
n-,

C3

u

M20 PERSON^L COMPUTER
The ASSEMBLER
User Guide

olivetli

PREFACE

This manual is produced for programmers
using the M20 to create Assembly Lang-
uage programs. The Assembly Language

of the Z8001 cpu of the M20 is des-
cribed in the "M20 Z8000 Assembler
Reference Manual". The Reference manual

gives the complete instruction set
and deals with other aspects of the
cpu like operational characteristics,
architectural features, etc. This
manual supplies additional information
to enable the programmer to create
Assembly Language programs to run
on the M20.

This manual is divided into two parts.
Part 1 illustrates the characteristics
of an M20 source file and describes
how an executable binary file can
be obtained from a source file.
Part 11 details all the M20 System
Calls, and the routines of the M20
Graphics package.

REFERENCES :

Z8000 Assembler Reference Manual

Code 3982410 M (1)

PCOS (Professional Computer Operating

System) User Guide

Code 3985280 D (0)

Basic Language Reference Manual

Code 3982430 P (3)

1/0 with External Peripherals User
Guide

Code 3982300 N (2)

Hardware Architecture and Function

Code 4100630 W (0)

DISTRIBUTI0N: General (G)

EDITI0N: June 1983

RELEASE: 3.0

PUBLICATI0N ISSUED BY:

Ing. C. 0livetti & C., S.p.A.

Direzione Documentazione
77, Via Jervis -10015 IVREA (1taly)

CONTENTS

PART 1

1. INTRODUCTION

CREATING AN EXECUTABLE FILE 1-1

THE M20 ASSEMBLER PACKAGE 1-

SYSTEM CONFIGURAT10N

2. THE ASSEMBLER SOURCE FILE

INTRODUCT10N

ASSEMBLER CONVENT10NS

ASSEMBLER LANGUAGE STATE-

MENT FORMAT

SyMBOLS, CONSTANTS AND

STRINGS

ARITHMETIC 0PERANOS

SyMB0LIC VALUES

EXPRESSI0NS AND 0PERATORS

Z8000 ADDRESSING MODES

ASSEMBLER DIRECTIVES

DATA GENERAT10N

CONTROL DIRECTIVES

THE PCOS STANDARD

3. THE ASSEMBLER (ASM) COMMAND

ASM

4. THE LINK COMMAND

LINK

PARAMETERS

COMMENTS

1-3

2-5

2-7

2-7

2-8

2-12

2-20

2-20

2-23

2-28

3-1

MINIMUM COMMAND ELEMENTS 4_3

THE KEYWORDS 4-4

MULTI-FILE KEYWORDS 4-5

FILE KEYWORDS

VALUE KEYWORDS .

STRING KEYWORDS

SIMPLE KEYWORDS

SLOCK KEYWORD

KEYWORD 0RDER

ERRORS

5. THE PDEBUG UTILITY

INTRODUCT10N

LOADING AND INVOKING

PDEBUG

PDEBUG

/C;JP:Ll 18/

TERMINATING A PDEBUG

SESSI0N

ENTERING PDEBUG COMMANDS 5-4

CALCULATOR FACILITY

THE COMMANDS

BREAKP01NT

CLEAR BREAl(P01NT

CHANGE 1/0

COMPARE MEMORY

5-4

5-5

5-5

5-6

5-7

5-7

DISPLACEMENT REGISTER 5-8

DISPLAY MEMORY

FILL M5MORY

G0

JUMP

MOVE MEMORY

NEXT

0FFSET REGISTER

PORT (1/0) READ

PORT (1/0) WRITE

PRINT 0UTPUT

QUIT

REGISTER

TRACE

EXAMPLES

6. LIBRARIES

INTRODUCT10N

MLIB

THE M20 GRAPHICS LIBRARY

PART IT.

7. INTRODUCT10N T0 SYSTEM CALLS

INTR00UCT10N

SYSTEM CAl_L DESCRIPTIONS

REGISTER ASSIGNMENTS

IHPUT/OUTPUT PARAMETERS

ERROR MESSAGES

FUNCT10NAL GROUPS

5-11 BLOCK TRANSFER CALLS 7-4

5-12 STORAGE ALLOCATI0N CALLS 7-4

5-13 GRAPHIC CAILS 7-6

5-14 TIME AND DATE CALLS 7-8

5-15 USER CODE CALLS 7-9

5-16 lEEE 488 CALLS 7-9

5-17 MISCELLANEOUS CALLS 7-10

5-18 8. THE M20 SYSTEM CALLS

5-19 9 LookByte

5-19 10 GetByte

5-20 11 PutByte

5-21 12 ReadBytes

5-23 13 WriteBytes

14 ReadLine

6-1 16 Eof

6-1 18 ResetByte

6-3 19 Close

8-1

8-2

8-3

8-4

8-6

8-8

8-9

8-11

8-12

20 SetcontrolByte 8-13

21 GetstatusByte 8-14

7-1 22 0penFile 8-15

7-1 23 Dseek 8-17

7-1 24 DGetLen 8-18

7-2 25 DGetposition 8-19

7-2 26 DRemove

7-2 27 DRename

ASSEMBLER USER GUIDE

CONTENTS

28 DDirectory

29 Bset

30 BWset

31 Bclear

32 BMove

33 Newsamesegment

34 0ispose

35 Cls

36 Chgcuro

37 Chgcurl

38 Chgcur2

39 Chgcur3

40 Chgcur4

41 Chgcur5

42 Readcuro

43 Readcurl

44 Selectcur

45 Grf lnit

46 Paletteset

47 Def inewindow

48 Selectwindow

49 Readwindow

50 Chgwindow

51 Closewindow

8-22

8-23

8-24

8-25

8-26

8-27

8-28

8-29

8-30

8-31

8-32

8-33

8-34

8-35

8-36

8-37

8-38

8-39

8-40

8-41

8-43

8-44

8-46

8-47

52 ScalexY

53 MapxYC

54 MapcxY

55 Fetchc

56 Storec

57 Ltpc

58 Downc

59 Leftc

60 Rightc

61 SetAtr

62 Setc

63 Readc

64 Nsetcx

65 NsetcY

66 NRead

67 Nwrite

68 Pntlnit

69 TDownc

70 TUpC

71 Scanl

72 ScanR

73 SetTime

74 SetDate

75 GetTime

8-48

8-49

8-50

8-51

8-52

8-53

8-54

8-55

8-56

8-57

8-58

8-59

8-60

8-61

8-62

8-64

8-66

8-67

8-68

8-69

8-70

8-71

8-72

8-73

76 GetDate

77 Calluser

78 lBsroo

79 1BsrQ1

80 lBPoll

sl lBTset

82 1BRset

83 lBprnt

84 IBWByt

85 181npt

86 lBLinpt

87 lBRByt

88 Error

89 Dstring

90 CrLf

91 DHexByte

92 DHex

93 DHexLong

94 DNumw

95 DLong

96 DisectName

97 Checkvolume

98 Search

99 Maxsize

102 Setvo1

8-74

8-75

8-78

8-79

8-80

8-81

8-82

8-83

8-84

8-85

8-87

8-89

8-90

8-91

104 NewAbsolute 8-103

105 StringLen 8-104

106 DiskFree 8-105

107 Bootsystem 8-106

108 Setsyssg 8-107

109 SearchDevTab 8-108

113 CloseA11Windows 8-109

114 KbsetLock 8-110

115 ClearText 8-111

116 ScrollText 8-112

120 New 8-114

121 BrandNewAbsolute 8-115

122 NewLargestBlock 8-116

123 StickyNew

8-92 9. 1NTR00UCTION T0 GRAPHICS

8-93

8-94

8-95

8-96

8-97

8-98

INTRODUCTION

SUMMARY 0F FEATURES

CONCEPTS

FUNCTI0NAL GROUPS

ERRORS

DEFAULT CONDIT10NS

8-99 10. THE M20 GRAPHICS ROUTINES

ClearviewArea

CloseGraphics

8-117

9-1

9-1

9-2

9_4

9-6

9-6

CloseviewTrans 10-3

ASSEMBLER USER GUIDE

CONTENTS

0ivideviewArea

Errorlnquiry

Escape

GDP

GraphcursorAbs

GraphcursorRel

GraphposAbs

6raphposRel

lnqAttributes

lnqcurTransNmbr

lnqcraphcursor

lnq6raphpos

lnqpixel

l nqp i xe l Ar ra y

lnqpixelcoords

lnqTextcursor

lnqviewArea

lnqworldcoordsp

LineAbs

LineRel

MarkerAbs

rla r k e r r(e l

OpenGraphics

PixelArray

Polyline

10-4

10-5

10-7

10-9

10-11

10-12

10-13

10-14

10-15

10-16

10-17

10-18

10-19

10-21

Selectcursor

SelectGrcolour

SelectTxcolour

SelectviewTrans

SetcolourLogic

SetcolourRep

SetGrcsBlnkrate

Setcrcsrshape

SetLineclas5

SetText l i ne

SetTxcsrBlnkrate

SetTxcsrshape

Setworldcoordsp

Textcursor

10-36

10-37

10-39

10-41

10-42

10-44

10-45

10-46

10-47

10-48

10-49

10-50

10-51

10-52

10-23 A. RESERVED WORDS

10-24 8. ASM ERRORS AND WARNINGS

10-25 C. FUNCT10NAL LIST 0F SYSTEM CALLS

10-26

10-27

10-28

10-29

10-30

10-31

10-32

10-34

BYTESTREAM CALLS C-1

BLOCK TRANSFER CALLS C-3

STORAGE ALLOCATI0N CALLS C-4

GRAPHICS SYSTEM CALLS C-5

TIME AND DATE CALLS C-8

IEEE-488 CALLS C-9

MISCELLANEOUS CALLS C-11

D. FUNCTloNAL LIST 0F GRAPHICS

ROUTINES

TRANSFORMAT10N AND CONTROL D-1

GRAPHICS OUTPUT D-2

GRAPHICS ATTRIBUTES D-3

1NQUIRY D-4

E. SYSTEM ERRORS

F. PORT 1/0 ADDRESSES

MAIN MOTHERB0ARD PORTS F-l

IEEE EXPANsloN B0ARD F-2

PORTS

HARD DISK UNIT EXPANS10N F-3

B0ARD PORTS

RS-232-C TWIN EXPANSION F-3

B0ARD PORTS

G. MAILB0X

H. M20 -RS-232-C DEVICE PARAMETER

TABLE

1. DEVICE ID (DID) ASSIGNMENTS

J. AScll CODE

ASSEMBLER USER GUIDE

PART I

1. lNTRODUCTION

ABOUT THIS CHAPTER

This part of the manual describes how to create Assembly Language pro-
granB on the M20. 1n this chapter a brief step by step description of
the process is given. In each step of this description reference is rnade
to the relevant chapter or manual where it is described in detail.

CONTENTS

CREATING EXECUTABLE 1 -1

ASSEMBLER PACKAGE 1-3

SYSTEM CONFIGURATI0N 1-3

lNTRODUCTION

CREATING AN EXECUTABLE FILE

An Assembly Language program must be written in an Editor environment;
on the M20 this can be done in the Video File Editor environment which
is described in the "M20 PCOS (Professional Computer Operating System)
User Guide". This edited version of the program is known as the source
file. The source file is described in chapter 2, where the Directives
and the Assembler Conventions for the M20 are def ined. Chapter 2 ends
with a description of the PCOS Standard, which defines the format of a
source file meant to execute like any PCOS routine.

The next step is to assemble the program using the ASSEMBLER (ASM) com-
mand. This command takes a source f ile as input and outputs a z-type
object file. The ASM command is described in chapter 3.

The final step in creating an executable file is performed by the LINK
command which is described in chapter 4. LINK takes one or more object
files as input and outputs a single executable binary load file. Note
that z-type object files created using other computer languages can be
linked to z-type object files output by the ASM command.

The process of creating an executable file is shown schematically in
fig. 1-1 below.

Executable binary
load file

Fig. 1-1 Creating an executable binary file

ASSEMslER USER GUID

I
Dumping Facilities

Throughout the process of creating an executable file the programmer may
need to display source files, listing files, object files, etc.. This
can be done using the PCOS command FLIST which allows a number of
optional features for dumping various types of files. The FLIST command
is detailed in the "M20 PCOS User Guide".

THE M20 ASSEMBLER PACKA6E

The M20 Assembler package contains the Assembler (ASM) command, the LINK
command, and the Video File Editor mentioned abo-ve. Also included in the
package are the PDEBUG (Program DEBUG) utility detailed in chapter 5,
arid the MLIB command for creating library files of object modules
described in chapter 6. A11 of these routines must be invoked from the
PCOS environment.

SYSTEM CONFIGURATION

The M20 Assembler package will run on any M20 system configuration.

2. THE ASSEIVIBLER SOURCE FILE

AB0UT THIS CHAPTER

This chapter contains the main steps to be taken and the Assembler con-
ventions the programmer must adhere to, in order to build source files
for the user's own utilities.

CONTENTS

INTRODUCTION 2-1 ASSEMBLER DIRECTIVES 2-20

ASSEMBLER CONVENT10NS 2-1 DATA GENERAT10N DIR=CTIVES 2-20

ASSEMBLER LANGUAGE 2-1 CONTROL DIRECTIVES 2-23

STATEMENT FORMAT

THE PCOS STANDARD 2-28

SYMBOLS, CONSTANTS AND 2-5

STRINGS

ARITHMETIC 0PERANDS 2-7

SYMB0LIC VALUES 2-7

EXPRESSI0NS AND OPERATORS 2-8

Z8000 ADDRESSING MODES 2-12

THE ASSEMBLER SOURCE FILE

lNTRODUCTI0N

As previously mentioned, to construct the source file, the programmer
will make use of the Video File Editor (as described in the "PCOS (Pro-
fessional Computer Operating System) User Guide"), by means of which he
can insert the instructions and the Assembler directives. The instruc-
tion set used is precisely that of the Z-8001 CPU, described in detail
in the "M20 ZSO00 Assembler Reference Manual", which is useful to the
programmer for what regards mnemonics, addressing and mchine code. As
far as the Assembler conventions and directives are concerned, however,
(which are M20 specific), these will be examined in more detail in the
next two sections entitled "Assembler Conventions" and "Assembler Direc-
tives",

The section on "Assembler Conventions" describes in depth the way to
represent operands, numerical constants, strings, comments, arithmetic
operations, which may appear on a source program line.

The next section provides a description of the "Assembler Directives"
i.e. those instructions which are not translated by the Assembler in
executeable machine code, but which are used by the Assembler itself to
leave uninitialised space in the ol)ject program, define strings within
the program, make references to variables outside the program and to
perform operations which facilitate the programmer`s work.

The last section "The PCOS Standard" deals with the structure an Assem-
bler source file must have, so that the user can build himself a utility
which is coherent with the PCOS utilities standards, for invoking and
for passing parameters.

ASSEMBLER CONVENTIONS

ASSEMBLY LAN6UA6E STATEMENT FORMAT

The most fundamental component of an assembly program is the assembly
language statement, a single line of text consisting of an instruction
and its operands, with an optional comment. The instruction describes
an action to be taken; the operands supply the data to be acted upon.

An assembly language statement can include four fields in the following
order, from left to right on the line:

- Symbolic Label;

-lnstruction Mnemonic;

- Operands;

- Comment.

All fields can be optional depending on the instruction chosen. Each
f ield of the statement must be separated f rom the others by white space
(one or more spaces or tabs).1f a field other than the symbolic label
is to be omitted but subsequent fields on the line are not, it may be
coded as a solitary comma (,). Fields other than the comment field may
not contain white space except for the case of character constants or
strings in operands (which are enclosed in apostrophes or quotation
marks respectively).

Syin]olic Label Field

/ , ` ` , =£~ + \cl .-...

z/l/

Any statement may contain a symbolic label. Some instructions require
it. 1f provided, the label must begin with the first character of the
text line. The absence of the field is indicated by the fir5t character
of the line being a white space character. The only way in which
bol may be defined anywhere in the assembly is for it to appear
1abel f ield of a statement. A particular symbol may appear onl
a label field within one module. Note: a comment line, which
assembly instruction, is indicated by the f irst character
being an asterisk (*).

1nstruction Field

The instruction is the assembly~1anguage mnemonic describing a specific
action to be taken. This may represent either a Z8000 machine instruc-
tion or an assembler directive instruction. The instruction must be
separated from its operands by white space (one or more spaces or tabs).

LD R2,ALPHA Load register 2 from memory location ALPHA

JP BETA JUMP to location BETA

Many of the operations of the Z8000 can be applied to word, byte, or
long operands. A simple naming convention has been adopted to distin-
guish the size of the operands for these particular instructions:
the suffix ''8" designates a byte instruction, the suffix "L" designates
a long word instruction, and no suffix designates a word instruc-
tion :

AOD RQ,RI

ADDB RHO,RL0

ADDL RRO , RR2

Add word operands

Add byte operands

Add long operands

ASSE»LER USER 6UIDE

THE ASSEMBLER SOURCE FILE

Operand Field

Depending on the instruction specified, this field can have zero or
more operands. If two or more operands are needed, each must be
separated by a comma with no intervening white space. 1f there
are no operands and a comment f ield is to be placed on the same state-
ment, the operand field must be a single comma standing alone.

