M 20 PERSONAL COMPUTER

The ASSEMBLER
User Guide

M 20 PERSONAL COMPUTER

The ASSEMBLER
User Guide

AR OIS BN o S e e

PREFACE

This manual is produced for programmers
using the M20 to create Assembly Lang-
uage programs. The Assembly Language
of the Z80017 cpu of the M20 is des-
cribed in the 'M20 28000 Assembler
Reference Manual'. The Reference manual
gives the complete instruction set
and deals with other aspects of the
cpu like operational characteristics,
architectural features, etc. This
manual supplies additional information
to enable the programmer to create
Assembly Language programs to run
on the M20.

This manual is divided into two parts.
Part 1 i1llustrates the characteristics
of an M20 source file and describes
how an executable binary file can
be obtained from a source file.

Part 11 details all the M20 System
Calls, and the routines of the M20
Graphics package.

The toliowing are trademarks of Ing. C. Olivetti & C. SpA.
OLICOM, GTL, OLITERM. OLIWORD, OLINUM, OLISTAT, OLITUTOR,
OLIENTRY, OLISORT, OLIMASTER.

MULTIPLAN is 2 registered trademark of MICROSOFT Inc.
MS-D0S is & trademark of MICROSOFT Inc.

CP/M and CP/M-B5 are registered trademarks of Digital Research
inc.

CBASIC-B6 is 2 trademark of Digital Research inc.

Copyright © by Olivetti, 1983,
all rights reserved.

REFERENCES:

Z8000 Assembler Reference Manual
Code 3982410 M (1)

PCOS (Professional Computer Operating
System) User Guide
Code 3985280 D (0)

Basic Language Reference Manual
Code 3982430 P (3)

1/0 with External Peripherals User
Guide
Code 3982300 N (2)

Hardware Architecture and Function
Code 4100630 W (0)

DISTRIBUTION: General (G)
EDITION: June 1983
RELEASE: 3.0

PUBLICATION ISSUED BY:

Ing. C. Olivetti & C., S.p.A.
Direzione Documentazione
77, Via Jervis - 10015 IVREA (ltaly)

CONTENTS

PART 1

. INTRODUCTION

CREATING AN EXECUTABLE FILE

THE M20 ASSEMBLER PACKAGE

SYSTEM CONFIGURATION

. THE ASSEMBLER SOURCE FILE

INTRODUCTION

ASSEMBLER CONVENTIONS

ASSEMBLER LANGUAGE STATE-
MENT FORMAT

SYMBOLS, CONSTANTS AND
STRINGS

ARITHMETIC OPERANDS
SYMBOL1C VALUES
EXPRESSTONS AND OPERATORS
28000 ADDRESSING MODES

ASSEMBLER DIRECTIVES

DATA GENERATION

CONTROL DIRECTIVES

THE PCOS STANDARD

. THE ASSEMBLER (ASM) COMMAND
ASM

. THE LINK COMMAND

LINK

PARAMETERS

COMMENTS

MINIMUM COMMAND ELEMENTS

2-1

2-1

2-1

2-5

2-7

2-7

2-8

3-1

4-1

4-3

4-3

THE KEYWORDS
MULTI-FILE KEYWORDS
FILE KEYWORDS

VALUE KEYWORDS
STRING KEYWORDS
SIMPLE KEYWORDS
BLOCK KEYWORD
KEYWORD ORDER

ERRORS

. THE PDEBUG UTILITY

INTRODUCT1ON

LOADING AND INVOKING

PDEBUG
PDEBUG
/CTRL/ /B/

TERMINATING A PDEBUG

SESSION

ENTERING PDEBUG COMMANDS

CALCULATOR FACILITY

THE COMMANDS
BREAKPOINT

CLEAR BREAKPOINT
CHANGE 1/0

COMPARE MEMORY

DISPLACEMENT REGISTER

DISPLAY MEMORY

4-4

4-5

4-5

4-8

4-9

4-9

4-10

5-1

5-1

5-2

5-3

iii

FILL MEMORY 5-11 BLOCK TRANSFER CALLS 7-4

G0 5-12 STORAGE ALLOCATION CALLS 7-4
JumMpP 5-13 GRAPHIC CALLS 7-6
MOVE MEMORY 5-14 TIME AND DATE CALLS 7-8
NEXT 5-15 USER CODE CALLS 7-9
OFFSET REGISTER 5-16 1EEE 488 CALLS 7-9
PORT (1/0) READ 5-17 MISCELLANEQUS CALLS 7-10
PORT (1/0) WRITE 5-18 8. THE M20 SYSTEM CALLS
PRINT QUTPUT 5-19 9 LookByte 8-1
QuIT 5-19 10 GetByte 8-2
REGISTER 5-20 11 PutByte 8-3
TRACE 5-21 12 ReadBytes 8-4
EXAMPLES 5-23 13 WriteBytes 8-6
. LIBRARIES 14 Readline 8-8
INTRODUCTION 6-1 16 Eof 8-9
ML1B 6-1 18 ResetByte 8-11
THE M20 GRAPHICS LIBRARY 6-3 19 Close 8-12
PART 11 20 SetControlByte 8-13
. INTRODUCTION TO SYSTEM CALLS 21 GetStatusByte 8-14
INTRODUCTION 7-1 22 OpenFile 8-15
SYSTEM CALL DESCRIPTIONS 7.1 23 DSeek 8-17
REGISTER ASSIGNMENTS 7-1 24 Dgetlen 8-18
INPUT/OUTPUT PARAMETERS 7-2 25 DGetPosition 8-19
ERROR MESSAGES 7-2 26 DRemove 8-20
FUNCTIONAL GROUPS 7-2 27 DRename 8-21

iv ASSEMBLER USER GUIDE

CONTENTS

28 DDirectory
29 BSet

30 BWSet

31 BClear

32 BMove

33 NewSameSegment

34 Dispose

35 Cls

36 ChgCur0

37 ChgCurl

38 ChgCur2

39 ChgCur3

40 ChgCur4

41 ChgCur5

42 ReadCur0

43 ReadCur

44 SelectCur

45 Grflnit

46 PaletteSet
47 DefineWindow
48 SelectWindow
49 ReadWindow
50 ChgWindow

571 CloseWindow

8-28

8-29

8-30

8-31

8-32

8-33

8-39

8-40

8-41

8-43

8-44

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

ScaleXY
MapXYC
MapCXY
FetchC
StoreC
UpC
DownC
LeftC
RightC
SetAtr
SetC
ReadC
NSetCX
NSetCY
NRead
NWrite
Pntlnit
TDownC
TupC
ScanL
ScanR
SetTime
SetDate

GetTime

8-48

8-49

8-51

8-52

8-53

8-54

8-56

8-57

8-58

8-59

8-60

8-61

8-62

8-64

8-66

8-67

8-68

8-69

8-70

8-71

8-72

8-73

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

9N

92

93

94

95

96

97

98

99

GetDate
CallUser
1BSrQo
1BSrQ1
1BPoll
1BTSet
1BRSet
1BPrnt
1BWByt
181npt
1BLinpt
IBRByt
Error
DString
CrLf
DHexByte
DHex
DHextong
DNumW
DLong
DisectName
CheckVolume

Search

MaxSize

102 Setvol

vi

8-95

8-96

8-97

8-100

8-101

8-102

10.

104 NewAbsolute 8-103

105 StringlLen 8-104
106 DiskFree 8-105
107 BootSystem 8-106
108 SetSysSg 8-107
109 SearchDevTab 8-108
113 CloseAllWindows 8-109
114 KbSetlock 8-110
115 ClearText 8-111
116 ScrollText 8-112
120 New 8-114
121 BrandNewAbsolute 8-115
122 NewlLargestBlock 8-116
123 StickyNew 8-117

. INTRODUCTION TO GRAPHICS

INTRODUCTION 9-1
SUMMARY OF FEATURES 9-1
CONCEPTS 9-2
FUNCTIONAL GROUPS 9-4
ERRORS 9-6
DEFAULT CONDITIONS 9-6

THE M20 GRAPHICS ROUTINES

ClearViewArea 10-1
CloseGraphics 10-2
CloseViewTrans 10-3

ASSEMBLER USER GUIDE

CONTENTS

DivideViewArea
Errorlnquiry
Escape

GOP
GraphCursorAbs
GraphCursorRel
GraphPosAbs
GraphPosRel
IngqAttributes
1InqCurTransNmbr
1ngGraphCursor
InqGraphPos
IngPixel
InqPixelArray
IngPixelCoords
InqTextCursor
lnqViewArea
IngWorldCoordSp
LineAbs
LineRel
MarkerAbs
MarkerRel
OpenGraphics
PixelArray

Polyline

10-4

10-5

10-7

10-1

10-12

10-13

10-14

10-15

10-16

10-17

10-18

10-19

10-21

10-23

10-24

10-25

10-26

10-27

10-28

10-29

10-30

10-31

10-32

10-34

SelectCursor 10-36
SelectGrColour 10-37
SelectTxColour 10-39
SelectViewTrans 10-41
SetColourlLogic 10-42
SetColourRep 10-44
SetGr(sBlnkrate 10-45
SetGrlsrShape 10-46
SetLineClass 10-47
SetTextline 10-48
SetTxCsrBlnkrate 10-49
SetTxCsrShape 10-50
SetWorldCoordSp 10-51
TextCursor 10-52

. RESERVED WORDS
. ASM ERRORS AND WARNINGS

. FUNCTIONAL LIST OF SYSTEM CALLS

BYTESTREAM CALLS Cc-1
BLOCK TRANSFER CALLS C-3

STORAGE ALLOCATION CALLS C-4

GRAPHICS SYSTEM CALLS C-5
TIME AND DATE CALLS c-8
1EEE-488 CALLS c-9
MISCELLANEOUS CALLS -1

D. FUNCTIONAL LIST OF GRAPHICS
ROUTINES

TRANSFORMATION AND CONTROL D-1

GRAPHICS QUTPUT D-2
GRAPHICS ATTRIBUTES D-3
INQUIRY D-4

E. SYSTEM ERRORS

F. PORT 1/0 ADDRESSES

MAIN MOTHERBOARD PORTS F-1
1EEE EXPANSION BOARD F-2
PORTS

HARD DISK UNTT EXPANSION F-3

BOARD PORTS

RS-232-C TWIN EXPANSION F-3
BOARD PORTS

G. MAILBOX

H. M20 - RS-232-C DEVICE PARAMETER
TABLE

1. DEVICE 1D (DID) ASSIGNMENTS

J. ASCI1 CODE

viii ASSEMBLER USER GUIDE

PART |

1. INTRODUCTION

ABOUT THIS CHAPTER

This part of the manual describes how to create Assembly Language pro-
grams on the MZ20. In this chapter a brief step by step description of
the process is given. In each step of this description reference is made
to the relevant chapter or manual where it is described in detail.

CONTENTS

CREATING AN EXECUTABLE 1-1
FILE

THE M20 ASSEMBLER PACKAGE 1-3

SYSTEM CONF1GURATION 1-3

INTRODUCTION

CREATING AN EXECUTABLE FILE

An Assembly Language program must be written in an Editor environment;
on the M20 this can be done in the Video File Editor environment which
is described in the "M20 PCOS (Professional Computer Operating System)
User Guide". This edited version of the program is known as the source
file. The source file is described in chapter 2, where the Directives
and the Assembler Conventions for the M20 are defined. Chapter 2 ends
with a description of the PCOS Standard, which defines the format of a
source file meant to execute like any PCOS routine.

The next step is to assemble the program using the ASSEMBLER (ASM) com-
mand. This command takes a source file as input and outputs a z-type
object file. The ASM command is described in chapter 3.

The final step in creating an executable file is performed by the LINK
command which is described in chapter 4. LINK takes one or more object
files as input and outputs a single executable binary load file. Note
that z-type object files created using other computer languages can be
linked to z-type object files output by the ASM command.

The process of creating an executable file 1is shown schematically in
fig. 1-1 below.

Video file editor

Video file editor Sheha Video file editor

Assembly language
source file (1)

Olivetti z-type
object file (1)

Assembly language

Assembly language

source file (2) e source file (n)
v v
m . o m

Olivetti z-type Olivetti z -type
object file (2) object file (n)

LINK

Executable binary

load file

Fig. 1-1 Creating an executable binary file

ASSEMBLER USER GUIDE

Dumping Facilities

Throughout the process of creating an executable file the programmer may
need to display source files, listing files, object files, etc.. This
can be done using the PCOS command FLIST which allows a number of
optional features for dumping various types of files. The FLIST command
is detailed in the '"M20 PCOS User Guide'.

THE M20 ASSEMBLER PACKAGE

The M20 Assembler package contains the Assembler (ASM) command, the LINK
command, and the Video File Editor mentioned abdve. Also included in the
package are the PDEBUG (Program DEBUG) utility detailed in chapter 5,
and the MLIB command for creating library files of object modules
described in chapter 6. All of these routines must be invoked from the
PCOS environment.

SYSTEM CONFIGURATION

The M20 Assembler package will run on any M20 system configuration.

2. THE ASSEMBLER SOURCE FILE

ABOUT THIS CHAPTER

This chapter contains the main steps to be taken and the Assembler

con-

ventions the programmer must adhere to, in order to build source files

for the user's own utilities.

CONTENTS

INTRODUCTION

ASSEMBLER CONVENTIONS

ASSEMBLER LANGUAGE
STATEMENT FORMAT

SYMBOLS, CONSTANTS AND
STRINGS

ARITHMETIC OPERANDS

SYMBOLIC VALUES

EXPRESSIONS AND OPERATORS

28000 ADDRESSING MODES

2-1 ASSEMBLER DIRECTIVES
2-1 DATA GENERATION DIRZCTIVES
2-1 CONTROL DIRECTIVES

THE PCOS STANDARD

2-12

THE ASSEMBLER SOURCE FILE

INTRODUCTION

As previously mentioned, to construct the source file, the programmer
will make use of the Video File Editor (as described in the "PCOS (Pro-
fessional Computer Operating System) User Guide"), by means of which he
can insert the instructions and the Assembler directives. The instruc-
tion set used is precisely that of the Z-8001 CPU, described 1in detail
in the 'M20 78000 Assembler Reference Manual', which is useful to the
programmer for what regards mnemonics, addressing and machine code. As
far as the Assembler conventions and directives are concerned, however,
(which are M20 specific), these will be examined in more detail in the
next two sections entitled "Assembler Conventions' and 'Assembler Direc-
tives".

The section on 'Assembler Conventions'' describes in depth the way to
represent operands, numerical constants, strings, comments, arithmetic
operations, which may appear on a source program line.

The next section provides a description of the ''Assembler Directives"
i.e. those instructions which are not translated by the Assembler in
executeable machine code, but which are used by the Assembler itself to
leave uninitialised space in the object program, define strings within
the program, make references to variables outside the program and to
perform operations which facilitate the programmer's work.

The last section '"The PCOS Standard'" deals with the structure an Assem-
bler source file must have, so that the user can build himself a utility
which is coherent with the PCOS utilities standards, for invoking and
for passing parameters.

ASSEMBLER CONVENTIONS

ASSEMBLY LANGUAGE STATEMENT FORMAT

The most fundamental component of an assembly program 1is the assembly
language statement, a single line of text consisting of an instruction
and its operands, with an optional comment. The instruction describes
an action to be taken; the operands supply the data to be acted upon.

An assembly language statement can include four fields in the following
order, from left to right on the line:

- Symbolic Label;

- Instruction Mnemonic;

- Operands;
- Comment.

