloc and yloc have been assigned
real-number values in a world-coordinate-space]

Each of these sample calls will redefine the location of the current
graphics position to an absolute point in the view area.

1f the coordinates specify a point outside the view area, that point
nevertheless becomes the current graphics position.

GRAPHPOSREL (dx,dy)

Redefines the current graphics position, that is, the current position
for subsequent graphics output (for text, see (TEXTCURSOR). The new
position is displaced from the old position by adding the factors dx and
dy (which are world coordinate space values) to the corresponding coordi-
nates of the old current graphics position. Thus, any subsequent - graph-
ics output that uses the current graphics position as a starting point
will use this new point. Note that this position 1is not automatically
associated with the position of the graphics cursor; the two positions
coincide only when both are explicitly assigned the same coordinates (see
GRAPHCURSORABS, GRAPHCURSORREL).

17-18 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

The separation of current graphics position and graphics cursor permits
the application program to use the graphics cursor as a locator in
interactive applications.

Register assignment:'

Input rr0 <-- dx
rr2 <-- dy
Output r5 <-- error code

Inputs are 1EEE single-precision real; output is integer.
ERRORS

0 (no error)
38 ""Parameter out of range"

EXAMPLE

GraphPosRel(2.33,-6.8)

GraphPosRel (dxloc,dyloc)
[where dxloc and dyloc have been assigned
real-number values in a world-coordinate-space]

Each of these sample calls will redefine the location of the current
graphics position to a new point in the view area, displaced from the old
point. 1In the first example, the new graphics position will be to the
right and below the old one.

1f the coordinates result in a point outside the view area, that point
nevertheless becomes the current graphics position.

GRAPHCURSORABS (x, y)

Moves the graphics cursor (but not the current graphics position, nor the
text position) to a new absolute position (in world coordinates). Note
that the graphics cursor will appear only if the latest cursor selection
has set the graphics cursor to be displayed (see SELECT CURSOR). If the
coordinates define a position outside of the view area, an error code is
sent to the error status variable. The separation of current graphics
position and graphics cursor permits the application program to use the
graphics cursor as a locator in interactive applications.

Register assignment:

Input rr0 <== X
rr2 <==y
Output r5 <-- error code

Inputs are 1EEE single-precision real; output is integer.

17-19

ERRORS

0 (no error)
38 "Parameter out of range'"

EXAMPLE

GraphcursorAbs(0.39,3.17)
GraphcursorAbs(X,Y)

The first of these calls would cause the graphics cursor, when it is
turned on, to appear at the absolute location specified by the arguments
(in world coordinate space). The second call, in which X and Y are real
numbers, would behave similarly.

GRAPHCURSORREL (dx, dy)

Moves the graphics cursor (but not the current graphics position, nor the
text position) to a new position (in world coordinates). This new posi-
tion is displaced from the old position by the factors dx and dy, added
to the coordinates of the old position. Note that the graphics cursor
will appear only if the latest cursor selection has set the graphics cur-
sor to be displayed (see SELECT CURSOR). 1If the coordinates result in a
position outside of the view area, an error code is sent to the error
status variable.

Register assignment:

Input rr0 <-- dx
rr2 <-- dy

Output r5 <-- error code
Inputs are 1EEE single-precision real; output is integer.
ERRORS

0 (no error)
38 "Parameter out of range"

EXAMPLE

GraphcursorRel(-0.39,3.17)
GraphcursorRel (X,Y)

The first of these sample calls would cause the graphics cursor, when it
is turned on, to appear at a new location shifted leftward and up from
the old location. The second call, in which X and Y are real numbers,
would likewise shift-the graphics cursor in some direction.

17-20 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

PIXEL ARRAY(Xwdth,Yht,arrayname)

Transfers a rectangular screen image to the screen. The M20 screen
displays what 1is stored in one or more bit-planes (where each bit on a
plane corresponds to a screen pixel). A rectangle from any part (or all)
of a view area can thus be stored elsewhere in memory (see INQ PIXEL
ARRAY), then re-displayed at any point in any view area by wusing PIXEL
ARRAY. The rectangle size 1is '"Xwd'" wide by "Yht" high (world coordi-
nates), and is placed with the rectangle's upper-left corner at the
current graphics position.

The rectangle is retrieved from the one-dimensional array identified by
the '"arrayname' parameter. The x and y parameters need not correspond
to the full size implied by the array. A '"too-small' dimension clips the
right or bottom edge; a ''too-large' dimension yields that dimension's
maximum (and no more). If the current graphics position is ''too close"
to the right and/or bottom edge, the rectangle will transfer anyway but
be clipped at the screen edge. The current logic operator influences the
color output to the screen on the usual pixel-by-pixel basis (see SET
COLOR LOGIC).

Register assignment:

Input rr0 <-- Xwidth

rr2 <-- Yheight

rr10 <-- array pointer
Output
Output 5 <-- error code

Size inputs are 1EEE single-precision real; pointer 1is Z8000 segmented
address; xoutput is integer.

ERRORS

0 (no error)
38 "Parameter out o7V range'

EXAMPLE

[Assume a properly dimensioned array, PurtyPix,
with a previously-saved screen block -- not
necessarily the full size of the screen]
[Assume also a World Coordinate Space, 150.0 x 100.0]

GraphPosAbs (75.0,50.0)
PixelArray(30.,20.,PurtyPix)

The rectangular display saved in PurtyPix will appear on the screen, with
its upper left corner at the middle of the screen. If the rectangle in
PurtyPix 1is relatively large compared to PixelArray's arguments
(30.,20.), then only part of the stored picture will appear: anything to
the right of world coordinate 105.0 (75.0 + 30.0) will not appear, nor
will anything below 30.0 (50.0 - 20.0).

17-21

1f the rectangle in PurtyPix is relatively small compared to PixelArray's
arguments, then the full picture will appear and not extend to the
rectangle's implied right and bottom borders. And, of course, if Pur-
tyPix differs in shape compared to PixelArray's parameters, then one but
not the other of the right or bottom edges may be clipped.

GDP (functionnmbr ,numberofpoints,Xarray,Yarray,datarec)

Generalized Drawing Primitive, for creating specialized geometric output.
This Graphics Package has two such GDP's: a circle (functionnmbr=1) and
an ellipse (functionnmber=2). Separate discussions of each follow.

CIRCLE

GDP (functionnmbr,numberofpoints,Xarray,Yarray,datarec)
[functionnmbr-->1 (number, constant, or variable)]
[numberofpoints-->2 (number, constant, or variable)]

Draws a circle according to the world coordinates in arrays Xarray and
Yarray. The circle 1is centered at the point [Xarray(1),Yarray(1)] and
has a radius determined by +he distance from the circle center to abso-
lute location [Xarray(2),Yarray(2)]. The second parameter (the value 2)
indicates that the array parameters will specify two geometric points for
this primitive. The dummy parameter 'datarec' is required by the GDP
call but not used for circle drawing. The shape 1is always a circle
regardless of the coordinate space definition. Default conditions that
apply are color and logic operator (see output attribute setting calls)
and, with reference to placement of the specified center and perimeter
points, the coordinate space. The current graphics position 1is unaf-
fected.

Register assignment:

Input rré <-- Xarray pointer
rr2 <-- Yarray pointer
rd <--1: 1 = "CIRCLE"

Output r5 <-- error code

Pointers are Z8000 segmented addresses; other values are integer.

17-22 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

ERRORS
0 (no error)
38 ""Parameter out of range"
76 "Error in Parameter
EXAMPLE

[Assume arrays Xdata and Ydata,
with the following contents:]

Xdata Ydata
(1) 137.60 89.36
(2) 129.6 93.36

GDP(1,2,Xdata,Ydata,nuldata)

Generates a circle centered at absolute (world coordinate) position
(137.6,89.36), with a radius of approximately 8.944.

If the coordinates generate a circle larger than the viewing surface can
accommodate, the portions of the circle that lie outside the viewing sur-
face are clipped. It is possible to specify a circle no part of which is
visible.

ELLIPSE

GDP (functionnmbr,numberofpoints,Xarray,Yarray,datarec)
[functionnmbr-->2 (number, constant, or variable)]
[numberofpoints-->3 (number, constant, or variable)]

Draws an ellipse parallel to the x or y-axis. The coordinates are given
in the arrays Xarray and Yarray. The second parameter (the value 3)
indicates that there are three points, and thus three values 1in each
coordinate array. The center of the ellipse 1is given by the point
[Xarray(1),Yarray(1)]. The major and minor axis crossings (in either
order) are given by points [Xarray(2),Yarray(2)] and
[Xarray(3),Yarray(3). The dummy parameter 'datarec' is required by the
GDP call but not used for ellipse drawing. The exact shape may vary
depending on the coordinate space definition. Default conditions that
apply are color and logic operator (see output attribute setting calls)
and, with reference to placement of the specified center and perimeter
points, the coordinate space. The current graphics position is unaf-
fected.

Register assignment:

Input rré <-- Xarray pointer
rr2 <-- Yarray pointer
ré <-- 2: 2 = "ELLIPSE"
Output rS <-- error code

17-23

Pointers are segmented addresses; other values are integer.

ERRORS
0 (no error)
38 "Parameter out of range'"
76 "Error in parameter"'
EXAMPLE

[Assume FuncNo = 2]
[Assume arrays Xdata and Ydata,
with the following contents:]

Xdata Ydata
(1) 200 150
(2) 190 150
(3) 200 175

GDP (FuncNo, 3,Xdata,Ydata,nuldata)

Generates an ellipse centered at absolute (world coordinate) position
(200,150), with a major axis parallel to the y-axis and of length 50, and
a minor axis of width 20.

If the coordinates generate an ellipse larger than the viewing surface
can accommodate, the non-visible portions are clipped at the viewing sur-
face edge. It is possible to specify an ellipse no part of which is
visible.

OUTPUT ATTRIBUTE SETTING FUNCTIONS

The following eleven routines influence various aspects of the appearance
of the geometric output routines. Specifically, they set values in vari-
ous tables that the geometric routines use when they create output. Each
function is detailed in the followirg pages.

Output Attributes

SET LINE CLASS(classnmbr)

SET TEXTLINE(chrwdth,txtlineht)
SELECT CURSOR(selectnmbr)

SET TEXT CURSOR BLINKRATE(rate)

SET GRAPHICS CURSOR BLINKRATE(rate)
SET TEXT CURSOR SHAPE(arrayname)

SET GRAPHICS CURSOR SHAPE (arrayname)
SET COLOR REPRESENTATION(indx#,colr#)
SELECT GRAPHICS COLOR(nmbr)

SELECT TEXT COLOR(FGnmbr,BGnmbr)

SET COLOR LOGIC(operatornmbr)

17-24 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

SET LINE CLASS(classnmbr)

For the output functions LINEABS and LINEREL, determines whether the
graphic output will be a line, a hollow rectangle, or a solid rectangle.
In the latter two cases, the coordinates constitute opposite corners of
the rectangle. The current graphics color is used for both lines and
filling (see SELECT GRAPHICS COLOR).

Register assignment:

Input r3 <-- 0..2: 0 = "LINE"

1 = "BOX"

2 = "BOXFILL"
OQutput 5 <-- error code

A1l values are integer.
ERRORS

0 (no error)
38 ""Parameter out of range"

EXAMPLE
[Assume the integer variable ClsN = 2]

SetLineClass(0)
LineAbs(x2,y2)
SetLineClass(C1lsN)
LineRel (dx,dy)

The screen will display a 1line between absolute points [x1,y1] and
[x2,y2], and a solid rectangle having a diagonal from [x2,y2] to the
point [x2+dx, y2+dy]. N.B.: The next LineAbs or LineRel function would
also generate a rectangle, unless a "SetLineClass' call intervened.

SET TEXTLINE(chrwdth,txtlineht)

Sets the character width (in pixels) to 6 or 8 (no other 1legal values),
and the text-line height (in scanlines) to any size from 10 to 16 (no
other legal values). This definition holds for the current view area and
all subdivisions of it (until a subsequent SET TEXTLINE call). Note that
this setting influences the width of subsequently-defined view areas.

Register assignment:

Input r10 <-- lineheight (10..16)
2 <-- character spacing (6 or 8)
Output r5 <-- error code

All values are integer.

17-25

ERRORS

0 (no error)
38 "Parameter out of range"
76 “"Error in parameter"
EXAMPLE
SetTextline(6,12)

All subsequent text will have 6 pixels per column, 12 scanlines per text
line; a full-screen view area would have 80 columns, 21 textlines. Note
that the individual character size does not change, but rather the space
around each character grows or shrinks.

SELECT CURSOR(selectnmbr)

Chooses which, if either, cursor is to be displayed.

0:

1:

OFF--neither cursor is displayed.

The GRAPHICS cursor is displayed. The cursor (default shape: a
small rectangle) appears with its upper left corner at the current
cursor coordinates. (N.B.: The graphic cursor and the current
graphic position are

The TEXT cursor is displayed. The cursor (default shape: a rectan-
gle 7 x 11 pixels) appears at the next position that text will be
entered. not the same.)

Register assignment:

Input r8 <-- 0..2: 0 = "OFF"
1 = "GRAPHIC CURSOR"
2 = "TEXT CURSOR"
Output =S <-- error code

All values are integer.

ERRORS

0 (no error)
38 ""Parameter out of range'

EXAMPLE
[Assume that the integer variable SelN = 2]
SelectCursor(0)

SelectCursor (1)
SelectCursor (SelN)

17-26 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

After the first example, no cursor will display. After the second exam-
ple, the text cursor will display; subsequent text entry will begin at
this point. After the third example, the graphics cursor will display.
However, subsequent graphics output will not start from this point unless
the current graphics position has been updated to this same location.

Note that the text and graphics cursors need not, and usually do not,

occupy the same location. Note also that the two cursors cannot be
displayed simultaneously.

SET TEXT CURSOR BLINKRATE(rate)
Sets the blinkrate for the text cursor, from 0 (no blink) to 20 per
second, truncated to the nearest 50-millisecond increment. A zero value
leaves the cursor on continuously. The blink rate is state-changes; a
rate of 20 1is 10 blinks per second. Note that this function does not
affect which cursor, if any, is to be displayed currently; see SELECT
CURSOR.
Register assignment:
Input r8 <-- blinkrate (0..20)
Output rS <-- error code

All values are integer.

ERRORS
0 (no error)
38 "Parameter out of range'
76 “Error in parameter"
EXAMPLE

[Assume BkR=5]
SetTxCsrBlinkrate (Bkr)

The text cursor, when it is displayed, will change from 'on" to "off'" or
from "off" to '"on" 5 times per second.

SET GRAPHICS CURSOR BLINKRATE(rate)

Sets the blinkrate for the graphics cursor, from 0 (no blink) to 20 per
second, truncated to the nearest 50-millisecond increment. A zero value
leaves the cursor on continuously. The blink rate 1is state-changes; a
rate of 20 1is 10 blinks per second. Note that this function does not
affect which cursor, if any, is to be displayed currently: see SELECT
CURSOR.

17-27

Register assignment:
Input r8 <-- blinkrate (0..20)
OQutput rs <-- error code

All values are integer.

ERRORS
0 (no error)
38 ""Parameter out of range"
76 "Error in parameter"''
EXAMPLE

[Assume BkR=5)

SetGrCsrBlinkrate (BkR)
The graphics cursor, when it is displayed, will blink 2-1/2 times per
second.
SET TEXT CURSOR SHAPE(arrayname)
Defines the text cursor shape according to the contents of the shape-
array. Note that this function does not affect which cursor, if any, is
to be displayed currently; see SELECT CURSOR.
The shape-array is byte-oriented; each of the 12 bytes represents the
bit-pattern of a scanline, the first byte being the highest of 12 scan-
lines. Warning: in the text cursor, if the most- significant-bit of each
byte is used, the leftmost column of pixels will touch the previous char-
acter.

Register assignment:
Input rr8 <-- shape-array pointer

Output r5 <-- error code

Pointer is a segmented address; error code is integer.

ERRORS
0 (no error)
38 "Parameter out of range"
76 "Error in parameter"

ARRAY FORMAT
The array consists of 6 one-word elements, each containing a 16-bit

unsigned integer. Each integer is, in fact, a pair of bytes; each byte
is a bit-map of a scanline of the cursor. The first element's high-order

17-28 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

byte is the top scanline of the new cursor; the sixth element's low-order
byte is the last scanline of the new cursor.

EXAMPLE

[assume a 6-word array "Arrow" holds 12 bytes of
of pixel information]

STxCsrShape (Arrow)

The text cursor shape is redefined in accordance with the bit-by-bit
specification in the array "Arrow'". 1f that array holds the bit-patterns
shown in the following table, the text-cursor will be shaped as an .up-
arrow.

element element content
(word) (binary bit-map)
1 00001000
00011100
2 00111110 (Note that each
01111111 word contains a
3 00011100 PAIR of 1-byte
00011100 bit patterns,
4 00011100 and that the
00011100 higher byte is
5 00011100 the high-order
00011100 byte of the word.)
6 00011100
00011100

SET GRAPHICS CURSOR SHAPE (arrayname)
Defines the graphics cursor shape according to the contents of the
shape-array. Note that this function does not affect which cursor, if
any, is to be displayed currently: see SELECT CURSOR.
The shape-array is byte-oriented; each of the 12 bytes represents the
bit-pattern of a scanline, the first byte being the highest of 12 scan-
lines.

Register assignment:
Input rr8 <-- shape-array pointer

Output r5 <-- error code

Pointer is a segmented address; error code is integer.

17-29

ERRORS

0 (no error)
38 "Parameter out of range"
76 "Error in parameter"

ARRAY FORMAT

The array consists of 6 one-word elements, each containing a 16-bit
unsigned integer. Each integer is, in fact, a pair of bytes: each byte
is a bit-map of a scanline of the cursor. The first element's high-order
byte is the top scanline of the new cursor; the sixth element's low-order
byte is the last scanline of the new cursor.

EXAMPLE

[assume a 6-word array '"Box'' holds 12 bytes of
pixel information]

STxCsrShape (Box)

The text cursor shape is redefined in accordance with the bit-by-bit
specification 1in the array Box. If that array holds the bit-patterns
shown in th following table, the graphics-cursor will be shaped as an
upright rectangle.

element element content
(word) (binary bit-map)
1 1111111
10000001
2 10000001 (Note that each
10000001 word contains a
3 10000001 PAIR of 1-byte
10000001 bit patterns,
4 10000001 and that the
10000001 higher byte is
5 10000001 the high-order
10000001 byte of the word.)
6 10000001
o I

SET COLOR REPRESENTATION (indx#,colr#)

On four-color systems, sets one of the four color indices (indx#) to be
one of the eight M20 colors (colr#). (On monochrome and 8-color systems,
this command generates no effect and no error message.) Legal values for
indx# are integers 0..3. Legal values for colr# are integers 0..7, with
the following meanings: O=black, 1=green, 2=blue, 3=cyan, 4=red, 5=yel-
low, 6=magenta, 7=white.

17-30 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

Register assignment:

Input 7 <-- 0..3
r2 <-- 0..7
Output rd <-- error code

All values are integer.

ERRORS
0 (no error)
38 "Parameter out of range"
76 "Error in parameter
EXAMPLE

[Assume 1ndx=2,Clr=6]

SetColorRep(3,1)
SetColorRep(1ndx,Clr)

In the first example, all screen output using color index #3 (lines, cir-
cles, points, filled areas, text) becomes green (both previously- and
subsequently- created output). 1n the second example, all screen output
using color index #2 becomes magenta.

SELECT GRAPHICS COLOR(nmbr)

Selects a color to be the current color attribute for graphics output
(not text output; see SELECT TEXT COLOR). The color of subsequent
graphic output is determined by the argument "nmbr'. There are different
effects on monochrome, four-color and eight-color systems. On monochrome
systems, ''nmbr=0" sets black as the graphics color attribute: any integer
in the range 1..7 sets white as the color attribute. On four-color sys-
tems, ''nmbr'' selects the color attribute indirectly by acting as an index
into a table of four colors preselected from the eight possible colors
(see SET COLOR REPRESENTATION); integers 0..3 select colors directly, but
bits 0 & 2 of the binary representation of 4..7 are logically OR'd before
selection. On eight-color systems, '"nmbr' is a color number and selects
that color directly as the graphics color attribute.