RET , No operand

TEST R2 0ne operand

LD R2,RI Two operands

LDM R2,ALPHA,#7 Three operands

CPD R2,@R4,R6,EQ Four operands

Operands supply the information the instruction needs to carry out
its action. An operand of a Z8000 machine instruction can be:

- Data to be processed (immediate data);

- The address of a location f rom which data is to be taken (source
address) ;

- The address of a location where data is to be put (destination
address) ;

- The address of a program location to which program control is to be

passed;

- A condition code, used to direct the flow of program control.

Although there are a number of valid combinations of operands, there
is one basic convention to remember: the destination operand
always precedes the source operand. Refer to the specif ic
instructions in the Reference Manual for valid operand combinatons.

Immediate data can be in the form of a constant , an address , or an
expression (constants and/or addresses combined by operators).

LD R2,#7 Load 7 into register 2

LD R2,#ALPHA Load address of ALPHA into register 2

LD R4,#BETA/2 Load value of expression [BETA/2] into
register 4

As far as the conventions are concerned, for expressing numeric con-
stants and alphanumeric strings, these will be dealt with later in the
appropriate section.

Source, destination, and program addresses can also take several forms.
Addressing modes are described in detail later. Some examples are:

2-3

LD R1,@R2

LD R1,ALPHA

LD R1,ALPHA+1

JP EQ,BETA

JP NE,BETA+16

Load value whose address is in register 2
into register 1

Load v'alue located at address labeled
ALPHA into register 1

Load value at location following that
addressed by ALPHA into register 1

Jump to program address labeled BETA if
E0 f lag is set

Otherwise, jump to location sixteen bytes
following BETA

Condition codes are listed in the Reference Manual.

Operands of an assembler directive instruction can be:

- A numerical value or expression;

- Expressions or strings representing initialization data;

-Astringsuchasafilename,amodulename, or a section name
(such strings cannot be referenced elsewhere in the program);

- A keyword.

Examples of assembler directives:

MODULE device.1,segmented

AT BETA+16

DSB 27

DDL °~u7F01FFF, 'AB '

The assembler directives are dealt with later in the appropriate sec-
tion.

Con"nts

Comments are used to document program code as a guide to program logic
and also to simplify present or future program debugging A text line
which begins with an asterisk as the first non-white-space character
is copied as it appears to the listing file but is ignored by the assem-
bler for all other purposes.

ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

Examples of comment lines:

* This routine is used to compare two strings. The operands are
* pointers to the first characters of each string. The
* strings are of variable length with a zero byte mrking
* the end of the string.

* The returned value of this routine is:

* -1: first string less than second
* 0: strings equal
* 1: first string greater than second

Coiiments may also be placed on the end of each assembler statement All
text which appears after the operand field on the line is a coiment and
is reproduced in the listing file but ignored otherwise. If the operand
field or the instruction field are to be omitted the comment f ield may
only be included if the omitted field(s) are coded as a solitary comma
(,).

Examples of on-statement comments:

CLR R2 Initialize register 2

1RET , return from the interrupt NOW!

START.UP , , THIS IS THE ENTRY P01NT 0F THE PROGRAM

JP Z,BETA+12 this is a close comment

SYMB0LS, CONSTANTS, and STRINGS

Symbols

A symbol may consist of the letters A-Z (upper or lower case), the

::!£::g::9it::eau#:::C?5:9;:ar:::e:{E?Lm°:e:g::r±:S (;). sy£b:¥mb:: mi¥
characters.

Upper and lower case letters are considered different characters. Thus
"Start" and "start" are different symbols.

The following are valid symbols:

ValueAssignments
lnitial values

;:::tzup
sort_

-tsi, t,#,{ 2-5

Constants

A constant is a value which stands for itself . lt may be either a
number or a character sequence.

Numbers can be written in decimal, hexadecimal, binary, or octal nota-
tion. The latter three are preceded by a percent sign (%) and, in
thecase of binary and octal, by a base specifier enclosed in
parentheses. 1f a number has no prefix, decimal is assumed.

42 decimal
%42 hexadecimal
9!o(8)42 octal
9!o(2)10110010 binary

Acharacterssequence is a sequence of one to four characters
enclosed in apostrophes. Any ASC11 character can be included in the
character sequence, for example;

A,
' Open '

A character can also be represented in a character sequence in the
form "~®hh," where "hh" is the hexadecimal equivalent of the ASCIl code
for the character, for example;

E=%1 B '

For convenience. certain AScll characters have been assigned
shorter, more mnemonic codes as follows:

or%1
or%t
or%r
Or%p

and
' 1 %r2%r '
"=®Qt=%O,

Linefeed
Tab
Carriage Return
Page (Form Feed)
Percent Sign
Apostrophe (Single Ouote)

represents the ASC11 sequence: 1 /CR/ 2 /CR/
represents the AScll seqiience: `t='

Strings

Strings are sequences of any length of ASC11 characters, enclosed in
quotation marks. They can be def ined only by using the DDB directive
(see Data Generation Directives).

Strings also use the above ASctl mnemonic forms. Since strings are
enclosed in quotation marks, the mnemonic %" is used for embedded quota-
tion marks.

2-6 ASSEMBLER USER GU10E

TIJE ASSEMBLER SOURCE FILE

ARITHMETIC 0PERANDS

Run-Time and-Assembly-Time Arithmetic

Arithmetic is performed in two ways in an assembly language program Run-
time arithmetic is done while the program is actually executing.

ADDB RHO,RL2 Add the contents of register
RL2 to the contents of register RH0

Assembly-time arithmetic is done by the assembler when the program is
assembled and involves the evaluation of arithmetic expressions in
operands, such as the following:

LDL RR14,#[2*one+%10]

JP Z,BETA+34

AND R5,ALPHA-3

Assembly-time arithmetic is more limited than run-time arithmetic.

A11 assembly-time arithmetic is computed using 32-bit representations of
the numbers. Any number in excess of 32 bits (4,294,967,296) 1oses the
extra bits on the left, so all values are calculated "modulo
4,294,967,296". Depending on the number of bits required by the particu-
1ar instruction, only the rightmost 4, 8, 16, or 32 bits of the result-
ing 32-bit value are used. lf the result of assembly-time arithmetic is
to be stored in four bits. the value is taken "modulo 16" to give a
result in the range 0 to 15. If the result is to be stored in a single
byte location, the value is taken "modulo 256" to give a result in the
range 0 to 255 (or -128 to 127 if signed representation is intended). If
the result is to be stored in a word, the value is taken "modulo 65536"
to give a result in the range 0 to 65535 (or -32768 to 32767 if signed
representation is intended).

LDB RH7,#one*2 Result of "one*2" must be in
* range 0 to 255

JP BETA+2 Modulo 65536. Result is the
* address 2 bytes beyond BETA

SUBL RR2,#one*9ro80000 Result of "onewzro80000" is taken
* modulo 4,294,967,296

SYMB0LIC VALUES

A symbol can be assigned a value other than that of the current assem-
bly location counter by means of the assembler directive instruc-
tions which are described later in this chapter. 1n this way a symbol

2-7

can be made to represent an absolute constant value or a relocatable
memory location in the same section, in a different section of the same
module or in a completely different module. That symbol may then be
used in operand expressions anywhere that a value of its type is per-
missible.

EXPRESSIONS AND 0PERATORS

Expressions are formed using arithmetic, logical, shift, and rela-
tional operators in combination with constants and variables. These
operators allow both unary (one-operand) and binary (two-operand)
expressions, as shown below.

Arithii`etic Operators

The arithmetic operators are the following:

Operator Operation

+ Unary plus, binary addition

Unary minus, binary subtraction

* Multiplication

/ ö. Divison

\ Modulus

The division operator (/) truncates any remainder. The modulus opera-
tor (\) performs the modulo function (i.e. returns the remainder after
division)

9 1 2 -- 4

9\2 = 1

-912 -- -4

1f zero is specif ied as the right operand for- either of these opera-
tors, the result is undefined.

Examples :

SUBB RLO,#1 1 is subtracted from RL0

SUB R10,#one+[10-3] Value of one + 7 is subtracted
• . Ä` Ü from register lo

ASSEMBLER USER 6UIDE -^::

THE ASSEMBLER SOURCE FILE

Logical 0perators

The logical operators are the following:

Operator Operation

~ ¢ (Unary) Logical coMPLEMENT

Logical AND

Logical 0R

Logical EXCLUSIVE OR

Logical COMPLEMENT (~) simply complements the bit pattern of its single
operand (i.e. all one bits are changed to zero and vice-versa).

LD R11,#~CONSTANT1 Reverse the bits of CONSTANTl and load into
reg 11

The effect of Logical AND, Logical 0R, and Logical EXCLUSIVE OR can
be seen from the following examples. Although 32-bit arithmetic would
actually be done by the assembler, 4-bit arithmetic is shown for
clarity. Assume two constants, CONSTANTl and CONSTANT2, which have the
bit patterns 1100 and 1010, respectively. The expressions:

CONSTANT1%ONSTANT2
CONSTANT1 ! CONSTANT2

CONSTANT1-CONSTANT2

will result in the following evaluations of the operands:

AN0 1100 0R 1100

1010 1010

1000 1110

EXCLUSIVE OR 1100

1010

0110

The assembly-time logical operations performed by Logical COMPLEMENT,
Logical AND, Logical OR and Logical EXCLUSIVE 0R can also be done at
run time by the Z8000 instructions COM, AND, OR, and XOR respectively.
The assembly-time operations require less code and register manipula-
tion. The run-time operations allow greater flexibility, however. For
example, they can operate on registers (variables) whose contents are
not known at assembly time, as well as on known constant values.

Shift Operators

The shift operators are as follows:

_t;#t. [::i::! ::!:: ::g:t
atJ\

When used in expressions, the shift operators have the form

d operator n

where "d" is the data to be shifted and "n" specifies the number of
bits to be shifted. Vacated bits are replaced with zeros. For exam-
ple, if CONSTANTl has a value of 00001100, the statement

LO R10 , #[CONSTANT1 { SHL }2]-N b .üt,:

would load the value 00110000 into register R10. lf the second operand
supplied is negative (that is, if the sign bit is set), it has the
effect of reversing the direction of the shift.

LD R10,#[CONSTANT1 {SHR}-2] CONSTANTl is shifted
two bit positions LEFT

Relational Operators

There are two basic types of relational operators: those which con-
sider their operands to be signed 32-bit integers, and those which
consider their operands to be unsigned 32-bit integers.

Signed:

< Less than

< = Less than or equal

Equal

< > Not equal

> = Greater than or equal

> 6reater than

AssEMBiER usER GuiDE ``=äi=i¢t,

THE ASSEMBLER SOURCE FILE

Uns i gned :

{ULT} Less than

{ULE} Less than or equal

{UEQ} Equal

{UNE} Not equal

{UGE} Greater than or equal

{UGT} Greater than
aü

The relational operators return a logical TRUE value (all ones) if the
comparison of the two operands is true, and return a logical FALSE value
(all zeros) otherwise.

LD RO,#[1=2] Reg 0 is loaded with zeros

LD RO,#[2+2]<5 Reg 0 is loaded with ones

Ä'ü

Precedence of Operators

Expressions are generally evaluated left to right with operators having
the highest precedence evaluated first. 1f two operators have equal
precedence, the leftmost is evaluated first.

The following lists the assembly-time operators in order of pre-
cedence :

- Unary operators: +, -, ~
ö 6. `ü

- Multiplication/ Division/Modulus/Shift/AND: *, /, \, {SHR}, {SHL},&

-Addition/Subtraction/OR/XOR: +, -, !,^

-i:#i;°n::G:?:ri:::i: <. <=i =,<>. >=, >, {ULT}, {ULE}, {UEQ},

Square brackets ([]) can be used to change the normal order of pre-
cedence. Items enclosed in brackets are evaluated first. If brackets
are nested, the innermost are evaluated first.

100/4 -48/2 = 1

100/[4 -48/2]= -5

Note: Square brackets are used instead of the traditional
parentheses. This is done to avoid all confusion and conflict whether
it be syntactical, semantical or conceptual, with the indexed address
operand forms described further on in this chapter.

Seqmented Address Operators

Two special operators are provided to ease the manipulation of seg-
mented addresses. While addresses can be treated as a single value
with a symbolic name assigned by the programmer, occasionally it is
useful to determine the segment number or offset associated with a
memory location.

The sEGMENT unary operator, {SEGMENT}, is applied to an address
expression that contains a symbolic name associated withan
address, and returns a 16-bit value. This value is the 7-bit seg-
ment number associated with the expression and a one bit in the most
significant bit of the high-order byte, and all zero bits in the
low-order byte.

The "OFFSET" unary operator, {OFFSET}, is applied to an address
expression and returns a 16-bit value which is the offset value asso-
ciated with the expression.

Example

* Load the segmented address of buffer pointer into register pair RR12.

LD R12,#{SEGMENT}buffer pointer
LD R13,#{OFFSET}buffer Fointer

* This is functionally equivalent to the following statement:

LDL RR12,#buffer pointer

Because of the special properties of these address operators, no other
operators can be applied to a subexpression containing a SEGMENT or
OFFSET operator, although other operators can be used within the subex-
pression to which the operator is applied:

{SEGMENT}[buffer pointer+4] Valid
SEGMENT}buffer Fointer]+4 Invalid
OFFSET}buffer Fointer] Invalid

Z8000 AI)DRESSING MODES

With the exception of immediate data and condition codes, all Z8000

2-12 _ ASSEMBIER USER GUIDE

THE ASSEMBLER SOURCE FILE

machine instruction operands are expressed as addresses: register,
memory, and 1/0 addresses. The various address modes recognized by
the Z8000 assembler are as follows:

- 1mmediate Data

- Register

- 1ndirect Register

- Direct Address

-1ndexed Address

- Relative Address

- Based Address

- Based lndexed Address

Special characters are used in operands to identify some of these
address modes. The characters are:

- "R" preceding a word register number;

- "RH" or "RL" preceding a byte register number;

- "RR" preceding a register pair number;

- "RQ" preceding a register quadruple number;

- "@" preceding an indirect-register reference;

- "#" preceding immediate data;

- "()" used to enclose the displacement part of an indexed, based,
or based indexed address;

- "S" signifying the current program counter location, usually used in
relative addressing.

1nmediate Data

The operand value used by the instruction in lmmediate Data
addressing mode is the value supplied in theoperandfield
itself.

Immediate data is preceded by the special character "#" and can be
either a constant (including character constants and symbols represent-
ing constants) or an expression as previously described. 1mmediate data
expressions are evaluated using 32-bit arithmetic. Depending on the
instruction being used, the value represented by the rightmost 4, 8,
16, or 32 bits is actually used. An error message is generated for

2-13

values that overflow the valid range for the instruction.

AODB RL7,#98 Add 98 to the contents of register RL7

LDL RR14,#6789*FOUR

Load the value of the multiplication
into register pair 14

1f a variable name or address expression is prefixed by "#", the value
used is the address represented by the variable or the result of the
expression evaluation, not the contents of the corresponding data
location.

The assembler automatically creates the proper format for a long
offset address which includes the segment number and the off set in a 32-
bit value. lt is recommended that symbolic names be used wherever
possible, since the corresponding segment number and off set for the
symbolic name will be automatically managed by the assembler and
can be assigned values later when the module is linked or when the
program is loaded for execution.

For those cases where a specific segment is desired, the following
notation can be used (the segment designator is enclosed in double
angle brackets) :

<<segment>>offset

where "segment" is a constant expression that evaluates to a 7- bit
value, and "offset" is a constant expression that evaluates to a 16-bit
value. This notation is expanded into a long offset address by the
assembler.

LDL RR2,#MESSAGE

RR2 ' #<< 2 >=%10

Load the address of MESSAGE into
register pair RR2

Load the segmented address
with segment 2, offset °610
into register pair RR2

Register Address

ln register addressing mode, the operand value is the content of the
specified general-purpose register. There are four different sizes of
registers on the Z8000:

- Word register (16 bits),

- Byte register (8 bits),

ASSEMBLER USER GUIDE ^,

THE ASSEMBLER SOURCE FILE

- Register pair (32 bits), and

- Register quadruple (64 bits).

A word reöister is indicated by the "R" followed by a number from 0 to
15 (decimal) corresponding to the 16 registers of the machine.
Either thehighor lowbyteof the first eight registers can be
accessed by using the byte register constructs "RH" or ``RL" followed by
anumber fromo to 7. Any pair of word registers can be
accessed as a register pair by using "RR" followed by an even number
betweenoand 14. Register quadruples are equivalent to four
consecutive word registers and are accessed by the`notation "RO"
followed by one of the numbers 0, 4, 8, or 12.

lf an odd register number is given with a register pair designator, or a
number other than 0, 4, 8, or 12 is given for a register quadruple, an
assembly error will result.

1n general, the size of a register used in an operation depends on the
particular instruction. Byte instructions, which end with the suffix"8" are used with byte registers. Word registers are used with word
instructions, which have no special suffix. Register pairs are used
withlongword instructions, which end with the suffix "L".
Register quadruples are used only with three instructions (DIVL, EXTSL
andMULTL) which use a 64-bit value. An assembly error will
occur if the size of a register does not correspond correctly with the
particular instruction.

lD R5 ,#9.o5A5A

RH3,#96A5

ADDL RR2,RR4

MULTL RQ8,RR12

Load register 5 with the
hexadecimal value 5A5A

Load the high order byte of
word register 3 with the
hexadecimal value A5

Add the register pairs 2-3 and
4-5 and store the result in 2-3

Multiply the value in register
pair 10-11 by the value in
register pair 12-13 and store the
result in register quadruple
8-9-10-11

1ndirect Regist®r Address

ln lndirect Register addressing mode, the operand value is the con-
tent of the location whose address is contained in the specif ied regis-
ter. A register pair is used to hold the address. Any general-purpose
register (register pair) can be used except R0 or RRO.