All fields can be optional depending on the instruction chosen. Each
field of the statement must be separated from the others by white space
(one or more spaces or tabs). If a field other than the symbolic label
is to be omitted but subsequent fields on the line are not, it may be
coded as a solitary comma (,). Fields other than the comment field may
not contain white space except for the case of character constants or
strings in operands (which are enclosed in apostrophes or gquotation
marks respectively).

Symbolic Label Field : g

Any statement may contain a symbolic label. Some instructions require
its 1f provided, the label must begin with the first character of the
text line. The absence of the field is indicated by the first character
of the line being a white space character. The only way in which a sym-
bol may be defined anywhere in the assembly is for it to appear in the
label field of a statement. A particular symbol may appear only once in
a label field within one module. Note: a comment line, which is not an
assembly instruction, is indicated by the first character of the line
being an asterisk (*).

Instruction Field

The instruction is the assembly-language mnemonic describing a specific
action to be taken. This may represent either a Z8000 machine instruc-
tion or an assembler directive instruction. The instruction must be
separated from its operands by white space (one or more spaces or tabs).

LD R2,ALPHA Load register 2 from memory location ALPHA
JP BETA JUMP to location BETA

Many of the operations of the Z8000 can be applied to word, byte, or
long operands. A simple naming convention has been adopted to distin-
guish the size of the operands for these particular instructions:
the suffix "B'" designates a byte instruction, the suffix "L'" designates
a long word instruction, and no suffix designates a word instruc-
tion:

ADD RO,R1 Add word operands
ADDB RHO,RLO Add byte operands
ADDL RRO,RR2 Add long operands

2-2 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

Operand Field

Depending on the instruction specified, this field can have zero or
more operands. If two or more operands are needed, each must be
separated by a comma with no 1intervening white space. If there
are no operands and a comment field is to be placed on the same state-
ment, the operand field must be a single comma standing alone.

RET 5 No operand
TEST R2 One operand

LD R2,R1 Two operands
LDM R2,ALPHA, #7 Three operands
CPD R2,@R4,R6,EQ Four operands

Operands supply the information the instruction needs to carry out
its action. An operand of a Z8000 machine instruction can be:

- Data to be processed (immediate data);

- The address of a location from which data is to be taken (source
address);

- The address of a location where data is to be put (destination
address);

- The address of a program location to which program control is to be
passed;

- A condition code, used to direct the flow of program control.

Although there are a number of valid combinations of operands, there
is one basic convention to remember: the destination operand
always precedes the source operand. Refer to the specific
instructions in the Reference Manual for valid operand combinatons.

Immediate data can be in the form of a constant , an address , or an
expression (constants and/or addresses combined by operators).

LD R2,#7 Load 7 into register 2

LD R2,#ALPHA Load address of ALPHA into register 2
LD R4,#BETA/2 Load value of expression [BETA/2] into
5 v register 4

As far as the conventions are concerned, for expressing numeric con-
stants and alphanumeric strings, these will be dealt with later in the
appropriate section.

Source, destination, and program addresses can also take several forms.
Addressing modes are described in detail later. Some examples are:

2-3

LD R1,@R2 Load value whose address is in register 2

’ y into register 1
LD R1,ALPHA Load value located at address labeled
, 3 ALPHA into register 1
LD R1,ALPHA+1 Load value at location following that
. ¥ addressed by ALPHA into register 1
JP EQ,BETA Jump to program address labeled BETA if
’ ' EQ flag is set
JP NE,BETA+16 Otherwise, jump to location sixteen bytes
> . following BETA

Condition codes are listed in the Reference Manual.
Operands of an assembler directive instruction can be:
- A numerical value or expression;

- Expressions or strings representing initialization data;

A string such as a file name, a module name, or a section name
(such strings cannot be referenced elsewhere in the program);

- A keyword.

Examples of assembler directives:

MODULE device.1,segmented
AT BETA+16

DSB 27

DDL %7FO1FFF, 'AB'

The assembler directives are dealt with later in the appropriate sec-
tion.

Comments

Comments are used to document program code as a guide to program logic
and also to simplify present or future program debugging A text line
which begins with an asterisk as the first non-white-space character
is copied as it appears to the listing file but is ignored by the assem-
bler for all other purposes.

2-4 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

Examples of comment lines:

* This routine is used to compare two strings. The operands are
* pointers to the first characters of each string. The

* strings are of variable length with a zero byte marking

* the end of the string.

* The returned value of this routine is:

= -1: first string less than second

* 0: strings equal

* 1: first string greater than second

Comments may also be placed on the end of each assembler statement All
text which appears after the operand field on the line is a comment and
is reproduced in the listing file but ignored otherwise. If the operand
field or the instruction field are to be omitted the comment field may
only be included if the omitted field(s) are coded as a solitary comma

().

Examples of on-statement comments:

CLR R2 Initialize register 2

IRET : return from the interrupt NOW!
START.UP , 3 THIS IS THE ENTRY POINT OF THE PROGRAM

JP Z,BETA+12 this is a close comment

SYMBOLS, CONSTANTS, and STRINGS

Symbols

A symbol may consist of the letters A-Z (upper or lower case), the
digits 0-9, the underscore character (), or a period (.). A symbol may
not begin with a digit (0-9). The maximum length of a symbol 1is 16
characters.

Upper and lower case letters are considered different characters. Thus
"Start' and 'start'" are different symbols.

The following are valid symbols:
ValueAssignments

Initial values
start_up

Constants

A constant is a value which stands for itself. It may be either a
number or a character sequence.

Numbers can be written in decimal, hexadecimal, binary, or octal nota-
tion. The latter three are preceded by a percent sign (%) and, in
the case of binary and octal, by a base specifier enclosed in
parentheses. 1f a number has no prefix, decimal is assumed.

42 decimal
%42 hexadecimal
%(8)42 octal

%(2)10110010 binary

A characters sequence is a sequence of one to four characters
enclosed in apostrophes. Any ASCI11 character can be included in the
character sequence, for example;

IA‘
'Open’
A character can also be represented in a character sequence in the

form '"%hh,'" where '"hh' is the hexadecimal equivalent of the ASCII code
for the character, for example;

'E=%1B'

For convenience, certain ASCI1 characters have been assigned
shorter, more mnemonic codes as follows:

%L or %l Linefeed

%T or %t Tab

%R or %r Carriage Return

%P or %p Page (Form Feed)

%% Percent Sign

%Q, %q, %' Apostrophe (Single Quote)

Example:

"1%r2%r' represents the ASCII1 sequence: 1 /CR/ 2 /CR/
and '%Qt=%Q" represents the ASCI1 sequence: 't='
Strings

Strings are sequences of any length of ASCII characters, enclosed in
quotation marks. They can be defined only by using the DDB directive
(see Data Generation Directives).

Strings also use the above ASCII mnemonic forms. Since strings are

enclosed in quotation marks, the mnemonic %" is used for embedded quota-
tion marks.

2-6 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

ARITHMETIC OPERANDS

Run-Time and Assembly-Time Arithmetic

Arithmetic is performed in two ways in an assembly language program Run-
time arithmetic is done while the program is actually executing.

ADDB RHO,RL2 Add the contents of register
s » RL2 to the contents of register RHO

Assembly-time arithmetic is done by the assembler when the program is
assembled and involves the evaluation of arithmetic expressions in
operands, such as the following:

LDL RR14,#[2*one+%10]
JP Z,BETA+34
AND R5,ALPHA-3
Assembly-time arithmetic is more limited than run-time arithmetic.

All assembly-time arithmetic is computed using 32-bit representations of
the numbers. Any number in excess of 32 bits (4,294,967,296) loses the
extra bits on the 1left, so all values are calculated ‘'modulo
4,294,967,296". Depending on the number of bits required by the particu-
lar instruction, only the rightmost 4, 8, 16, or 32 bits of the result-
ing 32-bit value are used. If the result of assembly-time arithmetic is
to be stored in four bits, the value is taken '"modulo 16" to give a
result in the range 0 to 15. If the result is to be stored in a single
byte location, the value is taken ''modulo 256" to give a result in the
range 0 to 255 (or -128 to 127 if signed representation is intended). If
the result is to be stored in a word, the value is taken "modulo 65536"
to give a result in the range 0 to 65535 (or -32768 to 32767 if signed
representation is intended).

LDB RH7,#one*2 Result of '"one*2' must be in
* range 0 to 255

JP BETA+2 Modulo 65536. Result is the
% address 2 bytes beyond BETA

SUBL RR2,#one*%80000 Result of 'one*%80000'" is taken
modulo 4,294,967,296

SYMBOLIC VALUES

A symbol can be assigned a value other than that of the current assem-
bly location counter by means of the assembler directive instruc-
tions which are described later in this chapter. In this way a symbol

can be made to represent an absolute constant value or a relocatable
memory location in the same section, in a different section of the same
module or in a completely different module. That symbol may then be
used in operand expressions anywhere that a value of its type 1is per-
missible.

EXPRESSIONS AND OPERATORS

Expressions are formed using arithmetic, logical, shift, and rela-
tional operators in combination with constants and variables. These
operators allow both unary (one-operand) and binary (two-operand)
expressions, as shown below.

Arithmetic Operators

The arithmetic operators are the following:
Operator Operation
+ Unary plus, binary addition

- Unary minus, binary subtraction

e Multiplication
/0 Divison
\ Modulus
The division operator (/) truncates any remainder. The modulus opera-

tor (\) performs the modulo function (i.e. returns the remainder after
division)

9/2 = 4
9\2 =1
-9/2 = -4

If zero is specified as the right operand for either of these opera-
tors, the result is undefined.

Examples:

SUBB RLO,#1 1 is subtracted from RLO

SUB R10,#one+[10-3] Value of one + 7 is subtracted
% y A U from register 10

2-8 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

Logical Operators

The logical operators are the following:

Operator Operation
o (Unary) Logical COMPLEMENT
& Logical AND
1 Logical OR

Logical EXCLUSIVE OR

Logical COMPLEMENT (~) simply complements the bit pattern of its single
operand (i.e. all one bits are changed to zero and vice-versa).

LD R11,#~CONSTANT1 Reverse the bits of CONSTANT1 and load into
reg 11

The effect of Logical AND, Logical OR, and Logical EXCLUSIVE OR can
be seen from the following examples. Although 32-bit arithmetic would
actually be done by the assembler, 4-bit arithmetic 1is shown for
clarity. Assume two constants, CONSTANT1 and CONSTANT2, which have the
bit patterns 1100 and 1010, respectively. The expressions:

CONSTANT1&CONSTANT2
CONSTANT1!CONSTANT2
CONSTANT1~CONSTANT2

will result in the following evaluations of the operands:

AND 1100 OR 1100 EXCLUSIVE OR 1100
1010 1010 1010
1000 1110 0110

The assembly-time logical operations performed by Logical COMPLEMENT,
Logical AND, Logical OR and Logical EXCLUSIVE OR can also be done at
run time by the Z8000 instructions COM, AND, OR, and XOR respectively.
The assembly-time operations require less code and register manipula-
tion. The run-time operations allow greater flexibility, however. For
example, they can operate on registers (variables) whose contents are
not known at assembly time, as well as on known constant values.

Shift Operators

The shift operators are as follows:

{SHR} Logical shift right
{SHL} Logical shift left
a u

2-9

When used in expressions, the shift operators have the form
d operator n

where "d" is the data to be shifted and ''n'" specifies the number of
bits to be shifted. Vacated bits are replaced with zeros. For exam-
ple, if CONSTANT1 has a value of 00001100, the statement

LD R10, #[CONSTANT1{SHL}2]
A o U |

would load the value 00110000 into register R10. If the second operand

supplied is negative (that 1is, if the sign bit 1is set), it has the

effect of reversing the direction of the shift.

LD R10, #[CONSTANT1{SHR}-2] CONSTANT1 is shifted
* two bit positions LEFT

Relational Operators

There are two basic types of relational operators: those which con-
sider their operands to be signed 32-bit integers, and those which
consider their operands to be unsigned 32-bit integers.

Signed:
< Less than
< = Less than or equal
= Equal
< > Not equal
2= Greater than or equal
> Greater than

2-10 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

Unsigned:
{ULT} Less than
{ULE} Less than or equal
{UEQ} Equal
{UNE } Not equal
{uGE} Greater than or equal
{UGT} Greater than

& °

The relational operators return a logical TRUE value (all ones) if the
comparison of the two operands is true, and return a logical FALSE value
(all zeros) otherwise.

LD RO,#[1=2] Reg 0 is loaded with zeros
LD RO,#[2+21<5 Reg 0 is loaded with ones
A 0

Precedence of Operators

Expressions are generally evaluated left to right with operators having
the highest precedence evaluated first. If two operators have equal
precedence, the leftmost is evaluated first.

The following lists the assembly-time operators in order of pre-
cedence:

- Unary operators: +, -, ~

0 & u
- Multiplication/ Division/Modulus/Shift/AND: *, /, \, {SHR}, {SHL},&

Addition/Subtraction/OR/XOR: +, -, !,~

- Relational operators: <, <=, =,<>, »>=, >, {ULT}, ({ULE}, {UEQ},
{uNe}, {uee}, {ueT}

Square brackets ([]) can be used to change the normal order of pre-
cedence. Items enclosed in brackets are evaluated first. If brackets
are nested, the innermost are evaluated first.

100/4 - 48/2 =1

100/[4 - 48/2]= -5

2-1

Note: Square brackets are wused instead of the traditional
parentheses. This is done to avoid all confusion and conflict whether
it be syntactical, semantical or conceptual, with the indexed address
operand forms described further on in this chapter.

Segmented Address Operators

Two special operators are provided to ease the manipulation of seg-
mented addresses. While addresses can be treated as a single value
with a symbolic name assigned by the programmer, occasionally it is
useful to determine the segment number or offset associated with a
memory location.

The SEGMENT unary operator, {SEGMENT}, 1is applied to an address
expression that contains a symbolic name associated with an
address, and returns a 16-bit value. This value 1is the 7-bit seg-
ment number associated with the expression and a one bit in the most
significant bit of the high-order byte, and all zero bits in the
low-order byte.

The "OFFSET'" unary operator, ({OFFSET}, 1is applied to an address
expression and returns a 16-bit value which is the offset value asso-
ciated with the expression.

Example

* Load the segmented address of buffer_pointer into register pair RR12.
LD R12,#{SEGMENT }buffer pointer
LD R13,#{OFFSET }buffer pointer

% This is functionally equivalent to the following statement:

LDL RR12,#buffer pointer
Because of the special properties of these address operators, no other
operators can be applied to a subexpression containing a SEGMENT or
OFFSET operator, although other operators can be used within the subex-
pression to which the operator is applied:

{SEGMENT }[buffer_pointer+4] Valid

[{SEGMENT }buffer pointer]+4 Invalid
-[{OFFSET }buffer pointer] Invalid

28000 ADDRESSING MODES

With the exception of immediate data and condition codes, all Z8000

2-12 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

machine instruction operands are expressed as addresses: register,
memory, and 1/0 addresses. The various address modes recognized by
the 78000 assembler are as follows:

- Immediate Data

- Register

- Indirect Register

- Direct Address

- Indexed Address

- Relative Address

- Based Address

- Based Indexed Address

Special characters are used in operands to identify some of these
address modes. The characters are:

''R" preceding a word register number;
- "RH" or "RL'" preceding a byte register number;
- "RR" preceding a register pair number;
- "RQ" preceding a register quadruple number;
- "@" preceding an indirect-register reference;
- "#" preceding immediate data;

- "()" used to enclose the displacement part of an indexed, based,
or based indexed address;

- "$§" signifying the current program counter location, usually used in
relative addressing.