Register assignment:
Input r8 <-- color code or index (0..7)
Output r5 <-- error code

All values are integer.

17-31

ERRORS

0 (no error)
38 "Parameter out of range'
76 "“"Error in parameter

EXAMPLE

[Assume that SetColorRep has associated color #5
with index #2 in the color table.]

SelectGraphClr(2)

Each configuration will interpret this example differently, according to
how it uses the color code. For information on the color code, see the
discussion of color in the "Video Display' section.

A monochrome system will ignore the SetColorRep statement and, since the
number 2 falls within the range 1..7 inclusive, set the graphics color
attribute to be WHITE. '

A four-color system will use the argument to index the color table and
thereby set the graphics color attribute to be color #5, YELLOW.

An eight-color system will ignore the SetColorRep statement and use the
number directly to set the graphics color attribute to be color #2, BLUE.
Had the argument been "6'" rather than '"2": the monochrome system would
still have set WHITE, the eight-color system would have selected MAGENTA,
and the four-color system would have selected the color for index #3.

SELECT TEXT COLOR(FGnmbr ,BGnmbr)

Selects colors used in character output (not graphics output; see SELECT
GRAPHICS COLOR). Characters appear in the foreground color (the first
parameter); the backdrop for the characters is the background color (the
second parameter). There are different effects on monochrome, four-color
and eight-color systems. On monochrome systems, the number 0 selects
black; any integer in the range 1..7 selects white. On four-color sys-
tems, each parameter selects a color indirectly by acting as an 1index
into a table of four colors preselected from the eight possible colors
(see SET COLOR REPRESENTATION); while integers 0..3 will select colors as
one might expect, integers 4..7 select colors in a not-easily-predictable
manner. On eight-color systems, each parameter is a color number and
selects that color directly as the foreground or background color.

Register assignment:

Input r8 <-- foreground color
code or index (0..7)
r9 <-- background color

code or index (0..7)

Output r5 <-- error code

17-32 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

All values are integer.

ERRORS
0 (no error)
38 ""Parameter out of range"
76 "Error in parameter
EXAMPLE

[Assume that SetColorRep statements have associated
color #5 with index #2, and color #3 with index #0
in the color table.)

SelectTextC1lr(2,0)

Each system configuration will interpret this example differently,
according to how it uses the color code. For information on the color
code, see the discussion of color in the "Video Display' section.

A monochrome system will ignore the SetColorRep statement, notice that
the first parameter, the number 2, falls within the range 1..7 inclusive,
and thus set the foreground color to be WHITE; and since the second
parameter is 0, it will set the background to be BLACK.

A four-color system will use the arguments to index the color table and
thereby set the foreground color to be color #5, YELLOW, and the back-
ground to be color #3, CYAN. An eight-color system will ignore the
SetColorRep statements and use the numbers directly to set the foreground
color to be color #2, BLUE, and the background to be color #0, BLACK.

Had the first argument been '"6'" rather than "2": for the foreground
color, the monochrome system would still have been set WHITE, the eight-
color system would have selected MAGENTA, and the four-color system would
have selected the color for index #3.

SET COLOR LOGIC(operatornmbr)

For all subsequent screen output except text, defines a logic operator
that influences the output color on a pixel-by-pixel basis. Each operand
is the color number (or, for four-color systems, one of the four color
index numbers) for a pixel--a new-output pixel, a target-location pixel,
or one of each. As the screen is updated with new input, the 1logic
operation is applied one pixel at a time. The logic operations deal with
the numbers 0..7 as three-bit binary quantities, so that, for example, (3
OR 4)-->7, and (3 AND 4)-->0. There are six logic operators, with the
following effects:

17-33

NewPix# = new pixel's color number or color index
ScrPix# = screen pixel's color number or color index
(at targeted location)
number new number at pixel location
code operator [=result of a logic operation]
0 PSET Pixel SET [number = NewPix#]
1 XOR result of (NewPix# XOR ScrPix#)
2 AND result of (NewPix# AND ScrPix#)
3 NOT complement of ScrPix#
4 OR result of (NewPix# OR ScrPix#)
5 PRESET Pixel RESET [number = background
color number or index]
The specific results vary depending on system configuration. Monochrome

systems transform the numbers 2..7 to 1; thus the only operands are 0 and
1, and are the colors black and white respectively, with corresponding
results. Eight-color systems make no transformation at all, dealing with
the numbers directly as colors, with corresponding results (1:green OR
2:blue --> 3:cyan). Four-color systems treat the numbers not directly
as colors but as indices into the four-color palette table; predicting
the final color result is possible but will take a little concentration.

Register assignment:

Input r10 <-- 0..5: 0/ =1 YPSET"
1 = "XOR"
2 = "AND"
3= “NOT*
4 = l'OR”
5 = “PRESET"
Output r5 <-- error code

All numbers are integer.
ERRORS

0 (no error)
38 "Parameter out of range"

EXAMPLE
[Assume integer variable LogOp = 1]

SetColorLogic(1)
SetColorLogic(LogOp)

17-34 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

These two examples are equivalent. Subsequent graphics output will be
compared for color on a pixel-by-pixel basis with the target screen loca-
tion. The current-color-attribute number and the targeted pixel's color
number (or color index number) will be logically XOR'd, and the result
placed in the target screen location (to be exact, in the target location
in the screen bit-plane or bit-planes). 1In monochrome and eight-color
systems, the operands are color numbers; 1in four-color systems, the
operands are color-table indices.

TRANSFORMATION AND CONTROL FUNCTIONS

These routines set values that have an effect across much or all of a
view area. Largely, they have to do with the mathematical transformation
of world coordinate values to device coordinate values (screen pixel
locations) in the view area. The following is a list of these functions.

OPEN GRAPHICS

CLOSE GRAPHICS

SET WORLD COORDINATE SPACE(xform#,x0,y0,x1,y1)

DIVIDE VIEW AREA((div/orient,divpt,xform#)

SELECT VIEW TRANSFORMATION(xform#)

CLOSE VIEW TRANSFORMATION(xform#) [(xform#=0)-->close 2--16]
CLEAR VIEW AREA(xform#,err)

ESCAPE (functionnmber, recordname) [Defined ESCAPE: 1=flood]

OPEN GRAPHICS

Sets up the M20 for creating graphics, using the routines in this Graph-
ics Package.

THIS ROUTINE MUST BE REFERENCED BEFORE ANY OTHER GRAPHICS PACKAGE ROUTINE
IS REFERENCED. 1t may be used to 're-initialize'" the graphics environ-
ment, in which case the effects of all preceding graphics routines are
cleared away and the application program is prepared to handle subsequent
graphics routines and their output as if starting afresh.

The starting condition for graphics is a single view area (labeled as
transformation number 1), with the default world coordinates set to the
normal display device coordinates (512 X 256), black as the background
color amd white (for black-&-white systems) or green (for color systems)
as the foreground color, with no cursor displayed.

Register assignment:

Input none
Qutput none
ERRORS
none

17-35

EXAMPLE
OpenGraphics

This MUST be the first Graphics Package call; it MAY be a later one as
well. 1In either case, the Graphics Package tables and view area defini-
tions are established in their default condition and graphics routines
may be used.

CLOSE GRAPHICS

Clears the application program environment of the special setup for the
Graphics Package, such as view area heap space and Graphics Package
tables. All view areas are closed except view area #1 which reverts to
the original default parameters (full screen, defined with 512 x 256
coordinates, startup foreground and background colors, no cursor
displayed, blank screen). Graphics Package routines should not appear in
the application program following this routine until "OPEN GRAPHICS' has
been called again.

Register assignment:

Input none
Output none
ERRORS
none
EXAMPLE
CloseGraphics
If this routine appears, it must be the last Graphics Package call. The

Graphics Package tables and view area definitions are cleared, and the
default initial conditions are reinstated.

SET WORLD COORDINATE SPACE(xform#,x0,y0,x1,y1)

Redefines the world coordinate space (sometimes called the 'problem
space'') for an existing view area of the screen. '"xform#", the first
parameter, identifies the transformation by number and must have been
previously defined by a DIVIDE VIEW AREA call. All subsequent graphic
coordinates in this viewspace (i.e., the transformation and viewspace
identified by ‘'"xform#) will be scaled to the view area by a transforma-
tion routine using the coordinates (parameters 2 through 5) that define a
diagonal of the entire rectangular area. The coordinates are single-
precision real numbers.

17-36 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

Register assignment:

Input rr0 <—- x0
rrE2 <-- y0
rd <—- xform# (1..16)
rré <-= x1
rr8 <—- vyl
Output r5 <-- error code

Coordinates are 1EEE single-precision real: others are integer.

ERRORS

0 (no error)

35 "Wiew area not open"

38 ""Parameter out of range"
EXAMPLE

[Assume DivideViewArea has created a view area it has
labelled as #6]

SetWCSpace(6,35,-1.5,-20,2.5)

The world coordinate space is defined along the x-axis from -20.0 to
35.0, and along the y-axis from -1.5 to 2.5. Note that this set of
values does not define the proportions the view area rectangle! The view
area size is determined entirely by the DIVIDE VIEW AREA function; these
coordinates determine the scaling interpretation within that space.
Thus, this view area now recognizes 55 whole-number divisions along its
x-axis, and 4 whole-number divisions along its y-axis. Note that the
coordinate ordering was deliberately perverse to demonstrate flexibility.

DIVIDE VIEW AREA(div/orient,divpt,xform#)

Creates a new view area by dividing the current one according to the
first two parameters; the number of the new view area is returned in the
third parameter. The new view area inherits many of the attributes of
its 'parent," such as text spacing, color defaults, and world coordinate
space definition.

The first parameter, ''div/orient', determines whether the current view
area shall be divided horizontally or vertically, and on which side of
that division the new view area shall be oriented (above/below or
left/right:

17-37

"div/orient" Division Loc. of New View Area

0 HORTIZONTAL ABOVE division
1 HORTIZONTAL BELOW division
2 VERTICAL LEFT of division
3 VERTICAL RIGHT of division

The second parameter, ''divpt", places the division point. For horizontal
divisions (div/orient=0,1), the parameter is in scanlines from the top of
the current view area (min.=1 scanline; max.=current view area height - 1
scanline). For vertical divisions (div/orient=2,3), the parameter is in
character positions from the left edge of the current view area. The
character width used is as currently defined, i.e., 6 or 8 pixels wide.
However, all actual side edges are always on byte boundaries, 1i.e., at
multiples of 8 pixels from the screen's leftmost column of pixels. When
the character width is 8 pixels, the resultant divisions are intuitively
predictable, but when characters are 6 pixels wide, prediction is more
difficult. The actual view area width, in pixels, of the left-side view-
ing area may be determined by the following prediction formula:

WIDTH = truncate [(nmbr-of-chars * char-width + 3) /8] * 8

where '"'nmbr-of-chars' is the second parameter and ‘'char-width" 1is the
current pixel width (6 or 8) of characters. With 6-pixel characters,
there is often a right-side margin, narrower than pixels, in which char-
acters cannot appear; consequently, such view areas frequently allow one
fewer characters per line than the '"divpt" parameter would seem to imply.
An alternate entry for either vertical or horizontal divisions is '-1",
which divides the current view area as equally as possible.

The third parameter returns the "transformation number'" by which this
view area and all its attributes (in particular, the scaling transforma-
tion definition from world coordinates to the view area) is subsequently
referenced.

Note that as a start-up condition, the full screen is defined as view
area #1. This view area can, of course, be subdivided in multiple ways,
and adjacent view areas can be closed and joined with it (as long as the
resultant view area 1is rectangular), but view area #1 ALWAYS exists;
unlike other view areas, view area #1 cannot be closed. There may be as
many as 16 active view areas at any one time. A new view area is
assigned the lowest available number in the range 2..16 (e.g., if 6 view
areas are created, and then #3 is closed, the newly-created view area
will be assigned the number 3).

17-38 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

Register assignment:

Input r8 <-- div/orient (0..3)
r9 <-- divpt [(1..63 or 79)
or (0..255)]
Output r5 <-- error code
r7 <-- xform# (2..16)

All values are integers.

ERRORS
0 (no error)
36 "Unable to create view area"
38 "Parameter out of range"
EXAMPLE

DivViewArea(0,127,xf1)
DivViewArea(1,-1,xfj)
DivViewArea(3,23, xfk)

The first example divides the current view area horizontally with the
upper view area being the new view area, 127 scanlines high: its number
is assigned to xfi. The second example divides the current view area
horizontally at the midpoint; the new view area is below the division,
and its number is assigned to xfj. The third example divides the current
view area vertically; the view area left of the division is (theoreti-
cally) 23 characters wide, and retains the number of the current view
area; the right side of the division is the new view area, and its number
is assigned to xfk. Note that if character width = 6 pixels, the actual
width of the left view area is 22 6-pixel characters plus a 4-pixel mar-
gin. Should the three examples follow successively as the first state-
ments after startup (i.e., no view area subdivision yet), the result
would be four view areas: the upper half of the screen (view area #2);
the bottom quarter of the screen (#3): and two in the lower middle quar-
ter of the screen, a smaller one on the left (#1) and a larger on the
right (#4).

SELECT VIEW TRANSFORMATION(xform#)

Selects the view area identified by the value '"xform" (as previously
defined by DIVIDE VIEW AREA). All subsequent text and graphics output
will go to this view area and enter in accordance with the attributes of
this view area (color, world coordinate scaling, text line height and
character width, and current text and graphics locations, for examples).
Note especially that graphic objects described in world coordinates will
be mapped to this view area by a transformation using the . world coordi-
nate space and view area definition of this transform number.

17-39

The value of '"xform#' MUST be 1 or correspond to a view area defined by
DIVIDE VIEW AREA; otherwise, an error code is sent to the error status
variable.
Register assignment:
Input r8 <-- xform# (1..16)

Output 5] <-- error code

All values are integer.

ERRORS

0 (no error)

35 "Wiew area not open''

38 ""Parameter out of range"
EXAMPLE

[Assume DivideViewArea has created a view area it has
labelled as #6 and assigned to Nwdw]

SelViewTrans (Nwdw)

A1l further text and graphic output will be directed to view area #6, in
accordance to the coordinate, color, etc., definitions active for that
view area. If view area #6 is not currently defined, an error is gen-
erated.

CLOSE VIEW TRANSFORMATION(xform#)

Closes the view area identified by the value 'xform" (as previously
defined by DIVIDE VIEW AREA). That view area is joined to a view area or
view areas adjacent to it; the area is cleared to the background color of
the area(s) to which it is joined, and the enlarged view area(s) have
their coordinate definitions correspondingly adjusted to map to the new
view area dimensions (note that the world coordinate values are not
changed, but rather the mapping is). 1If the current view area is closed,
then view area #1 becomes the current view area.

If the value of "xform#'" is zero, then any and all currently defined view
areas labeled in the range 2..16 are closed, and view area #1 is the
current view area, filling the entire screen.

Note that this command can attempt to close view area #1 without generat-
ing an error; however, view area #1 cannot be closed, and such an attempt
simply has no effect. Also, this command can attempt to close view areas
that have not been opened (defined by a DIVIDE VIEW AREA call), as well
as hypothetical view areas outside the range of 1..16, without generating
an error condition or error message.

17-40 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

Register assignment:

Input r8 <-- xform# (0,1..16, or any
other integer)
Output none
ERRORS
none
EXAMPLE

CloseViewTrans (xform#)

The view area identified by the value of "xform#'" is cleared to the back-
ground color of an adjacent view area or areas (it may be necessary to
divide the area being closed, in order to join it with two different
adjacent areas, in order to preserve rectangularity of the enlarged
areas), and the closed area is joined to the adjacent area(s). 1f view
area #6 was the current view area, view area #1 becomes the current view
area.

CLEAR VIEW AREA(xform#,err)
Clears the view area identified by the value 'xform'" (as previously
defined by DIVIDE VIEW AREA) to the background color (default is black;
SELECT TEXT COLOR can set a different background color). Note that the
view area is not closed; this call merely removes all current contents of
this view area.

Register assignment:
Input rd <-— xform# (1..16)

Output r5 <-- error code

Both values are integer.

ERRORS

0 (no error)

35 "View area not open''

38 "Parameter out of range"
EXAMPLE

ClearViewArea(xform#,err)

17-41

The view area identified by the value of '"xform#' is cleared to the back-
ground color of that view area. The view area is still open to receive
new output in accordance with the coordinate transformation and color
attributes currently defined for that view area.

ESCAPE (functionnmbr, recordname)

A routine that performs a special graphics function. In this Graphics
Package, there is only one Escape routine defined, ''flood".

FLOOD

ESCAPE (functionnmbr, recordname)
[functionnmbr-->1 (number, constant, or variable)]

Floods an area (i.e., paints it) in accordance with the parameters in the
record (data structure) ‘'recordname'. That data structure (array,
record, etc.) contains the following information:

Nominal point coordinates x, y

[identifies area to be flooded]
Color number [color nmbr, or color index on 4-colr sys]
Bordercolor [as with color number]

The area surrounding the point (x,y) is flooded with the color identified
in the data record, within a contiquous border of the color identified by
"bordercolor" in the data record. 1If the area-locator point happens to
fall in a field of the color '"bordercolor', no flooding will occur. Note
that the area flooded is that bounded by a single color ; if, for exam-
ple, blue is to flood an area bordered by green, a red line will not
serve as a border--it will be flooded out.

Register assignment:

Input 56 <--1: 1 = "FLOOD"
rr2 <-- recordname pointer
Qutput r5 <-- error code

Pointer is a segmented address; other values are integer.

ERRORS
0 (no error)
38 "Parameter out of range"
76 "Error in parameter"''

17-42 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

RECORD STRUCTURE

The 'recordname' parameter is the name of a record having the following
structure:

X coordinate: 2 16-bit words; 1EEE single-prec. real
number, high-order word appears first

Y coordinate: 2 16-bit words; 1EEE single-prec. real
number, high-order word appears first

Color number: 1 16-bit word, integer (high-order first)

Bordercolor: 1 16-bit word, integer (high-order first)

EXAMPLE
Assume the data structure "FRec'",containing:

27.34 [x coord., area locator]

128. [y coord., area locator]
2 [flood color]
3 [border color]

Esc(1,FRec)

An area in world-coordinate space that contains the point (27.34,128.)
will be flooded. The result will be a filled polygon where the number 2
governs its color. The polygon border is determined by the screen con-
tents at the moment the function is called; the flood will fill every
contiguous nook and cranny that lies within a contiguous line whose color
is governed by the number 3. Note that wherever such a line is not con-
tinuous, the flooding will 'leak' through to a new area.

The language describing this function's relation to color numbers is
obtuse because the example will respond differently on monochrome, four-
color, and eight-color systems. Monochrome and eight-color systems deal
directly with color numbers, but four-color systems deal indirectly via
indices to a table of four pre-selected colors from a gamut of eight.
However, integers in the range 0..7 for both color parameters will work
without error generation in all color configurations (see discussion in
SET COLOR REPRESENTATION).

INQUIRY FUNCTIONS

These routines retrieve data, mostly from tables or other variables in
the Graphics Package. Unlike routines in the other categories, these
routines do not generate errors -- that is, none of these 11 routines
sends an error code to the Graphics Package error status variable.
Rather, they report the detection of any errors directly by returning an
error code number (or '"0" for "no error") through an "err' parameter in
each routine. Note that, for most of these inquiry routines, no error
number 1is defined; in most cases, there is no error that can occur. The
"err" parameter is maintained in these routines for format compatibility
with the GKS graphics standard. Each function is detailed in the follow-
ing pages.

INQ VIEW AREA(err,bytewdth,scanlineht,chrwdth,txtlineht)
INQ WORLD COORDINATE SPACE(err,x0,y0,x1,y1)

INQ CURRENT TRANSFORMATION NUMBER(err,xform#)

INQ ATTRIBUTES(err,GRcolr,FGcolr,BGecolr,logop,lineclass)
INQ TEXTCURSOR(err,column,row,blinkrate)

INQ GRAPHPOS(err,x,y)

INQ GRAPHCURSOR(err,x,y,blinkrate)

INQ PIXEL ARRAY(Xwdth,Yht,err,invalidvals,arrayname)

INQ PIXEL COORDINATES (Xworld,Yworld,err,Xpixcoord,Ypixcoord)
INQ PIXEL (x,y,err,pxlcolrnmbr)

ERROR INQUIRY(errorcode)

INQ VIEW AREA(err,bytewdth,scanlineht,chrwdth,txtlineht)

Returns for the current view area, the size definition and text parame-
ters of this view area. The view area width is in bytes, the height is
in scanlines, the current width of a character is in pixels (6 or 8), and

the textline height is in scanlines (10..16).