IndirectRegisteraddressing mode is also used with the 1/0
instructions and always indicates a 16-bit 1/0 address. Any

general-purpose word register can be used except RO.

An lndirect Register address is specified by a "commercial at" symbol
(@) followed by either a word register or a register pair designator.
For lndirect Register addressing mode, a word register is specified by
an "R" followed by a number from 1 to 15, and a register pair is speci-
fied by an "RR'' followed by an even number from 2 to 14.

LD @RR2,#15 Load immediate value 15 into
1ocation addressed by register
pair 2-3

Direct Address

The operand value used by the instruction in Direct addressing mode
is the content of the location specified by the address in the instruc-
tion. A direct address can be specified as a symbolic name of a memory
or 1/0 1ocation, or an expression that evaluates to an address. For all
1/0 instructions, the address is a 16-bit value. The memory address
is either a 16-bit value (short offset) or a 32-bit value (1ong
offset). All assembly-time address expressions are evaluated
using 32-bit arithmetic.

ARRAY+2 , R2

LDB RH5,55

Load the contents of the
location addressed by TABLE
into register 10

Load the contents of register
2 into the location addressed
by adding 2 to ARRAY

Load the contents of the 1/0
location addressed by 55 into
RH5

The assembler automatically creates the proper format which includes the
segment number and the offset. 1t is recommended that symbolic names be
used wherever possible, since the corresponding segment number and
offset for the symbolic name will be automatically managed by the assem-
bler and can be assigned values later when the module is linked or
loaded for execution.

For those cases where a specific segment is desired, the following nota-
tion can be used (the segment designator is enclosed in double angle
brackets) :

<<segment>>offset

where "segment" is a constant expression that evaluates to a 7-bit
value, and "offset" is a constant expression that evaluates to a 16-bit
value. This notation is expanded into a long offset address by the

ASsgMBIER USER GU1

THE ASSEMBLER SOURCE FILE

assembler.

To force a short offset address, the segmented address can be
enclosed in vertical bars (||). In this case, the offset must be in
the range 0 to 255, and the final address includes the segment number
and short offset in a 16-bit value.

Load the contents of the
location addressed by TABLE
(short offset format) into
register 10

<<SE6MENT>>OFFSET.RIO Load the contents of reg-

| <<SEGMENT >>OFFS ET

ister 10 into the location
addressed by the segment
named SEGMENT off set by
OFFSET (1ong offset format)

Jump to location addressed
by segment, offset
(short offset format)

1ndexed Address

An lndexed address consists of a memory address displaced by the con-
tents of a designated word register (the index). This displacement is
added to the memory address and the resulting address points to the
location whose contents are used by the instruction. The memory address
is specified as an expression that evaluates to either a 16-bit value
(short offset) or a 32-bit value (1ong offset). All assembly-time
address expressions are evaluated using 32-bit arithmetic. This address
is followed by the index, a word register designator enclosed in
parentheses. For lndexed addressing, a word register is specified by an"R" followed by a number from 1 to 15. Any general-purpose word regis-

ter can be used except RO.

Load the contents of the
location addressed by TABLE
plus the contents of reg-
ister 3 into register 10

The assembler automatically creates the proper format for the memory
address, which includes the segment number and the offset. As with
Direct addressing, symbolic names should be used wherever possible so
that values can be assigned later when the module is linked or loaded
for execution.

For those cases where a specific segment is desired, the following nota-
tion can be used (the segment designator is enclosed in double angle
brackets) :

<<segment>>offset(r)

2-17

where "segment" is a constant expression that evaluates to a 7-bit
value, ''offset.' is a constant expression which evaluates to a 16-bit
value, and ''r" is a word register designator. This notation is expanded
into a long öffset address by the assembler.

To forceashort offset address, the segmented address may be
enclosed in vertical bars (| |). 1n this case, the offset must be in the
range 0 to 255, and the final address includes the segment number and
short offset in a 16-bit value.

LD R10,|TABLE|(R3)

<<5>>8 (R13) , R10

Load the contents of the
location addressed by
TABLE (short offset format)
plus the contents of reg-
ister 3 into register 10

Load the contents of regis-
ter 10 into the location ad-
dressed by segment 5
offset by 8 (1ong off-
set format) plus the con-
tents of register 13

Relative Address

Relative address mode is implied by its instruction. 1t is used by
the Call Relative (CALR), Decrement and Jump lfNot zero (DJNZ),
Jump Relative (JR), Load Address Relative (LDAR), and Load Relative
(LDR) instructions and is the only mode available to these instructions.
The operand, in this case, represents a displacement that is added to
the contents of the program counter to form the destination address that
is relative to the current instruction. The original content of the
program counter is taken to be the address of the instruction byte fol-
1owing the instruction. The size and range of the displacement depends
on the particular instruction, and is described with each instruction in
the Z8000 Assembler Reference Manual.

The displacement value can be expressed in two ways. ln the first case,
the programmer provides a specif ic displacement in the form "S+n" where
n is a constant expression in the range appropriate for the particular
instruction and S represents the contents of the program counter at the
start of the instruction. The assembler automatically subtracts the
value of the address of the following instruction to derive the actual
displacement.

m OV,S+ONE Add value of constant ONE to program
counter and jump to new location if
overflow has occurred

ln the second case, the assembler calculates the displacement automati-
cally. The programmer simply specifies an expression that evaluates to
a number or a program label as in Direct addressing. The address speci-
fied by the operand must be in the valid range for the instruction, and

ASSEHBLER USER GU1

THE ASSEMBLER SOURCE FILE

the assembler automatically subtracts the value of the address of the
following instruction, to derive the actual displacement.

DJNZ R5,BETA

LDR RIO,ALPHA

Decrement register 5 and jump to
BETA if the result is not zero

Load the contents of the location
addressed by ALPHA into register 10

Bas®d Address

A Based address consists of a register that contairis the base and a 16-
bit displacement. The displacement is added to the base and the result-
ing address indicates the location whose contents are used by the
instruction.

The segmented based address is held in a register pair that is specified
by an "RR" followed by an even number from 2 to 14. Any general-purpose
register pair can be used except RRO. The dispacement is specified as an
expression that evaluates to a 16-bit value, preceded by a "#" symbol
and enclosed in parentheses.

DL RR2,R1(#255) Load into register pair 2-3 the
1ong word value found in the
location resulting from adding
255 to the address in register 1

0 RR4(#®..4000),R2 Load register 2 into the loca-
tion addressed by adding %4000
to the segmented address found
in register pair 4-5

Based lndexed Address

Based lndexed addressing is similar to Based addressing except that the
displacement (index) as well as the base is held in a register. The con-
tents of the registers are added together to determine the address used
in the instruction.

The segmented based address is held in a register pair that is specified
by an "RR" followed by an even number from 2 to 14. Any general-purpose
register pair can be used except RRO. The index is held in a word regis-
ter that is specified by an "R" followed by a number from 1 to 15. Any
general-purpose word register can be used except RO.

LI)B RR14(R4),RH2 Load register RH2 into the
location addressed by the
address in RR14 indexed by
the value in R4

2-19

ASSEMBLER DIRECTtvES

Assembler Directives are program statements which have the same format
as machine instructions but whose action does not correspond to any
machine instruction. These are used to control the operation of the
assembler with regard to functions other than producing the machine code
for an instruction.

Directives fall into two niai.or categories: data generation directives
which allocate and possibly initialize program data areas, and control
directives which control and affect the operation of the assembler.

DATA GENERATI0N DIRECTIVES

These cause data space to be reserved at the current assembly location.
Directives differ in element size and ability to initialize the data
Space .

DS

This directive is used to define uninitialized data. 1t takes a single
required operand which is an expression which evaluates to an absolute
value (i.e. not relocatable). No forward referencing of symbols is
allowed in the expression. The given number of two-byte words is
reserved at the current location. after rounding up to the next even
boundary. Note that an operand of "0" may be used to force rounding of
the location counter up to an even boundary without reserving any
space for data. Also, if a label is def ined in the label field of the
same statement its value is set to that of the location counter after
the rounding operation, but before the data definition.

DS 0 round up to next word boundary

BUFFER DS 100 reserve a one hundred-word buffer

DSB

This directive is used to define uninitialized data. lt takes a single
required operand which is an expression which evaluates to an absolute
value (i.e. not relocatable). The given number of bytes is reserved
at the current location. No forward referencing of symbols is allowed
in the expression.

^^t ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

DSB 100 reserve 100 bytes

keyboard_buffer DSB number base l6 define keyboard buffer

DSL

This directive is used to define uninitialized data. 1t takes a single
required operand which is an expression which evaluates to an absolute
value (i.e. not relocatable). No forward referencing of symbols is
allowed in the expression. The given number of four-byte longwords is
reserved at the current location, after rounding up to the next
even boundary. Note that an operand of "0" may be used to force round-
ing of the location counter up to an even boundary without reserving
any space for data. Also, if a label is defined in the label field of
the same statement its value is set to that of the location counter
after the rounding operation, but before the data definition.

DSL 100 leave exactly 400 bytes
* uninitialized

* buffer_pointer DSL 1 :::i::]:emory pointer

DD

The DD directive is used to define initialized data areas consisting of
two-byte word values. The directive may take any number of operands
and repetition factors may be applied to groups of them (described
below). Each operand is an expression which evaluates to either an
absolute value or to a relocatable value. In either case only the low-
order 16 bits of the value is used. One word of data is generated for
each operand supplied at the current location after rounding up to the
next even boundary. Also, if a label is def ined in the label f ield of
the same statement its value is set to that of the location counter
after the rounding operation, but before the data definition.

DD 10244 define one word with contents 10,244 (.;u2804)

* Define a power-of-two table of words:

TABLE DD 0,1,2,4,8,16,32,64,128
DD 9otol00 ,%200,®~.400,%800,%1000,°~.2000,%4000,%80o0

Key DD 'A' define word containing go0041

DDB

The DDB directive is used to define initialized data areas consisting of
byte values. The directive may take any number of operands and repeti-
tion factors may be applied to groups of them (described below). Each
operand is an expression which evaluates to an absolute value, or a
string.

1f the operand is a value, only the low-order s bits are used and one
byte of data `is generated at the current location.

D0B 'A' !%40,['Z'+1]!°~o40 two data bytes

String operands are sequences of any length (including zero) of ASC11
characters. They are delimited by quotation marks, so an embedded quo-
tation mark is written %" and an embedded percent sign is written
%%. The discussion of hexadecimal and mnemonic equivalents for ASCII
characters (see Constants) applies as well to strings. One byte of
data is generated for each byte of a string, at the current location.

string DDB "this is a string"

Endoff DDB 7,%OD,%OA bell, carriage return, line feed

MESSAGE DDB "ERROR - lNVALID INPUT%r",7,0

DDL

DDL is used to define initialized data areas consisting of four-byte
long values. The directive may take any number of operands and repeti-
tion factors may be applied to groups of them (described below). Each
operand is an expression which evaluates to either an absolute value or
to a relocatable value. Two words of data are generated for each
operand supplied at the current location after rounding up to the next
even boundary. Also, if a label is defined in the label field of the
same statement its value is set to that of the location counter after
the rounding operation, but before the data definition.

* Def ine table of three long words, the address of the
* start of the region, the address of the end of the
* region and the size in byte of the region.

DDL START,END,END-START

DDL %7f017fff, 'AB' define two long words the first
containing hex 7f017fff , and the
second hex 00004142

The DD, DDB and DDL directives each take an arbitrary number of
operands and allow repetition factors to be applied to them. A
repetition factor takes the fom of an absolute expression. The
repetition factor must be followed by the operand enclosed in

AssEmLER ÜsER GulD

1

THE ASSEMBLER SOURCE FILE

parentheses. This has the effect of the enclosed operands appearing in
sequence, the number of times given by the expression.

Repetitions may be nested.
allowed.

ARRAY DD 1000(0)
*

No forward referencing of symbols is

define array of 1000 words,
all initialized to zero.

* define and initialize s bytes
CrcTab DDB 2(''asdf") which would be s bytes.

The DD directives with repetition factors have the potential to produce
voluminous listings. 1f the generated code is too large to fit the
space to the left of the source line, the code will follow the listing
line in groups of 8, 16, or 32 data elements (for DDL, DD, and DDB
respecti vel y) .

CONTROL DIRECTIVES

MODULE

A MODULE statement defines the beginning of each module in the source
file. It must occur as the first instruction of each module in the
input source file. A module ends either at the next MODULE state-
ment or at the end of the input source f ile. Modules within the same
file are completely unrelated; no symbols may be shared or passed
between them.

The first operand of the MODULE statement, the module name, is required.
This operand follows the composition rules of a normal symbol, but can-
not be referenced elsewhere in the program. The second operand is
also required. It must be the keyword "SEGMENTED" to tell the module to
contain code for a segmented Z8000.

MODULE test_seg,segmented

SECTloN

A module is composed of sections which are named explicitly by the user.
A section is the smallest unit of relocatability within the programming
system. Portions of the same section cannot be split further and placed
separately at link time.

A SECT10N directive must appear in each module before the first
machine instructions or data generating directive. The SECTloN direc-
tivehasone requiredoperand which is the section name. This

2_23_ 1

operand follows the composition rules of a normal symbol, but cannot
be referenced elsewhere in the program.

If a section name duplicates another section name already declared in
the same module, it is taken as a continuation of the same section. The
assembly location counter is set to 0 at the beginning of a new section
or to the value it had at the previous end of a continued section. The
special character asterisk (*) may be specified in place of the section
name to indicate the most recent section is to be continued.

A11 symbols defined within a module must be unique. Thus, symbols may
be cross-referenced between sections of the same module.

section some examples

SECT10N examples

SECT10N *

AT

This directive is used to change the assembly location counter. lt
takes a single operand which is a numeric expression. The expression
defines the offset in the current section at which the next instruction
or data is to be generated. 1t may be used to move forward, leaving an
uninitialized gap, or to move backward, overwriting code or data previ-
ously generated at that location.

The expression must use symbols which have already been defined or
constants; no forward referencing of symbols is permitted.

1n order to specify a symbolic location with a numeric expression, 1abel
the beginning of the section. lf the label at the beginning of the sec-
tion is, for instance, START.up, you could make the following assign-
ments :

AT [S-START.up]+10 same as "DSB 10"

AT START.up+°<®100 resume assembling at offset.6100

TEMPLATE

This directive allows the definition of assembly-time symbols by means
of suspending the actual generation of code/data. The effect of the
TEMPLATE instruction is to cause all subsequent source statements to be
processed normally but no code or data to be generated in the output
object file. Thus all symbols are defined, but they are not assigned to
any location. Normal processing of assembler instructions is reinstated
by the next SECT10N, MODULE, COMMON, or TEMPLATE statement.

2-24 ASSEMBLER USER 6UIDE

*_;.T
THE ASSEMBLER SOURCE FILE

TheTEMPLATE directive takes one required operand. 1t is an
expression which is absolute, internally relocatable or externally relo-
catable. The symbols subsequently defined are given values relative to
that expression.

* The following statements define the layout
* of the REQUEST CONTROL BLOCK. No memory is
* reserved at this time but the four symbols
* become defined as absolute constants which
* are their respective offsets in the block.

TEMPLATE 0

RCB . ROCODE

RCB.STATUS

RCB . DATAPTR

RCB.COUNT

DSBI
DSBI

DSL1

0S1

COMMON

The COMMON directive is used to declare a common data area. Generation
of code or data in the object module is suspended until the next MODULE,
SECTloN, TEMPLATE or COMMON directive. The instructions which fol-
1ow have the effect of def ining the symbols therein declared and of
defining the length of the common area. The COMMON directive has
no operand but a common name must be provided in the label f ield of the
instruction. This follows the composition rules for external symbols
and is itself an external symbol; the COMMON statement serves to declare
it as such.

No memory space is reserved for the common area by the assembler. The
name and size of the common is placed into the output object module for
use by the linker. The common name is a bonafide external symbol and
may be used in other places in the assembly where an external symbol is
allowed.

* Define named common area to contain all 91obally used variables.

GL0BAL VARIABLES COMMON

Buf f . PEr
Glob.Flag
CmdLength

DSLI

DSBI

DS1 *** WARNING, rounding will

occur for alignment ***

ASSIGN

ASSIGN is used to define an assembly-time symbol. The symbol to be
defined appears in the label field of the instruction. The value.to be
assigned to it is given as the operand. The operand is an expression
which may be absolute, internally relocatable or externally relocatable.

The new synbol takes on the value and type of the expression. Symbols
in the expression may not be forward referenced. The defined symbol
must be unique within the module; it is not permissible to redef ine a
symbol with an ASSIGN statement.

CCCC ASS16N %F

KEY ASSIGN 'A'

ABSOLUTE AODR ASSIGN <<3>>%100

LO0P2 ASSIGN S

LO0P X ASSIGN L00P2+2

6L0BAL

def ines a constant symbol

def ines a character value

def ines an absolute address

equivalent to "L00P2 DSB 0"
or to L00P2 standing alone
on a line

program location after f irst
word of L00P2 routine.