Immediate Data

The operand value used by the instruction in Immediate Data
addressing mode is the value supplied in the operand field
itself.

Immediate data is preceded by the special character "#" and can be
either a constant (including character constants and symbols represent-
ing constants) or an expression as previously described. Immediate data
expressions are evaluated using 32-bit arithmetic. Depending on the
instruction being used, the value represented by the rightmost 4, 8,
16, or 32 bits is actually used. An error message is generated for

values that overflow the valid range for the instruction.

ADDB RL7,#98 Add 98 to the contents of register RL7
LDL RR14,#6789*FOUR
> . Load the value of the multiplication
3 5 into register pair 14
1f a variable name or address expression is prefixed by "#'", the value

used is the address represented by the variable or the result of the
expression evaluation, not the contents of the corresponding data
location.

The assembler automatically creates the proper format for a long
offset address which includes the segment number and the offset in a 32-
bit value. 1t is recommended that symbolic names be wused wherever
possible, since the corresponding segment number and offset for the
symbolic name will be automatically managed by the assembler and
can be assigned values later when the module is linked or when the
program is loaded for execution.

For those cases where a specific segment 1is desired, the following
notation can be used (the segment designator is enclosed in double
angle brackets):

<<segment>>offset

where ''segment'' is a constant expression that evaluates to a 7- bit
value, and "offset" is a constant expression that evaluates to a 16-bit
value. This notation is expanded into a long offset address by the
assembler.

LDL RR2,#MESSAGE Load the address of MESSAGE into
' ' register pair RR2

LDL RR2,#<<2>>%10 Load the segmented address

’ ’ with segment 2, offset %10

’ ’ into register pair RR2

Register Address

In register addressing mode, the operand value is the content of the
specified general-purpose register. There are four different sizes of
registers on the Z8000:

- Word register (16 bits),

- Byte register (8 bits),

2-14 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

- Register pair (32 bits), and
- Register quadruple (64 bits).

A word register is indicated by the '"R' followed by a number from 0 to
15 (decimal) corresponding to the 16 registers of the machine.
Either the high or low byte of the first eight registers can be
accessed by using the byte register constructs "RH" or "RL'" followed by

a number from 0 to 7. Any pair of word registers can be
accessed as a register pair by using "RR'" followed by an even number
between 0 and 14. Register quadruples are equivalent to four

consecutive word registers and are accessed by the notation ''RQ"
followed by one of the numbers 0, 4, 8, or 12.

If an odd register number is given with a register pair designator, or a
number other than 0, 4, 8, or 12 is given for a register quadruple, an
assembly error will result.

In general, the size of a register used in an operation depends on the
particular instruction. Byte instructions, which end with the suffix
"B'" are used with byte registers. Word registers are used with word
instructions, which have no special suffix. Register pairs are used

with long word instructions, which end with the suffix "L".
Register quadruples are used only with three instructions (DIVL, EXTSL
and MULTL) which use a 64-bit value. An assembly error will

occur if the size of a register does not correspond correctly with the
particular instruction.

LD RS, #%5A5A Load register 5 with the

F , hexadecimal value 5A5A

LDB RH3,#%A5 Load the high order byte of

. ' word register 3 with the

- . - hexadecimal value A5

ADDL RR2,RR4 Add the register pairs 2-3 and
y y 4-5 and store the result in 2-3
MULTL RQ8,RR12 Multiply the value in register

pair 10-11 by the value in
register pair 12-13 and store the
result in register quadruple
8-9-10-11

'
'
’
’

Indirect Register Address

In Indirect Register addressing mode, the operand value is the con-
tent of the location whose address is contained in the specified regis-
ter. A register pair is used to hold the address. Any general-purpose
register (register pair) can be used except RO or RRO.

Indirect Register addressing mode is also wused with the 1/0
instructions and always indicates a 16-bit 1/0 address. Any

2-15

general-purpose word register can be used except RO.

An Indirect Register address is specified by a ‘'commercial at'" symbol
(@) followed by either a word register or a register pair designator.
For Indirect Register addressing mode, a word register is specified by
an '"R" followed by a number from 1 to 15, and a register pair is speci-
fied by an "RR" followed by an even number from 2 to 14.

LD @RR2,#15 Load immediate value 15 into
, . location addressed by register
’ ’ pair 2-3

Direct Address

The operand value used by the instruction in Direct addressing mode
is the content of the location specified by the address in the instruc-
tion. A direct address can be specified as a symbolic name of a memory
or 1/0 location, or an expression that evaluates to an address. For all
1/0 instructions, the address is a 16-bit value. The memory address
is either a 16-bit value (short offset) or a 32-bit value (long
offset). All assembly-time address expressions are evaluated
using 32-bit arithmetic.

LD R10,TABLE Load the contents of the

> 5 location addressed by TABLE

, , into register 10

LD ARRAY+2,R2 Load the contents of register
g ’ 2 into the location addressed
v - by adding 2 to ARRAY

LDB RH5,55 Load the contents of the 1/0
, . location addressed by 55 into
. . RH5

The assembler automatically creates the proper format which includes the
segment number and the offset. It is recommended that symbolic names be
used wherever possible, since the corresponding segment number and
offset for the symbolic name will be automatically managed by the assem-
bler and can be assigned values later when the module is linked or
loaded for execution.

For those cases where a specific segment is desired, the following nota-
tion can be used (the segment designator is enclosed in double angle
brackets) :

<<segment>>offset

where ''segment'' is a constant expression that evaluates to a 7-bit
value, and "offset" is a constant expression that evaluates to a 16-bit
value. This notation is expanded into a 1long offset address by the

2-16 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

assembler.

To force a short offset address, the segmented address can be
enclosed in vertical bars (||). 1In this case, the offset must be in
the range 0 to 255, and the final address includes the segment number
and short offset in a 16-bit value.

LD R10, |TABLE| Load the contents of the

’ 0 location addressed by TABLE
. . (short offset format) into
: . register 10

LD <<SEGMENT>>OFFSET,R10 Load the contents of reg-
ister 10 into the location
addressed by the segment
named SEGMENT offset by
OFFSET (long offset format)

.- . e .

JP | <<SEGMENT>>0FFSET Jump to location addressed
’ ’ by segment, offset
v (short offset format)

Indexed Address

An Indexed address consists of a memory address displaced by the con-
tents of a designated word register (the index). This displacement is
added to the memory address and the resulting address points to the
location whose contents are used by the instruction. The memory address
is specified as an expression that evaluates to either a 16-bit value
(short offset) or a 32-bit value (long offset). All assembly-time
address expressions are evaluated using 32-bit arithmetic. This address
is followed by the index, a word register designator enclosed in
parentheses. For Indexed addressing, a word register is specified by an
"R" followed by a number from 1 to 15. Any general-purpose word regis-
ter can be used except RO.

LD R10,TABLE(R3) Load the contents of the
5 o location addressed by TABLE
' . plus the contents of reg-
' . ister 3 into register 10

The assembler automatically creates the proper format for the memory
address, which includes the segment number and the offset. As with
Direct addressing, symbolic names should be used wherever possible so
that values can be assigned later when the module is linked or loaded
for execution.

For those cases where a specific segment is desired, the following nota-
tion can be used (the segment designator is enclosed in double angle
brackets) :

<<segment>>offset(r)

where ''segment' is a constant expression that evaluates to a 7-bit
value, '"offset'" 1is a constant expression which evaluates to a 16-bit
value, and '"r" is a word register designator. This notation is expanded
into a long offset address by the assembler.

To force a short offset address, the segmented address may be
enclosed in vertical bars (||). 1n this case, the offset must be in the
range 0 to 255, and the final address includes the segment number and
short offset in a 16-bit value.

LD R10,|TABLE|(R3) Load the contents of the
location addressed by
TABLE (short offset format)
plus the contents of reg-
ister 3 into register 10

LD <<5>>8(R13),R10 Load the contents of regis-
ter 10 into the location ad-
dressed by segment 5

offset by 8 (long off-

set format) plus the con-
tents of register 13

Relative Address

Relative address mode is implied by its instruction. It is used by
the Call Relative (CALR), Decrement and Jump If Not Zero (DINZ),
Jump Relative (JR), Load Address Relative (LDAR), and Load Relative
(LDR) instructions and is the only mode available to these instructions.
The operand, in this case, represents a displacement that is added to
the contents of the program counter to form the destination address that
is relative to the current instruction. The original content of the
program counter is taken to be the address of the instruction byte fol-
lowing the instruction. The size and range of the displacement depends
on the particular instruction, and is described with each instruction in
the Z8000 Assembler Reference Manual.

The displacement value can be expressed in two ways. In the first case,
the programmer provides a specific displacement in the form "$+n'" where
n is a constant expression in the range appropriate for the particular
instruction and $ represents the contents of the program counter at the
start of the instruction. The assembler automatically subtracts the
value of the address of the following instruction to derive the actual
displacement.

JR OV,$+0NE Add value of constant ONE to program
5 | counter and jump to new location if
LT overflow has occurred

In the second case, the assembler calculates the displacement automati-
cally. The programmer simply specifies an expression that evaluates to
a number or a program label as in Direct addressing. The address speci-
fied by the operand must be in the valid range for the instruction, and

2-18 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

the assembler automatically subtracts the value of the address of the
following instruction, to derive the actual displacement.

DINZ R5,BETA Decrement register 5 and jump to

i BETA if the result is not zero

LDR R10,ALPHA Load the contents of the location

’ ' addressed by ALPHA into register 10

Based Address

A Based address consists of a register that contains the base and a 16-
bit displacement. The displacement is added to the base and the result-
ing address indicates the location whose contents are used by the
instruction.

The segmented based address is held in a register pair that is specified
by an "RR" followed by an even number from 2 to 14. Any general-purpose
register pair can be used except RRO. The dispacement is specified as an
expression that evaluates to a 16-bit value, preceded by a "#'" symbol
and enclosed in parentheses.

LDL RR2,R1(#255) Load into register pair 2-3 the
’ ’ long word value found in the

’ y location resulting from adding

s . 255 to the address in register 1

LD RR4 (#%4000) ,R2 Load register 2 into the loca-

' y tion addressed by adding %4000
’ ’ to the segmented address found
’ 5 in register pair 4-5

Based Indexed Address

Based Indexed addressing is similar to Based addressing except that the
displacement (index) as well as the base is held in a register. The con-
tents of the registers are added together to determine the address used
in the instruction.

The segmented based address is held in a register pair that is specified
by an "RR" followed by an even number from 2 to 14. Any general-purpose
register pair can be used except RRO. The index is held in a word regis-
ter that 1is specified by an '"R" followed by a number from 1 to 15. Any
general-purpose word register can be used except RO.

LDB RR14(R4),RH2 Load register RH2 into the

’ ' location addressed by the
' ' address in RR14 indexed by
’ ’ the value in R4

2-19

ASSEMBLER DIRECTIVES

Assembler Directives are program statements which have the same format
as machine 1instructions but whose action does not correspond to any
machine instruction. These are used to control the operation of the
assembler with regard to functions other than producing the machine code
for an instruction.

Directives fall into two major categories: data generation directives
which allocate and possibly initialize program data areas, and control
directives which control and affect the operation of the assembler.

DATA GENERATION DIRECTIVES

These cause data space to be reserved at the current assembly location.
Directives differ in element size and ability to initialize the data
space.

DS

This directive is used to define uninitialized data. It takes a single
required operand which is an expression which evaluates to an absolute
value (i.e. not relocatable). No forward referencing of symbols is
allowed in the expression. The given number of two-byte words is
reserved at the current location, after rounding up to the next even
boundary. Note that an operand of "0" may be used to force rounding of
the location counter up to an even boundary without reserving any
space for data. Also, if a label is defined in the label field of the
same statement its value 1is set to that of the location counter after
the rounding operation, but before the data definition.

DS 0 round up to next word boundary

BUFFER DS 100 reserve a one hundred-word buffer

DSB

This directive is used to define uninitialized data. It takes a single
required operand which is an expression which evaluates to an absolute
value (i.e. not relocatable). The given number of bytes 1is reserved
at the current location. No forward referencing of symbols is allowed
in the expression.

2-20 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

DSB 100 reserve 100 bytes

keyboard buffer DSB number_base 16 define keyboard buffer

DSL

This directive is used to define uninitialized data. It takes a single
required operand which is an expression which evaluates to an absolute
value (i.e. not relocatable). No forward referencing of symbols is
allowed in the expression. The given number of four-byte longwords is
reserved at the current location, after rounding up to the next
even boundary. Note that an operand of '"0" may be used to force round-
ing of the location counter up to an even boundary without reserving
any space for data. Also, if a label is defined in the label field of
the same statement its value is set to that of the location counter
after the rounding operation, but before the data definition.

DSL 100 leave exactly 400 bytes
* uninitialized
buffer_pointer DSL 1 define memory pointer
* variable

DD

The DD directive is used to define initialized data areas consisting of
two-byte word values. The directive may take any number of operands
and repetition factors may be applied to groups of them (described
below). Each operand is an expression which evaluates to either an
absolute value or to a relocatable value. 1In either case only the low-
order 16 bits of the value is used. One word of data is generated for
each operand supplied at the current location after rounding up to the
next even boundary. Also, if a label is defined in the label field of
the same statement its value is set to that of the location counter
after the rounding operation, but before the data definition.

DD 10244 define one word with contents 10,244 (%2804)
* Define a power-of-two table of words:

16,32,64,128

TABLE DD 0
% %400,%800,%1000,%2000,%4000, %8000

DD

O
(= e)

Key DD A’ define word containing %0041

DDB

The DDB directive is used to define initialized data areas consisting of
byte values. The directive may take any number of operands and repeti-
tion factors may be applied to groups of them (described below). Each
operand 1is an expression which evaluates to an absolute value, or a
string.

If the operand is a value, only the low-order 8 bits are used and one
byte of data is generated at the current location.

DDB 'A'1%40,['Z'+1]!%40 two data bytes

String operands are sequences of any length (including zero) of ASCII
characters. They are delimited by quotation marks, so an embedded quo-
tation mark is written %" and an embedded percent sign is written
%%. The discussion of hexadecimal and mnemonic equivalents for ASCII
characters (see Constants) applies as well to strings. One byte of
data is generated for each byte of a string, at the current location.

string DDB "this is a string"

EndOff DDB 7,%00,%0A bell, carriage return, line feed

MESSAGE DDB ""ERROR - INVALID INPUT%r'",7,0

DDL

DOL is used to define initialized data areas consisting of four-byte
long values. The directive may take any number of operands and repeti-
tion factors may be applied to groups of them (described below). Each
operand 1is an expression which evaluates to either an absolute value or
to a relocatable value. Two words of data are generated for each
operand supplied at the current location after rounding up to the next
even boundary. Also, if a label is defined in the label field of the
same statement its value is set to that of the location counter after
the rounding operation, but before the data definition.

* Define table of three long words, the address of the
* start of the region, the address of the end of the
* region and the size in byte of the region.

DDL START,END,END-START

DDL %7f017fff, 'AB' define two long words the first
i 5 containing hex 7f017fff, and the
y . second hex 00004142

The DD, DDB and DDL directives each take an arbitrary number of
operands and allow repetition factors to be applied to them. A
repetition factor takes the form of an absolute expression. The
repetition factor must be followed by the operand enclosed in

2-22 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

parentheses. This has the effect of the enclosed operands appearing in
sequence, the number of times given by the expression.