Register assignment:

Input none
Output r5 <-- error code
r8 <-- view area width (1..64 bytes)
r9 <-- view area height (1..256 scanlines

r10 <-- text character width (6,8 pixels)
r11 <-- text line height (10..16 scanlines)

All values are integer.
ERRORS
0 (no error)
EXAMPLE

InqViewArea (ErVar,VAwd,VAht, TXwd, TXht)

17-44 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

Returns for the current view area, in the latter four parameters: the
view area width, view area height, text character width, and text line
height. ErVar=0.

INQ WORLD COORDINATE SPACE(err,x0,y0,x1,y1)

Returns the world coordinate space parameters for the current view area.
Parameters 3 and 4, (x0,y0), give the world coordinates for the lower
left corner of the space (which maps to the lower left corner of the view
area). Parameters 5 and 6, (x1,y1), give the world coordinates for the
upper right corner of the space (which maps to the upper right corner of
the view area). Note that these coordinates do not determine the rela-
tive proportions of top and side of the view area, but rather determine
how points in world coordinate space will map to that view area.

Register assignment:

Input none

Output r5 <-- error code
rré <-- x0
rr8 <-- y0
rr10 <-= X1

rr12 <-= yl

All x and y values are 1EEE single-precision real; the error code is
integer.

ERRORS
0 (no error)
EXAMPLE
IngWorldCoords (ErVar,Xloleft,Yloleft,Xhiright,Yright)

Returns for the current view area, in the latter four parameters: the
world coordinates for the lower left corner, and the world coordinates
for the upper right corner of the rectangular 'problem' space (the space
in which the application program's problem is defined). ErVar = 0.

INQ CURRENT TRANSFORMATION NUMBER(err,xform#)

Returns the identification number of the current view area number in
“"xform#''. This number is used in selecting a different view area of the
screen to which to move (SELECT VIEW TRANSFORMATION), to re-define the
world coordinates (SET WORLD COORDINATE SPACE), to erase a view area's
contents (CLEAR VIEW AREA), to close (i.e., undefine) a viewspace (CLOSE
VIEW TRANSFORMATION), and to retrieve a host of color and coordinate
information about a view space (see the various INQ ... functions).

17-45

Register assignment:

Input none
Ouput r5 <-- error code
r7 <-- view area transformation

number (1..16)

All values are integer.

ERRORS

0 (no error)
EXAMPLE
InqCurTransNmbr (ErVal,ViewArea)

Returns the identification number of the current view area in 'ViewArea."
Erval = 0.
INQ ATTRIBUTES(err,grcolr,fgcolr,bgcolr,logop,lineclass)

Returns the color, logic, and line attributes for the current view area.
Information returned is:

greolr graphics color (current)
(see SET GRAPHICS COLOR)

fgcolr foreground color for text
(see SET TEXT COLOR)

bgcolr background color for text, CLEAR VIEW AREA,
and logic (see SET TEXT COLOR)

logop logic operator (PSET|XOR|AND|NOT|OR|PRESET)

for color(see SET COLOR LOGIC)
lineclass interpretation of line coordinates
(LINE |BOX|BOXFILL; see SET LINE CLASS)

Register assignment:

Input none

Output GS <-- error code
r7 <-- logop (0..5)
r8 <-- lineclass (0..2)
r9 <-- grecolr (0..7)
r10 <-- fgcolr (0..7)
r1 <-- bgcolr (0..7)

All values are integer.

17-46 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

ERRORS
0 (no error)
EXAMPLE
IngAttributes(ErVar,Kgraph,Ktext,Kbackg,Klogic,LBF)

Returns for the current view area, in the latter five parameters: the
current color for graphic output, the current color for text characters
(note that these colors may be different), the current background color,
the current logic operator used (pixel-by-pixel) between new output and
target-area color numbers, and whether the coordinates of a line-function
will be used to generate lines, boxes, or filled boxes. ErVar = 0.

INQ TEXTCURSOR(err,colymn,row,blinkrate)

Returns the next text entry point (which coincides with the location of
the text cursor) and the text cursor blink rate for the current view
area. This position is given 1in number-of-characters from the view
area's left edge (column), text lines from the view area's top (row), and
state changes per second, rounded to the nearest 50-millisecond increment
(blinkrate). Note that this position is NOT where the next graphic out-
put will appear (see INQ GRAPHPOS). Unlike the graphics case, the next
point of entry for text and the text cursor position are identical. If
the information is not available (e.g., view area too small for text), an
error code 1is returned in "err" and the remaining parameters are left
undefined, but no error code is sent to the error status variable.

Register assignment:

Input none

Output r5 <-- error code
r7 <-- blinkrate (0..20)
r8 <-- text column (1..64 or 80)
r9 <-- text row (1..16 or 25)

All values are integer.

ERRORS
0 (no error)
151 "Information not available' (in this case:
view area too small to contain text)
EXAMPLE

IngTextcursor (ErVar,TXcol,TXrow,TXblinkrate)

Returns for the current view area, in the latter three parameters: the
current entry-point and cursor location by column (TXrow) and row
(TXrow), and the blinkrate for the cursor. 1f the information is avail-
able, ErVar=0; otherwise, ErVar=151.

17-47

INQ GRAPHPOS (err,x,y)

Returns for the current view area the location at which new graphics out-
put (note: not text output) will begin (e.g., a LINEREL function would
generate a line with one end at this point). The parameters (x,y) define
a point in world coordinate space. ‘'err' is set to 0.

Register assignment:

Input none

Output rr2 <--y
r5 <-- error code
rré <== X

Values x and y are 1EEE single-precision real; the error code is integer.
ERRORS
0 (no error)
EXAMPLE
InqGraphPos (ErVar, Xpos, Ypos)

Returns for the current view area, in the latter two parameters: the
world coordinates for the current graphics position, i.e., the position
which relative-oriented new graphics output (e.g., LINEREL) will refer-
ence. ErVar = 0.

INQ GRAPHCURSOR(err,x,y,blinkrate)

Returns for the current view area the location of the graphics cursor,
and its blinkrate. Note that the graphics cursor location and the graph-
ics position are generally NOT the same location (unlike the case for
text); the graphics cursor merely marks a place in the view area. An
application program might wish to use these coordinates to update the
current graphics position, or to set an absolute location starting point
for LINEABS or some other geometric output routine. The parameters (x,y)
define a point in world coordinate space; the graphics cursor will place
the upper left corner of its 8 x 12 pixel shape at this 1location. The
blinkrate is in state changes per second, rounded to the nearest 50-
millisecond increment (blinkrate). Note that the graphics cursor loca-
tion and the text cursor location are entirely independent, and that only
one of these two cursors (but possibly neither, if so specified) may
appear at one time.

17-48 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

Register assignment:

Input none
Output rr0 <-= X
rr2 <=-y
() <-- error code
r9 <-- blinkrate (0..20)

Values x & y are single precision real; others are integer.
ERRORS
0 (no error)
EXAMPLE
IngGraphCursor (ErVar,GrX,6rY,blinkrate)

Returns for the current view area, in the latter three parameters: the
current graphics cursor location (GrX,GrY, world coordinates), and the
blinkrate for the graphics cursor. ErVar=0.

INQ PIXEL ARRAY(Xwdth,Yht,err,invalidvals,arrayname)

Retrieves a rectangle from the view area screen and stores it (for later
re-display) 1in ‘'arrayname'. The inverse function is PIXEL ARRAY, which
outputs the rectangle stored in an array to the view area. The upper
left corner of the rectangle to be retrieved from the screen is placed at
the current graphics position. The rectangle size is specified in world
coordinate space dimensions; 'Xwdth'" is in x-axis units, "Yht" is in y-
axis units. These dimensions are transformed into view area dinensions
(pixels).

It is the total pixel count, plus three housekeeping words, that deter-
mines the size of the storage array (recall that, for color systems, the
pixel count effectively doubles or triples). The application program is
responsible for knowing the required array size and for allotting (dimen-
sioning) space for it.

The bulk of the array is bit images for the scanlines within the rectan-
gle, packed 16 bits per array entry. Each scanline image will begin with
the first bit for the scanline in bit 15 of the first array entry for the
scanline (i.e., left-justified). The array must be allotted a size at
least large enough to accommodate the rectangle; the size in words may be
calculated according to the formula:

size = truncate[(pixelwidth+15)/16]*pixelheight*colrplanes+3

where 'colrplanes' is the number of color planes in a system configura-
tion (monochrome=1, four-color=2, eight-color=3); the final 3 words are
for the three housekeeping words at the beginning of the array that store
the rectangle width, height, and special codes. The maximum size is a
full screen (assuming a configuration with sufficient memory to

17-49

accommodate that large an array). The array is one-dimensional.

The "err'" parameter returns value 0 unless a problem occurs, in which
case it returns an integer error code value. An error code will be gen-
erated if the combination of the current graphics position and the width
and height parameters imply a point (i.e., a corner of the rectangle)
that is outside the view area. When an out-of-bounds error is
detected, the destination array is left untouched.

The "invalidvals' parameter reports discovery of invalid pixel color
values. 1f for some reason the color of a pixel cannot be ascertained,
the "invalidvals' parameter is set to indicate 'PRESENT"; if all pixel
values are valid, the "invalid- vals'' parameter is set to "ABSENT'". Note
that the '"err' parameter is not affected by the discovery of invalid
pixel color values.

Register assignment:

Input rr0 <-- X-width
rr2 <-- Y-height
rré <-- arrayname pointer
Output r4 <-- 0,1: invalid values
0 = ABSENT
1 = PRESENT
5 <-- error code

Dimensions are 1EEE single-precision real; the pointer 1is a segmented
address; others are integer.

ERRORS
0 (no error)
7 "Out of memory"
38 ""Parameter out of range"
76 "Error in Parameter"

ARRAY FORMAT

The array is a single-dimension array of one-word integers. The first
three words are housekeeping data; the remainder of the array stores 16-
bit screen image words in each element.

The first word is a one-word integer that gives the width of the rectan-
gle in pixels. The second word is a one-word integer that gives the
height of the rectangle in scanlines. The third word holds codes that
tell about how this array was generated. The low-order byte of this
third word gives the number of color planes that were in use when the
array was filled (monochrome, 1; four-color, 2; eight-color, 3); the
high-order byte is reserved (and should be assigned a value of 0 when
filling array values ''from scratch').

The remainder of the array is one-word integer elements which contain

bit-patterns (16 bits/word) that are retrieved from the screen bit-map
color-planes. The exact structure of the array from this point on is

17-50 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

dependent on how many color planes were active when the array was filled,
since bit-plane data is interleaved scanline-by-scanline.. A first batch
of one or more words (depending on view area width) gets pixels from the
first color-plane's first scanline, transferring pixels left-to-right
into one or more word(s), high-order bits filled first: the last word has
from 0 to 15 low-order bits unused. If there 1is a second color-plane
(i.e., it is a four-color system), that plane's first scanline of pixels
is transferred (again with possible leftover unused bits 1in the last
word); and so on until all colorplanes have had one scanline transferred.
Then another scanline (if any) is transferred, again color-plane by
colorplane; wuntil finally all scanlines have been transferred to the
array.

EXAMPLE

[Assume the default world coordinates (=view
area pixel coordinates, 0..x..511, 0..y..255),
view area #1 only is open:]

IngPixelArray(512,256,ErVar,bogeys,Holdpic)

Retrieves the entire screen (assuming only view area #1 1is open) for
storage in the array Holdpic. Holdpic must be large enough: for mono-
chrome, 8195 words; for four-color, 16387 words; for eight-color, 24579
words. If there 1is an error (e.g., either rectangle-size parameter is
too large), an error code is returned in ErVar, but no error code is sent
to the error status variable. If, for some reason, the color of one or
more pixels cannot be determined, 'bogeys' returns the value 1; otherwise
it is 0.

INQ PIXEL COORDINATES(Xworld,Yworld,err,Xpxlcoord,Ypxlcoord)

Given a point (Xworld,Yworld) in world coordinate space, returns the
corresponding pixel coordinates with respect to the borders of the
current view area, in Xpxlcoord and Ypxlcoord. If the function acts
without problem, ‘'err' returns value 0, otherwise it returns an error
code. However, no error code is sent to the error status variable.

Register assignment:

Input rr0 <-- Xworld
rré <-- Yworld

Output (25} <-- error code
ré <-- Xpxlcoord (0..511)
r7 <-- Ypxlcoord (0..255)

Inputs are 1EEE single-precision real; outputs are integer.

17-51

ERRORS

0 (no error)
38 ""Parameter out of range'

EXAMPLE

Assume a view area that is eight 8-bit characters wide
and 96 scanlines high, with world coordinates
(x-axis: -10,0 to 10.0) and (y-axis: -1.0 to 1.0).
Assume XX= 7.5, YY=-0.125

IngPixelCoords (XX, YY,ErVar, xpx,ypx)

For the given point (XX,YY), the function returns: xpx=56, ypx=42,
ErVar=0. Had XX or YY been outside of their assigned ranges, then
ErVal=38, and xpx and ypx would be undefined; however, no error condition
would be generated.

INQ PIXEL(x,y,err,pxlcolrnmbr)

In the current view area, for the point (x,y) in world coordinate space,
returns the color number of the nearest pixel when the point is mapped
onto the view area space. 1f the function is successful, "err" returns
0; if not, "err' returns an error code.

The pixel color number is the direct number of a color in monochrome and
eight-color systems, but in four-color systems, the value is an index
into a table of pre-selected colors (four colors selected from eight
available).

Register assignment:

Input rr0 <-- X
rré <=-Yy

Output r3 <-- color number (0..7)
r5 <-- error code

Values x & y are 1EEE single precision real; others are integer.

ERRORS

0 (no error)
38 "Parameter out of range'

EXAMPLE
IngPixel (XX, YY,ErVar,Colr)
Assuming (XX,YY) is a valid world-coordinate-space point, a corresponding
point in the view area is calculated, and the nearest pixel is selected.

"Colr" returns a value for that pixel that is interpreted as a color
number or as an index into a color table which selects a color number

17-52 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

(see discussion above). "ErVar'=0. If (XX,YY) falls outside the defined
world coordinate space, then "ErVar' returns an error code, and "Colr" is
undefined.

ERROR INQUIRY(errorcode)

Returns the error status for the most recently called graphics routine
other than an INQ ... routine. The INQ ... class of functions do not
alter or reference the error status variable: rather, each routine of the
INQ ... class has its own '"error' parameter, through which it reports any
problems (or "OK"). Each of the non-INQ... routines clears the error
status variable prior to execution of its assigned task, so that upon
completion of the routine, the error status variable reflects the error
status of that routine. If the status value is '0'", then no error has
occurred.

Register assignment:

Input none

Output r5 <-- error code (0..255)
0 = no error,
1..255 = some

error code
All output is integer.
ERRORS

none (this routine does not itself generate errors or
write to the error status variable)

EXAMPLE

[Assume an application program has already defined 16
view areas]

DivViewArea(0,23,TransNmbr)

Errorlng(ErVal)

if (Erval>0) then exit

DivViewArea attempts to create one more view area than 1is possible,
thereby placing an error code, (#36, '"unable to create view area') in the
error status variable. "Errorlng" returns that value in "ErVal"; since
it is 1indeed greater than zero, the "if'" test is ''true' and the conse-
quent statement is executed (e.g., if "exit" implies a jump to a pro-
cedure which ends the application program, then the program is ter-
minated).

17-53

REFERENCES

Reference material gives language bindings PASCAL and assembly language,
and provides a concordance between BASIC and PCOS 3.0 that compares M20
BASIC graphics with this Graphics Package.

Additional reference material lists graphics system calls and graphics-
caused error messages.

LANGUAGE BINDINGS

Pascal Language Binding

The following identifiers are the procedure names for PASCAL. They are
listed in the order that they appear in the functional description.
Parameters are as specified in the functional descriptions: integer
numbers or variables, real numbers or variables, or array identifiers.

LineAbs OpenGraphics
LineRel CloseGraphics
Polyline SetWorldCoordSpace
MarkerAbs DivideViewArea
MarkerRel SelectViewTrans
Polymarker CloseViewTrans
TextCursor ClearViewArea
GraphPosAbs Escape
GraphPosRel
GraphCursorAbs IngViewArea
GraphCursorRel IngWorldCoordSpace
PixelArray InqCurTransNumber
GDP IngAttributes
InqTextCursor
SetLineClass IngGraphPos
SetTextline IngGraphCursor
SelectCursor IngPixelArray
SetTxCsrBlinkrate IngPixelCoords
SetGrCsrBlinkrate IngPixel
SetTxCsrShape Errorlnquiry
SetGrCsrShape
SetColourRep
SelectGrColour
SelectTxColour
SetColourLogic

Assembly Language Binding

The following identifiers are the procedure names for PLZ/ASM and M20
assembler. They are 1listed in the order that they appear in the func-
tional description. Parameters are as specified in the functional
descriptions: integer numbers or variables, real numbers or variables, or
array identifiers. Consult the functional description for parameter
register assignments and structures for arrays and records.