:::e:!:3i: ,;::::;ve.i: u:::.::tde:;ä:|:. g::3a:ss:T3:`;.d:h::c:::?3!e ::
link time to all other modules. There are no operands to the directive.
The symbol to be defined is given in the label field of the instruction,
and must be unique within the module. 1t receives the value of the
current assembler location. This directive may only occur within a sec-
tion; it nüy not appear within the range of a TEMPLATE or a COMMON
directive.

compare global 1abel first instruction of routine
* so it may be used by all modules

* Define a global word variable, initialized to
* all ones.

ONES

DS

6L0BAL
DD

0 align, to mke sure

%(2)1111111111111111

EXTERNAI

The EXTERNAL directive is used to declare a symbol which is to be
defined at link ti"5 in another module. There are no operands. The
symbol to be declared is given in the label field of the instruction.
Since the symbol is not associated with any particular section, its
declaration may appear anywhere in the module.

ASSEMBIER USER 6llloE

THE ASSEMSLER SOURCE FILE

* Declare routines in utility module needed by this module.

BCD ADD

BCD-SUB
BCD-DIV

EXTERNAL

EXTERNAL

EXTERNAL

lF and ENDIF

These directives are used to implement a conditional assembly facility.
The lF instruction takes a single operand which is an expression which
may be of any type, but may not contain forward symbol references. 1f
the value of the expression is exactly zero, all statements following
the lF and before the corresponding ENDIF are treated as comments. An
ENDIF takes no operands. lF-ENDIF pairs may be nested.

Assume an assembly program is to be assembled in one of two different
ways, depending on which machine, X or Y, it is going to run on. Using
the ASSIGN directive we set the symbols X and Y to show which the
current assembly is for. One is set to 1, the symbol for the machine
being selected, the other to 0, for that not selected. A portion of
the assembly might appear as follows:

* lf assembling for the X machine, invert the value.

ifX
COM R0

endif

could also say lF X<>0

LISTON and LISTOFF

These directives allow the selective inclusion of portions of the assem-
bly in the listing file. They take no operands. If no listing file was
named in the assembler command line, then these have no effect since no
listing is being produced anyway. Rather than being just an on/off
switch listing control is accomplished with a signed counter. The
counter starts at zero, each occurance of a LISTON increments it by one
and each LISTOFF decrements it by one. Text is placed into the list-
ing file whenever the counter is greater than or equal to zero. This
technique provides hierarchical 1evels of control. The counter is not
reinitialized for each new module encountered in the input source file.

PAGE

This directive forces a page break in the listing file following the
newline character of the previous line. A page heading along with the
current title string is produced following a form-feed character. 1f
no line has been printed since the last automatic or requested page

2-27

break then the entire instruction is ignored. With no operand, PAGE
forces a form feed. With an operand, the operand will set the number of
lines per page. This does not include the 5 lines of header informa-
tion. To get 50 1ines per page, the PAGE operand would be 55.

TITLE

This directive allows the programmer to provide a title to be placed
in the upper left corner of each listing page. It takes a single
operand which is a string enclosed in quotation nurks ("). An automatic
page break including a new heading is produced using the new title
string.

TITLE "LINKER RELEASE 7.44 --PASS 0NE"

INCLUDE

This directive causes the insertion of the source from another file into
the current assembly at the point at which the directive occurs. There
is a single operand consisting of the filename enclosed in quotation
marks. The listing file always has the entire line containing the
lNCLUDE instruction before the insertion is done. 1f a page break
occurs for any reason while in the included file the page heading shows
the name of the file currently being processed. INCLUDEs may be
nested, but they may not contain MODULE directives.

include "stdio.h" get standard i/o package definitions

INCLUDE "Oef lnsert" place insertion source for Def here

THE PCOS STANDARD.

This section describes how to write Assembler source programs in order
to obtain maximum compatibility with the operating system (PCOS) rou-
tines®
This will allow user programs to use the same procedures as for any PCOS
utility for invoking and for passing parameters to the Assembler pro-
gram.

The following figure shows the way in which an Assembler utility is con-
nected to various parts of the system.

ASSEMBLER USER CUIDE

THE ASS,EMBLER SOURCE FILE

Fig. 2-1 Connection between Assembler utilities and other parts of the
system

lf Assembler routines are written following a certain standard, it is
possible to invoke them like a simple PCOS command, or f rom a BAstc pro-
gram.
By means of conventions on the passing of param6ters, the same Assembler
utilities can call PCOS commands or access a group of small routines
(system calls), that are also used by the operating system (PCOS).
These provide a certain number of elementary operations ori the system
hardware, thus facilitating programming.
Direct access to the system hardware will consequently be possible, by

2-29

means of the Assembler instructions lN, OUT (see Appendix F for a list
of 1/0 port assignments and consult M20 hardware literature).
It is also possible to access PCOS commands from an Assembler utility,
using the Assembler instruction SC 77 which is described in the second
part of this manual.
Let us now summarise the various ways to call (from PCOS and BASIC
respectively) an Assembler utility (e.g. MYFILE) which is written
according to the PCOS standard, to which the parameters paral, para2 and
para3 are passed.

PCOS

MYFILE PARA1,PARA2,PARA3

BASIC

CALL "MYFILE"(PARA1,PARA2,PARA3)

Where PARA1,PARA2,PARA3 can be either constant or variable parameters.

Or

EXEC "MYFILE PARA1,PARA2,PARA3"

Where PARA1,PARA2,PARA3 can only be constant parameters.

Furthermore, certain conventions within our Assembler source file, will
also make it possible to obtain the identification of our program, while
the program is being loaded (by using the PCOS commands PLOAD or PDE-
BUG) .

The instructions and the Assembler directives to be used in order to
obtain a routire compatible with the PCOS standard, are dealt with in
this order:

1. Configuration code

2. Header

3. How to pass the parameters

4. Exit Routine

5. Example

2-30 ASSEllBLER USER 6UIOE '

THE ASSEMSLER SOURCE FILE

1. Configuration Code

The first "word" of an executable program, will provide information
(while the program itself is being loaded) on how it will be configured
in memory. This word, being the first word of the program, must assume
the value zero and indicates that the word immediately following, is the
entry point.

Schematically:

To obtain a source program complying with configuration code 0, the
first statement must be DD 0.
Other types of configuration codes are allowed by the system software,
but cannot be utilised by the user.

2. Header

When an executable file is being loaded using PLOAD or PDEBUG, the M20
displays some information on the screen, amongst which the program name.
This program name can be inserted at source program level in the
"header" of the program itself .

The header is that part of the program containing both the conf iguration
code previously mentioned and a string identifier which will be the pro-
9ram name. For example, the "header" of a source file can contain any
of the following Assembler instructions:

module
section

Header

start

dd
JR
ddb
dd

Program

echo, segmented
example
0 type o
start
"File Echo " string ident. prog.

0

1n practice, the string identifier is placed in memory between the
second word and the first occurrence of a "null (00)". This string must
be skipped by means of the instruction "JR start" in the source program.
lt is important that the].ump instruction of the string identifier is JR
and not JP, as JR only occupies 1 word, thus allowing the start of the
string from the third word of the executable program.

The situation of the program in memory will be the following:

AScll string identifier

3. How to pass the parameters

When an assembler utility is invoked by PCOS or by BASIC, all the param-
eters passed to it are placed (pushed) in the stack by the system so
that they can be extracted (popped) from the stack in the order and in
the way in which they were placed.

2-32 ASS'EMBIER ÜSER 6UIDE

THE ASSEMBLER SOURCE FILE

The maximum number of parameters that can be passed is 20. The pointers
to the parameters (parameter entry) will be allocated in the stack when
the routine is invoked, in the following way:

2 wO,ds
-nmax = 20

The user program must however extract information about the various
parameters by means of as many "pop" instructions from the stack, as the
corresponding number of parameters.
As seen in the figure, the number of parameters is given by the first
word addressed by the stack pointer when the routine is invoked by PCOS
or BASIC.

1t is possible to have 3 types of parameters:

- Null with hexadecimal code 00

-lnteger " " " 02

-String " " " 03

The code for each type of these parameters is memorized in the 2nd byte

2-33

of the lst word for each "parameter entry"

For the type "null" the "parameter entry" does not contain an actual
pointer, but for compatibility, it will be of the type:

This type of "parameter entry" is created when, for example, the routine
is invoked in the following way:

my paral , ,para3

1t can be seen therfore, that the second parameter has been jumped (para
2). This means in practise, that a pointer to a dummy parameter (param-
eter entry) is created (with FF00 FFFF) in order to maintain compatibil-
ity with the standard.

For the integer type (02) there will be a real pointer to the parameter,
constructed in the following way:

The segment number and the offset constitute the effective address to a
word integer (this is a Z-8001 compatible segmented address)

For example, the "parameter entry" for integer 5 could be:

2-34 #,äj.l*`{

THE ASSEMBLER SOURCE FILE

1n this case, the address for the word containing integer 5 will be:

<<6>> OC00

This can be represented schematically as:

(Note that once the type has been identified the second byte is ignored)

However, if the parameter is a "string" (type 03), the procedure for
pointing to the string is more complex than the previous two.
ln this case, the pointer (entry parameter) points to a set of 3 bytes,
the first of which contains the string length, whereas the other two
contain the address (significant only for the offset part as the seg.
no. is the same as the entry parameter) pointing to the string itself .

e.g.

3 Bytes

For example, the "Parameter Entry" for the string "STRING" must have the
following structure:

2-35

3 Bytes

6byte AScll

4. Exit Routine

The Assembler programmer is advised to write his programs so that he can
easily handle the exit from the program by means of the instruction RET,
in order to return to the environment from which it was called.

lt is convenient to save in 2 words (RETADR) the stack address which
points to the program return address. 1n this way, the stack pointer can
be set to this address before exiting the program (using the "RET"
instruction). 1n order to access the program return address, you will
have to use the "number of parameters" saved in the first stack loca-
tion.

To accomplish this, the following Assembler instructions can be used at
the start of the utility:

2-36 ASSEMBLER USER 6UIDE

JIÄi)L

POP RO,@RR14 no. par in R0
CLR R2

LD R3'R0

SLL R3,#2 no. par x4
ü"RR2,RR14 pointer to reurn address in RR2

LDL RETADR,RR2 store RR2

Program

RETADR

RR14 , RETADR

1

5. Example

Here a complete example is given of a simple Assembler source program in
which the standard (which we have seen up till now) is taken into
account. 1n input, this program takes a string as a parameter and
echoes the string itself in output. Once the program has been assembled
and linked in an executable file "echo.cmd'', it can be called from PCOS
in the following way:

ec string /CR/

Z-%rl

E.:ho sti.iTig iripijt to thi5 \.ijotiTie

X Ari exaiiple of the ij5e of the H:O A55üble.i- F.ai:l`,]ge

-*

#Ä.X.##Ä.*X'**##*X.*X***X.#**#X.XX#.X*X***X.#**X#X.#*##X.*X*XX.X.*#*#*.*.*#.XX`*Ä*******ÄÄX**`X*X#

•#

H00ULE et:ho, 5EGHENTED

5ECTI0N exaBple

T[TLE aR0UT[NE SEf:XENTED ECHo.

* prograi heade``

DD 0 t:oTifiguratiori i:ode--MANI)A".Y HERE

•JR Ei:ho f'C05 et:pei:ts triis iTistrur:tiori fomat

5tr ODB WFile Echo q F\rogr,]i ideTitifier

DDB °%r ' (:ari`iage retu"

DD8 0 eTid of prograi heade``
X

•* cDde

•1

ei:rio fl5S l t:N S

LDA R'R12, str

5C #89

POP RO , aRR14

CIR R2

LD R3, R0

SLL R3 , #2

ADDL RR2 , FiR14

LDL retadr, RR2

poirit to nessage
displ3y 5tring identifiEr

get para.eter couTit

iJ5e R3 as working regiiter

uultiply # paraneters by 4
add to stack to point to r€tum addr
5ave it for later return

Now te5t for » paraöeter5 pa5sed and reject if wroTig

TES T R0

JF NZ , echol

L0 ereonu, #76
•JP error

how »any paraieteT`s?

mt zero paraieter5 so go an
Message = UError in para.eterr

exit Liith error "6sage

So we have on£ or i]ore paT`a.eters pas5ed

Transfer paraneteT`s to ``egisters. thecking data type5. , .

01 Ai5IGN t

POPI RR2, @RR14

CF'B RL2 ,#3

JP EQ ,ech2
LD erconu, #13

JP error

Main prograi .:ode heT`e

ho£ fl5S I GN I

CLRB RL2

CLR R7

CLRB RH6

LDB RL6, aw2

"CR3
LDB RHl ,@RR2

INe R]

LDB RLl , aRR2

get pointer to para.eter in rr2
i5 para.eteT` a 5tring? (t]pe 3)
yes, go 5ervice, el5e
M€5sage = "type iiiiiateh.

print inpljt 5tring to 5creen
clear data type byte

5tring leTigth in RL6
RR2 poiTit5 to the next byte

RR2 points to the Tiext byte

ASSEMBLER USER GUIDE

11 THE AssEMBLEa SouRCE FILE

n R'10,R`=

L[` R'11,RI

LB F:8,#17

LD [.9 ,F:Ö
'j`J #13

':L F' R'5

SC #90

CLR R5

•JR r' '-et,Jrrl

E>\it with ,][`propi-i,]te e``r.er mess.]ge

]- RS5l':N S

LD R5 _. e'.'=o,l,J

5£ #88

No``iial i-.Etur.ri

Ti retijrTi f)S5I€N S

LDL RR14, retadr

RET

0l`,J9e ,Jrea

SECTI0N area

Rfi'li] pairit5 to trie 5ti-iiii] p.]r,]metg.r

[,`-e[`are \.eqi5te\`5 t-or 5C #13

displ,]), st'.lT,9

asiijme Tio ei`ror rEtijrriEd Dy SC #13

]dd a CR/LF.

]s5ijnie no errci`` `-etii.i-Tigd bv SC #90

.imp ,]i..üuritj e`-roi` sewii:e

Aiiist have beeri set iip t-i``€t ! ! !

di!Play er`ror. T!ess,]qe

poirit stacl: poiriter to retijrri addre5s
]Tid retui`n ts t:aller

storage for Fetijm addre5s
5toragi for error type code

3. THE ASSEMBLER (ASM) COMMAND

AB0UT THIS CHAPTER

This chapter details the ASSEMBLER (ASM) command. This command processes
an Assembly language source file and produces an object file.

CONTENTS

ASM

Lr=` / . r

3-1

THE ASSEMBLER (ASM) COMMAND

The ASM command processes an Assembly Language source file of ASC11 text
and produces a file containing the corresponding Z8000 machine code.
This file is known as an object file. Optionally the ASM comand pro-
duces a listing file. When such a file is listed the video displays the
source file program lines on the right and the generated code or symbol
values along with other information about each program line on the left.
If the XREF option is specified for a listing file then it will also
include a cross-reference table at the end. Examples of object and list-
ing files are shown at the end of this chapter.

The ASM command is called from PCOS like any other PCOS command. When
called it is loaded into memory and executed. After execution the system
returns to the PCOS environment. The command syntax is shown in figure
3-1 below.

SYNTAX ELEMENT MEANING

lNPUT The keyword which must precede the source f ile
identifier

: The source file identifier complete with any
necessary volume identifier and/or password.
Usually a source file name is assigned a '.s'
extension.

The keyword which must precede the object file
identifier

The ob].ect file identif ier complete with any
necess.aF.y volume ide]]tifier and/or password.
Here again it is good programming practice to

r assign the extension '.obj' to an object file
: name. 1f the file specified does not exist then

it will be created; if on the other hand the file
i exists then it will be overwritten with the new

', object file.

file identifier
(.s)

OUTPUT

file identifier
(. obj)

LISTING ' The keyword which must precede the listing file

identi f ier .

file identifier
(.1)

The listing file identifier complete with any
necessary volume identifier and/or password. A
listing file name is usually assigned the exten-
sion '.1'. 1f the file specified does not exist
then it will be created; if on the other hand the
file exists then it will be overwritten with the
new listing file.

ASSEMBLER USER 6UIDE

THE ASSEMBLER (ASM) COMMAND

XREF

QUIET

The Cross-Reference keyword. 1f specified then a
L cross-reference table is included at the end of
„ the listing file. This table contains an entry

for each symbol defined in the assembly with the
following information:

(

!; - The statement number at which the symbol is
!, defined.

- tts value and type.

•: - An ordered list of statement number`s which
reference the symbol.

The Ouiet keyword. Specifying this keyword in an
ASM command line will suppress all the messages
normally output on the video except for error

Ji messages which abort the command

An ASM command parameter is identified by the command line interpreter
by its keyword; for this reason parameters can be entered in any order.

The coiimand "AS" by itself causes the command parameters to be displayed
on the screen.

lf the OUTPUT and LISTIN6 options are omitted then the respective object
and listing files will not be created.

Characteristics

The ASM command is executed in a number of stages depending on the
number of modules in the input source f ile. 1n the first stage the
header is assembled; each module is then assembled in subsequent stages.
Each assembly stage is done in two passes.

During execution, unless the QUIET keyword was specified, the video
displays information indicating the end of each pass, and short messages
for warnings, ahd errors discovered. These messages specify the line
number and the code for each error and/or warning. When execution is
complete the video displays a summary line with the total number of
errors and warnings. A listing file printout will turn out to be very
useful for subsequent analysis of errors. ASM error and warning codes
are listed in appendix 8.