Repetitions'may be nested. No forward referencing of symbols is
allowed.

ARRAY DD 1000(0) define array of 1000 words,

*

all initialized to zero.
* define and initialize 8 bytes
CrcTab DDB 2('"asdf") which would be 8 bytes.

The DD directives with repetition factors have the potential to produce
voluminous listings. 1f the generated code is too large to fit the
space to the left of the source line, the code will follow the listing
line 1in groups of 8, 16, or 32 data elements (for DDL, DD, and DDB
respectively).

CONTROL DIRECTIVES

MODULE

A MODULE statement defines the beginning of each module in the source
file. It must occur as the first instruction of each module in the
input source file. A module ends either at the next MODULE state-
ment or at the end of the input source file. Modules within the same
file are completely unrelated; no symbols may be shared or passed
between them.

The first operand of the MODULE statement, the module name, is required.
This operand follows the composition rules of a normal symbol, but can-
not be referenced elsewhere in the program. The second operand is
also required. It must be the keyword "SEGMENTED" to tell the module to
contain code for a segmented Z8000.

MODULE test seg,segmented

SECTION

A module is composed of sections which are named explicitly by the user.
A section is the smallest unit of relocatability within the programming
system. Portions of the same section cannot be split further and placed
separately at link time.

A SECTION directive must appear 1in each module before the first

machine instructions or data generating directive. The SECTION direc-
tive has one required operand which is the section name. This

2-23

operand follows the composition rules of a normal symbol, but cannot
be referenced elsewhere in the program.

1If a section name duplicates another section name already declared in
the same module, it is taken as a continuation of the same section. The
assembly location counter is set to 0 at the beginning of a new section
or to the value it had at the previous end of a continued section. The
special character asterisk (*) may be specified in place of the section
name to indicate the most recent section is to be continued.

All symbols defined within a module must be unique. Thus, symbols may
be cross-referenced between sections of the same module.

section some_examples
SECTION examples
SECTION *
AT
This directive is used to change the assembly location counter. 1t

takes a single operand which is a numeric expression. The expression
defines the offset in the current section at which the next instruction
or data is to be generated. It may be used to move forward, leaving an
uninitialized gap, or to move backward, overwriting code or data previ-
ously generated at that location.

The expression must use symbols which have already been defined or
constants; no forward referencing of symbols is permitted.

In order to specify a symbolic location with a numeric expression, label
the beginning of the section. If the label at the beginning of the sec-
tion is, for instance, START.up, you could make the following assign-
ments:

AT [$-START.upl+10 same as ''DSB 10"
AT START.up+%100 resume assembling at offset %100
TEMPLATE

This directive allows the definition of assembly-time symbols by means
of suspending the actual generation of code/data. The effect of the
TEMPLATE instruction is to cause all subsequent source statements to be
processed normally but no code or data to be generated in the output
object file. Thus all symbols are defined, but they are not assigned to
any location. Normal processing of assembler instructions is reinstated
by the next SECTION, MODULE, COMMON, or TEMPLATE statement.

2-24 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

The TEMPLATE directive takes one required operand. It is an
expression which is absolute, internally relocatable or externally relo-
catable. The symbols subsequently defined are given values relative to
that expression.

* The following statements define the layout
* of the REQUEST CONTROL BLOCK. No memory is
* reserved at this time but the four symbols
* become defined as absolute constants which
* are their respective offsets in the block.
TEMPLATE 0

RCB.RQCODE DSB 1
RCB.STATUS DSB 1
RCB.DATAPTR DSL 1
RCB.COUNT DS 1

COMMON

The COMMON directive is used to declare a common data area. Generation

of code or data in the object module is suspended until the next MODULE,
SECTION, TEMPLATE or COMMON directive. The instructions which fol-
low have the effect of defining the symbols therein declared and of
defining the length of the common area. The COMMON directive has
no operand but a common name must be provided in the label field of the
instruction. This follows the composition rules for external symbols
and is itself an external symbol; the COMMON statement serves to declare
it as such.

No memory space is reserved for the common area by the assembler. The
name and size of the common is placed into the output object module for
use by the linker. The common name is a bonafide external symbol and
may be used in other places in the assembly where an external symbol is
allowed.

* Define named common area to contain all globally used variables.

GLOBAL_VARIABLES COMMON

Buff.Ptr DSL 1
Glob.Flag DSB 1
CmdLength DS 1 *%% WARNING, rounding will
> . occur for alignment ***
ASSIGN

ASSIGN is used to define an assembly-time symbol. The symbol to be
defined appears in the label field of the instruction. The value to be
assigned to it is given as the operand. The operand is an expression
which may be absolute, internally relocatable or externally relocatable.

2-25

The new symbol takes on the value and type of the expression. Symbols
in the expression may not be forward referenced. The defined symbol
must be unique within the module; it is not permissible to redefine a
symbol with an ASSIGN statement.

ccce ASSIGN %F defines a constant symbol
KEY ASSIGN ‘A’ defines a character value
ABSOLUTE_ADDR ASSIGN <<3>>%100 defines an absolute address
LOOP2 ASSIGN $ equivalent to "LOOP2 DSB 0"
g 3 or to LOOP2 standing alone
' ' on a line
LOOP_X ASSIGN LO0P2+2 program location after first
’ ’ word of LOOP2 routine.
GLOBAL

The GLOBAL girective is used to define a global symbol. This symbol is
accessible “within the current module, and is also made accessible at
link time to all other modules. There are no operands to the directive.
The symbol to be defined is given in the label field of the instruction,
and must be unique within the module. 1t receives the value of the
current assembler location. This directive may only occur within a sec-

tion; it may not appear within the range of a TEMPLATE or a COMMON
directive.

compare global label first instruction of routine
= so it may be used by all modules

* Define a global word variable, initialized to
* all ones.

DS 0 align, to make sure
ONES GLOBAL
DD %(2)111111111111711N

EXTERNAL

The EXTERNAL directive is used to declare a symbol which is to be
defined at 1link time in another module. There are no operands. The
symbol to be declared is given in the label field of the instruction.
Since the symbol is not associated with any particular section, its
declaration may appear anywhere in the module.

2-26 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

* Declare routines in utility module needed by this module.
BCD ADD EXTERNAL

BCD_SUB EXTERNAL
BCD DIV EXTERNAL

1IF and ENDIF

These directives are used to implement a conditional assembly facility.
The 1F instruction takes a single operand which is an expression which

may be of any type, but may not contain forward symbol references. 1f
the value of the expression is exactly zero, all statements following
the 1F and before the corresponding ENDIF are treated as comments. An

ENDIF takes no operands. IF-ENDIF pairs may be nested.

Assume an assembly program is to be assembled in one of two different
ways, depending on which machine, X or Y, it is going to run on. Using
the ASSIGN directive we set the symbols X and Y to show which the
current assembly is for. One is set to 1, the symbol for the machine
being selected, the other to 0, for that not selected. A portion of
the assembly might appear as follows:

* If assembling for the X machine, invert the value.

if X could also say IF X<>0
COM RO
endif

LISTON and LISTOFF

These directives allow the selective inclusion of portions of the assem-
bly in the listing file. They take no operands. If no listing file was
named in the assembler command line, then these have no effect since no
listing 1is being produced anyway. Rather than being just an on/off
switch listing control is accomplished with a signed counter. The
counter starts at zero, each occurance of a LISTON increments it by one
and each LISTOFF decrements it by one. Text is placed into the list-
ing file whenever the counter is greater than or equal to zero. This
technique provides hiergrchical levels of control. The counter 1is not
reinitialized for each new module encountered in the input source file.

PAGE

This directive forces a page break in the listing file following the
newline character of the previous line. A page heading along with the
current title string is produced following a form-feed character. 1f;
no 1line has been printed since the last automatic or requested page

2-27

break then the entire instruction is ignored. With no operand, PAGE
forces a form feed. With an operand, the operand will set the number of
lines per page. This does not include the 5 lines of header informa-
tion. To get 50 lines per page, the PAGE operand would be 55.

TITLE

This directive allows the programmer to provide a title to be placed
in the upper left corner of each listing page. It takes a single
operand which is a string enclosed in quotation marks ('"). An automatic
page break including a new heading 1is produced using the new title
string.

TITLE "LINKER RELEASE 7.44 -- PASS ONE"

INCLUDE

This directive causes the insertion of the source from another file into
the current assembly at the point at which the directive occurs. There
is a single operand consisting of the filename enclosed in quotation
marks. The 1listing file always has the entire line containing the
INCLUDE instruction before the insertion 1is done. If a page break
occurs for any reason while in the included file the page heading shows
the name of the file currently being processed. INCLUDEs may be
nested, but they may not contain MODULE directives.

include "stdio.h" get standard i/o package definitions

INCLUDE "Def_Insert" place insertion source for Def here

THE PCOS STANDARD.

This section describes how to write Assembler source programs in order
to obtain maximum compatibility with the operating system (PCOS) rou-
tines.

This will allow user programs to use the same procedures as for any PCOS
utility for 1invoking and for passing parameters to the Assembler pro-
gram.

The following figure shows the way in which an Assembler utility is con-
nected to various parts of the system.

2-28 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

CALL, EXEC s
CALL,
EXEC
T I Ty
A e —
\/‘
S P Nl il Nl oy
Assembler s] [~
utilities \\\\///"\\\,//"\\\//// B
NENZ NN
Y e e W g ~J PCOS
SC #n \\\;::::\\ R
v
SYSTEM
CALLS

IN, OUT

> HARDWARE

Fig. 2-1 Connecticn between Assembler utilities and other parts of the
system

If Assembler routines are written following a certain standard, it is
possible to invoke them like a simple PCOS command, or from a BASIC pro-
gram.

By means of conventions on the passing of paraméters, the same Assembler
utilities can call PCOS commands or access a group of small routines
(system calls), that are also used by the operating system (PCOS).
These provide a certain number of elementary operations on the system
hardware, thus facilitating programming.

Direct access to the system hardware will consequently be possible, by

2-29

means of the Assembler instructions IN, OUT (see Appendix F for a list
of 1/0 port assignments and consult M20 hardware literature).

It is also possible to access PCOS commands from an Assembler utility,
using the Assembler instruction SC 77 which is described in the second
part of this manual.

Let us now summarise the various ways to call (from PCOS and BASIC
respectively) an Assembler wutility (e.g. MYFILE) which 1is written
according to the PCOS standard, to which the parameters paral, para2 and
para3 are passed.

PCOS

MYFILE PARA1,PARA2 ,PARA3

BASIC

CALL "MYFILE'"(PARA1,PARA2,PARA3)
Where PARA1,PARA2,PARA3 can be either constant or variable parameters.
or
EXEC "MYFILE PARA1,PARA2,PARA3"
Where PARA1,PARA2,PARA3 can only be constant parameters.
Furthermore, certain conventions within our Assembler source file, will
also make it possible to obtain the identification of our program, while
the program is being loaded (by using the PCOS commands PLOAD or PDE-
BUG) .
The instructions and the Assembler directives to be used in order to
obtain a routine compatible with the PCOS standard, are dealt with in
this order:
1. Configuration code
2. Header
3. How to pass the parameters

4. Exit Routine

5. Example

2-30 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

1. Configuration Code

The first "word'" of an executable program, will provide information
(while the program itself is being loaded) on how it will be configured
in memory. This word, being the first word of the program, must assume
the value zero and indicates that the word immediately following, is the
entry point.

Schematically:

00 00] 1 word

——| main entry code

To obtain a source program complying with configuration code 0, the
first statement must be DD 0.

Other types of configuration codes are allowed by the system software,
but cannot be utilised by the user.

2. Header

When an executable file is being loaded using PLOAD or PDEBUG, the M20
displays some information on the screen, amongst which the program name.
This program name can be inserted at source program level 1in the
"header' of the program itself.

The header is that part of the program containing both the configuration
code previously mentioned and a string identifier which will be the pro-
gram name. For example, the "header' of a source file can contain any
of the following Assembler instructions:

module echo, segmented

section example
Header dd 0 type 0
JR start
ddb "File Echo " string ident. prog.
dd 0
start
program

In practice, the string identifier is placed in memory between the
second word and the first occurrence of a "null (00)". This string must
be skipped by means of the instruction "JR start" in the source program.
It is important that the jump instruction of the string identifier is JR
and not JP, as JR only occupies 1 word, thus allowing the start of the
string from the third word of the executable program.

The situation of the program in memory will be the following:

00 00
l«— JR start code
Header 1
1
1 | :' ASCI| string identifier
00 l 00 +— end of string
start

3. How to pass the parameters

When an assembler utility is invoked by PCOS or by BASIC, all the param-
eters passed to it are placed (pushed) in the stack by the system so
that they can be extracted (popped) from the stack in the order and in
the way in which they were placed.

2-32 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

The maximum number of parameters that can be passed is 20. The pointers
to the parameters (parameter entry) will be allocated in the stack when

the routine is invoked, in the following way:

Stack
pointer
at o n para —I 1 word
entry —
routine parameter entry
for para 1 2 words
parameter entry
for para 2 oI
parameter entry 2
for para 3 words
—
|
|
I
parameter entry 2 words
for para n e——nmax = 20
return address 2 words

The user program must however extract information about the various
parameters by means of as many ''pop' instructions from the stack, as the

corresponding number of parameters.
As seen in the figure, the number of parameters is given by the

first

word addressed by the stack pointer when the routine is invoked by PCOS

or BASIC.

It is possible to have 3 types of parameters:

- Null with hexadecimal code 00
- Integer N b, M. 02
- String " " " 03

The code for each type of these parameters is memorized in the 2nd

byte

2-33

of the 1st word for each 'parameter entry"

type
JOSS3ES parameter
offset

For the type ''null' the 'parameter entry' does not contain an actual
pointer, but for compatibility, it will be of the type:

33 00

FF FF

This type of 'parameter entry' is created when, for example, the routine
is invoked in the following way:

my paral,,para3

1t can be seen therfore, that the second parameter has been jumped (para
2). This means in practise, that a pointer to a dummy parameter (param-
eter entry) is created (with FFOO FFFF) in order to maintain compatibil-
ity with the standard.

For the integer type (02) there will be a real pointer to the parameter,
constructed in the following way:

n seg 02

offset

The segment number and the offset constitute the effective address to a
word integer (this is a Z-8001 compatible segmented address)

For example, the "parameter entry' for integer 5 could be:

2-34 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

86 02

oc 00

In this case, the address for the word containing integer 5 will be:
<<6>> 0C00

This can be represented schematically as:

86 02 oc 00 —_— 00 05

(Note that once the type has been identified the second byte is ignored)

However, if the parameter is a '"string" (type 03), the procedure for
pointing to the string is more complex than the previous two.

In this case, the pointer (entry parameter) points to a set of 3 bytes,
the first of which contains the string length, whereas the other two
contain the address (significant only for the offset part as the seq.
no. is the same as the entry parameter) pointing to the string itself.

e.qg.
n seg 03
offset 1
n seg -
e string
length offset 2
offset 1
| J
3 Bytes
n seg
string]
offset 2

For example, the '"Parameter Entry' for the string 'STRING'" must have the
following structure:

2-35

86 03

oc 00
86 00
—» L 06] oc 09
oc 00
L J
3 Bytes
86 00

oc 09 —l

O A B B B

6 byte ASCII

4. Exit Routine

The Assembler programmer is advised to write his programs so that he can
easily handle the exit from the program by means of the instruction RET,
in order to return to the environment from which it was called.