17-54 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

LineAbs OpenGraphics
LineRel CloseGraphics
Polyline SetWorldCoordSp
MarkerAbs DivideViewArea
MarkerRel SelectViewTrans
Polymarker CloseViewTrans
TextCursor ClearViewArea
GraphPosAbs Escape
GraphPosRel
GraphCursorAbs IngViewArea
GraphCursorRel IngWorldCoordSp
PixelArray InqCurTransNmbr
GDP IngAttributes
InqTextCursor
SetlLineClass IngGraphPos
SetTextline InqGraphCursor
SelectCursor IngPixelArray
SetTxCsrBlnkrate IngPixelCoords
SetGrCsrBlnkrate IngPixel
SetTxCsrShape Errorlnquiry
SetGrCsrShape
SetColourRep
SelectGrColour
SelectTxColour
SetColourlLogic

CONCORDANCE BETWEEN BASIC AND PCOS 3.0 GRAPHICS PACKAGE

BASIC GRAPHICS PACKAGE

WINDOWS : Define New Window
var=WINDOW (Q,P,[,V] [,h] DIVIDE VIEW AREA (div/

orient, divpt, xform#)

See also SET TEXTLINE

Change to Different Window

SELECT VIEW TRANFORMATION

WINDOW %num_or_var
(xform#)

Retrieve Current window Number

var=WINDOW (0,0) INQ CURRENT TRANSFORMATION

NUMBER (err, xform#)

17-55

COLORS:

17-56

Define Text Spacing

var=WINDOW (0,0,[,v] [,h])

Clear Window

CLS [%wndw]

Release Window Definition

CLOSE WINDOW [%wndw]

Select Palette

COLOR= n1, n2, n3, n4

Set Foreground, Background
Color

COLOR [%wndw] n [,n]

Fill Area with Color

PAINT [%wndw] (x,y)
[,clr [,borderclr]]

Define Coordinate System
(WC&NDC&DC)

SCALE [%wndw] x1,xh,yl, yh

SET TEXTLINE (chrwdth,
txtlineht)

CLEARVIEW AREA (xform#, err)

CLOSE VIEW TRANSFORMATION
(xform#)
[(xform#=0)-->close view
areas 2-16]

SET COLOR REPRESENTATION
(indx#, colr#)

SELECT GRAPHICS COLOR (nmbr)
SELECT TEXT COLOR
(fgnmbr, BGnmbr)

ESCAPE (1,recordname)
[1st param.: 1="flood"]
[recordname: x,y,color,
bordercolor]

SET WORLD COORDINATE SPACE
(xform#,x0,y0,x1,y1)

PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

CURSOR:

Retrieve Pixel Coordinate
given SCALE

SCALEX (x_scale_coord)
SCALEY (x_scale coord)

Move Text Cursor

CURSOR [(x,y)]
[0:1 (=off:on)]
[,rate [,shape]]

Move Graphics Cursor

CURSOR POINT [[same arg
list as CURSOR]]

Turn Off Cursor

See CURSOR and

CURSOR POINT

Define Cursor Attributes

See CURSOR and
CURSOR POINT

INQ PIXEL COORDINATES
(xworld,Yworld,err,
Xpixcoord, Ypixcoord)

TEXTCURSOR (column,row)
See also

SET TEXT CURSOR BLINKRATE
SET GRAPHICS CURSOR BLINK-
RATE

SET TEXT CURSOR SHAPE

SET GRAPHICS CURSOR SHAPE

GRAPHCURSORABS (x,y)
GRAPHCURSORREL (dx,dy)

See also

SET TEXT CURSOR BLINKRATE
SET GRAPHICS CURSOR BLINK-
RATE

SET TEXT CURSOR SHAPE

SET GRAPHICS CURSOR SHAPE

SELECT CURSOR
(selectnmbr)

SET TEXT CURSOR BLINKRATE
(rate)

SET GRAPHICS CURSOR BLINK-

RATE (rate)

SET TEXT CURSOR SHAPE
(arrayname)

SET GRAPHICS CURSOR SHAPE
(arrayname)

17-57

Retrieve Cursor position re:
current window

var=P0S (0:1) [[=row:col]] INQ TEXTCURSOR
(above for text only) (err, column, row,
blinkrate)

INQ GRAPHCURSOR
(err,x,y,blinkrate)

DRAW: Set Current Graphics Position
See DRAW GRAPHOSABS (x,y)
GRAPHOSREL (dx,dy)
Draw Line

LINE [%wndw,] [[STEP] (x1,yl)-] | LINEABS (x,y)

[STEPI(x2,y2) LINEREL (dx,dy)
[,[clr][,[BLFIILL,vb] POLYLINE (#points,Xarray,
Yarray)
See also

GRAPHOSABS, GRAPHOSREL,
SET LINE CLASS,
SELECT FOREGROUND COLOR
SET COLOR LOGIC

Draw Circle (or Ellipse)

CIRCLE [%wndw,] (x,y),r GDP(1,2,Xarray,Yarray,
[,[dr]l,[aspll,vb]] datarec) (1=Circle)
GDP(2,3,Xarray,Yarray,
datarec) (2=Ellipse)
[arrays contain defining
coordinates; ''datarec"
is unused]
See also:
SELECT GRAPHICS COLOR
SET COLOR LOGIC

17-58 PCOS SYSTEM PROGRAMMER'S GUIDE

GRAPHICS SUB-SYSTEM

PIXEL:

BITMAP:

Move (& Draw?) to Point(s)

DRAW [%WNDW] str. const.:var

M dx,dy U dy
J x,y D dy

L dx
C clr R dx

B- [prefix: don't draw]

verb postfixes:
-A [and]
-0 [or]
-N [not]
-X [xor]

-P [=PSET; default]
-R [=PRESET, bkgnd clr]

Set Pixel to Foreground (or

Color)

PSET [%windw](x,y) [,clr]

Set Mearest Pixel to Background

Color

PRESET[%wndw]) (x,y)

Retrieve Color Number, Nearest

Pixel

var=POINT (x,y)

Store Displayed Bitmap Segment

GET [%wndw,]
(x1,yl)-(x2,y2),
1st array elem.

See above Geometric
Primitives

MARKERABS (x,y)
MARKERREL (dx,dy)
POLYMARKER (#points,
Xarray,Yarray)

See also:

SELECT GRAPHICS COLOR

Set graphics color to

BACKGROUND; use MARKER...

Change graphics color

INQ PIXEL(x,y,err,
pxlcolrnmbr)

INQ PIXEL ARRAY(Xwdth,Yht,
err,invalidvals, arrayname)

See also
GRAPHOSABS, GRAPHOSREL,

SELECT VIEW TRANSFORMATION

17-59

Display Stored Bitmap Segment

PUT [%wndw,] PIXEL ARRAY(Xwdth,Yht,
(x1,yl)[-(x2,y2)], arrayname
1st array elem. [,vb] See also:

GRAPHOSABS, GRAPHOSREL,
SET COLOR LOGIC

MISC. Open, Re-initialize, and Close
Graphics
(Call in BASIC) OPEN GRAPHICS
CLEAR CLOSE GRAPHICS

Preset Primitive Attributes

SET COLOUR LOGIC
(operatornmbr)
SET LINE CLASS
(classnmbr)

Retrieve Status Data

INQ GRAPHOS(err,x,y)

INQ ATTRIBUTES(err,GRcolr,
FGcolr,BGcolr,logop,
lineclass)

INQVIEW AREA(err,
bytewdth,scanlineht,
chrwdth,txtlineht)

INQ WORLD COORDINATE SPACE
(err,x0,y0,x1,yl)

ERROR INQUIRY(errorcode)

17-60 PCOS SYSTEM PROGRAMMER'S GUIDE

PART Il

18. OVERVIEW

ABOUT THIS CHAPTER

This chapter describes the contents of Part 3, which contains practical
information for programmer use and reference material.

CONTENTS

INFORMATION IN PART 3 18-1

BRIEF DESCRIPTION OF
CONTENTS 18-1

CREATING M20 SYSTEM
UTILITIES 18-1

SYSTEM CONFIGURATION 18-1

PCOS ENVIRONMENT AND GLOBAL
COMMANDS 18-1

CUSTOMIZING A PCOS SYSTEM 18-2
DATA PASSING MECHANISM 18-2
LANGUAGE SUPPORT 18-2

INSTALLING PCOS ON A

HARD DISK 18-2
ASCI1 18-2
PCOS ERROR CODES 18-2

GLOSSARY 18-2

OVERVIEW

INFORMATION IN PART 3

Part 2 of the manual contains an extended functional description of PCOS
architecture. Part 3 supplements Part 2 with two kinds of information:

- Practical information on how to enhance or configure PC0S, such as
""Creating M20 System Utilities" or ''Customizing a PCOS System'

- Reference material such as ''Data Passing Mechanism'" or 'PCOS Error

Codes." Some reference material is included in order to provide a
concise reference to information covered in more detail elsewhere,
but scattered in several locations. Other reference material is
unique.

BRIEF DESCRIPTION OF CONTENTS

A brief description of the contents of Part 3 is given below.

CREATING M20 SYSTEM UTILITIES

This section gives information on how to develop a utility program that
can be executed as a PCOS command. The command routine must be capable
of being loaded and executed by the command line interpreter, and prop-
erly returning control to the system after its task is completed. It may
also need to make use of parameter information entered on the command
line and passed to it by the command line interpreter.

SYSTEM CONFIGURATION

This section and the next two form a set that discusses the concepts of
system configuration, environment, and customization. This first section
relates system configuration to operational environment, and also con-
tains some examples of hardware system configuration changes that require
software support using PCOS utilities or custom software.

PCOS ENVIRONMENT AND GLOBAL COMMANDS

This section explains the relationship between PCOS and the operational
environments that provide particular capabilities to the user. An over-
view is given of all the global commands that collectively define the
PCOS and BASIC environments.

18-1

CUSTOMIZING A PCOS SYSTEM

This section reviews the software resources and utilities available to
the system programmer for customizing PCOS to the requirements of partic-
ular installations and applications.

DATA PASSING MECHANISM

This section describes the general data passing mechanism PCOS uses to
pass information among its internal elements and between PCOS and its
supported languages. The method uses the stack, and can pass numbers,
strings, null values, and a return address.

LANGUAGE SUPPORT

This section provides a fundamental overview of the support PCOS provides
for high-level languages, some of which can be used for assembly language
programming. Topics include data passing, calling on internal PCOS
resources, memory allocation, and internal representation of numbers.

INSTALLING PCOS ON A HARD DISK

This section gives information on installing or updating PCOS on a hard

disk. Information 1is included on how to preserve prior system reconfi-
gurations.
ASCI1

This section describes the ASCII standard for information interchange as
used in the PCOS system and gives information on its general use and
modification.

PCOS ERROR CODES
This section lists error codes and their meanings for BASIC and PCOS.
Information 1is provided on changes and differences between PCOS 1.X and

PCOS 3.X error codes. Suggestions to the programmer on the use of error
codes are also given.

GLOSSARY

The glossary contains definitions of terms together with conceptual
explanations. Definitions are oriented towards PCOS and the M20 system.

18-2 PCOS SYSTEM PROGRAMMER'S GUIDE

19. CREATING M20 SYSTEM UTILITIES

ABOUT THIS CHAPTER

This chapter gives information on how to develop an assembly language
utility program that can be executed as a PCOS command.

CONTENTS

OVERVIEW 19-1
OBJECT CODE FORMAT 19-1
CODEFILE FORMAT 19-1
BANNERS 19-2
EXTERNAL REFERENCING 19-3
PARAMETER PASSING 19-4
ERROR HANDLING 19-6

EXAMPLE UTILITY 19-7

CREATING M20 SYSTEM UTILITIES

OVERVIEW

This section gives information on how to develop an assembly language
utility program that can be executed as a PCOS command. When the command
routine is developed and tested, it can be given an appropriate name and
extension and used as a transient command or PSAVED and made part of a
customized operating system. For information on names and extensions,
see Part 2, "Commands and Utilities."

The command routine must be capable of being loaded and executed by the
command 1line interpreter and properly returning control to the system
after its task is completed. It may also need to make use of parameter
information made available to it by the command line interpreter. The
remainder of this section explains these matters.

OBJECT CODE FORMAT

Here is some information on the object code format for a transient util-
ity and how to create the source code for the required object codes. The
subjects covered are codefile formats, banners, external referencing,
parameter passing, and error handling.

CODEFILE FORMAT

There is an Olivetti - Microsoft codefile standard for all M20 relocat-
able wutilities. The format is very simple; the codefile begins with a
2-byte code, the codefile configuration type, which defines the format
further. The information which follows the configuration code tells the
Command Line Interpreter or PLOAD where the initialization code 1is and
where the main program is. This free-format allows for some useful
features. It automates the execution of initialization code, 1if any,
required by the utility. It also allows the execution of the utility to
start at a specified entry point.

The initialization code is the code which should be executed only once,
upon the 1loading of the wutility. The main program is the code which
should be executed only at run time and not at load time.

The configuration type MUST be the first word in the code file. This is
accomplished by entering '"wval' statements at the beginning of the source
file, and by making sure that at TLOC time the segment which contains
this code is imaged first.

Configuration type is an integer which may be 0, 1, or 2. This is easy
to remember because it always indicates the number of entry pointers that
follow.

19-1

Configuration
Type Explanation

0 There are no pointers to either the main program
or the initialization program. The next location
is the main entry of the utility and there is no
initialization code.

1 The next location is a pointer to the initial-
ization code. What follows this pointer 1is the
main entry point of the utility.

2 Two pointers follow. The first is a pointer to
initialization code, and the second 1is a pointer
to the main entry point of the utility.

Type 0 Type 1 Type 2

| [g T |
| =mmmm e | | I |
LK) o R S S BT
[main entry code| |initialization | |initialization |
l [| ptr [T -~y Sptn |
| * s R I S |
| . | |main entry code| |main entry ptr |

l |
I . | e |
| . | I . |

Type 0 is the most common type used by M20 utilities. However, if a
utility has initialization code, then either type 1 or 2 must be used.
1f the entry point of the main line program is not at the beginning of a
utility, then type 2 must be used.

Type 9 wie Tuype 4 aber Evtlacleverbes
BANNERS

The banner, as used for PCOS utilities, has a very rigid format which was
adhered to, because many items depended upon it. PLOAD depends on the
name string to be at a fixed location so it can be displayed. DSTRING
depends on the null terminator so it knows the length of the string.
Labels and comments allow keeping track of versions. The user expects
all utilities to behave in a predictable and consistent manner. However,
the user may have more allowance in his or her choices (and may not need
a banner at all).

19-2 PCOS SYSTEM PROGRAMMER'S GUIDE

CREATING M20 SYSTEM UTILITIES

The rules followed by PCOS software development were as follows:

1. 1In the object file, the banner must begin at the fourth byte within
the main procedure (code segment). 1t must end with a zero byte.

2. 1In the source file, the banner must be preceded by the label str: and
terminated with the standard comment.

3. The name of the utility must be spelled out in full, with exactly two
capital letters; those used to invoke the util- ity. The name should
end with at least one space, to separate it from the revision code.

4. The example below has a revision code. By definition, is it kept the
same for all wutilities 7or a particular revision. In the example,
this information is included via an "include' file called revnum.

5. In the example, a development code is used to indicate the develop-
ment version. It is lower case letter that should start out as "a",
and 1increment once with each modification. For release, the
development code is changed to a blank.

The example which follows is for the FCOPY wutility. The object code
would be placed on disk as a transient command under the name
"fcopy.cmd'.

str: array [* byte] := 'File Copy '
array [* byte] := 'a %r%00' // INCR DEV. LEVEL FOR EACH MODIF.

EXTERNAL REFERENCING

Generally speaking, relocatable utilities cannot reference external pro-
cedures or variables, because they must run regardless of location. In
order for the programmer to reference necessary external values, PCOS
provides appropriate system calls. All information contained in PCOS
system variables that is required for use when writing a PCOS utility is
available through system calls, directly or indirectly.

PCOS internal routines can also access external variables through the
"master table." However, these table entries are subject to change of
location on every release of PCOS, while system calls are independent of
location. Therefore, command routines cannot use the master table.

System calls are discussed in Part 2 of this manual. A detailed refer-
ence for each call is available in the Assembler User Guide.

19-3

PARAMETER PASSING

Most utilities expect to process one or more parameters. The command
line interpreter pushes all parameters onto the stack according to a par-
ticular format, so they must be popped by the utility according to the
same format. When the command line interpreter calls the routine, its
return address goes on top of the stack. Returning via this address
allows the system to take control properly. The address must be safe-
guarded.

Then, the utility pops off one word, which is 'n', the number of parame-
ters. The command line interpreter limits the number of parameters, so
this number will never be negative and will never be larger than 20 (hex-
adecimal 14). Each parameter entry is a long word, so the utility must
next pop ''n' number of long words off the stack. (The first one popped
is the first parameter the user gave, and so on.) The utility must be
careful to pop exactly 'n" long words, and not rely on the number which
is expected, because the user can enter an unexpected command line.

Here is an example of the stack upon entry to the FCOPY procedure. The
command line was:

fc filel file2

SP -> | return address (long)
| 2 | (word)
| parameter entry for 'filel' | (long)
| parameter entry for 'file2' | (long)

The format of the parameter’ entry is complex. It is an address pointer
where the segment portion of the long word is "OR'ed with the parameter
type. As an illustration,

Where the pointer is <<6>>0C00 and the parameter type is 3.
The parameter type must be extracted from the entry, by clearing the

low-byte of the segment, before the pointer can be used. In this exam-
ple, the parameter type is 3 and the pointer is 8600 0C00.

19-4 PCOS SYSTEM PROGRAMMER'S GUIDE

CREATING M20 SYSTEM UTILITIES

The format of item pointed to depends upon the parameter type. The
command line interpreter passes three types of parameters to command rou-
tines:

0 null
2 integer
3 string

There are other types of parameters used within PCOS, especially by the
languages supported by PCOS. For information on these other types, see
the 'Data Passing Mechanism' section in Part 3.

For convenience, a brief discussion of format of these three parameter
types is given below along with notes on the usage of these types by com-
mand routines. More details are given in the '"Data Passing Mechanism"
section.

Null Parameters and Default Values

Null (or nil) parameters are put on the stack when the user enters a del-
imiter without a parameter entry. (The parameter entry is blank or
null.) The command routine is responsible for supplying default values
for null parameters. Using the SBASIC command for an example:

sbi 4,,/5,512/CRY/

The SBASIC command has four possible parameters. 1In this case, the first
two entries supplied by the CLI are null. The command routine must sup-
ply default values.

Missing Parameters

Default values must also be supplied for missing parameters when
appropriate. For example:

ps /CR/
sb ,,5/CR/

In the case of PSAVE, an optional file identifier could have been sup-
plied. The command routine 1is given zero parameters and supplies the
default file identifier. 1In the case of SBASIC, three parameters are
supplied (two in null form). The command routine will supply the fourth.

Integer Parameters

1f the parameter is an integer, then the pointer points to a 2-byte array
containing the value. This array may or may not be at an even boundary
address, so the value must be loaded into registers one byte at a time.
For example, 1if the pointer entry is 8602 0C00, then after the type is

19-5

extracted the pointer is 8600 0C00.

pointer to integer: <<6>>0C00:

| 8600 0C00 | =-=->] 00 | 05 |

In this example, the integer value is 5.

String Parameters

1f the parameter is a string, then the pointer points to a 3-byte array
where the first byte contains the length of the string, and the other two
are the integer offset of the pointer to the string. (The segment is
assumed to be the same as before.) Again, this offset may or may not be
at an even boundary address, so it must be loaded into registers one byte
at a time.

For example, if the pointer entry 1is 8603 0C00, after the type 1is
extracted the pointer is 8600 0CO00.

pointer to string: <<6>>0C00:

| 8600 0Coo0 -——> | 05 | [oc | 09

<<6>>0C09:

In this example, the string length is 5.

ERROR HANDLING

1f only we could assume no errors will occur, our code could be reduced
in size by 90%. However, we should still check for errors. There is a
standard method for doing this in PCOS transient utilities.

All the PCOS errors have an error code between 0 and 127. The "PCOS
Error Codes" section in this part of the manual describes these errors.
The section contains a sample include file defining all errors as con-
stants. When referencing an error code in your utility, you should use
the constant name rather than the number. For example, use
"file exists_err" rather than "58".

All PCOS components and utilities, as well as BASIC, assume the error
code 1is in register r5. If r5 is zero, then there is no error. Because
all error codes fit into the lower byte of r5, the high byte can be used
for reporting a parameter number, 1if desired. Parameter numbers are
optional, and if not reported, then rh5 should be zero.

19-6 PCOS SYSTEM PROGRAMMER'S GUIDE

CREATING M20 SYSTEM UTILITIES

With regard to error handling, there are two responsibilities prior to
exit. First, the message must be displayed. This is done by system call
#88, error message display. PCOS will display the appropriate message
for the error in r5.

The second responsibility is to retain the error code in r5 upon exit.

Here is an example:

el r5 // no errors to report
jr normal return
error_hand routine:
1d " r5,error code num // errors to report
sc #Error -
normal return:
1d1 rr14,return address
ret -

EXAMPLE UTILITY

On the following pages is an example utility, FCOPY, which may be used as
an example for Z8000 assembly language programming demonstrating confi-
guration code setup, banners, system calls, parameter processing, and
error handling.

fcopy MODULE
$SEGMENTED

edit history

who date description
Ken 4/13/82 Added copy protection schemes.
1
#include <errcons.i> //error code names
#include <constants.i> //system call names
CONSTANT
STRING := 3 // parameter type
GLOBAL
fc PROCEDURE
ENTRY
fcstart: wval 0
jr start
internal
st array [* byte]l:= 'File Copy ' //program id
#include <revnum.i>
array [* byte] := 'c %r%00' // INCR DEV. LEVEL EACH MODIF.
internal
retadr long
param count byte
start:
lda rr12,str //display program id
sc #Dstring

19-7

fc_param bad:

nofile error:

19-8

clrb
pop
clr
1d
sll
addl
1d1
test
ip

incb
popl
cpb
P
clrb
clrb
1db
inc
1db
inc

1db
1d
1d
incb
dec
ip

popl
cpb

clrb
clrb
1db
inc
1db
inc
1db
1d
1d
dec

1db
1db
jr

param count
ro,err14

r2

r3,r0

r3,#2

rr2,rr14
retadr,rr2

ro
z,fc_param bad

param_count
rr2, @rri14

RL2, #STRING
ne, fc_param_bad
RL2 2

RH6

RL6, @rr2
r3

RH1, @rr2
r3

RL1, @rr2
r9; ri

r8, r2
param_count
r0

z,fc_param bad

rr2, @rri4

RL2, #STRING
ne,fc_param_bad
RL2

RH7

RL7, @rr2

RH1, @rr2
RL1, @rr2

i b |
r10, r2

//number of parameters passed

//compute return address
//save return address

// FIRST FILE PARAMETER
// rr2 = ptr to first file
// check for string type

// ré6 = filename len of file 1

// get first half of ptr offset

// second half, now offset in r1
// rr8 is real ptr for file 1

// SECOND FILE PARAMETER
// one less parameter

// rr2 = ptr to second file
// check for string type

// r7 = filename len of file 2
// get first half of ptr offset
// second half now offset in r1

// rr10 is real ptr for file 2
// one less parameter

! rest of utility code goes here !