Examples

IF you enter

as input 1 :test.s,output
1 :test.obj /CR/

as input 1 :myfile.s,output
1 : myf i le . ob]. ,1 i sting
1 :myfile.l,xref /CR/

THEN ...

the source file "test.s" which is on the
disk inserted in drive 1 is assembled. The
resulting object file is written into a
file called "test.obj" on the disk
inserted in drive 1.1f this file already
exists then it will be overwritten with
the new object file, if on the other hand
it does not exist then it will be created.

the source file "myfile.s" which is on the
disk inserted in drive 1 is assembled, as
in the previous example, however this time
a listing file is also created. The list-
ing file "myfile.l" is created on the disk
inserted in drive 1. The file "myfile.1"
wil l have a cross-reference table
included.

The sample printout on the following pages is that of the listing file
corresponding to the source file shown in chapter 2. This listing file
includes a cross-reference table. This file was obtained using the fol-
1owing command:

as input 1 :echo.s,output 1:echo.ob].,listing 1:echo.1,xref /CR/

ASSEMBLER USER 6UIDE

THE ASSEMBLER (ASM) COMMAND

t

3-5

ASSEMBLER USER GU10E

THE ASSEMBLER (ASM) COMMAND

?

area
eeho
eet»
ectm
eeho2e-

1 1

T T

4[THE LINK COMMAND

______ T

AB0UT THIS CHAPTER

This chapter describes the LINK command and all its keyword parameters.
The chapter ends with an example and sample printouts of a command file
and a map file.

CONTENTS

LINK

PARAMETERS

COMMENTS

4-1 SIMPLE KEYWORDS

4-1 BLOCK KEYWORD

4-3 KEymRD ORDER

MINIMUM COMMAND ELEMENTS 4-3 ERRORS

THE KEYWORDS 4-4

MULTl-FILE KEYWOROS 4-5

FILE KEYWORDS

VALUE KEYWORDS

STRING KEYWORDS

4-8

4-9

4-9

4-10

THE LINK COMMAND

__ L___ _

LINK

LINK is a linkage editor and locater which converts z-type object
modules into a PCOS 3.0 relocatable load file. The LINK command must be
called from the PCOS environment like any other PCOS command. LINK
inputs one or more Olivetti Z-type object files, and outputs a single
executable load file.

The LINK command allows a number of optional features described below.

PARAMETERS

There are six types of parameters which can be passed to LINK. These
parameters are of the Keyword type, and can have parameters of their
own. The keywords are listed below, grouped according to their type.

-Multifile keywords: 1NPUT

- File keywords:

- Value keywords:

COMMAND

MAP

BLOCKTYPE

STACKSIZE
ATTRIBUTE1

-String keywords: ENTRY

- Simple keywords: QUIET
STATISTICS

-Block keyword: BLOCK

4-1

LIBRARY

OUTPUT

BLOCKSIZE

ATTRIBUTE0
ATTRIBUTE2

MESSAGE

VERB0SE
0PTIMIZE

The command syntax is shown in figure 4-1 below.

Fig. 4-1 The LINK command

Where

SYNTAX ELEMENT

file identifier The name of a file complete with any necessary
(volume identifier, and/or file password.' Depending on the keyword in question the file

will be accessed for reading or writing. 1n the
i latter case if the file specified already
i exists it will be overwritten with the new out-
! put.

ASSEMBLER USER

THE LINK COMMAND

term

string

section name

1n the case of Multifile keywords you can
the two PCOS wild card characters (*) and
to specify more than one file; an asterisk

:Ö matches any string and a question mark
matches any single character.

A hexadecimal number preceded by a "%" sign, or
a decimal number. 1n both cases the number can
optionally be followed by a "K" symbol (upper
or lower case) which multiplies the number by
®~ol000 in the case of a hexadecimal niimber or by

1000 in the case of a decimal number.

Any string of ASC11 characters.

The name of a program section that exists in
the input program modules. More than one
program sections can be specified by one
section name with the use of the following Wild
Card characters:

- An asterisk (*) which matches any string of
characters,

-Aquestion mark (?) which matches any
one character,

-[ab...] which matches any one character
inside the square brackets,

- [a-b] which matches any one character in
the interval a-b.

COMMENTS

Comments, enclosed in exclamation marks, can be inserted in a LINK coh
mand between parameters. This facility is useful to coiiment command
files which you may use for LINKing specific types of programs. An exam-
ple of a commented command file is given at the end of this chapter.

MINtMUM comtAND ELEMENTs

The required elements of a LINK comand which outputs a PCOS 3.0 execut-
able file are the following:

- The multifile keyword lNPUT followed by the file identifier(s) of the
input file(s).

- The file keyword OUTPUT followed by the file identifier of the output
file-

Commonly used options are:

- The multifile keyword LIBRARIES followed by the file identifier(s) of
a library file(s).

- The file keyword MAP followed by the file identifier of a map file.

- The ENTRY keyword followed by the the program entry point.

- The file keyword COMMAND followed by the file identifier of a file
containing part of a LINK command line.

- The BLOCK keyword followed by instructions ordering program sections.

These and other keywords are described in more detail in the next sec-
tion.

Note: Care must be taken that no more than 20 parameters are specified
in one LINK command; this is the maximum number of parameters that the
PCOS command line interpreter can handle. 1n cases where more than 20
parameters need to be specified the COMMAND keyword can solve the prob-
1em (the COMMAND keyword is described below in the section on File Key-
words) .

THE KEYWORDS

ln the following section all the LINK keywords are described. Each
description has the keyword as a heading. In the command line keywords
must be entered as they appear in this heading in either capital or
small letters.

THE LINK COMMAND

MULTl-FILE KEYWORDS

1NPUT

The lNPUT keyword nuy occur any number of times. It specifies files con-
taining Z-type object modules which contain code sections to be located.

LIBRARY

This keyword instructs the program to select from the named library
files the modules which have been referenced in the input file(s).

A library file can be created using the MLIB command described in
chapter 6.

FILE KEYWORDS

COMMAN0

The COMMAND keyword can be used in the command line to insert parameters
from another named file (command file). Up to two levels of insertion
are allowed (i.e. you can insert a COMMAND keyword in a command file
called from standard input, but you cannot specify another COMMAND key-
word in the file specified by a COMMAND keyword in a command file).

Such files containing part of a command line can be created using the
Video File Editor. Comments, enclosed in exclamation mrks, can be
inserted in a command file between parameters.

An example of a Command file is shown at the end of this chapter.

OUTPUT

The OUTPUT keyword occurs once and only once. It specifies a file to
receive the executable binary load f ile. The f ile is created if it does
not exist or is completely replaced with the new output if it does
e x i st .

The load file can be assigned any legal name, however there are two
filename extensions which have a special meaning to PCOS; these are
".cmd" and ".sav". These filename extensions allow files to .be called
and executed from the PCOS environment like any other PCOS command (i.e.

4-5

by entering the first two characters of the file name). 1f a file has
niether of these extensions it can be invoked by entering the complete
file identifier. When a file which has no ".sav" extension is called it
will be loaded from disk to the M20's memory, and executed. After execu-
tion the memory space that was occupied by the program is again made
available to the system. This means that if the program is to be exe-
cuted a second time it will have to be reloaded from disk to memory. 1n
the case of a ".sav" extension the file will be permanently loaded and
executed. ln this case the file can be executed again even if the disk
the file was loaded from is removed from its disk drive.

MAP

The MAP keyword my occur once. 1t specifies the file to receive the
formatted map. 1t is created if it does not exist or is completely
replaced with the new map if it does exist. 1f no MAP keyword is given,
no map file is produced.

A map file will contain a copy of the llNK command line being executed,
diagnostic messages, a location ordered map of sections and an alphabet-
ical list of section names and global symbols with their corresponding
locations.

VALUE KEYWORl)S

BLOCKTYPE

The parameter passed to the BLOCKTYPE keyword sets a byte in each pro-
gram text header of the output load file for all subsequently defined
blocks.

1n this version of LINK this byte is forced to zero, therefore this key-
word has no effect at all even though it is recognised as a valid
parameter .

BLOCKSIZE

The BLOCKSIZE keyword mEiy occur any number of times. Its parameter
specifies the maximum size for each block defined subsequently on the
comiiand line. The maximum block size that can be specified is 65528
(i.e. 64K less s bytes) which is the size of a processor segment. In the
absence of a BLOCKSIZE keyword on the command line, the maximum block
size is assumed by default.

ASSEMBLER USER GUIDE

THE LINK COMMAND

STACKSIZE

The STACKSIZE keyword may occur only once. 1f specified its parameter
determines the number of bytes of run-time stack that are to be dedi-
cated to the linked program alone. 1f not specified the linked program
will use the PCOS stack area (200 bytes in total).

ATTRIBUTEO, ATTRIBUTEl and ATTRIBUTE2

The parameter passed to each of ATTRIBUTEO, ATTRIBUTEl and ATTRIBUTE2 is

placed in the first, second and third attribute bytes respectively in
the header part of the output load file.

FOR ROUTINES TO RUN ON RELEASE 3.0 0F PCOS IT IS NECESSARY T0 SET THESE

ATTRIBUTES AS FOLLOWS:

- ATTRIBUTE0 T0 0NE

- ATTRIBUTEI T0 ZERO

- ATTRIBUTE2 TO ZERO

AS THESE ARE ALS0 THE DEFAULT VALUES 0F THE ATTRIBUTE KEYWORDS IT IS NOT

NECESSARY TO SPECIFY THESE KEYWORDS AT ALL.

STRING KEYWORDS

ENTRY

The ENTRY keyword may occur once. 1t provides a global symbol name which
is to be made the entry point of the executable program. The entry point
is determined as follows:

-. If an ENTRY keyword is given, then the entry point specified is used,
regardless of any definition within the input module itself .

- If no ENTRY keyword is given, then the entry point is set as defined
in the input module.

MESSA6E

A MESSA6E keyword supplies the AScll text (which must be one string) to
go in the message record of the load f ile. There may be any number of
MESSAGE keywords in one LINK command. The message record is the last

4-7

record of the load file and does not form part of the executable program
itself . lt can be used for comments, remarks, date and time of opera-
tion, etc.

SIMPLE KEYWORDS

QUIET

The OutET keyword causes output normally sent to the standard output to
be suppressed, except for fatal error messages. 1f no QUIET keyword is
given, the following information will be displayed:

- The LINK header line and version number.

- All error messages.

- A list of unresolved references.

VERB0SE

This keyword causes extra information to be sent to standard output. The
command line being executed is displayed, entry to each new module is
noted, and a warning is issued each time the possibility of an error is
encounte red .

STATISTICS

The STATISTICS keyword, if specified, causes the program to output
statistics on how much of LINK's memory was used.

OPTIMIZE

Specifying the OPTIMIZE keyword in the command line causes the output
file to be optimized by not including uninitialized memory at the begin-
ning or the end of the program text section of the output load file.
This produces a smaller load file and saves time in loading the program
into memory.

THE LINK COMMANO

BlocK KEYWORD

BLOCK

The parameters of a BLOCK keyword are names of program sections that
to be loaded in one contiguous region of memory (i.e. a block).
BLOCK keyword may occur any number of times on a LINl(command line.
program sections can also be specified by patterns with the use of
following Wild Card characters;

- An asterisk (*) which matches any string.

- A question mark (?) which matches any single character.

- [ab...] which matches any single character in the square brackets.

- [a-b] which matches any single character in the interval a-b

A pattern stands for all the section names which match that pattern, and
which have not been used previously in the current or any other block.
The sections are taken in the same order that they occur in the input
object modules.

1f a section does not fit in the first block that it matches, a warning
message is issued by LINK , and the section is left as a candidate for
other blocks that it also matches. Any sections which remain unplaced
are reported via a warning message and ignored thereafter.

C+e[.-;.Li rsn.r_I'`L

ln the absence of a BLOCK keyword, "BLOCK *" is assumed by default as
the last keyword on the command line. This means that LINK will attempt
to place all sections in one block the size of which is defined in the
command line (see BLOCKSIZE). 1f a program does not fit in one block
then two or more BLOCK keywords need to be specified for a successful
LINK operation. You can use BLOCK keywords to group sections in a LINKed
program. For example, in a program where all stack section names end in" s" and all data section names end in " d", the three keywords,

block * s,block * d,block *

will cause LINK to group all stack sections in one block followed by all
the data sections in another block followed by all the other sections in
another block.

KEYWORD 0RDER

The order in which keywords appear has no gross effect on the outcome of
the operation. The effects of ordering are due to the fact that f iles
are opened and flags are set when their respective keywords are

4-9

encountered. For example, keywords which appear before the MAP or the
VERBOSE keyword do not get echoed into the MAP file, or on standard out-
put. The relative order of the BLOCKSIZE and BLOCKTYPE keywords is
important because their parameters are used as default values for subse-
quently defined blocks.

ERRORS

lf any fatal error occurs during the parsing of keywords or the execu-
tion of the locate operation, the program is stopped immediately with an
error message on standard output and, if it was specified, the rmp file.

ExaDples

The following LINK command will create an executable file "echo.cmd"
from the object file created in the example shown in chapter 3,
"echo.obj". The command will also create a rmp file "echo.map".

it map i :echo.map, input 1 :echo.ObJ.Outp" ' :ech°.Cmd;Fi//C2R/, ,pc.4„„// n¢u"/rA/

The same result can also be obtained by specifying the command file
shown below in the following command:

1i comand 1 :comlist /CR/

On the following page is a listing of the file "comlist":

THE llNK COMMAND

z~Q>äFz[i.oh se`i Rel. S Ä

' CoiiiaTid file fsr L"King the EeH0 exaiple 1

mp l:eeho..ap

! Create a Bap file `echo,Hp. on the dis}` iriserted in !
! drive 1. Note that a5 thi5 is the fir5t keypord iTi the !
! file all that follows will appear iTi the Bap file, '

INPUT l :echo,obj

! If .ore than tme file need to be specified these ean !
! follow even ori 5uc.:essive lines as loTig as there are no !
! intewening keyword5, '

OUTPUT 1 :echo,cmd

` Orily oTie output file i:an be 5pecified '

u+P+ f}ßem`JL Qf L>.-~;.j`^J-Ö-r~ .,r,^~T..,. : .-u± e.d.c+st,J ;n,'`

|tt{ 4-, G~JtJLC. C +C `++t /+`.C/,th.u`t/)`o f,r.`u`..„`.u(}

ft&. , ;

On the following page is a listing of the map file created by this com-
mand .

4-11

Olivetti LINK --Relea5e 52.5

Co..and5 (itaT'ting with Hap coiiand) :
Map l'echo,iap

! Create a .ap file -echo.iap. oii the di5k in5erted in !
! drive 1, Note that a5 this is the first keyiiord in the !
! (ile all that foll"5 will appear in the.ap file. 1

INpl'T l:e€rlo,Obj

! [f "re than ome .ile need to be 5pecified these can !
! foll" even on 5ucce5sive lines as long a5 there are no !
! iTitervening keyword5, '

OUTpllT l:edo.c.d

1 OTily tme output file caTi be specified '

Procediires aTid wamiTigs :

Fir5t pa55 -l:e¢ho.obj
5e€oTid pass -l :echo.obj

lnput Hap

file iodiule sectioTi size (hex)

1 : e€ho , Obj

echo
e,ta,,p l e se
are.J 6

Blocp` X.p (all value5 iTi he}!)

bloek ot-fset 5ize erid 5ection

0 0 se ad e:{a.ple

se 6 93 area

i:lob,]1 5vibols arid 5ectiorL NanEs (,]11 valiies iTi he}{)

svDE,ol blGtk offset 5ectioTi

3'.ea 0 se -
e;tal'ple 0 0 -

L"k .=O,,[`lete

ASSEMBLER USER Gul

5. THE PDEBUG UTILITY

AB0UT THIS CHAPTER

This chapter describes how to load the PDEBUG utility, and details all
the PDEBUG commands.

CONTENTS

1NTRODUCT10N 5-1 BREAKP0INT 5-5

LOADING AND INVOKING 5-1 CLEAR BREAKP01NT 5-6

pDEBUG _

PDEBUG 5-2

|C:IF(L/ /8/ 5-3

TERMINATING

CHANGE 1/0

COMPARE MEMORY

A PDEBUG 5-3 DISPLACEMENT REGISTER 5-8

SESS10N

ENTERING PDEBUG COMMANDS 5-4

CALCULATOR FACILITY 5-4

THE COMMANDS 5-5

DISPLAY MEMORY

FILL MEMORY

GO

JUMP

MOVE MEMORY

NEXT

0FFSET REGISTER

PORT (1/0) READ

PORT (1/0) WRITE

PRINT OUTPUT

QUIT

RE6ISTER

TRACE

EXAMPLES

5-13

5-14

5-15

5-16

5-17

5-18

5-19

5-19

5-20

5-21

5-23

THE PDEBUG UTILITY

1NTRODUCT10N

The PDEBUG (Program DEBUG) utility is used for debugging and testing
programs. When the POEBUG utility is invoked the M20 enters the PDEBUG
environment, the prompt is changed to an asterisk and the cursor stops
blinking; the M20 is ready to execute any PDEBU6 command. This utility
is stored on disk in a ".sav" type of file so that once it is loaded in
the M20's memory it remains there until the system is re-booted.

LOADING AND INVOKING Pl)EBU6

There are two ways in which the ''pdebug.sav" file can be loaded in the
M20's memory for the rest of a working session; 1. by executing a PDEBUG
command from PCOS (see below), or 2. by PLOADing the utility (see the
PLOAD command in the "M20 PCOS User Guide").