It is convenient to save in 2 words (RETADR) the stack address which
points to the program return address. In this way, the stack pointer can
be set to this address before exiting the program (using the 'RET"
instruction). In order to access the program return address, you will
have to use the ''number of parameters'' saved in the first stack loca-
tion.

To accomplish this, the following Assembler instructions can be used at
the start of the utility:

2-36 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

POP RO,@RR14 no. par in RO
CLR R2
LD R3,RO
SLL R3,#2 no. par x4
AJ:;L\ ~ADD- RR2,RR14 pointer to reurn address in RR2
LDL RETADR,RR2 store RR2

program

LéL RR14,RETADR
RET
RETADR DSL 1

5. Example

Here a complete example is given of a simple Assembler source program in
which the standard (which we have seen up till now) is taken into
account. In input, this program takes a string as a parameter and
echoes the string itself in output. Once the program has been assembled
and linked in an executable file '"echo.cmd", it can be called from PCOS
in the following way:

ec string /CR/

2-37

2-38

¥
€
*
*
*

FLELHEXLFFEIRL AR LTLEFFEEFOORRIR RO TR EE AT ORI ORRL L RXL

x

str

*>

*
*

echo

Echa string 1nput to this ruotine

Ar example of the use of the M20 Assembler Fackage

MODULE
SECTION
TITLE

progras header

0D
JR
0DR
ope
DB

ASSIGN
LDA

s¢

POF
CLR

LD

SLL
ADDL
LoL

echo, SEGHENTED

example

"ROUTINE SEGHENTED ECHO®

0

2cho

*File Echo "
g o

0

$

RR12,str
#89

RO, aRR14
k2

R3.RO

R3, 42
RR2,RR14
retadr,RR2

configuration code--MANDATORY HERE
FCOS expects this instruction format
program 1dentifier

carriage return

end of prograe header

point to message
display string identifier
get parameter count

use R3 as working register

multiply # parameters by 4

add to stack to point to return addr
save it for later return

Now test for # parameters passed and reject if wromg

TEST
JP
LD
JF

RO
NZ,echol
erconu, #76
error

how many paraseters?

not zero parameters so go on
Message = "error in parameter”
exit with error message

So we have one or more parameters passed
Transfer parameters to registers. checking data types...

1 ASSIGN
POPL
CFB
JP
LD
JP

$
RR2,aRR14
RL2,H3

ER, echo2
erconu, #13
error

Main program code here

2 ASSIGN
CLRB
CLR
CLRE
LDB
INC
LDB
INC
LDB

$

RL2

R?

RHé
RL&,aRR2
R3
RH1,9RR2
k3
RL1,9RR2

get pointer to parameter in rr2
is parameter a string? (type 3)
yes, go service, else....
Message = "type mismatch®

print input string to screen
clear data type byte

string length in RLé
RR2 points to the next byte

RR2 points to the next byte

ASSEMBLER USER

RN F R R R E R NN R AR R LA T R PR R PR R R R RN OB P FF ATy

r
x
*
¥
*

GUIDE

THE ASSEMBLER SOURCE FILE

LD F10,R2
LD Ri1.R1
LD k8, #17
LD RS Ra
8¢ #13
CLR RS
a¢ #90
CLR RS
JE n_return
¢ Eat with sopropriate error message
¥
error ASSIGN $
LD R3.ercany
5 #EB
*
% Normal return
*
n_return ASSIGN $
LOL FR14, retadr
RET :
*
Storage area
*
SECTION ares
*
retadr DSL 1
ercony DS |
*
% End (echo)

RR1D points
prepare req

to the string parameter
rs for 5C #13

display string

assume no error returned by 5C H#13
add a CR/LF

assume no error returned by SC #90
Jump around error service

nust have been set up first !!!
display error message

point stack pointer to return address
and return te caller

storage for return address
storage for error type code

2-39

3. THE ASSEMBLER (ASM) COMMAND

ABOUT THIS CHAPTER

This chapter details the ASSEMBLER (ASM) command. This command processes
an Assembly language source file and produces an object file.

CONTENTS

AsM
Lovsy oorilo R

341

THE ASSEMBLER (ASM) COMMAND

ASM

The ASM command processes an Assembly Language source file of ASCII text
and produces a file containing the corresponding Z8000 machine code.
This file is known as an object file. Optionally the ASM command pro-
duces a listing file. When such a file is listed the video displays the
source file program lines on the right and the generated code or symbol
values along with other information about each program line on the left.
1f the XREF option is specified for a listing file then it will also
include a cross-reference table at the end. Examples of object and list-
ing files are shown at the end of this chapter.

The ASM command is called from PCOS like any other PCOS command. When
called it is loaded into memory and executed. After execution the system
returns to the PCOS environment. The command syntax is shown in figure
3-1 below.

file
[——o‘ identifier
(.s)
file
-——o‘ as > {outpul ’-—0 identifier »
(.obj)
file
——0‘ identifier ‘O——o(xref } 4
(.0

0)-
O/

Fig. 3-1 The ASM command

Where

SYNTAX ELEMENT

INPUT

file identifier
(.s)

OuUTPUT

file identifier
(.obj)

LISTING

file identifier
(.1)

3-2

MEANING

The keyword which must precede the source file
identifier

The source file identifier complete with any
necessary volume identifier and/or password.
Usually a source file name is assigned a '.s'
extension.

The keyword which must precede the object file
identifier

The object file identifier complete with any
necessary volume identifier and/or password.
Here again it is good programming practice to
assign the extension '.obj' to an object file
name. If the file specified does not exist then
it will be created; if on the other hand the file
exists then it will be overwritten with the new
object file.

The keyword which must precede the 1listing file
identifier.

The listing file 1identifier complete with any
necessary volume identifier and/or password. A
listing file name is usually assigned the exten-
sion '.1'. 1f the file specified does not exist
then it will be created; if on the other hand the
file exists then it will be overwritten with the
new listing file.

ASSEMBLER USER GUIDE

THE ASSEMBLER (ASM) COMMAND

XREF The Cross-Reference keyword. If specified then a
cross-reference table 1is included at the end of
the listing file. This table contains an entry
for each symbol defined in the assembly with the
following information:

- The statement number at which the symbol is
defined.

- Its value and type.

- An ordered list of statement numbers which
reference the symbol.

QUIET The Quiet keyword. Specifying this keyword in an
ASM command 1line will suppress all the messages
normally output on the video except for error
messages which abort the command.

An ASM command parameter is identified by the command line interpreter
by its keyword; for this reason parameters can be entered in any order.

The command "AS'" by itself causes the command parameters to be displayed
on the screen.

1f the OUTPUT and LISTING options are omitted then the respective object
and listing files will not be created.

Characteristics

The ASM command is executed in a number of stages depending on the
number of modules 1in the input source file. In the first stage the
header is assembled; each module is then assembled in subsequent stages.
Each assembly stage is done in two passes.

During execution, unless the QUIET keyword was specified, the video
displays information indicating the end of each pass, and short messages
for warnings, and errors discovered. These messages specify the line
number and the code for each error and/or warning. When execution is
complete the video displays a summary line with the total number of
errors and warnings. A listing file printout will turn out to be very
useful for subsequent analysis of errors. ASM error and warning codes
are listed in appendix B.

Examples

IF you enter

as input 1:test.s,output
1:test.obj /CR/

as input 1:myfile.s,output
1:myfile.obj,listing
1:myfile.l,xref /CR/

THEN ...

the source file '"test.s'" which is on the
disk inserted in drive 1 is assembled. The
resulting object file is written into a
file called 'test.obj" on the disk
inserted in drive 1. If this file already
exists then it will be overwritten with
the new object file, if on the other hand
it does not exist then it will be created.

the source file "myfile.s" which is on the
disk inserted in drive 1 is assembled, as
in the previous example, however this time
a listing file is also created. The list-
ing file "myfile.l" is created on the disk
inserted in drive 1. The file "myfile.l"
will have a cross-reference table
included.

The sample printout on the following pages is that of the 1listing file
corresponding to the source file shown in chapter 2. This listing file
includes a cross-reference table. This file was obtained using the fol-

lowing command:

as input 1:echo.s,output 1:echo.obj,listing 1:echo.l,xref /CR/

ASSEMBLER USER GUIDE

THE ASSEMBLER (ASM) COMMAND

N20 Assembler v 2. 1. 7. 0 06/08/1983 08:38 27 Page 1
Source Ref File 1:echo.s
Location Code/Value Line Line Line Source Text
| 1 TRRRRRRERRAEN
2 r 4 | '
3 3 & Echo string input to this ruotine ¥
4 & * fn example of the use of the M20 Assembler Fackage *
5 5 *
6 6 ¥
7 7 e LAY ERERI RN R R AR
8 8
8 Lines, O Warnings, 0 Errors in Header
9 9 HODULE echo, SEGHENTED
10 10 SECTION example
1 1n TITLE "ROUTINE SEGMENTED EC
12 12+
13 13 = program header
14 16 »
00,000 0000 15 15 oD 0 configuration code--#ANDRTORY HERE
00,0002 E806 § 2 (1g JR echo PCOS expects this instruction format
00,0004 44"a% 6C 45 20 45 43 17 17 str ooe “File Echo * program 1dentifier
00.0008 &8 &F 20
00, 000E 00 18 18 ooe "ot carriage return
00, 000F 00 19 19 3 0 end of program nheader
20 20 »
A 21+ code
2 22 &
00,0010 23 23 echo ASSIGN $
00,0010 760C 00,0004 2 17 (24 LDA RR12,str point to message
00,0015 7F39 25 25 se He9 display string 1dentifier
00,0018 §7€0 2 26 POF RO, aRR14 aet parameter count
00,0014 €028 7 27 CLR R2
00,001C A103 28 28 L0 R3,R0 use R3 as working register
00,001€ B331_0002 2 29 SLL R3. N2 multiply # parameters by &
00,0022 96E2 30 30 ADDL RR2.RR14 add to stack to point to return addr
00,0024 5002 01,0000 ORI VA LoL retadr, RR2 save 1t for later return
2 2
3 33 » Now test for ¥ parameters passed and reject 1f wrong
3 3 0
00,0024 8004 35 35 TEST RO how many paraseters?
00,002¢ SEOE 00,0040 3 43 3 JP NZ.echol not zero parameters so go on
00,0032 4005 01,0004 004C 7 8 ¥ L0 ercony, K76 Message = "error in parameter*
00,0034 SE08 00,007€ B 73 B8 JF error exit with error message
39 39 s
40 40 * So we have one or more parameters passed
41 41 % Transfer parameters to registers, checking data types...
42 42
00,0040 43 43 echol ASSIGN $
00,0040 95E2 44 44 POFL RR2,aRR14 get pointer to paraseter in rr2
00,0042 DADA 0303 45 45 CPe RL2,H3 is parameter a string? (type 3)
00,0044 S5E06 00,0054 4 52 4 JP EQ, echo? yes, go service, else....
00,004C 4D05 01,0004 000D 47 88 47 Lo ercony, #13 Hessage = “type mismatch”
00,0054 SE08 00,007E 8 73 48 JP error
49 49
50 50 * Main program code here

ROUTINE SEGNENTED ECHO H20 Assesbler v 2. 1. 7. 0 06/08/1983 08:38-50 Page 2
Source FRef File 1 ectio.s
Location Code/Value Line Line Line Source Text
51 »
00,3054 52 echo? ASSIGN $ print input string to screen
00,0054 BCAS 5 53 CLRE RL2 clear data type byte
00,005¢ 8078 ¥ 5 R R?
00,005E 8Cé8 5 55 CLRE RHé
00,0060 202E 36 56 LD8 RLé, aRF2 string length 1n kL&
00,0062 A930 57 57 NG R3 RRZ points to the next byte
00,0064 2021 5 58 Loe RH1, 9RR2
00,0060 A930 ? 59 INC R3 RR2 points to the next byte
00,0068 2029 40 &0 LDg RL1, 4RR2
00,0064 A128 81 61 Lo R10.R2
00,006° Al1E & 62 LD i1R1 RR10 points to the string parameter
00.006E 2108 0011 &3 43 LD 8, #17 prepare registers for SC #13
00.0072 A169 44 s LD R9.Ré
00.0074 7F0D 85 65 sc #13 display string
00,0075 8058 1L L1 CLR RS assume no error returned by SC #13
00,0078 7F5A &7 67 5¢ #9910 add a CR/LF
00,0074 8058 48 48 CLK RS assume no error returned by SC 450
00,007¢ E80¢ 8 79 &F JR ni_return Junp around error service
70 70 *
n 71 * Bat with appropriate error message
72 72
00,007E] 73 error ASSIGN $
00,007€ 6105 01,0004 7% 88 74 Lo RS, ercony wust have been set up first
00,0084 7F58 75 75 5S¢ Hae display error message
76 76
n 77 % Normal return
8 78
00,0086 ” 79 n_return ASSIGN $
00,0086 540€ 01,0000 80 8§ 80 LDL RR14,retadr point stack pointer to return address
00,008¢C €08 81 81 RET and return to caller
82 2 ¥
83 83 * Storage area
84 Be
85 85 SECTION area
8 86
01,0000 87 87 retadr 0sL 1 storage for return address
01,0004 88 88 erconuy 05 1 storage for error type code
89 89 *
%0 90 * End (echa)
91 91 #
83 Lines, 0 Warnings. 0 Errors in Module echo

3-6 ASSEMBLER USER GUIDE

THE ASSEMBLER (ASM) COMMAND

Index for Module echo N20 Assembler v 2. 1. 7. 0 06/08/1983 08:39 00 Fage 3
Source Lines
Type and (Base or Section) Nawe Value Defining Uses
Section area 01,0006 854
Hodule echo 0000_00%4 bl
Relocatable (example) echo 00,0010 23 16
Relocatable (example) echol 00,0040 430 3
Relocatable (example) echo? 00,0054 524 46
Relocatable (area) ercony 01,0004 88H k7 &7 74
Relocatable (example) error 00,007 734 38 48
Section exanple 00,008E 108
Relocatable (example) n_return 00,0086 794 &9
Relocatable (area) retadr 01,0000 874 3 80
Relocatable (example) str 00,0004 178 2
7
L |
ROUTINE SEGNENTED ECHO M20 Assembler v 2. 1. 7. 0 06/08/1963 08:39:07 Page &
Source Ref File 1:echo.s
Location Code/Value Line Line Line Source Text
91 Lines, 0 Warnings, 0 Errors in 1:echo.s
#”
l A
BT

AN

4. THE LINK COMMAND

ABOUT THIS CHAPTER

This chapter describes the LINK command and all its keyword parameters.
The chapter ends with an example and sample printouts of a command file

and a map file.

CONTENTS

LINK

PARAMETERS

COMMENTS

MINIMUM COMMAND ELEMENTS

THE KE YWORDS

MULTI-FILE KEYWORDS

FILE KEYWORDS

VALUE KEYWORDS

STRING KEYWORDS

4-4

4-5

4-5

4-6

SIMPLE KEYWORDS

BLOCK KEYWORD

KEYWORD ORDER

ERRORS

4-8

4-9

THE LINK COMMAND

L INK

LINK is a linkage editor and locater which converts z-type object
modules into a PCOS 3.0 relocatable load file. The LINK command must be
called from the PCOS environment like any other PCOS command. LINK
inputs one or more Olivetti Z-type object files, and outputs a single
executable load file.