RH5,param_count
RL5,#param err
fc_quit

PCOS SYSTEM PROGRAMMER'S GUIDE

CREATING M20 SYSTEM UTILITIES

1d r5,#file not found err
fc_quit:
1dl rr14,retadr
ret
END fc
! internal procedures go here !
END fcopy

19-9

20. SYSTEM CONFIGURATION

ABOUT THIS CHAPTER

This chapter describes the relationship between hardware system confi-
guration and the operational environments. The chapter also contains
some examples of hardware system configuration changes that require
software support using PCOS utilities or custom software.

CONTENTS
OVERVIEW 20-1

RELATIONSHIP OF CONFIGURATION

AND ENVIRONMENT 20-1
PCOS 20-2
BASIC 20-3
OTHER LANGUAGES 20-3

MODIFYING THE PCOS
ENVIRONMENT 20-3

SOFTWARE RE-CONFIGURATION

OF HARDWARE 20-3

PRINTERS 20-3

DISK FORMATS 20-4

|

|

SYSTEM CONFIGURATION

OVERVIEW

This section describes the relationship between hardware system confi-
guration and the operational environments, which consist of the system
capabilities available to the user. The section also contains some exam-
ples of hardware system configuration changes that require software sup-
port using PCOS utilities or custom software.

This section together with the next two make a complete set. 'PCOS
Environment and Global Commands' gives an overview of the utilities
available to define the BASIC and PCOS environments. 'Customizing a PCOS
System'" concludes the set of three sections with an overview of the
methods available in PCOS to configure a system for a particular instal-
lation or environment.

RELATIONSHIP OF CONFIGURATION AND ENVIRONMENT

The figure below shows the fundamental relationships among the M20
hardware configuration, the Professional Computer Operating System
(PCOS), BASIC, the PCOS utilities and commands, and application programs.

20-1

M20 Hardware System Configuration

.BASIC .Commands

.BASIC .Utilities
Application .Application
Programs Programs

Fig. 20-1 Configuration and Environment

PCOS

The hardware configuration provides the fundamental universe of possibil-
ities for wuse of the operating system and the other software resources.
PCOS (or another operating system) provides functionality to the poten-
tials of the hardware. The PCOS kernel controls the system peripherals
and provides 1input/output capability. The kernel manages system
resources such as system memory and the real-time clock, communicates
with the user via the command line interpreter, and schedules internal
activities. PCOS contains many other routines which are brought into
action by the kernel as needed. Some of these software resources are
simply part of PCOS but not part of the kernel. Others have names and
are visible to the user as PCOS commands and utilities.

20-2 PCOS SYSTEM PROGRAMMER'S GUIDE

SYSTEM CONFIGURATION

BASIC

BASIC uses PCOS resources and supplies resources of its own to the appli-
cation programmer. When BASIC 1is running, PCOS is hidden. The user
interacts with the BASIC operational environment which provides its own
services and capabilities.

When an application program written in BASIC is running, it defines the
user environment within the possibilities of BASIC. However, PCOS utili-
ties can be called from BASIC.

OTHER LANGUAGES

Commands, utilities, and application programs that are written in assem-
bly language or a compiled language such as PASCAL or C, all present PCOS
resources to the user directly. Some of these may enhance the PCOS
environment to the degree that they present a new operational environ-
ment. The Video File Editor is an example.

MODIFYING THE PCOS ENVIRONMENT

PCOS makes available to the user several utilities that allow modifica-
tion of the PCOS and BASIC environment. They are called the Set System
global commands. The next section "PCOS Environment and Global Commands'
provides a general discussion of this important topic.

SOFTWARE RE-CONFIGURATION OF HARDWARE

The possibilities of M20 hardware configuration are presented in Part 1.
They 1include adding expansion memory, using a color display, and provid-
ing optional peripherals and communications methods.

In addition, there are possibilities of hardware configuration that
require software support using PCOS utilities or custom routines. Some
of these are presented below.

PRINTERS

It is possible to use both a serial and a parallel printer although PCOS
supports only one printer as FID 18. The easiest approach is to use
SFORM and configure two versions of PCOS, one for each printer. Then
either printer can be used alternately as desired.

Another method is to configure the parallel printer using SFORM, and then
to use the RS232 interface to support a serial printer. This requires
work, but allows both printers to be used together.

In some cases, non-standard printers can be supported using SFORM with
the TRANSP (transparent) setting for the printer type. This setting
causes all values in the text file to be sent without modification, which
allows sending of special control sequences.

20-3

However, using a non-standard printer loses many of the design benefits
of PCOS which so closely integrate the printer with other system
resources, such as font definition and graphics.

DISK FORMATS

The "Disk Driver' section of Part 2 mentions that the driver can support
certain non-0Olivetti formats. These include ECMA and MS-D0S. The key
design point for PCOS support of other formats is that the order of sec-
tors within a track is independent of the disk driver, which does not
have internal tables with this information. The order of sectors is set
by the format utility, VFORMAT.

The order can be altered by developing a format utility that uses a dif-
ferent order. Therefore, so long as the desired format fits within the
general range that PCOS supports for sector size and number of tracks, it
can be used. Of course, a different order of sectors may degrade perfor-
mance by causing the driver to miss a sector and have to access it on the
next rotation.

20-4 PCOS SYSTEM PROGRAMMER'S GUIDE

21. PCOS ENVIRONMENT AND
GLOBAL COMMANDS

ABOUT THIS CHAPTER

This chapter explains the relationship between PCOS and the operational
environments that provide particular capabilities to the user. An over-
view is given of all the global commands that collectively define the
PCOS and BASIC environments.

CONTENTS

PCOS ENVIRONMENT 21-1
GLOBAL COMMANDS 21-1
GLOBAL COMMAND OVERVIEW 21-1

PSAVE AND DEFAULT OPTIONS 21-3

INTERACTION OF BASIC AND
GLOBAL COMMANDS 21-4

SBASIC 21-4

SSYS (SET SYSTEM) AND
DISPLAY MODE 21-4

PCOS ENVIRONMENT AND GLOBAL COMMANDS

PCOS ENVIRONMENT

PCOS support for the M20 system provides three operational environments:
PCOS itself, BASIC, and the Video File Editor. Each operational environ-
ment provides particular capabilities to the user. PCOS 1is fundamental
to the other two: BASIC and the editor require support services from
PCOS.

GLOBAL COMMANDS

PCOS provides global commands which are utility programs that allow the
user to change ''global parameters.'" These parameters are internal values
that collectively define a PCOS environment.

The global commands can be used by non-programmers to define the PCOS

environment and the BASIC environment. The commands are documented indi-
vidually in the User Manual. An overview of the global commands follows.

GLOBAL COMMAND OVERVIEW

Like other PCOS commands, the global commands have standard or default
values. However, once a global parameter has been set by a global com-
mand, that setting remains in the system during successive working ses-
sions until it is reset. There are a few exceptions to the rule that the
most recent setting is the default value. Exceptions are noted below.

1. SBASIC (sb) sets the BASIC programming environment.

Files The number from 0 to 15 that can be opened concurrently.
Bytes Amount available within 57K.
Windows Preallocated memory space from 1 to 16.

Record size The maximum record size from 1 to 4096 bytes available
for random files.

The effect of parameter settings on user memory allocation is as fol-
lows:
- Each window after the first requires 108 bytes.

- The file and record settings interact to require storage accord-
ing to the formula:

829 + F(578 + R)
where F is the number of files that can be open and R is the max-

imum record size. Note that the maximum record is allocated for
every file.

211

SCOMM (sc) sets the transmission environment for an RS-232-C communi-
cations port. For more details refer to the '"I1/0 with External Peri-
pherals User Guide."

SDEVICE (sd) displays the names of devices in the system and permits
renaming of devices. A new device name may be assigned using a name
consisting of 13 characters or less.

Default Device Names

prt: -- PCOS Printer Driver

cons: -- PCOS Console Driver (video and keyboard)

com: -- Standard RS232-C communication port

coml: -- First RS232-C communication port on
Twin Board

com2: -- Second RS232-C communication port on
Twin Board

ieee: -- 1EEE-488 driver

Com1, com2, and ieee require optional hardware boards for implementa-
tion.

SFORM (sf) specifies type of printer, printer interface (serial or
parallel), and printing format.

The SFORM command is used to set the printing environment. It speci-
fies the type of printer being used and the printing format, and
allows the user to change parameters in the printer driver.

SFORM parameters are:

auto This parameter specifies whether default values are used,
or new values specified by SFORM (PSAVED or not). Auto
OFF always returns to the default values.

ptype The ptype parameter specifies the type of printer or
TRANSP (transparent mode). 1n transparent mode file con-
tents are printed exactly as specified in the file
irrespective of the type of printer.

lines The lines parameter specifies the number of 1lines to be
printed on each page before automatic form feed. Zero
implies that no form feed will be issued.

spacing This parameter specifies the number of inter-line spaces
between printed lines.

compress This parameter specifies the style of the character. The
width of the character can be specified and whether it is
to be normal print or bold print.

interface This parameter specifies whether the printer is to be con-
nected to the serial or parallel interface.

PCOS SYSTEM PROGRAMMER'S GUIDE

PCOS ENVIRONMENT AND GLOBAL COMMANDS

title This parameter defines an optional title to be printed at
the top of each page.

5. SLANG (sl) selects the current keyboard from the national keyboards
for various languages. This command can be used either to directly
select one of the keyboards, or to display the menu of the available

country configurations. The new keyboard can be changed using
another SLANG command, or it can be made permanent using the PSAVE
command.

6. SSYS (ss) sets the following system parameters:
Date Set date. Form depends on national keyboard.
Time Set time, hh:mm:ss.

Disk Verify Verify on, verify off. Verify on causes data that is
written to diskette or the hard disk to be read back and
checked.

Extent Size The number of sectors to be allocated to a file when
more space is required, range 1 to 1087.

Display Select 16 lines of 64 characters each, or 25 lines of 80
characters each.

Disk Time Select the number of seconds the motor remains on fol-
lowing the 1last access to a diskette in a particular
drive, range 1 to 30.

Date and Time parameters are incremented until the sys-
tem 1is physically reset or switched off, then revert to
the default values. Changes to other parameters are
valid until respecified or wuntil the working session
ends. With the exception of Disk Time, modified parame-
ters can be permanently retained using PSAVE.

For additional information on the Set System global commands, refer to
the PCOS Operating System User Guide.

PSAVE AND DEFAULT OPTIONS

Different versions of PCOS can be configured by using different settings
of these global parameters and PSAVing the setting (with certain excep-
tion noted above). The configuration selected and PSAVED then becomes
the current system configuration when that PCOS is booted. (PSAVE copies
PCOS, and the new settings, to a new PC0S.file.) The user can, thus,
have several system disks, each configured for a certain task, and con-
taining the system settings needed, any PLOADED utilities which will be
used in the work session.

21-3

INTERACTION OF BASIC AND GLOBAL COMMANDS

BASIC has the capability of executing PCOS commands, including the global
commands, by using the EXEC or CALL verbs. Therefore, some questions
arise which are answered below.

SBASIC

Executing SBASIC while in BASIC has no effect on the current BASIC param-
eter settings, which cannot be changed dynamically. The new BASIC param-
eters will take effect the next time BASIC is loaded.

SSYS (SET SYSTEM) AND DISPLAY MODE

Executing SSYS within BASIC to change the display mode causes problems.
When BASIC is initialized, it reads the current display mode setting (16
lines of 64 characters or 25 lines of 80 characters). BASIC uses that
information to control text and graphic display. 1f the display mode is
changed while BASIC is operating, BASIC will attempt to operate in the
prior mode while PCOS supports the changed mode. The results are
unpredictable and sometimes unsatisfactory. 1If it is unavoidably neces-
sary to change character spacing while in BASIC, use the following spe-
cial case of the window statement:

W = WINDOW (0,0,vertical spacing,horizontal spacing)

21-4 PCOS SYSTEM PROGRAMMER'S GUIDE

22, CUSTOMIZING A PCOS SYSTEM

ABOUT THIS CHAPTER

This chapter reviews the software resources and utilities available
to the system programmer for customizing PCOS to the requirements of
particular installations and applications.

CONTENTS
SOFTWARE CONFIGURATION 22-1 THE PSAVE PROCEDURE 22-5
STANDARD INITIALIZATION 221 PSAVE AND MEMORY EXPANSION 22-5
NON-STANDARD INITIALIZATION 22-2 BOOT BLOCK UPDATING 22-5
CUSTOMIZING THE KEYBOARD 22-2 A PCOS BOOTABLE FILE 22-6
CKEY 22-2 BOOTSTRAP BACKGROUND

INFORMATION 22-6
PKEY 22-2

BOOT ROM 1.0 22-6
GENERAL 22-3

BOOT ROM 2.0 22-6
CUSTOMIZING FONT CHARACTERS 22-3

THE PRUN COMMAND 22-6
SET 'SYSTEM GLOBAL COMMANDS 22-3

SUMMARY 22-7

INCORPORATING TRANSIENT
COMMANDS 22-4

SAVING THE RECONFIGURED
SYSTEM 22-4

PSAVE 22-4

THE PCOS.SAV STANDARD FILE 22-4

CUSTOMIZING A PCOS SYSTEM

SOFTWARE CONFIGURATION

PCOS is unique among operating systems because of the broad flexibility
accorded the system programmer in configuring the system for particular
installations and applications. Software configuration involves the ele-
ments discussed below. A summary at the end reviews the software
resources and utilities available to the system programmer.

STANDARD INITIALIZATION

Standard initialization begins once the M20 system is powered on. Diag-
nostics are run, then a search for a bootable file begins. The first
place checked for this file is on the hard disk drive 10, if available.
If not found there, the drive 0 diskette is searched, then the drive 1
diskette. The bootable file must be the first file on a diskette. Once
the file has been found and PCOS is in effect, the system proceeds in
search of an optional initialization file in the following order:

NAME DESCRIPTION

INIT.CMD Any program in machine language, such as a PCOS command. The
system loads the file into system memory, executes it, then
purges it. The system would remain in the PCOS environment,
unless the init routine brought up BASIC by using a Call User
Command.

INIT.SAV A program with the same characteristics as an INIT.CMD program
and loaded only if JINIT.CMD does not exist. The system
retains it after execution for the duration of the working
session.

INIT.BAS Any BASIC program, loaded if neither INIT.CMD nor INIT.SAV
exists. The system loads appropriate utilities (BASIC.CMD and
BASIC.ABS), enters the BASIC environment and executes the pro-

gram. The system would remain 1in the BASIC environment,
unless the init routine returned to PCOS with a SYSTEM com-
mand.

The standard initialization process also happens after a logical reset of
the system and after execution of PSAVE or PRUN command. With PSAVE,
PCOS saves the current configuration of the operating system on a file,
and then reboots the system, using that file (if on drive 0:). Following
a PRUN command, the system searches the drives for the file (in any loca-
tion) specified by the PRUN command. 1In these cases, the startup diag-
nostics are not run and therefore the non-standard interventions
described next cannot be done. PRUN, however, can cause a different ver-
sion of PCOS to be initialized. PSAVE and PRUN are discussed later in
this section.

22-1

NON-STANDARD INITIALIZATION

Non-standard initialization, which permits operation 1in unconventional
modes or for special purposes, is substituted for the standard procedure
by pressing one of five keys while the diagnostic routines are being per-
formed. /L/ and /D/ are used to cause looping during startup diagnos-
tics. /F/, /B/, and /S/ cause initialization to proceed on an alternate
path. They are keyed during startup diagnostics, then take effect later.
They have the following effect:

/F/ First examine the diskette drive, rather than the hard-disk
drive, for a bootable file.

/B/ Enter the BASIC command mode without execution of an initializa-
tion file.

/S/ Enter the PCOS command mode without execution of an 1initializa-
tion file.

CUSTOMIZING THE KEYBOARD

CKEY

The CKEY command is used to change the value of a key or to set the shift
lock for the alphanumeric and/or numeric keypads. Use /CTRL/ or /COM-
MAND/ in conjunction with assignment of the new value to avoid cancelling
the original function of the key. The new value is retained until
changed by another CKEY command, replaced as part of the conversion table
by the SLANG command. or disabled by the end of the working session; it
can be retained permanently by using the PSAVE command. For further
information, see the discussion in the "Keyboard Driver' section of Part
2 or the PCOS Operating System User Guide.

PKEY

PKEY can be used to assign a string of characters to a single key. In
this way, single keystroke commands can be implemented, or data strings
that are often used can be entered with a keystroke. Values of keys

(except /SHIFT/, /CTRL/, /COMMAND/, /RESET/, /S1/, /S2/, and /CR/ can
changed. Use /CTRL/ or /COMMAND/ in conjunction with assignment of the
new value to avoid cancelling the original function of the key. Note
that the new value is retained for the duration of the working session
(or permanently by using PSAVE) and reduces the amount of user memory.

22-2 PCOS SYSTEM PROGRAMMER'S GUIDE

CUSTOMIZING A PCOS SYSTEM

GENERAL

Values assigned wusing CKEY and PKEY remain effective when another
environment or application program is entered. Care must be taken,
therefore, to avoid disabling functions that may be required in the other
environment or program.

CKEY and PKEY are discussed in the "Keyboard Driver' section of Part 2.
For more detailed information, see the PCOS Operating System User Guide.

CUSTOMIZING FONT CHARACTERS

To change shapes of existing characters and/or add characters for
display, RFONT and WFONT are used. This feature is useful for incor-
porating non-Roman characters and/or small graphic symbols for text or
games, but full-screen illustrations are not accommodated. The special-
ized font sets can be printed by all the dot-matrix or dot-matrix-type
printers, but not by the daisy-wheel printer. The font sets may be
stored on diskettes for use each time particular characters or symbols
are required, or may be incorporated in the system by using PSAVE.

RFONT and WFONT are discussed in the ''Keyboard Driver' section of Part 2.
For further information, see the PCOS Operating System User Guide.

SET SYSTEM GLOBAL COMMANDS

The Set System global commands can be used by non-programmers to define
the PCOS environment and the BASIC environment. These global commands
are discussed in the '"PCOS Environment and Global Commands' section of
Part 3. They are described briefly below:

SBASIC sets the BASIC programming environment.

SCOMM sets the transmission environment for an RS232-C communications
port.

SDEVICE permits renaming system device names.

SFORM specifies the printer interface, type of printer, and printing
format.

SLANG selects the national keyboard.

SSYS specifies fundamental PCOS parameters, including date and time
settings, display mode, and disk control parameters.

22-3

INCORPORATING TRANSIENT COMMANDS

PLOAD and PSAVE are used to tailor the operating system to particular
installations or applications. Transient commands (all commands except
PLOAD, PUNLOAD, and LTERM) with the extension .CMD are loaded into memory
only long enough for execution. Transient commands with the extension
.SAV are loaded into memory, executed, and retained for the duration of
the working session. The PLOAD command is used to retain transient com-
mands in memory, without 1initial execution, even after the system
diskette is removed, for the duration of the working session.

SAVING THE RECONFIGURED SYSTEM

If the reconfigured operating system is required for future use, 1incor-
porating desired PLOADED commands, PKEYED definitions, and global-command
parameters it can be stored permanently on diskette or hard disk by using
the PSAVE command.

PSAVE

The PSAVE utility permits customizing of the operating system under a
specific environment. The customized PCOS system configuration is saved
on disk and can be used at any time by using the PRUN command or the
bootstrap procedure. The PSAVE utility can save the system under a spe-
cial name to be used by a PRUN command or under the default name
PCOS.SAV.

1f the system is saved without a name, the file will be made a bootable
file and will be accessed by its location rather than name. It cannot be
password protected. If the system is saved by name, it can be password
protected. PRUN will be used to access it, and it can be located any-
where.

THE PCOS.SAV STANDARD FILE

On a distributed PCOS diskette, the operating system 1is stored in the
first file, PCOS.SAV. (The filename is not important for the boot pro-
cess.) This standard file is the minimum operating system required to run
PCOS. New wutilities can be added and some system parameters can be
changed using PSAVE, but no portion of the standard PC0S.SAV file can be
deleted.