When PDEBUG is in memory the user can enter the PDEBUG environment in
any of the following ways:

- by executing a POEBUG command from PCOS (see below)

- by pressing /CTRL//B/ when the M20 is in Execution mode (see below)

Moreover as PDEBUG modifies some tables in PCOS when it is loaded into
memory, the following conditions also cause PDEBU6 to be entered: Seg-
ment Violation Traps, Extended Processing Traps, Priveledged lnstruction
trap, lllegal Vectored lnterrupts, and Non-Maskable lnterrupts.

Another way of entering and exiting the PDEBUG environment is possible
with the use of breakpoints. This is described in detail in the PDEBUG
BFiEAKPOINT comand description.

5-1

PDEBUG

Loads and invokes the PDEBUG utility, optionally loading a specified
program from disk to memory.

```         .                  `.

Fig.       5-1       The   PDEBUG   command

Where

SYNTAX   ELEMENT                         +     MEANING

Program
'1     EITHER

the   first     two   letters     of   a   program   name     which
;  ,   has  a   ".sav",   or   a   ".cmd"     extension,
l   'l      oR

the  file     identifier   of  a  program   file     complete
]   with   any  necessary  volume   identifier,   extension,

{  T   and/or   file   password.

ASSEMBLER    USER   GUIDE



TrE   pDEBUG   uTILITy

Exaple

lf   both  the  PDEBUG  utility  and  the  program   file     "myprog.cmd"     exist     on
any  disk   inserted  in  any  of  the  two  drives,   and,

1F   you   enter

pd "y   lc;Rl

THEN    ...

the   program   "myprog.cmd"   is      PLOADed   and   the   M20
enters      the   PDEBUG     environment.           When   the  M20
PLOADs   "myprog.cmd"  the     video   displays   informa-
tion  about   the   location     of   "myprog.cmd"   in  mem-
ory.     This     information  will     enable  the  user   to
access   "myprog.cmd"   directly   in   memory.

lc;IFßLllBI

When   the  M20   is   in   program  execution   mode,   the  /CTRL//B/   key   combination
will   invoke  the   POEBUG   utility   if   it   is   already   resident   in   memory.   When
/CTRL//B/  is   pressed   the  video  displays  a  message  specifying     the     loca-
tion   in   memory  where   program  execution  was   halted,   and  the   PDEBUG  prompt
is   returned.   The   interrupted  program   remains   in  memory,   and   control     can
be   returned   to   it   by   using   the   PDEBUG   G0   or   JUMP   commands.

TERMINATIN6   A   PDEBUG   SESS10N

At   the   end   of   a   PDEBU6  session   the   user   can   exit   the  PDEBUG     environment
and   return   to   PCOS   using  the  auIT  command.

q   /CR/

1f   the   state   of   the   CPU   is   modified   during  a     PDEBUG     session      (e.g.      by
breakpoint     usage)      then     the   QUIT   command  will   force  a   re-boot   of   PCOS.
lf   the   state   is   not  modif ied  then  a   simple   return   to  PCOS   is   done.

5-3



ENTERING   PDEBUG   COMMANDS

PDEBUG   commands   can   be   entered   when   the   PDEBUG   prompt    (*)   appears   on   the
screen.     Commands     can     be   entered   in   either   upper   or   lower   case   and   are
terminated   by   a   carriage   return.   All   numbers   input   to   and   output   by  PDE-
BUG     are   in   hexadecimal   ASCIl   format,   and   may   be   entered   in   either   upper
or   lower   case.

An  address   is   specified   either  with  a   segment   number   and   an     offset,     or
with     just     an  offset.   The   segment   number   is   enclosed   on  the   left  with  a
less   than   symbol    (<)   and   on   the   right  with  a     greater     than     symbol      (>)
(i.e.   <6>   for   segment   6).    1f   only  an  offset   is   specified  then   either  the
last   segment   number   used   since   PDEBUG     was      loaded,      or,      if     none     were
specified  yet,   segment  0   is  assumed  by  default.

An  alternate  method   of   specifying  addresses   is   to     use     one     of     the     26
address     registers     ("a"     to     "z")   preceded  by  the   "@"   sign.   For   example
"@r25e"  specifies  the  address  given  by  the  contents   of   register   "r"  plus
"25E".      Ar     address   register   can   be   set   using  the   OFFSET   (register)   com-

ma nd .

A11   the   PDEBUG   commands   are   described   in   this   chapter.    The   commands     are
listed     in     alphabetical   order.   At  the  end  of  this  chapter  there  are  two
PDEBU6  tutorial   sessions   which   demonstrate   the   use   of   the   more     commonly
used   PDEBUG   commands.

A   list   of   all   the   commands   is   displayed   on   the   screen   if   the   user   enters
a      question     mark      (?)    followed   by   a   carriage   return   whenever   the   PDEBUG
prompt   (*)   is   returned.

CALCULATOR   FACILITY

When   in   the   PDEBUG   environment   the  M20   can   be   used   as   a     calculator      for
quick     calculations     in   hexadecimal.   The   following   binary   operations   can
be   performed:

+A,B        adds8toA

-A,B        subtracts   8   fromA

*A,B        multipliesAby8

/A,B        dividesAbyB

where  A  and  8  are   positive   hexadecimal   numbers   in   the   range   0   to   FFFF.

5-4 ASSEMBLER    USER    GUIDE



THE   PDEBU6   UTILITY

1n  each  of  these  cases  the  returned  result   is  also   in  this     range,     thus
if    the     absolute   value  of  the   result   (say  C)   is  outside  this   range  then
the   value   returned   will   be   hexadecimal   "C   mod   10000".   For   example,

-2,6                           will   return   the   value   FFFC

and           +  ffff,l                   will   return  the  value  0000

THE    COMMANOS

8_0". ~ . *.,: `

Sets  a  breakpoint  or   displays  the  currently  active  breakpoints.

Fig.       5-2      The   BREAKPOINT   command

5-5



SYNTAX    ELEMENT i     MEANING

The  breakpoint  address

The   number     of  times  the  breakpoint     is  meant   to
execute     when  encountered.      1f   this   parameter   is
set  to  0    then  the     specified     breakpoint  execu-
tes  every  time   it   is  encountered,   and   is   not  de-'      leted  until   specifically   cleared   using  the   CLEAR

breakpoint   command.     lf  not   specified   the  break-
)'  i  point     is   deleted     when   it   is  hit     for  the   f irst

time.   Note   that   this   parameter   must   be   expressed
in   hexadecimal.

Note:   The   BREAKP01NT   instruction   is   not   placed   in   memory   until   a     G0     or
JUMP     coiTmand     is   executed.   Thus   provisions   have   to   be   made   to   return   to
PCOS   using  any  one  of  these   commands   if  the   set   breakpoints     are     to     be
executed.

When   the  M20   is   in   execution   mode   and   a   breakpoint   is   encountered,      exe-
cution     is     halted,     the   video   displays  a   break  message  with  the  address
where   the   break   was   encountered,   and   the   PDEBUG  prompt   is   returned.

`CIEAR   BREAKPOINT-      1

Clears  either  an  active  breakpoint   specif ied  by   its     memory     address     or
all   currently  active  breakpoints.

``-.               `.

Fig.       5-3      The   CLEAR    BREAKP01NT   command

ASSEMBLER    USER    GU(DE



THE    Pl)EBU6   UTILITY
/_/

Where

SYNTAX   EIEMENT                                  MEANING

address                                   !:    The   memory  address   of   an   active   breakpoint.1f
this  parameter   is  not     specifified  then    all   the
currently  active  breakpoints  will   be   cleared.

Switches  the  main   input  and  output   f rom     the     console     to     the     RS-232-C
serial   port  and  vice   versa.

-CD-

Fig.       5-4      The   CHANGE   1/0   command

lssuing   the   CHANGE   1/0  command   while   using  an   external      terminal     causes
the     main     1/0  channel   to  be  switched  back  to  the  console.   Note  that  the
the   PCOS   RS232   coiimand   has   to   be   executed     before     entering     the     PDEBUG
environment   in   order   to   use   this   PDEBUG   command.

Compares   two  blocks   of  memory  and   returns  any  differences   encountered.

.0 .1 .0 .1 .0 .1 .
Fig.       5-5       The   COMPARE   MEMORY   command

5_7



Where

SYNTAX    ELEMENT                                   MEANING

address  1                                   The   starting  point   of  the   first   block

address   2                                    The   starting  point   of  the   second   block

number   of   bytes                       The   number   of   bytes   to   be   compared

While  the   differences  are  being   output  the   screen   image   can  be   suspended
by   pressing  /CTRL//S/.   The   command   can   be   aborted   by   pressing  any   key.    1f
no   differences   are   found   this   command   simply   returns   the   PDEBUG   prompt.

Note:   This   command   uses   byte   compare   operations.

' DISPLACEIENT  RECISIER

Sets   up  a   displacement   value   that  will   be  added  to     all     addresses     input
and   subtracted   f rom  all   addresses   output   by  the   PDEBUG  program.

0---1.,,``. t.``

Fig.        5-6      The   DISPLACEMENT   REGISTER   command



THE    PDEBUG   UTILITY

SYNTAX    ELEMENT                          j  ;   MEAN"6

address                                         The   displacement   value     which  will     be   added     to
i   the     addresses     specified   in     subsequent     PDEBUG
'   commands.

The   command

di   /CR/

will   cause   the  current  default  segment  and  offset  to  be  displayed.

This  facility   is  very  useful   if  a   user   is  working   on  a   listing  that     has
a   displaced   origin   in  memory.   Using  this   coiTmand  the  displacement   regis-
ter  can  be  set  to  the   value  of  the  address  where  the   listing    begins     so
that  all  addresses   input  and  output  will  nutch  the  listing.

Displays  blocks  of  memory  or   single  memory   locations.   1n  the   latter   case
the     command     interacts     with  the  user   for  modification   of   single   memory
locations.

Fig.       5-7      The   DISPLAY   MEMORY   command



SYNTAX    ELEMENT

=s:_ -l

MEANING

Word  or  Byte  operations,   specified  as   "W"   or   "8"
(capital   or   small   letters)   respectively.   Depend-
ing  on  whether  the  Word   or  the   Byte  option   is   in
operation   the   information  will   be     displayed  ac-
cordingly.     The  default     value   is   either  the  op-
tion      specified      in     the   last   DISPLAY  MEMORY     or
FILL   MEMORY   command   executed   in   the   same      PDEBUG
session  or,      in   the  absence   of   any,   the  Word   op-
tion.

The  memory  address  where  the   display   is   to   start

number  of  bytes             i  i   :::mnu:::r  :£dr:::ess::c±E:eddt;:]:¥:d  n:::::::2

parameter.

Note:   this   number   must   be   expressed   in   hexadeci-

|  i    mal,   and   must   be   greater   than   1.

Characteristics

When   the   "number   of   bytes"  parameter   is   specified.   the  M20   displays     the
specified     memory     block     in     lines     of   sixteen  bytes   each.   Each   line   is
organized   in   the   following  way:

-     The  memory  address   of  the   first     of     the     sixteen     bytes     is     on     the
extrem     left   followed  by  the  contents   of  the   sixteen  bytes  expressed
in   hexadecimal   code   and   grouped   in  words   (or     in     bytes     if     the     "8"
(byte)     option     is     specified).   1f  the   "number   of  bytes"  paremeter   is
greater   than  or  equal   to   sixteen,   then   the  ASC11   translation     of     the
sixteen  bytes   is   displayed  on  the   right   on  the   same   line.     Codes  that
have   no   ASC11   translation   are   represented   by   dots.

When   blocks   of   memory   are   being   displayed,   any   scroll     movement     can     be
halted     by  entering  any   character   on  the  keyboard,   output   can   be   resumed
by   entering  any  character   on  the   keyboard  a   second   time.      1f     you     enter
the     key     combination     /CTRL/  /C/  then   the   output   will   be   terminated  and
the   PDEBUG   promt   is   returned.

ASSEMBLER   USEF]   6UIDE



THE    PDEBUG    UTILITYäB_.-
Modification  of  Words

lf   the   "number   of   bytes"  parameter     is     not     specified,     then     the     word
starting     at     the     memor}.   address   specified   is   displayed   followed  by  the
cursor.   At   this   point   you  can  do  any   of   the   following  operations:

lF   you   enter

/CR/

ZEI

Jr/CR/

(a   valid   hex
number)    /CR/

@   /CR/

"(string)

lc;Rl

q   /CR/

THEN     ...

the   next   memory   word   is   displayed.

the   preceding   memory   word   is   displayed.

the   content   of  the   displayed  word   is  changed   to  the   hex
number   entered,     and  the  next     memory     location   is   dis-
played .

the  current  and  next     words  are     interpreted  as  an     ad-
dress  and  the  word     specified     by  that     address   is  dis-
played.

the   string  entered   is  written  directly   into  memory     (in
hex  code)   starting  from  the  current  address.

the  POEBU6  prompt   is   returned.

:li'e    eL,€moi|i']e/  jcf.,:.icjL   ,lich~~1vii-o/    i!`i«!pJso/f

IL-ri-`:--i
Fills   a   specified   block   oi.`   memory  with  a   given   word   or   byte   pattern.

5-11

Fig.       5-8      The   FILL   MEMORY   command



Where

SYNTAX    ELEMENT

address  1

address   2

fill   value

MEANING

Word   or   byte   operations,   specif ied   as   "W"   or   "8"
(capital   or   small   1etters)   respectively.   Depend-
ing   on   whether   the  Word   or   the   Byte   option   is   in
operation   the   fill   value  will   be     interpreted  as
a   word  or   a   byte   respectively.   The   default   value
is   either     that     specif ied     in   the   last     DISPLAY
MEMORY   or       FILL   MEMORY      command   executed       in   the
same   PDEBUG   session,   or,      in   the   absence   of   any,
the   Word   option.

The  memory     address  where   the     writing   operation
is  to  start.

The  memory     address  where   the     writing   operation
is   to  end.        Note  that  the   final   1ocation   is  not
written  to,

Fill   Value.      This   is   the  word   (or   byte   if   "8"   is
specified   in  the   "type"  parameter)   pattern,     ex-
pressed   in  hexadecimal   code   to   be  written   in  the
specified   memory  block.

GO`

Resumes  the  execution   of  a   program  at   the   location   specified   by  the  pro-
gram   counter.

0
Fig.       5-9      The   G0   command

ASSEMBLER    USER    GUIDE



TrE   PDEBUG   UTiLiTV

Characteristics

Execution  of  this   command  causes  all   the  breakpoints   (previously    speci-
fied     in     the     same     PDEBUG  session)   to  be   placed   in  memory  prior   to  the
start  of  execution.

Executes  a  memory  resident   program  starting  from  a   specified  address.

Fig.      5-10      The   JUMP   command

Where

SyNTAX    ELEMENT                                  MEANING

address                                   i  :   The  memory  address  where  execution   is   to  start

fcw                                                     Flag   and  Control   Word.

Characteristics

This   command  causes  all   of   the  breakpoints   (previously  specified   in     the
same  PDEBUG   session)   to   be   placed   in  memory   prior   to  the   start   of  execu-
tion.



Copies  a   source   memory  block   into  a   target   memory  block.

.11 .1 .1` .1 .1` .1 .
Fig.        5-11        The   MOVE   MEMORY   command

Where

SYNTAX    ELEMENT                                   MEANING

address   1

address   2

number   of   bytes

The   memory   address   where   the   source   memory   block
begins.

The   memory   address   where   the   target   memory   block
begins-

The   number   of   successive  bytes   starting  f rom  the
beginning  of  the  source   block  to   be   copied.

ASSEMBLER   USER   GUIDE



L

THE    PDEBUG    UTILITY

Executes  one   or  more     program     instructions     starting    at     the     location
specified  by  the  Program  Counter   (PC).

•\`      ,.             `.

Fig.       5-12      The   NEXT   conmand

Where

SYNTAX   ELEMENT                            '     MEANIN6

count                                           The  number  of   instructions  to  be     executed.     The
default  value   is  one  instruction.

Characteristics

When  a   specified  number   of   instructions  are   executed  using  a     NEXT     com-
mand,     the     registers  are  saved,   and  a  message   indicating  the  address  of
the  last  instruction  executed  and  the  current  value  of  the  PC   (i.e.     the
address  of  the  next  instruction)   is  displayed.

A  NEXT  command   is  aborted   if  a  breakpoint   is   encountered   in     the     speci-
fied  sequence  of  instructions.

The   following  situations   cause   the  NEXT  command  to  crash:

-     using  NEXT  through   instructions  that  modify  the   PSAP   (Program     Status
Area   Pointer)   in   the  CPU.

-     using  NEXT  through  instructions  that  disable  the  non-vectored     inter-
rupt.

5-15



-     using  NEXT   through   instructions   that   change   the     programming     of     the
8253   timer   chip.

•  -¥i`:         OFFSET   REGI.StER

Sets  an  offset   register   to  a  given  address.

Fig.       5-13      The   OFFSET   REGISTER   command

SYNTAX    ELEMENT

__lTEA_j:_:_G_

offset  register                    Any  one  of  the  26  offset  registers     ("a"  to  "z")

address                                        The     memory     address   to  be     associated     with  the
offset  register.

When  the  "address"  parameter   is     left     out     the     specified     register     is
printed     with   its   current  address.   The   command  without   parameters   prints
all   the  offset  registers  with  their  current  addresses.