The LINK command allows a number of optional features described below.

PARAMETERS

There are six types of parameters which can be passed to LINK. These
parameters are of the Keyword type, and can have parameters of their
own. The keywords are listed below, grouped according to their type.

- Multifile keywords: INPUT LIBRARY

- File keywords: COMMAND OUTPUT
MAP

- Value keywords: BLOCKTYPE BLOCKSIZE
STACKS1ZE ATTRIBUTEO
ATTRIBUTE1 ATTRIBUTEZ2

- String keywords: ENTRY MESSAGE

- Simple keywords: QUIET VERBOSE
STATISTICS OPTIMIZE

- Block keyword: BLOCK

4-1

The command syntax is shown in figure 4-1 below.

r—»(Multifile keyword

file
identifier

»—b@ile keyword j——b . f?"?
identifier

—}(Value keyuord)—b term

v

:

String keyuordj—b string
=~
!

Simple keyword

o

_/

Block keyword »

section
name

Fig. 4-1 The LINK command

Where

SYNTAX ELEMENT

file identifier

MEANING

The name of a file complete with any necessary
volume identifier, and/or file password.
Depending on the keyword in question the file
will be accessed for reading or writing. In the
latter case if the file specified already
exists it will be overwritten with the new out-
put.

ASSEMBLER USER GUIDE

THE LINK COMMAND

In the case of Multifile keywords you can use
the two PCOS wild card characters (*) and (?)
to specify more than one file; an asterisk (*)
matches any string and a question mark (?)
matches any single character.

term A hexadecimal number preceded by a "%'" sign, or
a decimal number. In both cases the number can
optionally be followed by a "K" symbol (upper
or lower case) which multiplies the number by
%1000 in the case of a hexadecimal number or by
1000 in the case of a decimal number.

string Any string of ASCII characters.

section name The name of a program section that exists in
the input program modules. More than one
program sections can be specified by one
section name with the use of the following Wild
Card characters:

- An asterisk (*) which matches any string of
characters,

- A question mark (?) which matches any
one character,

- [ab...] which matches any one character
inside the square brackets,

- [a-b] which matches any one character in
the interval a-b.

COMMENTS

Comments, enclosed in exclamation marks, can be inserted in a LINK com-
mand between parameters. This facility is useful to comment command
files which you may use for LINKing specific types of programs. An exam-
ple of a commented command file is given at the end of this chapter.

MINIMUM COMMAND ELEMENTS

The required elements of a LINK command which outputs a PCOS 3.0 execut-
able file are the following:

- The multifile keyword INPUT followed by the file identifier(s) of the
input file(s).

- The file keyword OUTPUT followed by the file identifier of the output
file.

Commonly used options are:

- The multifile keyword LIBRARIES followed by the file identifier(s) of
a library file(s).

- The file keyword MAP followed by the file identifier of a map file.
- The ENTRY keyword followed by the the program entry point.

- The file keyword COMMAND followed by the file identifier of a file
containing part of a LINK command line.

- The BLOCK keyword followed by instructions ordering program sections.

These and other keywords are described in more detail in the next sec-
tion.

Note: Care must be taken that no more than 20 parameters are specified
in one LINK command; this is the maximum number of parameters that the
PCOS command line interpreter can handle. In cases where more than 20
parameters need to be specified the COMMAND keyword can solve the prob-
lem (the COMMAND keyword is described below in the section on File Key-
words) .

THE KEYWORDS

In the following section all the LINK keywords are described. Each
description has the keyword as a heading. In the command line keywords
must be entered as they appear in this heading in either capital or
small letters.

4-4 ASSEMBLER USER GUIDE

THE LINK COMMAND

MULTI-FILE KEYWORDS

INPUT

The INPUT keyword may occur any number of times. It specifies files con-
taining Z-type object modules which contain code sections to be located.

LIBRARY

This keyword instructs the program to select from the named library
files the modules which have been referenced in the input file(s).

A library file can be created using the MLIB command described in
chapter 6.

FILE KEYWORDS

COMMAND

The COMMAND keyword can be used in the command line to insert parameters
from another named file (command file). Up to two levels of insertion
are allowed (i.e. you can insert a COMMAND keyword in a command file
called from standard input, but you cannot specify another COMMAND key-
word in the file specified by a COMMAND keyword in a command file).

Such files containing part of a command line can be created using the
Video File Editor. Comments, enclosed in exclamation marks, can be
inserted in a command file between parameters.

An example of a Command file is shown at the end of this chapter.

OUTPUT

The OUTPUT keyword occurs once and only once. It specifies a file to
receive the executable binary load file. The file is created if it does -
not exist or is completely replaced with the new output if it does
exist.

The load file can be assigned any legal name, however there are two
filename extensions which have a special meaning to PCOS; these are
".cmd" and ".sav'". These filename extensions allow files to _be called
and executed from the PCOS environment like any other PCOS command (i.e.

4-5

by entering the first two characters of the file name). If a file has
niether of these extensions it can be invoked by entering the complete
file identifier. When a file which has no ".sav'" extension is called it
will be loaded from disk to the M20's memory, and executed. After execu-
tion the memory space that was occupied by the program is again made
available to the system. This means that if the program is to be exe-
cuted a second time it will have to be reloaded from disk to memory. In
the case of a ".sav'" extension the file will be permanently loaded and
executed. In this case the file can be executed again even if the disk
the file was loaded from is removed from its disk drive.

MAP

The MAP keyword may occur once. It specifies the file to receive the
formatted map. It 1is created if it does not exist or is completely
replaced with the new map if it does exist. If no MAP keyword is given,
no map file is produced.

A map file will contain a copy of the LINK command line being executed,
diagnostic messages, a location ordered map of sections and an alphabet-
ical list of section names and global symbols with their corresponding
locations.

VALUE KEYWORDS

BLOCKTYPE

The parameter passed to the BLOCKTYPE keyword sets a byte in each pro-
gram text header of the output load file for all subsequently defined
blocks.

In this version of LINK this byte is forced to zero, therefore this key-
word has no effect at all even though it is recognised as a valid
parameter.

BLOCKSIZE

The BLOCKSIZE keyword may occur any number of times. 1Its parameter
specifies the maximum size for each block defined subsequently on the
command line. The maximum block size that can be specified 1is 65528
(i.e. 64K less 8 bytes) which is the size of a processor segment. In the
absence of a BLOCKSIZE keyword on the command line, the maximum block
size is assumed by default.

4-6 ASSEMBLER USER GUIDE

THE LINK COMMAND

STACKSIZE

The STACKSIZE keyword may occur only once. 1f specified its parameter
determines the number of bytes of run-time stack that are to be dedi-
cated to the linked program alone. 1f not specified the linked program
will use the PCOS stack area (200 bytes in total).

ATTRIBUTEO, ATTRIBUTE1 and ATTRIBUTE2

The parameter passed to each of ATTRIBUTEO, ATTRIBUTE1 and ATTRIBUTEZ is
placed in the first, second and third attribute bytes respectively in
the header part of the output load file.

FOR ROUTINES TO RUN ON RELEASE 3.0 OF PCOS IT 1S NECESSARY TO SET THESE
ATTRIBUTES AS FOLLOWS:

- ATTRIBUTEO TO ONE
- ATTRIBUTE1 TO ZERO
- ATTRIBUTE2 TO ZERO

AS THESE ARE ALSO THE DEFAULT VALUES OF THE ATTRIBUTE KEYWORDS IT IS NOT
NECESSARY TO SPECIFY THESE KEYWORDS AT ALL.

STRING KEYWORDS

ENTRY

The ENTRY keyword may occur once. It provides a global symbol name which
is to be made the entry point of the executable program. The entry point
is determined as follows:

-- If an ENTRY keyword is given, then the entry point specified is used,
regardless of any definition within the input module itself.

- 1If no ENTRY keyword is given, then the entry point is set as defined
in the input module.

ME SSAGE

A MESSAGE keyword supplies the ASCI1 text (which must be one string) to
go 1in the message record of the load file. There may be any number of
MESSAGE keywords in one LINK command. The message record 1is the last

record of the load file and does not form part of the executable program
itself. It can be used for comments, remarks, date and time of opera-
tion, etc.

SIMPLE KEYWORDS

QUIET

The QUIET keyword causes output normally sent to the standard output to
be suppressed, except for fatal error messages. If no QUIET keyword is
given, the following information will be displayed:

- The LINK header line and version number.

- All error messages.

- A list of unresolved references.

VERBOSE

This keyword causes extra information to be sent to standard output. The
command line being executed is displayed, entry to each new module is
noted, and a warning is issued each time the possibility of an error is
encountered.

STATISTICS

The STATISTICS keyword, if specified, causes the program to output
statistics on how much of LINK's memory was used.

OPTIMIZE

Specifying the OPTIMIZE keyword in the command line causes the output
file to be optimized by not including uninitialized memory at the begin-
ning or the end of the program text section of the output 1load file.
This produces a smaller load file and saves time in loading the program
into memory.

4-8 ASSEMBLER USER GUIDE

THE LINK COMMAND

BLOCK KEYWORD

BLOCK

The parameters of a BLOCK keyword are names of program sections that are
to be 1loaded in one contiguous region of memory (i.e. a block). The
BLOCK keyword may occur any number of times on a LINK command line. The
program sections can also be specified by patterns with the use of the
following Wild Card characters;

- An asterisk (*) which matches any string.

- A question mark (?) which matches any single character.

[ab...] which matches any single character in the square brackets.
- [a-b] which matches any single character in the interval a-b

A pattern stands for all the section names which match that pattern, and
which have not been used previously in the current or any other block.
The sections are taken in the same order that they occur in the input
object modules.

If a section does not fit in the first block that it matches, a warning
message is 1issued by LINK , and the section is left as a candidate for
other blocks that it also matches. Any sections which remain unplaced
are reported via a warning message and ignored thereafter.

In the absence of a BLOCK keyword, "BLOCK *'" is assumed by default as
the last keyword on the command line. This means that LINK will attempt
to place all sections in one block the size of which is defined in the
command line (see BLOCKSIZE). 1If a program does not fit in one block
then two or more BLOCK keywords need to be specified for a successful
LINK operation. You can use BLOCK keywords to group sections in a LINKed
program. For example, in a program where all stack section names end in
" s" and all data section names end in " d", the three keywords,

block * s,block * d,block *

will cause LINK to group all stack sections in one block followed by all
the data sections in another block followed by all the other sections in
another block.

KEYWORD ORDER

The order in which keywords appear has no gross effect on the outcome of
the operation. The effects of ordering are due to the fact that files
are opened and flags are set when their respective keywords are

encountered. For example, keywords which appear before the MAP or the
VERBOSE keyword do not get echoed into the MAP file, or on standard out-
put. The relative order of the BLOCKSIZE and BLOCKTYPE keywords is
important because their parameters are used as default values for subse-
quently defined blocks.

ERRORS

1f any fatal error occurs during the parsing of keywords or the execu-
tion of the locate operation, the program is stopped immediately with an
error message on standard output and, if it was specified, the map file.

Examples

The following LINK command will create an executable file ''echo.cmd"
from the object file created in the example shown 1in chapter 3,
"echo.obj'". The command will also create a map file '‘echo.map'.

1i map 1:echo.map, input 1:echo.obj,output 1:echo.cmd,f/CR/
Rel. 2.0

The same result can also be obtained by specifying the command file
shown below in the following command:

11 command 1:comlist /CR/

On the following page is a listing of the file "comlist':

4-10 ASSEMBLER USER GUIDE

THE LINK COMMAND

! Command file for LINKing the ECHO example

MAP 1:echo.map

Create a map file “"echo.map® on the disk inserted in
drive 1. Note that as this is the first keyword in the
file all that follows will appear in the map file,

INPUT 1:echo.obj

If more than one file need to be specified these can
follow even on successive lines as long as there are no !
intervening keywords,)

OUTPUT 1:echo.cmd

! Only one output file can be specified !

On the following page is a listing of the map file created by this com-
mand.

Olivetti LINK -- Release s2.5

Commands (starting with Map command) :
Map 1:echo.map

! Create a map file ‘“echo.map® on the disk inserted

in

! drive 1. Note that as this is the first keyword in the

! file all that follows will appear in the map file,

INPUT 1:echo.obj

! If more than one file need to be specified these can

! follow even on successive lines as long as there are
! intervening keywords,

OUTPUT 1:echo.cad

} Only one output file can be specified

no

Procedures and warnings
First pass - 1:echo.obj
Second pass - 1:echo.ob)j

Input Map
file module section size (hex)
1:echo.ob
echo

example 8e

area]
Block Map (all values in hex)
block offset size end section

0 0 Be 84 example
Be) 93 area

islobal Symtols and Section Mames (all values in hex)

symbol block offset section
area 1] 3e =
example 1] 0 -

LINK zomplete

ASSEMBLER USER GUIDE

5. THE PDEBUG UTILITY

ABOUT THIS CHAPTER

This chapter describes how to load the PDEBUG utility, and details

the PDEBUG commands.

CONTENTS

INTRODUCTION

LOADING AND INVOKING

PDEBUG
PDEBUG

/CTRL/ /8B/

TERMINATING A PDEBUG

SESSION

ENTERING PDEBUG COMMANDS

CALCULATOR FACILITY

THE COMMANDS

5-1

5-2

5-3

5-4

5-4

5-5

BREAKPOINT

CLEAR BREAKPOINT

CHANGE 1/0

COMPARE MEMORY

DISPLACEMENT REGISTER

DISPLAY MEMORY

FILL MEMORY

GO

all

5-5

5-6

Jump

MOVE MEMORY

NEXT

OFFSET REGISTER

PORT (1/0) READ

PORT (1/0) WRITE

PRINT OUTPUT

QUIT

REGISTER

TRACE

EXAMPLES

5-19

5-20

5-21

5-23

THE PDEBUG UTILITY

INTRODUCTION

The PDEBUG (Program DEBUG) utility is used for debugging and testing
programs. When the PDEBUG utility is invoked the M20 enters the PDEBUG
environment, the prompt is changed to an asterisk and the cursor stops
blinking; the M20 is ready to execute any PDEBUG command. This utility
is stored on disk in a ".sav" type of file so that once it is loaded in
the M20's memory it remains there until the system is re-booted.

LOADING AND INVOKING PDEBUG

There are two ways in which the 'pdebug.sav' file can be loaded in the
M20's memory for the rest of a working session; 1. by executing a PDEBUG
command from PCOS (see below), or 2. by PLOADing the utility (see the
PLOAD command in the '"M20 PCOS User Guide').

When PDEBUG is in memory the user can enter the PDEBUG environment in
any of the following ways:

- by executing a PDEBUG command from PCOS {see below)
- by pressing /CTRL//B/ when the M20 is in Execution mode (see below)

Moreover as PDEBUG modifies some tables in PCOS when it is 1loaded into
memory, the following conditions also cause PDEBUG to be entered: Seg-
ment Violation Traps, Extended Processing Traps, Priveledged Instruction
trap, 1llegal Vectored Interrupts, and Non-Maskable Interrupts.

Another way of entering and exiting the PDEBUG environment is possible
with the use of breakpoints. This is described in detail in the PDEBUG
BREAKPOINT command description.

PDEBUG

Loads and invokes the PDEBUG utility, optionally
program from disk to memory.

—’@ program 4

Fig. 5-1 The PDEBUG command

loading a specified

the first two letters of a program name which

extension,

the file identifier of a program file complete
with any necessary volume identifier, extension,

Where

SYNTAX ELEMENT MEANING

program EITHER
has a ".sav", or a ".cmd"
OR
and/or file password.