22-4 PCOS SYSTEM PROGRAMMER'S GUIDE

CUSTOMIZING A PCOS SYSTEM

THE PSAVE PROCEDURE

The action of the PSAVE command is as follows: all memory is checked
and, when a block contains information, data are stored in a file with
the block address and the bytes count. PSAVE creates a bootable file
including all memory, parameters, configuration, and utilities loaded in
memory and saved on disk.

PSAVE AND MEMORY EXPANSION

A PCOS system that is PSAVED on an M20 with expansion memory may not boot
up on an M20 with 1less memory. During PCOS startup, the PCOS kernel
looks at memory configuration information supplied by the ROM diagnostics
and then configures memory according to the requirements of the fundamen-
tal PCOS and the additional saved material. If memory capacity 1is not
sufficient, PCOS will give an error message and die.

BOOT BLOCK UPDATING

In addition to writing the PCOS file on disk, PSAVE updates the boot
block to specify the address of the file. In this way the new file is
automatically loaded as the PCOS file.

It is important to note the following:

- if a disk contains several PCOS files, only the file last PSAVED is
automatically loaded by the bootstrap

- copying a file using the FCOPY utility does not update the boot block
and the file just copied is not automatically booted unless it is the
first file on a new diskette

- on hard disk, PSAVE must always be used to create a bootable file
because the first file is not automatically booted if bad sectors are
present.

The user can save an automatically booted PCOS file with PSAVE or copy
the file to another disk, saving a copy of a PCOS file that will not be
automatically booted.

For more information about using this command, refer to the PCOS Operat-
ing System User Guide.

22-5

A PCOS BOOTABLE FILE

The structure of PCOS files on disk permits the bootstrap to load any
configuration and even a different operating system. A bootable file is
divided into records, each comprising a header and a block of data. The
header contains information such as the address in which data must be
loaded and a count of data bytes. After the last record is loaded, the
bootstrap begins execution of the code just loaded in a particular memory
location. The bootstrap is a generalized procedure, and there are no
constraints about the contents of the PCOS file.

BOOTSTRAP BACKGROUND INFORMATION

The bootstrap, a small program contained in ROM, is started automatically
after a reset. The bootstrap examines the drive for a bootable file and,
if found, loads it and starts execution.

BOOT ROM 1.0

In Boot ROM 1.0, the first release, the bootstrap searches the first sec-
tor of track 0, side 1, for a bootable file. This search is made first
for the drive 0 and then for the drive 1. 1f a nonbootable file is
discovered in this position, an error message is returned. Note that
PCOS must always occupy the first position on a system diskette.

BOOT ROM 2.0

The bootstrap release Boot ROM 2.0 uses a specific location on the boot
block as the address of the first sector of a bootable file. Therefore,
under the correct conditions, PCOS can reside on any part of the disk.
Only PCOS 2.0 and subsequent releases update or read the boot-block
address.

THE PRUN COMMAND

The PRUN command can be used to boot a PCOS file that would not be
automatically loaded by the bootstrap. This command is equivalent to
pressing the reset key except that a filename is specified. PRUN 1looks
for this filename on disk and starts the standard boot procedure with
this file. The file can be anywhere, but must be bootable.

To boot the PSAVED PCOS file, PRUN opens the file in the standard way,
and therefore the file can be protected with the standard PCOS features
(volume password, file password, etc.). This 1is not possible for an
automatically booted PCOS file because the bootstrap is a direct routine
bypassing the file system.

If PRUN is used without specifying a filename, it will boot PCOS from

either diskette drive or the hard disk, so long as PCOS is accessible
through the boot block in the usual manner.

22-6 PCOS SYSTEM PROGRAMMER'S GUIDE

CUSTOMIZING A PCOS SYSTEM

SUMMARY

The simplest tools available to the analyst or programmer for customizing
versions of PCOS are the PSAVE and PRUN commands. These can be used with
PLOAD and the Set System global commands to quickly and easily configure
versions of PCOS for particular applications. Within a particular
installation, versions of PCOS and associated commands can be made for
the use of a data-entry group, an accounting group, and so on.

The meanings of keyboard keys can be changed or enhanced by use of the
CKEY and PKEY wutilities. PKEY can be used to develop one-key command
strings or to provide an easy way to enter often-used strings. The RFONT
and WFONT wutilities allow development of new fonts for display and for
printing.

The keyboard and font utilities, used in conjunction, allow the develop-
ment of new keyboards including non-Roman keyboards. They also allow the
development of special characters for display or printing that could be
useful for particular applications.

The keyboard and font customizations can be saved using PSAVE so that
they are available either throughout all systems in an installation or
only for particular applications according to the requirements of the
installation.

The discussion of bootable files, details of PSAVE actions, and the stan-
dard and non-standard 1initialization process shows how alternate paths
can be made available, so that different versions of PCOS can be brought
up for standard use or special use.

Finally, the use of init files gives the system programmer many possibil-
ities for configuring a specialized PCOS. 1Init files in BASIC or assem-
bly language allow bringing the system up in either the BASIC or PCOS
environment, and 1if desired, within a particular program. Such init
files and associated programs could be customized for use in particular
application environments, such as data entry, accounting, graphic
displays for interactive reviewing, etc.

Remember that BASIC allows calling PCOS commands using the EXEC or CALL
verbs. Similarly, in assembly language the Call User (77) system call
can invoke a PCOS command. Either of the methods can be used to set glo-
bal parameters with the Set System commands.

Some further suggestions on the use of init commands:

Administration The init routine can read a text file (which is updated
regularly) and display that information for any user who
starts up the system. The init file could also ask for
user identification, perhaps even requiring a password,
and then bring the user up in a particular version of
PCOS or a particular program depending on the response.

1EEE

Communications

22-8

Bring a system up with the appropriate IEEE commands and
do data-logging of devices on the IEEE bus. The use of
an appropriate init file provides consistency 1in data
logging at various times by different people.

Bring up two systems set for RS232 communications with
the appropriate device rewriting parameters. One unit
can send commands to the other and receive data from it.
The use of pre-set and tested init files simplifies co-
ordination between the sites.

PCOS SYSTEM PROGRAMMER'S GUIDE

23. DATA PASSING MECHANISM

ABOUT THIS CHAPTER

This chapter describes how information is passed among the PC0OS internal
elements and between PCOS and its supported languages. Included is in-
formation on the stack, the passing of integer and floating point num-
bers, strings, null values, and return address.

CONTENTS

OVERVIEW 23-1
USE OF THE STACK 23-1
FORMAT OF DATA 1TEMS 23-2

NULL PARAMETERS AND

DEFAULT VALUES 23-2
INTEGER PARAMETERS 23-3
LONG INTEGER PARAMETER 23-3
STRING PARAMETER 23-3

SINGLE-PRECISION FLOATING
POINT PARAMETER 23-4

DOUBLE-PRECISION FLOATING
POINT PARAMETER 23-4

SEGMENT BOUNDARIES AND
POINTERS 23-5

DATA PASSING MECHANISM

OVERVIEW

PCOS uses one general method for passing information among 1its internal
elements and between PCOS and its supported languages. The method uses
the stack, and can pass numbers, both integer and floating point,
strings, null values, and a return address. The method is that used by
Microsoft for BASIC and other languages, and has been generalized for use
by PCOS and its supported languages.

USE OF THE STACK

Data items, also called parameters, are pushed onto the stack by the
sending routine and popped from the stack by the receiving routine. They
are received in reverse order. If the sending routines pushes items 1,
2, and 3 the receiving routine will pop 3, 2, 1. The top of the stack
(last pushed, first popped) is a count of data items on the stack. After
the items, if appropriate, is a return address (first pushed, last
popped). The count is a word, and the other entries are long words.

The return address is not included in the count. Its presence or absence
is a matter of convention agreed upon for the sending routine and receiv-
ing routine. 1If it is present, the receiving routine will finish its
processing by issuing a return instruction using that address. If the
sending routine calls the receiving routine, the return address will be
placed on top of the stack by the call. If the sending routine passes
control directly, without using a call, there would be no automatic
return address.

The receiving routine pops off one word, which is 'n'", the number of
entries. Each entry is a long word, so the receiving routine must next
pop "n'" long words off the stack. The receiving routine must be careful
to pop exactly '"n'" 1long words, and not rely on an expected number,
because the sending routine may push an incorrect or unexpected number of
entries.

There is no inherent limit to the number of data items that can be placed
on the stack for transmission, except practical usage. The command line
interpreter enforces a limit of 20, and therefore command routines never
receive more than 20 items.

Here is an example of the stack upon entry to a receiving routine.

SP -> | return address | (long)
| 2 | (word)
| second item pushed -I (long)
| first item pushed 7 (long)

23-1

FORMAT OF DATA ITEMS

The long-word data item entry contains an address segment pointer, an
address offset, and a parameter type descriptor. The type descriptor is
ORed with the segment pointer. As an illustration,

| seg | type | | addr offset |

For example,

Where the pointer is <<6>>0C00 and the parameter type is 3.

The parameter type must be extracted from the entry, by clearing the
low-byte of the segment, before the pointer can be used. In this exam-
ple, the pointer is 8600 0C00.

The format of data item depends upon the parameter type. Parameter types
are:

null

integer

long integer¥*

string

single-precision floating point
double-precision floating point

Obh WX O

* Long integer is not currently supported.

NULL PARAMETERS AND DEFAULT VALUES
Null (or nil) parameters are put on the stack when the convention fol-
lowed by the calling routine and receiving routine allows the receiving
routine to substitute standard or default values.
The null parameter keeps the same two-word format of the other entry
types. Only the type byte matters. The other three bytes are filled with
FFs by the sending routine and ignored by the receiving routine.

null parameter:

23-2 PCOS SYSTEM PROGRAMMER'S GUIDE

DATA PASSING MECHANISM

INTEGER PARAMETERS

The pointer points to a 2-byte array containing the value. This array

may or may not be at an even

boundary address, so the value must be

loaded into registers one byte at a time. For example, 1if the pointer
entry 1is 8602 0C00, then after the type is extracted the pointer is 8600

0C00.

pointer to integer:

| 8600 0C00 |

In this example, the integer value

LONG INTEGER PARAMETER

<<6>>0C00:

is 5.

This parameter is not currently supported, and the value 1is wused only

internally 1in PASCAL programs.

The following information is given for

planning purposes. The data passing mechanism could be used if a parame-
ter type number were assigned for long integer.

The pointer points to a 4-byte array containing the value. This array

may or may not be at an even

boundary address, so the value must be

loaded into registers one byte at a time. For example, 1if the pointer
entry 1is 860x 0C00, then after the type is extracted the pointer is 8600

0C00.

pointer to integer:

<<6>>0C00:

| 8600 0coo0 | --> | 3A

|- €1 | 84 | BE |

In this example, th: long integer value is %3AC184BE.

STRING PARAMETER

The pointer points to a 3-byte array where the first byte contains the
length of the string, and the other two are the integer offset of the
pointer to the string. (The memory segment is assumed to be the same as
before. 1f not, a rather obscure error will result.) This offset may
or may not be at an even boundary address, so it must be loaded into

registers one byte at a time.

For example, if the pointer entry
extracted the pointer is 8600 0C00.

is 8603 0C00, after the type is

pointer to string: <<6>>0C00:

| 8600 0C00 -—=> | 06 | | ocC | 09 |
<<6>>0C09:
‘ IHI | lel ' lll i Ill | |°l

In this example, the string length is 6.

SINGLE-PRECISION FLOATING POINT PARAMETER

The pointer points to a four-byte floating point value. The value is not
necessarily on an even boundary, and should be loaded a byte at a time.

pointer to value <<6>>0C00

| 8600 0C00 | --> | Floating Point Value (4 bytes) |

The representation of a single-precision floating point number is
explained in the 'Language Support'' section.

DOUBLE-PRECISION FLOATING POINT PARAMETER

The pointer points to an eight-byte floating point value. The value is
not necessarily on an even boundary, and should be loaded a byte at a

time.

pointer to value <<6>>0C00

| 8600 0C00 | --> | Floating Point Value (8 bytes) |

The representation of a double-precision floating point number is
explained in the '"Language Support'' section.

23-4 PCOS SYSTEM PROGRAMMER'S GUIDE

DATA PASSING MECHANISM

SEGMENT BOUNDARIES AND POINTERS

The numerical parameters consist of a pointer to a value, and the string
parameter consists of a pointer to a descriptor which includes a pointer
to the actual string. 1In all these cases, it is assumed that the value
is in the same memory segment as the pointer. As a practical matter,
only the string parameter is likely to present difficulties because of
its three-part structure. When constructing the string parameter, it may
be necessary to move the string into a new segment in order to have all
three parts of its description in the target segment.

23-5

24. LANGUAGE SUPPORT

ABOUT THIS CHAPTER

This chapter provides a fundamental overview of the support PCOS provides
for high-level lanquages, some of which can be used for assembly-language
programming. Topics include data passing, calling on internal PCOS re-
sources, memory allocation, and internal representation of numbers.

CONTENTS

OVERVIEW 24-1 EXPONENT BIASING 24-6
DATA PASSING 24-1 ROUNDING 24-6
AVAILABLE REPRESENTATIONS 24-1 PRECISION 24-6
LONG INTEGER EXCEPTION 24-2 1EEE STANDARD LIMITATIONS 24-7

SYSTEM CALLS vs MASTER
TABLE 24-2

INTERNAL SYSTEM RESOURCES 24-2
INPUT/OUTPUT 24-2

PCOS AND LANGUAGE MEMORY

ALLOCATION 24-2
BASIC 24-3
COMPILED LANGUAGES 24-4

NUMERICAL REPRESENTATION 24-4

INTERNAL REPRESENTATION 24-5

REPRESENTATION LAYOUTS 24-5

LANGUAGE SUPPORT

OVERVIEW

This section provides a fundamental overview of the support PCOS provides
for high-level languages, some of which can be used for assembly-language
programming. High-level languages currently supported are BASIC and PAS-
CAL. Topics 1include data passing, calling on internal PCOS resources,
memory allocation, and internal representation of numbers.

DATA PASSING

All data passing between PCOS and the languages it supports, 1in both
directions, is done using the scheme described in the 'Data Passing'" sec-
tion. This general approach is used throughout the PCOS system.

The data passing scheme allows passing of numbers, strings, null values,
and a return address. A null value can be passed where a convention
between the sending and the receiving routine allows the receiving rou-
tine to substitute a standard or default value. Numbers can be integers
or floating point values. The internal representation of numbers is
described in this section.

Within the language implementations, and within many PCOS elements, 32-
bit pointers are used so that all of memory can be treated alike. The
data passing mechanism uses 16-bit pointers and has the 1implied under-
standing that the 1items pointed to are 1in the same segment as the
pointer.

AVAILABLE REPRESENTATIONS
The following table shows the internal data representations available in
the 1languages supported by PCOS. "X'" means available, '"-'" means not
available.
Data Representation Usage
Long Single Double
Null 1Integer 1Integer Float Float String
BASIC X X - X X X
PASCAL X X X X X X

Assembly Language can use all data representations, but requires the sup-
port of appropriate mathematics routines.

24-1

LONG INTEGER EXCEPTION

Internally, PASCAL and many other commercial compilers pass numerical
parameters as ASCI1 strings. Compilers used with PCOS receive parameters
from PCOS, and send them, using the formats and mechanism explained 1in
the '"Data Passing' section. Most programmers never see the internal for-
mat. The one effect this difference has on PCOS is that the data passing
mechanism does not currently support the passing of long integers, which
are used only in PASCAL. The PCOS data passing mechanism could accommo-
date long integers by passing a pointer to the four-byte value. All that
would be necessary is to assign a type number for long integers.

SYSTEM CALLS vs MASTER TABLE

All use of system resources by a supported language is done via system
calls. Languages do not use the PCOS Master Table, which is subject to
change. By using system calls, languages remain independent of changes
in PCOS releases, and so do application programs written in those
languages. In particular, languages must use appropriate system calls for
using internal system resources, such as system memory, and for
input/output operations. The system calls for data manipulation, string
handling, etc., are available for use but not required.

INTERNAL SYSTEM RESOURCES

Supported languages use the storage allocation calls to obtain system
memory from the heap and to release it back to the system. Once the
language has obtained memory space, the language internal routines may
manipulate and configure that memory as desired.

Interaction with PCOS itself is done using the system management calls.
This 1includes setting or reading the real time clock using the time and
date calls.

INPUT/OUTPUT

All input/output operations are done using system calls. These calls

include the bytestream 1/0 group, file management and disk 1/0, and vari-
ous special 1/0 control commands.

PCOS AND LANGUAGE MEMORY ALLOCATION

Conceptual overviews of memory handling for BASIC and for compiled
languages are given below. BASIC is of special interest, because the
implementations of BASIC and PCOS are very closely coupled, and also
because BASIC, being an interpreted language, must be able to call upon
system resources in a dynamic and interactive manner. BASIC may need to
allocate memory dynamically.

24-2 PCOS SYSTEM PROGRAMMER'S GUIDE

LANGUAGE SUPPORT

PASCAL and assembled assembly language are treated alike as ''compiled
languages." After PASCAL has been compiled, it is equivalent to assem-
bled assembly language.

In theory, PASCAL and assembly language programs could be allocated fixed
memory space at execution time, because their memory requirements should
be known. 1In practice, this is not quite true. They can begin with a
fixed allocation, but if the routines interact dynamically with a user,
the routines may need to dynamically request and release memory space.

BASIC

BASIC was originally designed to work in 64 Kb of memory, with approxi-
mately 36 Kb for the interpreter and 28 Kb for user memory. In the
Olivetti enhancement of BASIC for PCOS, the BASIC interpreter 1is loaded
into CS1 and the user area is in DS2. Code execution takes place in the
interpreter area (CS1) and the user program and its associated variables
can be treated as data. The user area contains some overhead tables and
other necessary information, so the user has available approximately 57
Kb (the actual amount is set by the Set BASIC (SBASIC) global command.

The fundamental BASIC program, that is, the interpreter and its support-
ing routines, are loaded into CS1. They then use the rest of the memory
assigned for BASIC, allocating space as required to support user interac-
tion or the running of a BASIC program.

For example, when a user is programming in BASIC, the interpreter has
three areas reserved in DS2: one for program statements, one for program
variables, and one for strings. Each statement the user enters is stored
in the statement area. Inserting, deleting, or modifying statements is
done using this area for storage. Whenever a statement creates a vari-
able, space is allocated 1in the variable area for it, with overhead
information so that references from the statement area can find it.
Strings are created and handled similarly. Deleting or modifying vari-
ables and strings affects these areas.

The size of these areas is dynamically modified when necessary. When a
defined BASIC program is loaded, the associated variable and string space
is created at the same time. When a BASIC program is run, the assigned
space is wused, and when necessary, BASIC internally allocates space to
interact with user requests and actions at run-time. The allocations of
space 1in the user area for program statements and variables start at the
upper and lower limits and grow towards the middle of the area. There-
fore, the user area size cannot be changed while BASIC is active.

This data management is done by BASIC, and the role of PCOS is merely to

provide heap space originally, to supply more if requested by BASIC, and
to de-allocate heap space when BASIC is finished.

24-3

COMPILED LANGUAGES

Compiled PASCAL programs, other compiled languages, and assembled
assembly-language programs are equivalent. Modules of these languages
are processed by the linking loader and assigned to memory locations.
Space required by a module is based on its actual code size and the data
and buffer space it has defined.

Generally, compiled code is relocatable, and the linker can assign space
based on its own calculations. Code and data are first assigned within
segment 6. Other segments can be assigned as necessary. Segment 2 is
assigned only as a last resort.

In many cases, the exact memory requirements are known and assigned
before run-time. The program makes use of its assigned space independent
of PCOS memory management. However, a program may have need to dynami-
cally allocate space based on user interaction or on processing require-
ments that are dependent on external factors, such as handling a variable
number of files. In such cases, the language support routines call on
PCOS memory management functions to allocate and de-allocate space.

NUMERICAL REPRESENTATION

The numerical representation for integers and floating point values,
which 1is described below, was designed and implemented by Microsoft. It
is used in mathematical routines for BASIC, and has been extended to
other high-level 1languages. Each language uses a different mathematics
package, but all packages have a common numerical representation.