Offset   registers   can   be   used  when   specifying   an  address     in     any     PDEBUG
conmand.      If     register   "x"   is   set   to   "<2>1000"  then   "@x5"  will   represent
the   address   "<2>1005"   in  any  PDEBUG   command.   This   facility   is   very     use-
ful     when     dealing    with  module   listings;   offset   registers   can  be   set   to
the  beginnin.j  address  of  each  section.



THE   Pl)EBUG    UTILITY

-::;=±-=¥J_---.±,-'1.jB-

{ÜO)  ftE»

Reads  a  specified   1/0  port.

Fig.       5-14      The   PORT   (1/0)   READ   command

Where

SYNTAX   ELEMENT                                 MEANIN6

type

port  address

Word  or   Byte  operations     specif ied  as   "W"   or   "8"
(capital     or  small     1etters)     respectively.     The
default  value   is  either  the    option  specif ied  in

{;    the   last   PORT    (1/0)       READ      or      PORT   (1/0)      WRITE
}  :    command   executed   in   the   same   PDEBUG   session,    or,

in  the  absence  of  any,   the  Byte  option.
L+----

;:    A  valid   1/0  port  address.     A  list   of  all   the  M20
L ;    |/0  port   addresses   is  given   in   appendix  F.

5-17



Writes  to  a   specified  port  address

Fig.       5-15      The   PORT   (1/0)    WRITE   command

Where

SYNTAX    ELEMENT

type

port  address

MEANING

Word   or   Byte  operations     specified   as   "W"   or   "8"
(capital   or   small   letters)   respectively.   The  de-
fault  value     is  either     the  option     specif ied   in
the      last      PORT    (1/0)    READ      or      PORT    (1/0)   WRITE
command   executed   in   the   same   PDEBUG   session,    or,
in   the  absence   of  any,   the  Byte   option.

A  valid   1/0  port   address.      A   list   of   all   the  M20
1/0  port   addresses   is  given   in   appendix  F.

11   The   hexadecimal   code      of   the      byte      (or   word,    if
the   "word"  option   is   specified)   to  be  written   to
the  port.



THE   PDEBU6   UTILITY

Toggles  a   flag  which  causes  all   output   from  the     PDEBU6     program     to     be
sent  to  a  parallel  printer  as  well  as  to  be  displayed  on  the  console.

®

Fig.      5-16      The   PRINT   OUTPUT   comand

This  means  that  the  first   "p"  comand  during  a  PDEBU6  session  will   cause
output    to  be  sent  to  the  printer,   and  the  second  will  turn  off  the  out-
put  to  the  printer.

OulT

Causes  a   return   to   the  PCOS  environment.

®
Fig.      5-17      The   QUIT   command'

Note:   Depending   on   the   state   of   the  CPU     the     QUIT     coriviiand     will     cause
either  a   simple   return   to  the  PCOS  environment   or   a   re-boot   of  PCOS.



....,      ^.``.

Displays   or  modifies  the   registers   saved   in  memory.

Fig.       5-18      The   REGISTER   comand

Where

SYNTAX    ELEMENT

register  name

MEANING

The  registers  are  displayed  as  byte   registers.

The  registers  are  displayed  as  word   registers.

All   the   registers  changed  by  the   last  GO  or  JUMP
command  will   be   displayed.

A  valid  register   name.   With  this  option  the  spe-
cified  register  will     be     displayed,     and  subse-
quently  the  user     can  modify  the    contents  of  it
by  entering  a   valid  hexadecimal   number.

ASSEMBLER    USER    6UIDE



THE    PDEBUG   UTILITY

If  the  command   is   entered  without  any  parameters,   then  all   the  registers
are  displayed  as  word   registers.

The  Registers

When  the  PDEBUG  environment   is   invoked   the   registers   are   initialized     to
the   following   values:

REGISTER

ro  to  rl3

INITIALIZED   TO

IH=--l    zero

System  Stack  Pointer   '  ,
and

Normal   Stack   Pointer    ''  '

Flag  and  Control   Wor(
(FCW)

Program  Status  Area
Pointer   (PSAP)

Program  Counter
(PC)

a   stack  space   of  16  words   in   length

system  mode,   segmented  mode  with   interrupts   ena-
bled.

the  PCOS   program  status  area

the  "return  to  PCOS"  address.

TRACE

Traces    through    "count"    number     of     instructions,     starting    f rom    the
instruction    specified    by  the  program  counter,   optiönally  including  any
calls,   call  relatives,   or  system  calls  (otherwise  treated    as    a    single
instruction),   and  optionally  displaying  any  changed   registers  after  each
instruction.



•\\                \\.L              \`          \\\.`        ..:`.         .`\-

Fig.       5-19      The   TRACE   command

Where

___  ____-T__=___        =___  _  ___1  r___-==-+=---

SYNTAX    ELEMENT                          .        MEANING

c                                                       Calls  will   be   included  while   tracing

r                                                 .     Any  changed     registers  will     be   displayed     after
each   instruction.

count                                             The  number   of     instructions     to     be     executed   in
each   command.

The   "+"  and   ''-"   sign   turn  the   "c"   and  "r"  options     on     and     off     respec-
tively.

When   not   specified,   parameters  assume   the   values   specified   in     the     last
TRACE     command,   or,    in   the   absence   of   any,   the   following   command   is   exe-
cuted :

t  -c,+r,1

ASSEMBLEF!   ÜSER   6UIDE`,.'^



THE   POEBUG    UTILITY

EXAMPLES

The   following   two   PDEBUG  tutorial   sessions   demonstrate   the     use     of     the
more   comonly   used   PDEBU6   commands.



ASSEMBIER   USER   6UI0E



THE    PDEBUG   UTILITY



.'ASSEMBLER    USER    GUIDE



THE    PDEBUG   UTILITY

lllffiäffi

=-i  _  T





6.   LIBRARIES



ABOUT   THIS   CmpTER

This   chapter   describes   the   use   of   libraries   and     the     MLIB     command     for
creating   library   files.

CONTENTS

INTRODUCT10N

MLIB

THE    M20    GRAPHICS    LIBRARY                 6-3



LIBRARIES

INTRODUCTI0N

It   is   common   programming  practice   to   use  a   library  of   subroutines   to     be
made     available     to     a     series     of     programs.   Mathematical   programs,   for
instance  might     use     a     library    of     subroutines     for     calculating    tri-
gonometric     functions,   and  text   oriented  programs  might   use  a   library   of
string  comparison   functions.

When   LINK  discovers   an   external   variable  which   is     not     present     in     any
input     file,     then,   if   the   LIBRARY   keyword   was   specified,   it   will   search
through  the   list  of   library   file(s)   (specified  after     the     LIBRARY     key-
word)      for  a   "global"   definition.   Once  the   subroutine   name   is   found,   the
module   containing  the  subroutine   is   incorporated   into     the     output     load
file.     Only     the     modules     referenced  by   input   files   are   included   in  the
output   load  file  along  with  the   rest  of  the   input     modules.        A     library
module     "Y"   referenced  by  another   library  module   "X"   in  the   same   library
file  will   only  be   included   if   "X"   is   located   before   "Y"   in  the   library.

Library   files   can   be   created   using  the  MLIB   command   described   below.

MLIB

Creates   a   library   file   of  ob].ect  modules   from  a  group  of   object   files.

Fig.       6-1       The   MLIB   command

6-1



SYNTAX    ELEMENT

1ibrary  file  identifier

!   '     MEANING

The  name  of  the   f ile  that     is     to     contain
all     the    object     modules   in  the  specified

!   object   files.   This  must  be     complete     with

any     necessary     volume     identif ier     and/or
i'   file   password.     The   file  will     be     created\'   if     it     does     not     exist  or,   if   it  already

(     exists,   it  will   be     overwritten     with    the
new     output.     A     library     file     is   usually
assigned  the   extension   ".1ib".

object  file   identifier                  The   name   of  an  object   file     complete     with
:   any     necessary     volume     identif ier     and/or

file   password.   You   can   use     the     two     PCOS
wild       card     characters      (*)     and     (?)     to
specify  more  than  one     f ile;     an    asterisk
(*)   matches   any  string  and  a   question  mark
(?)   matches  any   single  character.

Characteristics

During  execution  the  MLIB  command   needs   to  create  a   temporary  work     file
on    the     disk     inserted  in  the  last  selected  disk  drive.   This  means  that
MLIB  will   not  execute   if  called     from     your     write     protected     Assembler
diskette.       Rather     than     remove     write     protection     from     the  Assembler
diskette   it   is   recomended   to   PLOAD  the  MLIB  corTmand   or   to   copy   the     file
"mlib.cmd"     from     your     copy     protected  diskette   onto  the   disk  where   you

want  to  create   your   library  files,   or  some  other   disk.

ASSEMBLER    USER    GUIDE



LIBRARIES

Example

IF   you  enter THEN

ml   1  :asm.lib,1  :progl  .obj ,
1:prog2.obj    /CR/

the     file     "asm.lib"     is     created     on    the
diskette     inserted     in     drive  1.   This   file
will   contain  all   the  object     modules     con-
tained   in  the  object   files   ''progl.obj"  and
"prog2.obj"  both  of  which   are   resident     on
the   same   diskette   inserted   in   drive  1.

THE   M20   GRAPHICS   LIBRARY

The  M20   6raphics   Library   is  available     in     the     file     "graph.1ib".      This
library     is     an     integrated  package  of  over   forty  subroutines   offering  a
set   of   functionalities   for   two  dimensional     graphics     applications.     The
6raphics     Library  presents  a  consistent  and  easily  comprehensible  struc-
ture  that   reflects  proposed  international   standards     for    graphics.     The
routines     in     this     library  use  the  PCOS  graphics  system  calls  which  are
also   described   in   this  manual   (see   chapters   7  and   8).

To   use  a   Graphics   Library   routine   in  an  Assembly     language     program     you
must   first   declare   it   as   an  EXTERNAL   routine.    1n  the  program   the   routine
can  then   be   invoked  by  the  CALL   instruction.   When     LINKing     the     program
you   must   specify   the   library  file   "9raph.lib"   using   the   LIBRARY   keyword.

The  graphics   library   is   introduced   in  chapter  9  and  all   the   routines  are
detailed   in  chapter   10.

6-3





PART  11





7.   lNTRODUCTION  TO SYSTEM  CALLS



AB0UT    THIS    CHAPTER

This   chapter   is   a   general   description   of   the  M20   System  Calls.   The   calls
are     divided      in   functional   groups   and   the   characteristics   of   each   group
are   discussed.   This   is   followed   by   the   call   descriptions.

CONTENTS

INTRODUCTI0N 7-1

DESCRIPT10NS                 7-1

REGISTER    ASSIGNMENTS                               7-2

INPUT/OUTPUT    PARAMETERS                    7-2

ERROR    MESSAGES                                                   7-2

FUNCTI0NAL    GROUPS                                        7-2

BYTESTREAM   CALLS                                           7-3

BLOCK    TRANSFER    CALLS                               7-4

STORAGE   ALLOCAT10N   CALLS                 7-4

GRAPHIC    CALLS 7-5

TIME    AND    0ATE    CALLS                                         7-7

USER    CODE    CALLS                                                       7-8

IEEE    488    CALLS                                                     7-8

MISCELLANEOUS    CALLS                                          7-9



lNTRODUCT10N    TO    SYSTEM   CALLS
'   ii   ä!

1NTRODUCTION

These   two   chapters   describe   all   of   the   System   Calls   (SCs)      developed     for
the  M20.      System  Calls   are   PCOS   procedures,   used   to   interface  with   1/0   or
to  manage   memory.   System   Calls   can   be   accessed   by  assembly   language     pro-
grams.

:::| Ca:::e::detf:Om,;3s::i  ::::u:::e:a::;::::tp::g::Tti::  ::ogcä:e:i:o:::
Z8000   System   Call    (SC)   instruction.      The   SC   instruction   includes   a   1-byte
request   code  which   indicates  the   function   to  be  performed.

Example:

sc#3                          system  call,   request   code  =   3

Parameters  are   generally   passed   in   registers   numbered   from   R5   to   R13.      lf
strings     or   other   large  data  structures  are  to  be  passed,   pointers  to  the
structures  are  passed  as  parameters   in  the   registers.`

In  general,   parameters   are   passed  as   16-bit   unsigned   values.      AScll   char-
acters  are  passed  occupying  the   lower   bytes   of  a   register

All   system  calls   use   R5  to   return  any     error     condition.      Zero     indicates
no-error,   non-zero   indicates  the   error   and   condition   code.

SYSTEM   CALL   DESCRIPT10NS

Each   call   has   been   assigned   an   unique   number   and   a   label.      The   label      may
be     used     to     reference  the  call   globally,   if  a   table  assigning  each  call
number   to   the   respective   label   is   created.

Each   call   description   begins   at   a   new   page,   and   on   the   page   are   the     name
or     label,   the   SC   number,   and  a   list   of   the   specific   register   assignments
for   each  parameter   passed.   This   is   followed  by  a   description   of  the   func-
tion   of   the  call,   and  any  error   codes   that  might  be   returned.

The   descriptions   are   arranged   in   ascending   order   by   SC   number.

7-1



RE61STER   ASSICNMENTS

Register   assignments   are   given   in   synopsis   form,   and   input   and   output   are
identified.   For   example   (see   SC   32):

1NPUT/OUTPUT   PARANETERS

lnput:                               R7       =           1ength
RR8    =          start
RFno  =          destination

Output:                           R5             =   error   status

Before   calling   SC   32,   the   block   length,   sourc..     address     and     destination
address     must     be   loaded   in   registers   R7,   RRs   and   RR10   respectively.      The
only  output   for   this   call   is   the  error   status,   which   is   returned   in   R5.

ERROR   MESSA6ES

Following  the   system  call,   if   there  are   no   errors,   a   zero   (0)   is   returned
in   R5.      If  any   error   occurs,   the  appropriate  error   code  will   be   returned.
A   list   of   error   codes   and   messages   is   given   in   the   appendix.

FUNCTIONAL   6ROUPS

In  this  chapter   the  System  Calls  are  treated     in     general     in     functional
groups   as   follows:

-Bytestream  calls

-       Block   transfer   Calls

-Storage  Allocation  calls

-Graphics  calls

-        Time   and   Date   Calls

-       User  code  calls

-         1EEE   488   Calls

-       Miscellaneous  calls

See  the  Appendix  for   lists  all   system  calls     in     functional     9roups,     for

7_2 ASSEIßLER   USER   6UII)E



1NTRODUCTI0N    TÜ    SYSTEM   CAILS
`t
`1/

tables   of   DIDs   (Device   lDs),   as   well   as   lists   of   error   codes.

BYTESTREAM   CALLS

Bytestream   system   calls   are   used   for:

a)     Transferring  bytes   of   data   to   or   f rom  an   1/0  device

b)      Sending   control   information   to   a   device   or   to   a   device   driver

c)      Receiving   status   information   f rom  a   device

The   following  are   a   list   of   bytestream   1/0  calls   used   to     interface     with
the     disk,   printer,   RS-232   communications   port,   and   console   (keyboard   and
video ) .

LookByte    (9)
GetByte    (10)
PutByte    (11)
ReadBytes    (12)
WriteBytes    (13)
ReadLine    (14)
Eof    (16)
ResetByte   (18)
Close    (19)

SetcontrolByte   (20)
GetstatusByte   (21 )
OpenFile   (22)
Dseek    (23)
DGetLen   (24)
DGetposition   (25)
DRemove    (26)
DRename    (27)
DDirectory   (28)

DID  (Device  lDentifier)  N`-bers

A  DID   is  an   integer   used   to   identify   1/0  devices   (or   files)   1ike  the  key-
board,      an     open     disk   file  etc..     The  operating  system  maintains  a   table
associating  DIDs  with  a  File   Pointer.   The   latter   consists   of   pointers     to
data   structures  and  routines  describing  the   1/0  streams.

l)evice  Pointers

Openinga  disk  file   creates  a     stream     data     structure,        and     places       a
pointer     to     it     in  the  device  pointer  table.     Closing  the   disk   file   sets
this  pointer  to  nil,   and     releases     any    table     space       associated       with
the       file.        Some      'devices'   or   files   are   always   open.      For   example,   the
keyboard   and   the   screen   (the   default   window)   are   always   open.      They     can,
however,      be     closed     and     re-opened     by     using   the   PCOS   Device   Rerouting
feature.

BASIC   file   numbers   translate   simply      into     PCOS      DIDs,      but   BASIC     window
numbers       for     the   screen  are   distinct   from  DIDs.     A  table   of  DID  assign-
ments   is   included   in   the  Appendix.



Disk  Bytestreal  1/0  Calls

Disk   input  and   output   are     all     done     by     bytestream       system     calls.        A
stream       structure     for     an     open     f ile  maintains  a   32-bit  pointer   to  the
current  position   in  the  file,   at     which     the     next  byte     will     be   read  or
written.        Files     will     be  extended  automatically  as  they  are  written,   in
increments   specified  by  the     system  globals.

The      functions     Close,      OpenFile,      Dseek,DGetLen,    DGetposition,      DRemove,
DRename     and     DDirectory     are     all      used     for   disk   files.      Of   these,   only