5-2

ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

Exa-pie

1f both the PDEBUG utility and the program file
any disk inserted in any of the two drives, and,

"myprog.cmd'" exist on

1IF you enter THEN ...
pd my /CR/ the program "myprog.cmd' is PLOADed and the M20
enters the PDEBUG environment. When the M20

PLOADs "myprog.cmd" the
tion about the location

video displays informa-
of "myprog.cmd" in mem-

ory. This information will enable the user to
access ''myprog.cmd" directly in memory.

/CTRL//B/

When the M20 is in program execution mode, the /CTRL//B/ key combination
will invoke the PDEBUG utility if it is already resident in memory. When
/CTRL//B/ is pressed the video displays a message specifying the loca-
tion in memory where program execution was halted, and the PDEBUG prompt
is returned. The interrupted program remains in memory, and control can
be returned to it by using the PDEBUG GO or JUMP commands.

TERMINATING A PDEBUG SESSION

At the end of a PDEBUG session the user can exit the PDEBUG environment

and return to PCOS using the QUIT command.

q /CR/

1f the state of the CPU is modified during a PDEBUG session (e.g. by
breakpoint wusage) then the QUIT command will force a re-boot of PCOS.
1f the state is not modified then a simple return to PCOS is done.

5-3

ENTERING PDEBUG COMMANDS

PDEBUG commands can be entered when the PDEBUG prompt (*) appears on the
screen. Commands can be entered in either upper or lower case and are
terminated by a carriage return. All numbers input to and output by PDE-
BUG are in hexadecimal ASCI1 format, and may be entered in either upper
or lower case.

An address is specified either with a segment number and an offset, or
with just an offset. The segment number is enclosed on the left with a
less than symbol (<) and on the right with a greater than symbol (>)
(i.e. <6> for segment 6). If only an offset is specified then either the
last segment number used since PDEBUG was loaded, or, if none were
specified yet, segment 0 is assumed by default.

An alternate method of specifying addresses is to wuse one of the 26
address registers ("a" to "z') preceded by the "@' sign. For example
"@r25e" specifies the address given by the contents of register 'r' plus
"25E'". Ar address register can be set using the OFFSET (register) com-
mand.

All the PDEBUG commands are described in this chapter. The commands are
listed 1in alphabetical order. At the end of this chapter there are two
PDEBUG tutorial sessions which demonstrate the use of the more commonly
used PDEBUG commands.

A list of all the commands is displayed on the screen if the user enters
a question mark (?) followed by a carriage return whenever the PDEBUG
prompt (*) is returned.

CALCULATOR FACILITY

When in the PDEBUG environment the M20 can be used as a calculator for
quick calculations in hexadecimal. The following binary operations can
be performed:

+ A,B adds B to A
- A,B subtracts B from A
* A,B multiplies A by B

/ A,B divides A by B

where A and B are positive hexadecimal numbers in the range 0 to FFFF.

5-4 ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

In each of these cases the returned result is
if the absolute value of the result (say C)
the value returned will be hexadecimal ''C mod

- 2,6 will return the value
and + ffff,1 will return the value
THE COMMANDS

also in this range, thus
is outside this range then
10000". For example,

FFFC

0000

BREAKPOINT

Sets a breakpoint or displays the currently active breakpoints.

—»‘ b ; +] address @—-’

8

count

Fig. 5-2 The BREAKPOINT command

Where

SYNTAX ELEMENT MEANING
address The breakpoint address
count The number of times the breakpoint 1is meant to

execute when encountered. 1If this parameter is
set to 0 then the specified breakpoint execu-
tes every time it is encountered, and is not de-
leted until specifically cleared using the CLEAR
breakpoint command. If not specified the break-
point 1is deleted when it is hit for the first
time. Note that this parameter must be expressed
in hexadecimal.

Note: The BREAKPOINT instruction is not placed in memory until a GO or
JUMP command 1is executed. Thus provisions have to be made to return to
PCOS using any one of these commands if the set breakpoints are to be
executed.

When the M20 is in execution mode and a breakpoint is encountered, exe-

cution 1is halted, the video displays a break message with the address
where the break was encountered, and the PDEBUG prompt is returned.

CLEAR BREAKPOINT

Clears either an active breakpoint specified by its memory address or
all currently active breakpoints.

—'@ address j——>

Fig. 5-3 The CLEAR BREAKPOINT command

5-6 ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

Where
SYNTAX ELEMENT MEANING
address The memory address of an active breakpoint. ir

this parameter is not specifified then all the
currently active breakpoints will be cleared.
CHANGE 1/0

Switches the main input and output from the console to the RS-232-C
serial port and vice versa.

@

Fig. 5-4 The CHANGE 1/0 command

Issuing the CHANGE 1/0 command while using an external terminal causes
the main 1/0 channel to be switched back to the console. Note that the
the PCOS RS232 command has to be executed before entering the PDEBUG
environment in order to use this PDEBUG command.

COMPARE MEMORY

Compares two blocks of memory and returns any differences encountered.

number
—0@—» address1 —»@—0 address2 '—*@——’ of e
bytes

Fig. 5-5 The COMPARE MEMORY command

Where

SYNTAX ELEMENT MEANING

address 1 The starting point of the first block
address 2 The starting point of the second block
number of bytes The number of bytes to be compared

While the differences are being output the screen image can be suspended
by pressing /CTRL//S/. The command can be aborted by pressing any key. If
no differences are found this command simply returns the PDEBUG prompt.

Note: This command uses byte compare operations.

DISPLACEMENT REGISTER

Sets up a displacement value that will be added to all addresses input
and subtracted from all addresses output by the PDEBUG program.

address p—>

Fig. 5-6 The DISPLACEMENT REGISTER command

5-8 ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

Where

SYNTAX ELEMENT MEANING

address The displacement value which will be added to
the addresses specified in subsequent PDEBUG
commands.

The command

di /CR/

will cause the current default segment and offset to be displayed.

This facility is very useful if a user is working on a listing that has
a displaced origin in memory. Using this command the displacement regis-

ter can be set to the value of the address where the listing begins so
that all addresses input and output will match the listing.

DISPLAY MEMORY

Displays blocks of memory or single memory locations. In the latter case
the command interacts with the user for modification of single memory
locations.

number 1
— type address of S

bytes

Fig. 5-7 The DISPLAY MEMORY command

5-9

Where

SYNTAX ELEMENT MEANING

type Word or Byte operations, specified as "W'" or '"B"
(capital or small letters) respectively. Depend-
ing on whether the Word or the Byte option is in
operation the information will be displayed ac-
cordingly. The default value is either the op-
tion specified 1in the last DISPLAY MEMORY or
FILL MEMORY command executed in the same PDEBUG
session or, in the absence of any, the Word op-

tion.
address The memory address where the display is to start
number of bytes The number of bytes to be displayed starting
from the address specified in the 'address'
parameter.

Note: this number must be expressed in hexadeci-
mal, and must be greater than 1.

Characteristics

When the "number of bytes' parameter is specified, the M20 displays the
specified memory block in 1lines of sixteen bytes each. Each line is
organized in the following way:

- The memory address of the first of the sixteen bytes 1is on the
extreme left followed by the contents of the sixteen bytes expressed
in hexadecimal code and grouped in words (or in bytes if the "B"
(byte) option 1is specified). If the "number of bytes' paremeter is
greater than or equal to sixteen, then the ASCII translation of the
sixteen bytes is displayed on the right on the same line. Codes that
have no ASCI1 translation are represented by dots.

When blocks of memory are being displayed, any scroll movement can be
halted by entering any character on the keyboard, output can be resumed
by entering any character on the keyboard a second time. If you enter
the key combination /CTRL/ /C/ then the output will be terminated and
the PDEBUG promt is returned.

5-10 ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

Modification of Words

If the "number of bytes' parameter 1is not specified, then the word
starting at the memory address specified is displayed followed by the
cursor. At this point you can do any of the following operations:

IF you enter THEN ...

/CR/ the next memory word is displayed.

A

A /CR/ the preceding memory word is displayed.

(a valid hex the content of the displayed word is changed to the hex

number) /CR/ number entered, and the next memory location is dis-
played.

@ /CR/ the current and next words are interpreted as an ad-
dress and the word specified by that address is dis-
played.

"(string) the string entered is written directly into memory (in

/CR/ hex code) starting from the current address.

q /CR/ the PDEBUG prompt is returned.

FILL MEMORY

Fills a specified block or memory with a given word or byte pattern.

—(1 % type y—»@—L address 1 —*@—' address 2 ’_’G_" :ial:ue

Fig. 5-8 The FILL MEMORY command

5-11

Where

SYNTAX ELEMENT

type

address 1

address 2

fill value

GO

MEANING

Word or byte operations, specified as 'W'" or '"B"
(capital or small letters) respectively. Depend-
ing on whether the Word or the Byte option is in
operation the fill value will be interpreted as
a word or a byte respectively. The default value
is either that specified in the last DISPLAY
MEMORY or FILL MEMORY command executed 1in the
same PDEBUG session, or, 1in the absence of any,
the Word option.

The memory address where the writing operation
is to start.

The memory address where the writing operation
is to end. Note that the final location is not
written to.

Fill Value. This is the word (or byte if "B" is
specified in the '"type' parameter) pattern, ex-
pressed in hexadecimal code to be written in the
specified memory block.

Resumes the execution of a program at the location specified by the pro-

gram counter.

-~

Fig. 5-9 The GO command

ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

Characteristics

Execution of this command causes all the breakpoints (previously speci-
fied in the same PDEBUG session) to be placed in memory prior to the
start of execution.

Jump

Executes a memory resident program starting from a specified address.

-——.(:::)h—-b address ,<:Z)——o fow A

Fig. 5-10 The JUMP command

Where

SYNTAX ELEMENT MEANING

address The memory address where execution is to start
few Flag and Control Word.

Characteristics

This command causes all of the breakpoints (previously specified in the
same PDEBUG session) to be placed in memory prior to the start of execu-
tion.

MOVE MEMORY

Copies a source memory block into a target memory block.

number
—o@—o address1 —0@——¢ address2 —vO—» of —»
bytes

Fig. 5-11 The MOVE MEMORY command

Where

SYNTAX ELEMENT MEANING

address 1 The memory address where the source memory block
begins.

address 2 The memory address where the target memory block
begins.

number of bytes The number of successive bytes starting from the

beginning of the source block to be copied.

5-14 ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

NEXT

Executes one or more program instructions starting at the location
specified by the Program Counter (PC).

—o@ count Y,

Fig. 5-12 The NEXT command

Where

SYNTAX ELEMENT MEANING

count The number of instructions to be executed. The
default value is one instruction.

Characteristics

When a specified number of instructions are executed using a NEXT com-
mand, the registers are saved, and a message indicating the address of
the last instruction executed and the current value of the PC (i.e. the
address of the next instruction) is displayed.

A NEXT command is aborted if a breakpoint is encountered in the speci-
fied sequence of instructions.

The following situations cause the NEXT command to crash:

- using NEXT through instructions that modify the PSAP (Program Status
Area Pointer) in the CPU.

- using NEXT through instructions that disable the non-vectored inter-
rupt.

- using NEXT through instructions that change the programming of the
8253 timer chip.

OFFSET REGISTER

Sets an offset register to a given address.

offset . 2,
—o@ *1 register —@—b address

Fig. 5-13 The OFFSET REGISTER command

Where

SYNTAX ELEMENT MEANING

offset register Any one of the 26 offset registers ("a" to "z")
address The memory address to be associated with the

offset register.

When the '"address'" parameter is left out the specified register is
printed with its current address. The command without parameters prints
all the offset registers with their current addresses.

Offset registers can be used when specifying an address in any PDEBUG
command. If register "x'" is set to '<2>1000" then "@x5'" will represent
the address '<2>1005" in any PDEBUG command. This facility is very use-
ful when dealing with module listings; offset registers can be set to
the beginnin; address of each section.

5-16 ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

PORT (1/0) READ

Reads a specified 1/0 port.

= o type

Fig. 5-14 The PORT (1/0) READ command

Where

SYNTAX ELEMENT MEANING

type Word or Byte operations specified as 'W' or '"B"
(capital or small 1letters) respectively. The
default value is either the option specified in
the last PORT (1/0) READ or PORT (1/0) WRITE
command executed in the same PDEBUG session, or,
in the absence of any, the Byte option.

port address A valid 1/0 port address. A list of all the M20

1/0 port addresses is given in appendix F.

PORT (1/0) WRITE

Writes to a specified port address

—®e-

word
type p—» port o code p—»
address

Fig. 5-15 The PORT (1/0) WRITE command

Where

SYNTAX ELEMENT

type

port address

code

MEANING

Word or Byte operations specified as "W'" or "B"
(capital or small letters) respectively. The de-
fault value is either the option specified in
the 1last PORT (1/0) READ or PORT (1/0) WRITE
command executed in the same PDEBUG session, or,
in the absence of any, the Byte option.

A valid 1/0 port address. A list of all the M20
1/0 port addresses is given in appendix F.

The hexadecimal code of the byte (or word, if
the "word' option is specified) to be written to
the port.

ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

PRINT OUTPUT

Toggles a flag which causes all output from the PDEBUG program to be
sent to a parallel printer as well as to be displayed on the console.

=0)

Fig. 5-16 The PRINT OUTPUT command

This means that the first 'p" command during a PDEBUG session will cause
output to be sent to the printer, and the second will turn off the out-
put to the printer.

QUIT

Causes a return to the PCOS environment.

—(—

Fig. 5-17 The QUIT command'

Note: Depending on the state of the CPU the QUIT command will cause
either a simple return to the PCOS environment or a re-boot of PCOS.

5-19

REGISTER

Displays or modifies the registers saved in memory.

__.®__
~O-+—0—
.@

register
- -

name

Fig. 5-18 The REGISTER command

Where

SYNTAX ELEMENT MEANING

b The registers are displayed as byte registers.

1 The registers are displayed as word registers.

d All the registers changed by the last GO or JUMP
command will be displayed.

register name A valid register name. With this option the spe-

cified register will be displayed, and subse-
quently the user can modify the contents of it
by entering a valid hexadecimal number.

5-20 ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

1f the command is entered without any parameters, then all the registers
are displayed as word registers.

The Registers

When the PDEBUG environment is invoked the registers are initialized to
the following values:

REGISTER INITIALIZED TO

r0 to ri13 zero

System Stack Pointer a stack space of 16 words in length
and
Normal Stack Pointer

Flag and Control Worc system mode, segmented mode with interrupts ena-
(FCW) bled.

Program Status Area the PCOS program status area
Pointer (PSAP)

Program Counter the "return to PCOS'" address.
(PC)

TRACE

Traces through 'count'" number of instructions, starting from the
instruction specified by the program counter, optionally including any
calls, call relatives, or system calls (otherwise treated as a single
instruction), and optionally displaying any changed registers after each
instruction.

5-21

A@_‘ count 2

Fig. 5-19 The TRACE command

Where

SYNTAX ELEMENT MEANING

c Calls will be included while tracing

r Any changed registers will be displayed after
each instruction.

count The number of instructions to be executed in
each command.

The "+" and "-'" sign turn the '"c'" and '"r" options on and off respec-

tively.

When not specified, parameters assume the values specified in the last
TRACE command, or, in the absence of any, the following command is exe-
cuted:

t -c,+r,1

5-22 ASSEMBLER USER GUIDE

EXAMPLES

The following two PDEBUG tutorial sessions demonstrate the use of the
more commonly used PDEBUG commands.