The floating point representation is not an exact implementation of the
proposed 1EEE standard, but functions in a similar fashion and can inter-
face with IEEE-standard routines with proper safeguards. The differences
are explained in this discussion.

Four types of numbers are represented: integer, long integer, single-
precision floating point, and double-precision floating point. The sup-
ported range for each type is as follows:

Integer: -32,768 to +32,767
Long Integer: -2,147,483,647 to +2,147,483,647
Single: +/- 1.1754944E -38 to
+/- 3.4028237E +38 and
0
Double: +/- 2.2250738585072D -308 to
+/- 1.79769313486231D +308 and
0

In theory, the long integer would have a negative 1limit that 1is one
greater in absolute value than its positive limit. However, PASCAL has
the negative limit of -2,147,483,647.

24-4 PCOS SYSTEM PROGRAMMER'S GUIDE

LANGUAGE SUPPORT

INTERNAL REPRESENTATION

The floating point representation described here is standard, but some
mathematics packages expand the format during calculation which allows
higher precision. Among the PCOS Languages, BASIC does this but not PAS-
CAL.

For floating point, the exponent is biased by half its total range.
Negative values are in the bottom half of the exponent range, positive
values in the top half. The fractional part is normalized to have a
leading 1 bit with an implied decimal point following it. Because the
one and its decimal point are always present in the value, they are
implied but not represented. (The value of zero is the only exception,
and consists of all zeros.)

REPRESENTATION LAYOUTS

Integer: (2 bytes)
'S 1] value |
S Sign Bit

Value = 15 Bits
Negative numbers are in two's complement form.

Long Integer: (4 bytes)

| S | value 0 (15 bits) | value 1 (16 bits)

S = Sign Bit
Value = 31 Bits

Negative numbers are in two's complement form. The two words are treated
as one 32-bit word, using the Z8000 32-bit instructions.

Single Precision: (4 bytes)

[ST E | MO [T M T
Lower Word Upper Word
S = Sign Bit
E = 8 bit exponent biased by 127
MO = Most significant 7 bits of Mantissa
M1 = Least significant 16 bits of Mantissa

MO and M1 combined are a 23 bit mantissa which follows an implied leading
1 and decimal point.

24-5

Double Precision: (8 bytes)

[ST E [™0 T] M1 | M2 [] M3
Lower Word Upper Word

S = Sign Bit

E =11 bit exponent biased by 1023

MO = Most significant 4 bits of Mantissa

M1 = Next significant 16 bits of Mantissa

M2 = Next significant 16 bits of Mantissa

M3 = Least significant 16 bits of Mantissa

MO, M1, M2 and M3 combined are a 52 bit mantissa which follows an implied
leading 1 and decimal point.

EXPONENT BIASING

In single-precision, an exponent of 127 equals an unbiased zero exponent.
The negative exponents (unbiased) from -128 through -1 are represented by
0 through 126. In double-precision, 1023 represents zero, and the
exponents from 0 through 1022 represent -1024 through -1. (However,
there are limits on actual use of the largest and smallest exponents.
See the discyssion on 1EEE limitations, below.)

ROUNDING

In floating point formats the low order bits of the fraction serve only
as guard bits in calculations and are not intended to be used in the
final result. Though these bits may be kept in intermediate results,
rounding of at least the low-order four bits should take place before
assigning the final number or printing.

PRECISION

The precision of calculation varies among mathematics packages. Some
packages extend the numerical representations shown with additional bits
during calculation and then round to a lesser number of bits after. Here
is a table of floating-point precision in bits and digits (bits/digits),
as implemented for Z8000 BASIC:

Variable Actual Effective 1EEE stored Printed

Single 32/9.6 28/8.4 24/7.2 19.9/6
Double 64/19.3 60/18.1 53/15.95 49.8/15

24-6 PCOS SYSTEM PROGRAMMER'S GUIDE

LANGUAGE SUPPORT

Input numeric constants are rounded to 28 and 58 bits. Output is rounded
to 6 and 15 digits. PAK and UNPAK routines convert between internal and
external format; for IEEE, this involves rounding to 24 and 53 bits. The
scientific functions are calculated to a precision in excess of 8.25
digits, except for ATN at 7.69.

1EEE STANDARD LIMITATIONS

The math package routines are meant to interface to IEEE standard rou-
tines. However, some IEEE features such as -0, +/- infinity, and not-
a-number values are NOT supported. To meet these constraints, the inter-
nal form must obey certain restrictions:

1. The maximum exponent value (FF or 7FF hexadecimal) 1is never used.
Machine infinity 1is an exponent of FE or 7FE and a mantissa filled
with binary ones.

2. A value of zero is represented, by convention, as all zeros. When
the exponent is zero, the sign and mantissa are also zero.

The BASIC mathematics package preserves these assumptions, if initially
true, but the UNPAK routines do not check the validity of incoming
numbers. The PASCAL mathematics package also preserves these assump-
tions. The only place where problems can arise for either language is
when reading values from external files written in another form.

24-7

25. INSTALLING PCOS ON A HARD DISK

ABOUT THIS CHAPTER

This chapter describes the procedure for installing PCOS or updating
PCOS on a hard disk M20 system. Information is given on how to maintain
prior PCOS reconfigurations in the new PCOS.

CONTENTS
QVERVIEW 25-1
NEW INSTALLATION 25-1

LOADING PCOS INTO THE
SYSTEM 25-1

FORMATTING THE HARD DI1SK
DRIVE 25-1

LOADING PCOS ONTO THE HARD
DISK 25-1

COPY PCOS COMMANDS ONTO
HARD DISK 25-2

UPDATE INSTALLATION 25-2

CONFIGURING THE NEW PCOS 25-2

INSTALLING PCOS ON A HARD DISK

OVERVIEW

This section describes the procedure for installing PCOS on a hard disk
M20 system. Both the first installation and updating the hard disk drive
with a new version of PCOS are covered. Information is given on how to
maintain prior PCOS reconfigurations in the new PCOS.

Hardware considerations for installing the hard disk are not discussed.
Instructions are provided with the drive.

The hard disk comes with a PCOS system diskette which has all routines
necessary to make use of it. The installation procedure is simple and
makes use of existing PCOS utilities.

Before installing, make a note of the current CKEY, PKEY, and BKEYBOARD
values that you wish to have on the new PCOS. They will need to be re-
entered.

NEW INSTALLATION

The following procedure installs PCOS on a new hard disk system. The
hard disk identifier is 10.

LOADING PCOS INTO THE SYSTEM

To format the hard disk you must first load PCOS from the diskette you
received with the system. Do this by inserting the PCOS system diskette
in the floppy disk drive and turning on the power. Press the "f" key on
the keyboard before the two beeps are heard, to cause the Bootstrap ROM
to load PCOS from the floppy disk rather than from the hard disk.
FORMATTING THE HARD DISK DRIVE

After PCOS is loaded, type

vf 10:

This tells PCOS to run the VFORMAT program and to format drive number 10.
VFORMAT will display each cylinder on the hard disk that is being format-
ted.

LOADING PCOS ONTO THE HARD DISK

When the VFORMAT program is complete (as signified by the message, For-
matting Complete), the next step is to put a bootstrap file on the hard
disk. Do this by typing

ps 10:

which invokes the PSAVE utility to install the current version of PCOS on
the hard disk drive. When the PSAVE wutility is complete, it will

25-1

automatically re-boot the PCOS on the hard disk.

COPY PCOS COMMANDS ONTO HARD DISK
The next step is to to copy all the PCOS commands to the hard disk drive.
This is done by using the PCOS FCOPY command. To copy all the floppy
disk files to the hard disk, type

fc 0:* 10:

UPDATE INSTALLATION

1f the hard disk drive has been through the 1initial installation
described above, all that is required is to place the latest version of
PCOS and the utilities on the hard disk. For this the following pro-
cedure should be used.

Boot the hard disk system and then place the new PCOS diskette in the
floppy disk drive. Type

fc %f 0:* 10:

FCOPY will copy all the files from the floppy diskette to the hard disk.
The "%f'" (force) option will cause FCOPY to copy the files to the hard
disk even though the files may already exist on the hard disk. When
FCOPY is done, so is the installation. b

Notice that the hard disk is NOT formatted in this procedure. Formatting
would destroy all files on the hard disk. In this update procedure, the
only files affected are those commands and utilities that may have
existed on the hard disk until replaced by new files copied from the
diskette.

CONFIGURING THE NEW PCOS

The newly installed PCOS will have its own settings for the Set System
global commands. 1t is a good idea to use these utilities to review the
current settings and make any appropriate changes. Current font changes
made using RFONT should remain untouched in their files, but will need to
be attached to the new PCOS with WFONT. CKEY, PKEY, and BKEYBOARD change
values will have to be reassigned.

25-2 PCOS SYSTEM PROGRAMMER'S GUIDE

ABOUT THIS CHAPTER

This chapter describes the ASCII standard for information interchange
as used in the PCOS system and gives information on its general use
and modification.

CONTENTS

OVERVIEW 26-1
BACKGROUND 26-1
ASCII1 and PCOS 26-1

ASCIT CONTROL CHARACTERS 26-2

DISPLAYABLE ASCII1 CHARACTERS 26-3

ASCII

OVERVIEW

This section describes the ASCII standard for information interchange as
used in the PCOS system and gives information on its general use and
modification.

BACKGROUND

ASCII, American Standard Code for Information Interchange, was a national
standard code in the United States and is now an international standard
code. Originally comprised of 128 seven-bit values, ASCII is now gen-
erally encountered in eight-bit form, having 256 possible values.

The high-order eight-bit is not defined in standard ASCII. 1t can be
used for parity or can be set to zero or to one for all characters. 1In
eight-bit form, the 128 ASCII characters each have two codes. However,
the PCOS utility CKEY may be used to assign other values for the range of
codes from 128 - 255, (or for standard ASCII codes).

ASCII and PCOS

The values for 0 through 127 are shown. Unless modified, values for 128
through 255 correspond in the same order. That is, 128 is Null, 255 is
Delete.

The displayable portion of the ASCII table shows the M20 keyboard values
used for the United States. Certain displayable characters are different
on other national keyboards, and are noted in the table.

PCOS allows reconfigurating the keyboard with CKEY and PKEY and develop-
ing new fonts for display and printing with RFONT and WFONT. These util-
ities allow the development of non-ASCI1 and non-Roman character sets.
However, the internal codes for characters are in the ASCII range. ASCI.
is widely used as a standard for interchange among computer systems, and
the M20 system can exchange ASCIL with other systems. For reconfigured
PCOS systems certain practical difficulties arise. These difficulties
can be ameliorated by use of PSAVE, which allows the retention of stan-
dard ASCI1 systems while using non-ASCI1 systems. Also, care in redefin-
ing systems can help preserve interchange difficulties, especially if the
character codes in the range 0 - 127 are not changed.

26-1

ASCIT CONTROL CHARACTERS

These codes are used for device and telecommunications control and for

providing device functions.

Decimal Hexadecimal
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 A
1" B
12 (5
13 D
14 E
15 F
16 10
17 11
18 12

19 13

20 14

21 15

22 16
23 17
24 18

25 19

26 1A

27 1B

28 1C

29 1D

30 1E
31 1F

Table 26-1 ASCII Control Characters

26-2

EM
SuB
ESC
ES
GS
RS
usS

Comment

Null

Start of Header
Start of Text
End of Text

End of Transmission
Enquiry
Acknowledge

Bell

Backspace
Horizontal Tab
Linefeed
Vertical Tab
Formfeed
Carriage Return
Shift Out

Shift In

Data Link Escape
Device Control 1
Device Control 2
Device Control 3
Device Control 4
Negative Acknowledge
Synchronous Idle
End of Transmission Block
Cancel

End of Message
Substitute
Escape

Field Separator
Group Separator
Record Separator
Unit Separator

PCOS SYSTEM PROGRAMMER'S GUIDE

ASCII

DISPLAYABLE ASCII CHARACTERS

Ninety-five of the following characters are displayable, that is, can be
shown on the display screen or printed.
character, and is not usually displayed.

Decimal Hexadecimal
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 2A
43 2B
44 2C
45 2D
46 2E
47 2F
48 30
49 31
50 32
51 33
52 34
53 35
54 36
55 37
56 38
57 39
58 3A
59 3B
60 3C
61 3D
62 3E
63 3F
64 40
65 41
66 42
67 43
68 44
69 45
70 46
71 47

OO N UTRARWN = ON

OTMMOO®PBE® VDV I A -

The last character is the Delete

Comment

Blank

Different on National Keyboards
Different on National Keyboards

Single quote

Comma

Different on National Keyboards

26-3

72 48 H
73 49 1
74 4A J
75 4B K
76 4c L
14 4D M
78 4E N
79 4F 0
80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T
85 55 U
86 56 v
87 57 W
88 58 X
89 59 Y
90 5A z
9 58 [Different on National Keyboards

92 5C Different on National Keyboards

93 5D] Different on National Keyboards
94 5E =
95 5F

96 60) Different on National Keyboards
97 61 a
98 62 b
99 63 c
100 64 d
101 65 e
102 66 f
103 67 q
104 68 h
105 69 i
106 6A i
107 6B k
108 6C 1
109 6D m
110 6E n
111 6F o
112 70 p
113 71 q
114 72 r
115 73 s
116 74 £
117 75 u
118 76 v

26-4 PCOS SYSTEM PROGRAMMER'S GUIDE

ASCI1

119 77 w

120 78 X

121 79 y

122 7A z

123 78 { Different on National Keyboards
124 7C | Different on National Keyboards
125 70 } Different on National Keyboards
126 7E + Different on National Keyboards
127 7F DEL

Table 26-2 Displayable ASCII Characters

26-5

27. PCOS ERROR CODES

ABOUT THIS CHAPTER

This chapter provides a comprehensive table of error codes with an indi-
cation of which are used by PCOS, by BASIC, and by both. There is also
a cross-reference table showing the differences between the 3.0 error
codes and those of earlier versions.

CONTENTS
OVERVIEW 27-1

COMPREHENSIVE PCOS 3.0
ERRORS 27-1

CROSS-REFERENCE ERROR
TABLES 27-3

ERROR CODE CHANGES 27-4

SUGGESTIONS TQ THE
PROGRAMMER 27-5

SETTING AND DISPLAYING
ERRORS 27-5

ERROR CODE SYMBOLIC NAMES 27-5

PCOS ERROR CODES

OVERVIEW

The error codes listed in the

sions. The table provides an

by BASIC, and by both.

BASIC and PCOS display errors differently. BASIC
only and PCOS the number only, unless the EPRINT utility is active.

EPRINT causes PCOS to display

Error codes were somewhat different in earlier
cross-reference table follows showing these differences.

gives

both number and description.

versions

the

first table are for PCOS 3.0 and later ver-
indication of which codes are used by PCOS,

description

of PCOS. A

Suggestions to the programmer on the use of error codes are given at the
end of this section.

COMPREHENSIVE PCOS 3.0 ERRORS

Code

VONOOBABWN=O

A) b odmd D b md e il md
CVWONCTUHBWN=O

NN NN
oWwnN =

w wnN
- O

Meaning

No error

NEXT without For

Syntax error

RETURN without GOSUB/1llegal Function
Out of DATA

Illegal function call
Overflow

Out of memory

Undefined line number
Subscript out of range
Duplicate Definition
Division by zero

Illegal direct

Type mismatch

Out of string space

String too long

String formula too complex
Can't continue

Undefined user function

No RESUME

RESUME without error
Unprintable error

Missing operand

Line buffer overflow

FOR Without NEXT

WHILE without WEND

WEND without WHILE

1EEE: Invalid talker/listener address

BASIC/PCOS

0o 0 00 00 0 0 0 O W

OO MEMDmmm o

27-1

32 1EEE: talker = listener address B

33 1EEE: Unprintable error B

34 1EEE: Board not present B

35 Window not open B P
36 Unable to create window B P
37 Invalid action-verb B

38 Parameter out of range B P
39 Too many dimensions B

50 F1ELD overflow B

51 Internal error B

52 Bad file number B

53 File not found B P
54 Bad file mode B P
55 File already open B P
57 Disk 1/0 error B P
58 File already exists B P
59 Disk type mismatch P
60 Disk not initialized P
61 Disk filled B P
62 End of file B P
63 Invalid record number BP
64 Invalid file name B P
66 Direct statement in file B

67 Too many files B P
68 Internal error B P
69 Volume name not found B P
70 Rename error B P
7 Invalid volume number B P
72 Volume not enabled B P
73 Invalid Password B P
74 Illegal disk change B P
75 Write Protected File B P
76 Error in Parameter B P
77 Invalid number of parameters B P
78 File not OPEN B P
79 Printer error B P
80 Copy Protected File P
81 Paper Empty P
82 Printer Fault P
92 Command not found R
93 Control C from console P
99 Bad load file P
101 Error in time or date P
108 Call User error P
110 Time Out P
1 Invalid Device P
129 Missing Transporter Board (LAN) P
130 Reserved for LAN P
131 Server Address error (LAN) P
132 Illegal Op on Satellite (LAN) P

27-2 PCOS SYSTEM PROGRAMMER'S GUIDE

PCOS ERROR CODES

133 Reserved for LAN P
134 Reserved for LAN P
135 Protection Violation (LAN) P
136 Protection Violation (LAN) P
137 Reserved for LAN P
138 Reserved for LAN P
139 Reserved for LAN P
140 Non existent Directory (LAN) P
255 Invalid PCOS System Call P

Table 27-1 PCOS Error Messages

CROSS-REFERENCE ERROR TABLES

This table cross references differences in the use of error codes between
PCOS 1.x and 3.x. 1In most cases the error code functions are the same,
and are not shown. In some cases PCOS 3.x provides new codes, these are
flagged with an asterisk (*). For seven errors the code has changed.
Those seven cases are flagged with (**) and repeated in a supplementary
table.

PCOS PCOS Error Messages

1.X 3.X (1.X/3.X)

-- 2 */syntax error

- 3 */illegal function call

-- 6 */overflow

-- 9 */out of range

- 10 */duplicate definition

13 13 bad data type/type mismatch

-- 15 */string too long

- 18 */undefined function

-- 22 */missing operand

- 23 */line buffer overflow

- 35 */window not open

- 36 */unable to create window

54 54 bad file open mode/bad file mode

- 59 */disk type mismatch

63 63 bad record number/invalid record number

64 64 bad filename/invalid filename

- 67 */too many files

- 68 */internal error

- 69 */volume name not found

T71%% 7 volume name not found/invalid volume
number

- 72 */volume not enabled

T3 73 invalid volume number/invalid password

- 74 */illegal disk change

27-3

15%* 75 volume not enabled/write protected file

76%* 76 password not valid/error in parameter

T7%* 474 illegal disk change/invalid number of
parameters

78%* 78 write protected file/file not open

79%* 79 copy protected file/printer error

-— 80 */copy protected file

- 81 */paper empty

- 82 */printer fault

90 - error in parameter

9N - too many parameters

- 93 */control C from console

96 - file not open

101 101 time or date/error in time or date

106 - function key already exists

Table 27-2 PCOS 1.X to PCOS 3.X Error Messages Cross Referenced

* Error code used in PCOS 3.x only. All codes greater than 111
appear only in PCOS 3.x.

** Change in function for same error number. See the following
table.

ERROR CODE CHANGES

In the following cases different error codes are used for the same er-or.

PCOS PCOS

1.X 3.X Error Message

7 69 volume name not found
73 7 invalid volume number
75 72 volume not enabled

76 73 invalid password

77 74 illegal disk change
78 75 write protected file
79 80 copy protected file

Table 27-3 PCOS 1.X to PCOS 3.X Error Code Changes

27-4 PCOS SYSTEM PROGRAMMER'S GUIDE

PCOS ERROR CODES

SUGGESTIONS TO THE PROGRAMMER

SETTING AND DISPLAYING ERRORS

Error codes, values from 0 - 127, are placed in the low byte of R5. The
high byte can be used to hold a number identifying the parameter that
caused the error, if desired. Otherwise, the high byte must be zero. A

system call, number (88), is used to display PCOS errors.

ERROR CODE SYMBOLIC NAMES

Although error codes are passed to PCOS in R5 as a numeric value, the
preferred approach 1is to use symbolic names. A file of symbolic names
and the corresponding codes can be developed for all programmers 1in an
installation to wuse as an include file. The name is used to load the
corresponding code into R5. This makes source code more readable and
protects against changes in error code assignments. When it is necessary
to change existing error codes, only the one include file needs to be
changed. The affected programs are then reassembled.

An example include file for PCOS 3.0 error codes is shown on the follow-
ing pages.

//
// Sample Error Code Include File
//

CONSTANT

nxt wo for
syntax err
ret_wo_gosub
out of data
illegal funcall
overflow

mem full err
undef line
out_of range
dupl_def

div by 0
illegal direct
bad data type err
end of string
str_leng err
str complx err
continue_err
undef function

// BASIC next without for
// BASIC return without gosub
// BASIC illegal function call

// exceeded memory limit
// BASIC undefined line number

VONOCU A WN =

10 // duplicate definition

13 // type mismatch

14 // out of string space

15 // string too long

16 // string too complex

17 // can't continue

18 // undefined user function

no_resume 19
resume wo err 20 // BASIC resume without error
unprintable err 21 /7

22 // missing operand

missing oper
23 // line buffer overflow

line buf ovflw

LU | | | | [| | ({1 | O | 1 | B
=k
~N

n
~nN
o

for_wo_nxt // BASIC for without next

27-5

while wo wend

wend wo while
ieee_inv_adr
ieee t 1 same

ieee unprtable err
ieee_no board
wind not __open_err
wind create err
invalid averb
param range err
too_many dim
f1e1d ovflw

int err

inv file number
file not found err
bad mode err
f1lg_open_err

disk io err
file_exists_err
vol mismatch
bad disk err
dlsk full _err
eof err

bad rec num err
bad_filnam err

direct_in file
too many files
internal err

volnam not found err

rename err
volnum err

vol not enab_err
invalid string err

illegal disk chng_err

err wr prot

param err

too _many param err
f11e not_open err
prlnter err
err_pp_prot
paper_empty err
printer_fault err

cmnd_not found err
ctrl c_| hit

bad 1d file err
time_date err

calluser_err

time out err

27-6

I T T T T T T I T T TR T T

29
30
31
32
33
34
35
36
37
38
39
50
51
52
53
54
55

57

59
60
61
62
63
64

66
67
68
69
70
7]
72
73

75

i
78
79
80
81
82

92
93

99
101

108

110

// BASIC while without wend
// BASIC wend without while
// 1EEE invalid talk/listen adr
// 1EEE talk=listem adr

// 1EEE unprintable error
// 1EEE board not present
// nonexist window selected
// unable to create window
// invalid action verb

// parameter out of range

/ too many dimensions

// internal error

// invalid file number
// file not found

// bad file open mode
// file already open

// disk h/w i/o error

// file already exists

// src/dst are diff disk type
// disk not initialized

// disk is full

// end of file

// invalid record number

// invalid filename

// direct statement in file

// internal error

// volume name not found

// fname exists/ across volume
// volume number invalid

// volume not enabled

// invalid password

// disk not verified same with
// open files

// file is write-protected

// error in parameter

// wrong number of parameters
// file not open

// file is copy-protected
// paper empty on printer
// printer fault error

// command not found
// control ¢ from console

// invalid load file
// bad time or date

// error in calluser interface

// time out error

PCOS SYSTEM PROGRAMMER'S GUIDE

PCOS ERROR CODES

invalid device =11

// invalid device

errors 129 - 140 reserved for LAN !

network err =129
protection err =130
file locked err =131
fs_hw_err = 132
fs_sw err = 133
not pcos file =134
files in dir err =135
local_op_err =136
fs pcos err =137
net_hw missing err := 138
net_sw_missing err =139
illegal op err 1= 140
invalid sys call 1= 265

// missing transporter

// network protection violation

// file locked

// file server hardware error
// file server software error
// not PCOS compatible

// directory contains files
// illegal operation

// in local mode

// file server PCOS error

// missing net hardware

// missing net software

// illegal operation

27-7

28. GLOSSARY

ABOUT THIS CHAPTER

This chapter contains definitions of terms used in this manual. Some

of these terms have more general meanings in general data processing
use.

CONTENTS

GLOSSARY OF TERMS 28-1

GLOSSARY

GLOSSARY OF TERMS

The following terms are defined as used in this manual. Some of these
terms have more general meanings in general data processing use.

ASCI1

assembler

assembly language

block

boot

bootable file

bootstrap loader

American Standard Code for Information
Interchange. An international standard code
for data representation wused by the M20
system.

There are 128 defined ASCI1 characters.
They include control codes, such as Back-
space or Carriage Return, and displayable
characters. Displayable characters include
the digits 0 through 9, upper- and lower-
case alphabetic characters (A through Z, a
through z), and special characters, such as
and %. All displayable ASCI1 characters
are found on the USA keyboard for the M20.

A program that translates assembly language
statements into executable form. See
assembly language.

A programming language that uses symbolic
statements for machine instructions, con-
stants, addresses, and work space alloca-
tions. In the M20, the assembly language
used is that of the 28000 CPU family. The
programmer works directly with details of
the CPU functioning. Assembly language
cannot be run on a different type of CPU,
but has advantages in efficiency due to
close control of the CPU resources. Com-
pare to high-level language.

When referring to M20 system memory, a
block is 16 Kb. In the context of disk
space, a block is 256 bytes.

"Boot'" or '"boot the system' means to start
the system. See bootstrap loader.

A file of a specific format that the
bootstrap loader can load into memory to
initialize the system.

A routine available in ROM that initializes
the system by loading a hootstrap file and
turning control over to it. That routine
then loads other routines to initialize the
system. ("Bootstrap" comes from the
expression ''to 1lift oneself by one's own
bootstraps.")

28-1

byte

character font

CL1

command line interpreter

command routine

commands (1)

commands (2)

commands (3)

compiler

28-2

Eight bits of data. The fundamental cell
size 1in system memory. Memory addresses
refer to bytes.

A byte can hold one ASCI1 character, such
as the letter "A" or the decimal number
"3." It can hold binary values ranging
from 0 to 255 decimal.

A 5 x 7 matrix of dots or pixels. Charac-
ters are delineated by selecting a pattern
of dots within this matrix to be displayed
or printed. The character font is con-
tained within the display font. (See also
display font.)

See command line interpreter.

The PCOS system routine that interfaces
most closely with the wuser. The user
enters the name of a command and any other
desired or required information (parame-
ters) and the command line interpreter
translates the request into the appropriate
form and calls the command routine which
performs the requested function.

A program that executes a function required
by the PCOS system or the user. Usually
command routines are written 1in assembly
language. The routine must be capable of
being called by the command line inter-
preter, of accepting any necessary informa-
tion (parameters) from the CLI, and of
returning control to the CLI when finished.

Functions useful to the user or to PCOS
that can be called by name and executed.
See command line interpreter, command rou-
tine.

In the context of assembly language or
machine code, the word refers to commands
which are 1issued to peripheral devices
using output or control instructions. A
command may be a special purpose instruc-
tion or a '"command code'" sent by an output
instruction.

In BASIC, a command is a BASIC verb.
A program which translates high-level
language statements (PASCAL or C, for exam-

ple) into groups of machine instructions
and into calls for support routines.

PCOS SYSTEM PROGRAMMER'S GUIDE

GLOSSARY

compiler language

configuration (1)

configuration (2)

configuration (3)

CPU

CPU board

daisy-wheel printer

default

default name
default value
device

device rerouting

diskette

Compare to interpreter, interpreter
language.

A high-level language, such as PASCAL or C,
that 1is processed by a compiler to produce
executable code, similar to assembled
assembly language.

Hardware configuration refers to the
hardware resources available for a particu-
lar M20 system, such as black and white or
color display, memory extension boards,
input/output options, peripherals, etc.

Configuration can also refer to software
resources, such as languages and applica-
tion programs.

PCOS configuration refers to the selection
of global parameters defining a particular
PCOS system.

"Central processing unit." 1In the M20, the
28001 chip. The CPU provides central sys-
tem control and arithmetical and logical
operations for the M20.

See motherboard.

Printer in which characters are struck by
fully-formed typefaces. The type faces are
on the spokes of a wheel. Compare to dot-
matrix printer.

A default value or default name is a stan-
dard value or name used when no value or
name is specified.

See default.

See default..

See peripheral device.

A system facility that enables input to be
accepted from devices or files other than
the keyboard, and output to be directed to

devices and files other than the video
display.

In the M20 system, a single or double-sided

5 1/4 inch floppy disk. 1In other systems,
diskettes of other sizes are used as well.

28-3

display font

dot-matrix printer

double word

drive number

environment (1)

environment (2)

extension
file extension
FID

FID number

28-4

A bit pattern describing the shape of the
character or graphic pattern to be
displayed on the video screen. The M20
font pattern is an 8 by 10 matrix of dots.
The character font is a 5 x 7 matrix within
the display font.

Printer in which characters are formed by
striking a pattern of dots. Compare to
daisy-wheel printer.

Same as long word; four bytes.

An integer referring to a diskette drive or
the hard disk drive.

0 -- right-hand diskette drive
1 -- left-hand diskette drive
10 -- hard disk

An operational environment in which the M20
provides particular capabilities to the
user. PCOS support for the M20 system has
three distinct environments.

PCOS
BASIC
Video File Editor

PCOS is the fundamental environment. BASIC
and the editor are supported by PCOS ser-
vices.

In this manual, '"environment" also refers
to the user environment for which PCOS is
being configured. The combination of user
application needs and the M20 hardware and
software resources available constitute an
environment for which PCOS can be adapted
and enhanced.

See filename extension.

See filename extension.

See FID number

"File identifier' number. An integer used
by PCOS to identify peripherals.

0-15 BASIC files

16, 20-24 Reserved system files

PCOS SYSTEM PROGRAMMER'S GUIDE

GLOSSARY

filename

filename extension

font

global, globally

global command

global parameter

hard disk

17 Console (keyboard or display)
18 Printer

19, 25, 26 RS232 communication (Com, Com1,
Com2)

System calls that do input or output with
disk files or with more than one device use
an FID number.

The name of a file, which may have an
extension, "filename.ext", for example.
The filename must start with a letter. The
remaining characters can be letters or
numbers, up to a total of 14 characters.
The extension follows a '".".

An optional portion of a filename, which
follows a "." and can be up to 14 charac-
ters in length (although usually it is 1 to
3 characters). Extensions to the filenames
of commands have a special meaning:

xxxxx.cmd Indicates an ordinary transient
command.

XXXXX.Sav Indicates a transient command
which it stays in memory after
being loaded.

XXXXX.bas Indicates a routine written in
BASIC.

See display font.

A modifier (adjective or adverb) meaning
system-wide. 1In this manual, means affect-
ing PCOS. See global command, global
parameter. Contrasted with local, locally.

A PCOS command that allows the wuser to
change the global parameters that define
the PCOS environment.

A parameter that defines a feature of the
PCOS environment.

In the M20 system, a 5 1/4 inch Winchester
disk unit. The recording surfaces and the
read/write access heads and arms are sealed
within a container that provides security
from contamination. Hard disks of other
sizes are in general use.

28-5

high-level language

initialization

initialization file

instruction

interpreter

interpreter language

kb

kernel

kilobyte

28-6

A language which is translated into execut-
able form by an interpreter or compiler.
For example, BASIC, PASCAL, and C. A
high-level language is somewhat independent
of the system on which it runs, and allows
transporting programs across systems and
types of CPU. To be transportable, a rou-
tine or program written in high-level
language (HLL) must avoid using system-
dependent features. Compare to assembly
language. See also interpreter, compiler.

The process of starting up PCOS. When the
M20 diagnostics have successfully com-
pleted, the PCOS' nucleus 1is loaded. It
initializes 1itself according to the memory
available and its global parameter set-
tings. At the end of the initialization
process, it reads and executes an initiali-
zation file, if present.

A file writen in either assembly language
or BASIC that is automatically loaded and
executed on system initialization. It may
have one of the following names:

-- INIT.CMD
-- INIT.SAV
-- INIT.BAS

A machine instruction is a binary bit pat-
tern (or "machine code') recognized by the
microprocessor that causes a defined action
to occur. "Instruction" is also used for
an assembly language statement which is
translated to machine code.

A language translator which interprets
statements (BASIC statements, for example)
into calls on supporting routines and
parameters to be passed to those supporting
routines. Compare to compiler, compiler
language.

A high-level language, such as BASIC, that
requires an interpreter in order to be exe-
cuted.

Abbreviation of kilobyte, or sometimes of
keyboard.

Another term for PCOS nucleus.

1024 bytes of data.

PCOS SYSTEM PROGRAMMER'S GUIDE

GLOSSARY

letter-quality printer

local, locally

logical reset

long word

machine code

memory block

motherboard

nil parameter

non-standard initialization

nucleus

null parameter

parameter

A printer suitable for use 1in sending
letters or doing finished work; for exam-
ple, a daisy-wheel printer.

A modifier (adjective or adverb) meaning
"of limited, immediate effect." Contrasted
with global, globally. For example, device
rerouting can be of local effect, applying
to only one command.

A reset of all global parameters (except
those controlled by the real-time clock)
and re-initialization of the system
(without performing diagnostic tests). It
is caused by pressing /CTRL/ /RESET/,
simultaneously.

Four bytes; 32 bits. Accessed in memory on
an even address boundary.

See instruction.

16 Kb of system memory. A memory block has
a starting address that is a multiple of
400 hexadecimal.

The fundamental M20 board which contains
the 28001 CPU, 128 Kb of system memory, the
start up ROM, and Input/Output control.
System expansion boards plug into slots on
this board. Also called the CPU board.

Same as null parameter.

A system 1initialization where /L/, /D/,
/F/, /B/, or /S/ is pressed during power-up
diagnostics, or following a PRUN command.

A term used interchangeably with kernel.
See PCOS nucleus.

An unspecified parameter. The receiving
routine substitutes a default or standard
value. In the case of global commands, the
command routine uses the value last speci-
fied.

A data item passed between routines. In

high-level languages, a function may have
parameters (constants or variables). These
parameters are passed by the language
translator to the called routine which
implements the function. 1In system pro-

gramming the term 1is wused for all data
items passed between system elements or the

28-7

PCOS nucleus

peripheral

peripheral device

permanent memory area

physical reset

pixel

program

programmed key

28-8

operating system and its supported
languages.

The PCOS nucleus, or kernel, is a fundamen-
tal part of PCOS required to handle
input/output for system peripherals (key-
board, display, printer, and disks), to
decode command lines and execute commands,
and to manage system memory. It is loaded
into memory when the system is 1initialized
and remains there until the working session
is terminated. Other system software
modules are loaded by the kernel when
needed.

See peripheral device.

A hardware resource controlled by the sys-
tem, or at least communicated with by the
system. A peripheral device may provide
input, such as the keyboard, or output,
such as the display or printer, or storage,
such as disks. In addition to these dev-
ices (called the system peripherals), an
M20 may use a great variety of other peri-
pherals such as plotters, laboratory
instruments, machine tools, magnetic tape
drives, etc.

That part of memory occupied by the PCOS
nucleus, and by those command routines,
assembler programs, programmed key defini-
tions and user defined fonts made permanent
by a PSAVE command.

A system re-initialization caused by press-
ing the physical reset button. It is
equivalent to powering on the system. The
subsequent initialization includes diagnos-
tic tests and a reset of all global parame-
ters (including those controlled by the
real-time clock).

"Picture element." The fundamental unit of
screen display. It is a dot capable of
being set to black or white, or to a color
on color display screens.

A sequence of 1instructions coded by the
programmer directing the computer system to
carry out a set of functions. See also
assembly language, high-level languages.

A key that has either had 1its associated
ASCI1 code changed by means of a CKEY

PCOS SYSTEM PROGRAMMER'S GUIDE

GLOSSARY

RAM

raster

raw key code

resident command

ROM

scanline

screen bit-map

command, or had a string assigned to it by
means of the PKEY command.

""Random access memory.'" Refers to the
read/write memory chips in system memory.
Information in M20 RAM is lost when power
is turned off. Compare to ROM.

The grid of pixels (dots) used for the
display screen, organized as rows (scan-
lines) and columns. Each pixel can be
addressed and set individually by its grid
location. See also screen bit-map.

The immediate code generated by a key (or
the key 1in combination with /Control/ or
/Shift/) corresponding to the physical
position of the key on the keyboard,
independent of system tables.

A command always available in PCOS system
memory. PCOS comes with three resident
commands (PLOAD, PUNLOAD, and LTERM), and
the wuser can make other commands tem-
porarily or permanently resident using
PLOAD or PSAVE. Compare to transient com-
mand.

"Read only memory." Memory chips which
store a pattern permanently, even though
power is off. Information in ROM cannot be
written over or changed by M20 commands.
In the M20, ROM holds the initializing rou-
tines such as start up diagnostics and the
bootstrap loader.

A row of pixels (dots) across the display
screen.

A section of system memory that holds an
image of the display screen; the source of
the display. The display can be modified
by changing the bit-map. Monochrome
displays have one bit-map of 16K; color
displays have 2 or 3 bit-maps of 16K each
(for 4-color or 8-color). Each pixel on
the screen 1is represented by a one-bit
location in the bit-map or bit-maps. Mono-
chrome displays set a pixel to white or
black based on the presence of zero or one
in the location. Color displays combine
the 2 or 3 values for each location and
produce the appropriate color.

28-9

segment

semi-permanent memory area

standard initialization

standard PCOS

system call

system peripherals

text file

thermal printer

transient command

utility

volume

28-10

When referring to M20 system memory, a seg-
ment 1is potentially 64 Kb. Segments are
built using 16 Kb blocks, and may actually
contain 16 Kb, 32 Kb, 48 Kb, or 64 Kb.

That part of memory occupied by loaded com-
mands and assembler programs, PKEYed
strings and user-defined fonts that will be
released on termination of the current
working session.

Initialization following switch-on physical
reset, or logical reset; not having /L/,
/0/, [/F/, /B/, or /S/ pressed during
power-up diagnostics.

The PCOS configuration supplied by Olivetti
on the system diskette.

A PCOS procedure used to handle
input/output and to manage system resources
such as memory and the system clock. Sys-
tem calls can be accessed by assembly
language programs via the Z8000 System Call
instruction.

The M20 keyboard, display, disk drives, and
printer.

An ASCII1 file whose records are separated
either by CR/LF, or by record separator
(RS) characters.

A printer that uses specially-treated
heat-sensitive paper. Printed images are
developed on the paper by applying minute
amounts of heat rather than by impact,
which results in especially quiet printing.
Heat 1is applied in dots, similar to the
operation of a dot-matrix impact printer.

A command that is not loaded into memory at
initialization, but is available on a
diskette or the hard disk. This 1includes
commands that are loaded and purged (those
with CMD extension), and those that are
loaded, but remain in memory after execu-
tion (those with SAV extension). Compare
to resident command.

A useful special-purpose routine or pro-
gram. May be a transient command.

The entire contents of a diskette or hard
disk.

PCOS SYSTEM PROGRAMMER'S GUIDE

GLOSSARY

volume name

wild-card character

word

working session

An optional name assigned to identify a
volume.

A special symbol used for referring to
filenames in groups. The ? symbol
represents any single character and *
represents any string of characters.

Two bytes; 16 bits. Accessed in memory on
an even address boundary.

The time between booting PCOS and the next
boot of PCOS or turning power off.

28-11

NOTICE

Ing. C. Olivetti & C. S.p.A. reserves the right to make improvements in
the product described in this manual at any time and without notice.

This material was prepared for the benefit of Qlivetti customers. 1t is
recommended that the package be test run before actual use.

Anything in the standard form of the Olivetti Sales Contract to the
contrary not withstanding, all software being licensed to Customer is
licensed 'as 1is'. THERE ARE NO WARRANTIES EXPRESS OR IMPLIED INCLUDING
WITHOUT LIMITATION THE IMPLIED WARRANTY OF FITNESS FOR PURPQOSE AND
OLIVETTI SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR
INCIDENTAL DAMAGES 1IN CONNECTION WITH SUCH SOFTWARE.

The enclosed programs are protected by Copyright and may be used only by
the Customer. Copying for use by third parties without the express
written consent of Olivetti is prohibited.

Code 3985100 F (0)
Printed in ltaly

Code 3985100 F (0)
Printed in Italy