.0, S3W023Q MOU (,DUD°0Yd3,, 4O SSBJIPPE
burjJeys a8yl SI 9Sed SIY)} UL YdIYM) ,,00PP<E>,,
ssalppe ey} 0s anfen 3juareoe(dsip e dn 3as
01 Pasn ST puewuod ¥IISIAY LMZIVIASIO 3Y3 348H

*pauuniad st 1cdwoud
9Ne30d 8yl pue pakerdsip st abesssw uoubis qyoid
9y| "S0)d WOJ) JUBWUOITIAUS 9NEG3(d 2Yl} S9MOAUT Due
Wpuo-bouadAw,, o11s weaboud ayy sAyYQld PUBWWOD STY|

S1MZWWO2

90pPP<E> 1P

0°2 A9y bnaaqg
= 9716 ‘9QON%<Y0> = SsaJppe buriseis Q0% ‘ON 392014

:pairdo[(e Alowaly

--3uUoON-- = AJlus 21Ul {RNAQ%<Y0> = AJaus utey

wa3sAs / pejuawbag = apol| uoriedadp

oys3 @114 = aweu vesbouy

pwo-oyda = aWeu a[l4 XSIQ

28 pd<p

AYdSIC

1 NOISS3S 9n83ad WI¥oLNL

ASSEMBLER USER GUIDE

5-24

THE PDEBUG UTILITY

‘SNDd 10 1000-8.1 B SASNPD puewwned 10N STU|

*auo burpadseud ayy Jo sanyea
Jsjeweded ayl SSWNSSE DUBWWOD 9D0BJ) PUODAS STU|

*SUOT}ONJISUT 994y} 3ISJTS
ay: ybnouyyr saoeu} puBUWOD STY) ,,pwItOYds,, JO
AJjus utew au} 03 J1a3unod weuboud ayy 1as buiaey

*Asowaw ut veasbouad aya
4o ssauppe Aulus utew aul 031 ()d) J23unod weub
-04d @2U3} 18S 03 Pasn aJay SI puewwod ¥I|S193Y aul

voac=¢cL

2000<Z> Vvdg€e<e>
od desd

GGGG 892 000C 0000 o0Cn
1 4 4 Lis

0000 0000 0000 000OC 2000
L4 94 G4 v €4

5-25

by

00V0=€ 3L00<¥>=2d
JL00<y>=2d

NOV0=0 VLOO<V>=2d
2o

/100<y>=2d

oysz a11d

00¥8=2ZL 9L00<y>=2d
€la+'0+ 3 &

0280 2044 0028
MOJ Gl pLJ

0000 0000 0000
oL4 64 84

0000 0000 C0ONO
24 L4 04

2000<e> : yQaAp<n>= od

*P9)OAUT ST ,,pWO*0Ydd,, UBYM PaINJaxa St
11 2ey3 os Alouew ut paoderd ST jutodyesauqa 212s Af
-snotAaud ay] *lusuuOITAUS 9naICd 2ul butusaus uo
Jd @yl jo burizas 2ynegsp ayy jo asneoaq suaddey
STYl °"SNDd O UJN1a. B SasNed puemwod ()9 8yl aJsH

*P9Ja3UNOOUs ST 1T AWTI3 2SJT) dY) Palafap aq [[IM
jutodyealq ay] “Q00Q 225440 ua) 1uawbas ut utod
-)eaJq e dn 18S 0} Pasn ST DUBWWOD |MNIOJMYIME ¥

pauJnias st adwoad
9ng3gd aux pue pakerdsip st abessaw uoubts Qvod

a3yl °"S0Jd WOJ4y IQUBWUOITAUS 9NE3I0d dYI} SONOAUT
Wpuo-oyoss,, 8114 weaboud ay> sQyQId PUBWWOD STY|

SINIWWOI

QCCA<Y> LV MVIHE sese
weaed 298 <|

b x

ASSEMBLER USER GUIDE

g0PP<e> a »
02 *nay bnagaqd
36N0% = 9ZIS :90Q0%<Y0> = ssaJppe buriueis Inp% "oN Ho01g
:paiedo (e Adowa|
--auopN-- = AJjus JTUL ‘BOCQ%<Y0> = Aujus urep
1a1sAs / paijuswbag = apol) uotiesad)
oyo3 arr4 = auweu weubouy
pWo 0uda = BWeu 314 ASI(
28 pd<q

AV1dS1a

IT NOISS3S 9Ing3ad vidoLnt

5-26

THE PDEBUG UTILITY

*pauanlal
st adwoid §0)d 8y Ajjuanbasgns pue ‘weuboud ayjy
40 UOTINDaX2 2yl SawNsaJ puemwod (9 [BUTlY STY)

*autodyeauqg axau ayy Aq pajdnuauajul
utebe ST u013N2ax2 JanamoH “weshoid pajdnisayurt
83U 10 UOIINDSXd 9yl SaWNSaJ DUBLWOD Q9 3y} 3JaH

*aouo Afuo
ajnoaxa 03 utebe auay ‘3as st jutodyesauq Jaylouy

*DaJalua st b, usym
pauinjas st 3dwoud 9n@A3qd 9yl ‘Aem aAn13oeualul
Ue UT pasn ST PpuBWWOD A¥OW3IW AVIdSIO 3Yd 343H

"PUBWWOD A¥OWIY! AYIdSIC B Ul pasn

aJay st 3t Joasibaus 185440 ayy 3es burinep

*,PWo"0Yo3,, Jo
ssauppe AJjua utew ayl o3 B, Ja3isthau 33sjyjo ayy
3}3S 03 Pasn ST puewwod ¥3|G193Y 135440 Yl 848y

‘wesboid paadnassaut 8yl jo uot
-3}ONJISUT 3X3U 2yl 03 33S MOU ST Jd 3yl 3IBYL 330pN

*su23stbas ayy [[e 40 sanieAa juauund ayjy Aerd
-SIp 01 D3asnN ST puewwod H¥3|G19Y 2yl 3sed SIyjl ut
{pa1noaxa aq ued puewwod 9Ng3G¢ Au2 pue pauinial
st acduoad 9ngaad 8ul ‘21U ST Jutodiea.a aylr uaym

1 At

<L

we sed
b x

2200<Y> 1V NV Idfnx
oyo3 o114

b x

oleg @ x

S000 LR9L<Z>
€028 v244<2>
L1891 9u3d4<e>
€028 vJdd<e>
L0000 2J32d4<2>
2333<2> P »

* 9vC0 00v8 302§ v0C8 J6CAQ 00V8 2005 2296 82CC-V
2000 LeEd €0LV 8208 03L6 6S4L Y0QO 0O0V8 8LOAC-Y

TATT 0Yd3 BTTI"" D09L 0000 0249 89€9 SP0Z S929 699 908% 800A-V

GGGS RoVZ
GL4 L4
dd44 4432
L4 94

2000<v> 00L0<e¢>
od desd

4091 0n28 pEdd
€L4 2L L4

8244 0028 8000
G4 v €

008d
Mo4

00v0
oL

00v0
24

0229 P x

90ppP<e>‘e 0 X

2934
-mFL

4434
64

0080
L4

0ceg
AT

04

5-27

ABOUT THIS CHAPTER

This chapter describes the use of libraries and the ML1IB command for
creating library files.

CONTENTS
INTRODUCTION 6-1
MLIB 6-1

THE M20 GRAPHICS LIBRARY 6-3

LIBRARIES

INTRODUCTION

It is common programming practice to use a library of subroutines to be
made available to a series of programs. Mathematical programs, for
instance might use a 1library of subroutines for calculating tri-
gonometric functions, and text oriented programs might use a library of
string comparison functions.

When LINK discovers an external variable which is not present in any
input file, then, if the LIBRARY keyword was specified, it will search
through the list of library file(s) (specified after the LIBRARY key-
word) for a "global'" definition. Once the subroutine name is found, the
module containing the subroutine is incorporated into the output load
file. Only the modules referenced by input files are included in the
output load file along with the rest of the input modules. A library
module "Y' referenced by another library module "X" in the same library
file will only be included if "X'" is located before "Y" in the library.

Library files can be created using the MLIB command described below.

MLIB

Creates a library file of object modules from a group of object files.

Ubrary object
file . ¢@_¢ file -
identifier identifier

Fig. 6-1 The MLIB command

6-1

Where

SYNTAX ELEMENT MEANING

library file identifier The name of the file that is to contain
all the object modules in the specified
object files. This must be complete with
any necessary volume identifier and/or
file password. The file will be created
if it does not exist or, if it already
exists, it will be overwritten with the
new output. A library file 1is usually
assigned the extension '.lib".

object file identifier The name of an object file complete with
any necessary volume identifier and/or
file password. You can use the two PCOS
wild card characters (*) and (?) to
specify more than one file; an asterisk
(*) matches any string and a question mark
(?) matches any single character.

Characteristics

During execution the MLIB command needs to create a temporary work file
on the disk inserted in the last selected disk drive. This means that
MLIB will not execute if called from your write protected Assembler
diskette. Rather than remove write protection from the Assembler
diskette it is recomended to PLOAD the MLIB command or to copy the file
"mlib.cmd" from your copy protected diskette onto the disk where you
want to create your library files, or some other disk.

6-2 ASSEMBLER USER GUIDE

L1BRARIES

Example

IF you enter THEN

ml 1:asm.lib,1:progl.obj, the file "asm.lib" 1is created on Fhe
1:prog2.obj /CR/ diskette 1inserted 1in drive 1. This file

will contain all the object modules con-
tained in the object files 'progl.obj" and
"prog2.obj" both of which are resident on
the same diskette inserted in drive 1.

THE M20 GRAPHICS LIBRARY

The M20 Graphics Library is available in the file ‘''graph.lib". This
library 1is an integrated package of over forty subroutines offering a
set of functionalities for two dimensional graphics applications. The
Graphics Library presents a consistent and easily comprehensible struc-
ture that reflects proposed international standards for graphics. The
routines in this library use the PCOS graphics system calls which are
also described in this manual (see chapters 7 and 8).

To use a Graphics Library routine in an Assembly language program you
must first declare it as an EXTERNAL routine. In the program the routine
can then be invoked by the CALL instruction. When LINKing the program
you must specify the library file "graph.lib" using the LIBRARY keyword.

The graphics library is introduced in chapter 9 and all the routines are
detailed in chapter 10.

6-3

PART Il

7. INTRODUCTION TO SYSTEM CALLS

ABOUT THIS CHAPTER

This chapter is a general description of the M20 System Calls. The calls
are divided 1in functional groups and the characteristics of each group
are discussed. This is followed by the call descriptions.

CONTENTS

INTRODUCTION

SYSTEM CALL DESCRIPTIONS

REGISTER ASSIGNMENTS

INPUT/OUTPUT PARAMETERS

ERROR MESSAGES

FUNCTIONAL GROUPS

BYTESTREAM CALLS

BLOCK TRANSFER CALLS

STORAGE ALLOCATION CALLS

GRAPHIC CALLS

7-1

7-1

7-2

7-2

7-2

7-3

7-4

7-5

TIME AND DATE CALLS

USER CODE CALLS

1EEE 488 CALLS

MISCELLANEOUS CALLS

7-7

7-8

7-9

INTRODUCTION TO SYSTEM CALLS

INTRODUCTION

These two chapters describe all of the System Calls (SCs) developed for
the M20. System Calls are PCOS procedures, used to interface with 1/0 or
to manage memory. System Calls can be accessed by assembly language pro-
grams.

All calls made from BASIC, some other utility program, or from user code,
will access the 1/0 and resource management facilities of PCOS via the
78000 System Call (SC) instruction. The SC instruction includes a 1-byte
request code which indicates the function to be performed.

Example:

sc#3 system call, request code = 3
Parameters are generally passed in registers numbered from R5 to R13. 1If
strings or other large data structures are to be passed, pointers to the

structures are passed as parameters in the registers..

In general, parameters are passed as 16-bit unsigned values. ASCII char-
acters are passed occupying the lower bytes of a register

A1l system calls use R5 to return any error condition. Zero indicates
no-error, non-zero indicates the error and condition code.

SYSTEM CALL DESCRIPTIONS

Each call has been assigned an unique number and a label. The label may
be used to reference the call globally, if a table assigning each call
number to the respective label is created.

Each call description begins at a new page, and on the page are the name
or label, the SC number, and a list of the specific register assignments
for each parameter passed. This is followed by a description of the func-
tion of the call, and any error codes that might be returned.

The descriptions are arranged in ascending order by SC number.

REGISTER ASSIGNMENTS

Register assignments are given in synopsis form, and input and output are
identified. For example (see SC 32):

INPUT/OUTPUT PARAMETERS

Input: R7 <e——length
RR8 <@——start
RR10 ««——destination

Output: RS — error status

Before calling SC 32, the block length, sourc: address and destination
address must be loaded in registers R7, RR8 and RR10 respectively. The
only output for this call is the error status, which is returned in R5.

ERROR MESSAGES -

Following the system call, if there are no errors, a zero (0) is returned
in R5. 1If any error occurs, the appropriate error code will be returned.
A list of error codes and messages is given in the appendix.

FUNCTIONAL GROUPS

In this chapter the System Calls are treated in general in functional
groups as follows:

- Bytestream Calls

- Block transfer Calls

- Storage Allocation Calls
- Graphics Calls

- Time and Date Calls

- User Code Calls

- 1EEE 488 Calls

- Miscellaneous Calls

See the Appendix for lists all system calls 1in functional groups, for

7-2 ASSEMBLER USER GUIDE

INTRODUCTION TO SYSTEM CALLS

tables of DIDs (Device 1Ds), as well as lists of error codes.

BYTESTREAM CALLS

Bytestream system calls are used for:

a) Transferring bytes of data to or from an 1/0 device

b) Sending control information to a device or to a device driver

c) Receiving status information from a device

The following are a list of bytestream 1/0 calls used to interface with

the disk, printer, RS-232 communications port, and console (keyboard and
video).

LookByte (9) SetControlByte (20)
GetByte (10) GetStatusByte (21)
PutByte (11) OpenFile (22)
ReadBytes (12) DSeek (23)
WriteBytes (13) DGetLen (24)
ReadLine (14) DGetPosition (25)
Eof (16) DRemove (26)
ResetByte (18) DRename (27)

Close (19) DDirectory (28)

DID (Device 1Dentifier) Numbers

A DID is an integer used to identify 1/0 devices (or files) like the key-
board, an open disk file etc.. The operating system maintains a table
associating DIDs with a File Pointer. The latter consists of pointers to
data structures and routines describing the 1/0 streams.

Device Pointers

Opening a disk file creates a stream data structure, and places a
pointer to it 1in the device pointer table. Closing the disk file sets
this pointer to nil, and releases any table space associated with
the file. Some ‘'devices' or files are always open. For example, the
keyboard and the screen (the default window) are always open. They can,
however, be closed and re-opened by using the PCOS Device Rerouting
feature.

BASIC file numbers translate simply into PCOS DIDs, but BASIC window
numbers for the screen are distinct from DIDs. A table of DID assign-
ments is included in the Appendix.

Disk Bytestream 1/0 Calls

Disk input and output are all done by bytestream system calls. A
stream structure for an open file maintains a 32-bit pointer to the
current position in the file, at which the next byte will be read or
written. Files will be extended automatically as they are written, in
increments specified by the system globals.

The functi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>