Dseek,   DGetpos,    DDirectory,   DRemove     and     DRename        are      disk        specific.
The     other     calls   can  be  also   used   for   other   devices   (printer,   console   or
comunication   ports).      The   RS-232   device   driver   is   described   in   the     "M20
1/0     with     External   Peripherals   User   Guide",   and   device   rerouting   in   gen-
eral   are   described   in   the   "M20   PCOS   User   Guide"

BLOCK   TRANSFER   CAILS

The   block   transfer   system   calls   allow  the   programmer   to     set     memory       to
a        fixed     value,   to  transfer   data   from  one   segment   to  another,   and   clear
memory.      ln   particular,   the  block   transfer   calls     are   used     by     the     PCOS
system   to   transfer   the   BASIC   interpreter's   fixed   tables   from   ROM  to   RAM.

BASIC   will   be  able   to   use   the  block  transfer     system     calls     to     transfer
other      tables      from     ROM     to   RAM,    for   initialization   of   BASIC.

List  of  Calls

The   following  are   the   Block   Transfer   calls:

Bset   (29)
BWset    (30)

Bclear    (31)
BMove    (32)

STORA6E   ALLOCATION   CALLS

lt   is  possible   for   a   user   program  to     call     PCOS     and     then     allocate     or
release   heap   space.

Functions  which  open  a   disk   file,   split     a     window,      or   close     a   file     or
a     window,   will   use  these  system  calls   internally   to   either   allocate   heap
space  or   release  space.

The   following  are   the   Storage  A11ocation   calls:

Newsamesegment    (33)
Dispose   (34)
Maxsize    (99)
NewAbsolute    (104)

New    (120)

BrandNewAbsolute    (121  )
NewLargestBlock    (122)
StickyNew   (123)

^v`,,AssEMBLER   usER   6uioE    wä



1NTRODUCTION   T0    SYSTEM-  CALLS

6RAPHIC   CALLS

The  screen  area   for   the  M20  display  has   256   scanlines   by  512     pixels     for
either       black-and-white     or   (optional)   colour   display.     There   is  a   rela-
tionship  between  the  pixels   on  the  screen  and  the  bits   of  an  area   in     RAM
called     Bit-Map.   This  area   is  grouped   in  words,   and   each  word   in  the  Bit-
Map   can  be   identified  by  the  first  word  of  the  graphics     accumulator     (C-
value)   described  below.      The   following  types   of  system   calls  are   provided
to     set     global   variables     or     change     attributes.

Clear  Window

System  call   Cls   (35)   clears   the   screen   (or     current       window)     and     posi-
tions  the  cursor(s).

Cursor(s)

The  PCOS   system  provides  two  cursors,   text  or   graphics,      for   the     screen.
These     may     be     placed  anywhere   and  XORed   with   the   normal   contents   of   the
screen.      The   cursor   maybe   blinking     or     nonblinking.        There        is       only
one       cursor     displayed   for  the  whole   screen.      System  calls   36  through  44
provide     the    capability    to  select     the  text  or  graphics  cursor,     select
blinkrate,   and  update   its  position:

Chgcuro   (36)           Chgcurl    (37)           Chgcur2   (38)
Chgcur3    (39)            Chgcur4   (40)            Chgcur5   (41)
Readcuro   (42)        Readcurl    (43)        Selectcurl    (44)

Colour

The  M20   is   available   with   either   a   black  and   white,   or     a     colour     video.
Colour     videos   can  be   of  two  types;   one  type   can  display  4  colours   simul-
taneously  out   of   a   choice   of  8   (the   four  colours   can     be     selected     using
System     Call     46     "Paletteset")     and  the  other  type  can  display  s  colours
simultaneously.

A  colour   code   is  a   value   from  0  to  7  and   is   therefore   expressed   on     three
bits,      say     bit     0,      bit     1      and  bit   2.   For  a   black  and  white   system   if  a
colour   code   in   the   range   2-7   is   specified  then  PCOS  maps   the  code   to     the
value     obtained  when   bits   0,   1   and   2   are  ORed   together.   For   a   four   colour
system,   colour   codes   in  the   range  4-7  are   mapped   into   the   value     obtained
when  bit   2   is   ORed   with   bit   0.

Windows

The  screen  may  be   divided   into  windows     by     splitting       along     horizontal
or     vertical      lines.        There     may     be  a   maximum'  of   sixteen  windows   on  the
screen,   which   are   assigned   window  numbers   1   to     16   in     order        of       crea-
tion.      System  calls   45,   47  through  51,   and  113  are   provided  to   initialize

7-5



the   screen,   create  and/or   close   windows:

6rflnit   (45)
Definewindow   (47)
Selectwindow   (48)
Readwindow    (49)

Chgwindow    (50)
Closewindow    (51)
CloseAllwindows    (113)

Graphics  Acc`-ulator

The   graphics   routines   make   use   of   a   global   variable   referred   to     as       the
'graphics     accumulator'      to     define  the   current   absolute   screen   location.
This   graphics   accumulator   is   said   to   be   of   type   'C'.      A        C-variable        is
a        32-bit        variable     containing  a   memory   address   and   a   bit   mask   for   the
specified   group   of   pixels   at     that     address.        The     ''memory     address"      (2
bytes)      selects     a     word     in     the   Bit-Map   area,   and   is   in   the   range  %0   to
%3FFE   (8192   words).    The   "bit   mask"   is   a   word   each   bit   of   which   relates     a
pixel   on  the   screen  to  a  bit   in   that   area   of  the  Bit-Map   specif ied   in  the"memory  address"   (bit=1    for   ON   and   bit=O   for   OFF).      For   example,      if     the

graphics     accumulator   is   assigned   the   value   °620208000   then   the   f irst   word
identifies  the  sixteen  pixels  at  the  centre  of   the  screen  and  the     second
word     selects  the   first   of  these   sixteen  pixels.     Conversion   routines   are
provided   for   converting   local   x-y  coordinates   for   windows  to  or   from     the
C-type     variable     in  the     graphics  accumulator.     Most     plotting     routines
manipulate        the     graphics     accumulator     in     an     abstract     and       machine-
independent     way.        1n     general,   the     plotting   of  a   point   is   at  the  posi-
tion   defined   by  the  contents   of   the  graphics  accumulator.

Likewise,   the      'current     attribute'      is     a     global     variable   representing
the     current     foreground     colour.     Any     plotting  or   painting   routine  will
set   this   to     the     colour   specified     in     the   higher-1evel   BASIC   (or   other)
routine     by     using   SetAtr   (set  attribute),   SC   61,   or   is   assumed   to  be  the
current     window's     current   foreground   colour   by   default.

ASSEMBLER   USER   6UI0E



1NTR00UCTloN   T0    SYSTEM   CALLS

A   set   of   system   calls   (52   through   67,115   and   116)   are   provided   for     scal-
ing     or   converting   coordinates,   for   manipulating  the  accumulator,   and   for
drawing   1ines:

ScalexY   (52)
MapxYC    (53)
MapcxY    (54)
Fetchc    (55)
Storec   (56)
UpC    (57)

Downc    (58)
Leftc   (59)
Rightc    (60)
SetAtr    (61)
Setc   (62)
Readc    (63)

Nsetcx   (64)
NsetcY   (65)
NRead    (66)
Nwrite    (67)
ClearText   (115)
ScrollText   (116)

Paint  6raphics  Calls

M20   BASIC   supports   a   PAINT   operation   which   fills   an   area        of     a        window
bounded       by  a   specified  boundary   colour   (and   the   window  boundaries)   with
another   specified  brush     colour.      The     following  system  calls   are   used  to
implement   the   PAINT   operation:

Pntlnit   (68)
TDownc    (69)
TUpC    (70)

ScanL    (71)
ScanR    (72)

These  calls   set  the  global   colour  attributes,   move  the     position    of     the
graphics     accumulator     up     or   down,    (checking   f irst   if  the  move   is  within
the  boundaries  of  the  current  window,   if   not  an   error   is     returned);     and
scan  left  or   right  to  paint  the  window.

TIME   AND   l)ATE   CALLS

The  M20   system   has   a   real-time   clock     which     maintains       both     date       and
time.      This  clock  must   be   reset   each   time  the  system   is   turned   on.

Time  or   date   setting  are   done   by  passing  the  address     of     an  ASCIl   string
to     the     operating     system.        Likewise,     the     time   or   date  may  be   read  by
transferring  an  ASC11   string     from     the     operating   system.     The          format
of     these     strings     are     defined     by     the  calls   listed  below.     These  will
correspond  to   the  string  values     passed     in     BASIC     by     manipulating     the
TIMES   and   DATES   pseudo-strings.

The   following  system  calls   perform  clock     reading     and     setting:

SetTime    (73)
SetDate   (74)

GetTime    (75)
GetDate   (76)



USER   CODE   CALLS

0ne   system  call   has   been   provided  to  allow  the   user   to     execute   any     pro-
gram     or   routine   on   diskette   that   could   be   executed   f rom  the   PCOS   command
line.      The   call   is:

Calluser      (77)

The   call   can   be   used   in  Assembler   utilities   to     process     PCOS     user     com-
mandso

IEEE   488  CALLS

The   lEE=   488   package   consists   of   a   group   of     programs     which   execute     the
following   BASIC   IEEE   statements:

1SET,     IRESET,     ON    SR0    GOSUB,     POLL,     PRINT@,

WBYTE,     RBYTE,     1NPUT@,     and    LINE    INPUT@.

these   statements   allow  the   user   to   perform  the     following     operations     on
an   lEEE-488   bus:

a)      Controlling     the     lFC      (interface     clear)      and     REN      (remote     enable)
1ines;

b)      Receiving   a   service   request   from  another   device   on   the     bus,      identi-
fying     the     requesting     device  through   serial   polling,   and   processing
the  service   request;

c)      Writing     control     bytes      (e.g.:      "Device     Clear",      "Device     Trigger",
etc.)   to  other   devices;

d)      Addressing,   writing   data   to,   and   reading     data      from,      other   devices;
and

e)      Allowing   the   devices   within   an   lEEE-488   network   to     transfer   data     on
the       bus        (i.e.:      assigning     "Talker"     status     to     one     device,   and"Listener"  status   to   one   or   more   devices).

The   following  system   calls   are   assigned   to   the   lEEE   package.      On     exiting
from  any  of   these   procedures,   register   R5   will   contain   hex  OA   if   the   sys-
tem   does   not   have   an   lEEE   option   board.

1BsrQO    (78)
1BsrQ1     (79)
1BPoll    (80)
IBIset   (81)
1BRset    (82)

1Bprnt    (83)
lBWByt    (84)
lBlnpt   (85)
1BLinpt    (86)
1BRByt    (87)

For   further   details   on  the   IEEE-488     interface     see     the     "M20     1/0     with

7-8 ASSEMBLER   USER   6UIDE



lNTRODUCTI0N   TO   SYSTEM   CAILS

External   Peripherals   User   Guide".

MISCELLANEOUS   CALLS

The  following  miscellaneous   calls  complete   the   list   of     System  calls:

Error   (88)
Dstring   (89)
CrLf   (90)
DHexByte    (91  )
DHex    (92)
DHexLong    (93)
DNumw    (94)
DLong    (95)
DisectName   (96)
Checkvolume    (97)
Search   (98)

Setvol   (102)
NewAbsolute   (104)
StringLen   (105)
DiskFree    (106)
Bootsystem   (107)
Setsysseg   (108)
SearchDevTab   (109)
CtlcharDisp   (111)
KbsetLock    (114)
6etvol    (119)

7_9





8.  THE  IV120  SYSTEM  CALLS



ABOUT    THIS    CHAPTER

ln   this   chapter   the   system   calls  are   described   in   detail.      The     descrip-
tions      follow     each     other      in     numeric   order.   A   list   of   system   calls   in
functional   groups   is   given   in   Appendix   C.

CONTENTS

9   LookByte

10   GetByte

11    PutByte

12   ReadBytes

13   WriteBytes

14   ReadLine

r    (,,' t  ! -r` :   ,  -1,, -

16   Eof
•`-       :!  ,-..,-,..        '    .i     "       `.( ,..-. ^:

18   ResetByte

19   Close

8-1                21   GetstatusByte

8-2                22   0penFile

8-3                 23   Dseek

8-4                 24   DGetLen

8-6                25   DGetposition

8-8                 26   DRemove

8-9                  27   DRename

8-11               28   DDirectory

8-12              29   Bset

20   SetcontrolByte                               8-13             30   BWset

8-14

8-15

8-17

8-18

8-19

8-20

8-21

8-22

8-23

8-24



31    Bclear

32    BMove

33   Newsamesegment

34   Dispose

35   Cls

36   Chgcuro

37   Chgcurl

38   Chgcur2

39   Chgcur3

40   Chgcur4

41    Chgcur5

42   Readcuro

43   Readcurl

44   Selectcur

45  6rf lnit

46  Paletteset

47   Def inewindow

48   Selectwindow

49   Readwindow

8-25              50   Chgwindow

8-26              51    Closewindow

8-27             52   ScalexY

8-28               53   MapxYC

8-29              54   MapcxY

8-30            55   Fetchc

8-31             56   Storec

8-32              57   UpC

8-33              58   Downc

8-34            59  Leftc

8-35             60   Rightc

8-36             61   SetAtr

8-37             62   Setc

8-38             63   Readc

8-39             64   Nsetcx

8-40             65   NsetcY

8-41              66   Nread

8-43             67   Nwrite

8-44            68  Pntlnit



69    TDownc

70    TUpC

71    ScanL

72   ScanR

73   SetTime

74   SetDate

75   GetTime

76   6etDate

77   Calluser

78    IBsrQO

79   IBsrQ1

80   1BPoll

81    1BTset

82   IBRset

83   IBprnt

84    1BWByt

85   1Blnpt

86   1BLinpt

87   IBRByt

8-67             88   Error

8-68             89   Dstring

8-69              90   CrLf

8-70               91    DHexByte

8-71,         92DHex

8-72               93   DHexLong

8-73                94   DNumw

8-74              95   DLong

8-75              96   DisectName

8-78              97   Checkvolume

8-79             98   Search

8-80              99   Maxsize

J   ,.C:4 Fi,f `fi«'€`*,-!
8-81            102   Setvol

--:,  =r?:+ :te-r,l p

8-82            104   NewAbsolute

8-83           105   StringLen

8-84           106   DiskFree

8-85           107   Bootsystem

8-87          108   Setsysseg

8-89           109   SearchDevTab

8-90

8-91

8-92

8-93

8-94

8-95

8-96

8-97

8-98

8-99

8-100

8-101

8-102

8-103

8-104

8-105

8-106

8-107

8-108



113   CloseA11Windows

114   KbsetLock

115   ClearText

11.¢,S>C;r90t:,iT:,,i.:U,' ', . f , ;{`;i : f,/ ,

120   New
` ` ,

121    BrandNewAbsolute

122   NewLargestBlock

123    StickyNew

8-109

8-110

8-111

8-112

8-114

J?_  "  _+

8-115' ?

8-116'  :_

8-11 } 3



.sc#`      -',,-"     :,,:

u



Returns   the  next  byte   f rom  the     designated   device   buf fer   without     remov-
ing  the  byte   f rom  the  buffer.

lnput/Output  Parameters

lnput:                                               R8    =              DID

Output:                                         RL7           =   returned   byte
RH7           =    buffer   status   (00   or   FF)
R5            =   error   status

Characteristics

This   function   returns   the   first   byte   of     a     device     input     buffer   (unde-
fined      if     none),      without      removing      it     from   the   buffer.   The   DID   is   an
integer,   identifying   the     device.          Valid       DIDs       are        listed     below.
Also       returned     is   the   status   of  the   device   buffer,   FF   if   the   buffer   is
not   empty,   00   otherwise.

Note:   Ring  buf fers   are   maintained   for   the   interrupt   driven     input       dev-
ices.          Characters       are       placed     into  the  buffers   itnmediately  as   they
are   received  and  are  available   to     programs   via     the     two     system     calls
LookByte   and   GetByte.

Errors

lf  there  are  any  errors,   the  status   code   is   returned   in     R5.        1f     there
are  no  errors,   a   zero   (0)   will   be   returned.

Valid   DID   Numbers

17
19 , 25 , 26

console
Com    (RS-232-C),    Coml,    Com2



Returns  the   f irst  byte   f rom  a     designated  device,   removing  the   byte   f rom
the  device  buffer.

1nput/Output  Parameters

lnput:

Output :

R8    =                 DID

R7             =    returned   byte
R5            =   error   status

Characteristics

This   call   returns   the   first   byte   in  the   input     buffer        (from       file     or
designated        device)   and   places   that   byte   in   register   R7.      The   DID   is   an
integerwhich     identifies     the       source        of       the       input.        Valid     DID
numbers   are   listed   below.

In   the   case   where     the     DID   is   either   17   or     19,      if     the     input     device
buffer     is  empty   ,   the   system  will   wait   until   a   byte   is   input   and  avail-
able   in   the  buffer   before   returning  to  the     caller     with  the   byte   in   R7.

Errors

lf   there   are   any   errors,   the  status   code   is   returned   in     R5.        lf     there
are   no   errors,   a   zero   (0)   will   be   returned.

Valid   DID   Numbers

1-15
17
20   -   24
19 , 25 , 26

disk   files    (BASIC)
console
disk   files    (PCOS)
Com    (RS-232-C).    Coml.    Com2

C>`



WordcwJJ_ref;5
E=

ffl    rif*  ß¥
lt®...-t^

414,.-.

ü'/c3'             ,1,

€  ShdL &J-

-,4      .;,,_



±-----



TtlE   M20    SYSTEM   CALIS

Transmits  a  byte  to  a  specified  device.

1nput/Output  Parameters

lnput:

Output:

R8     =                DID
RL7 =            input  byte

R5 +  error  status

iiE

®

Characteristics

This  transmits  the  byte  supplied   in  RL7  to  the  device  or   file     specified
by     the     DID.   Valid   DIDs   are   identified   below.   For   files,   no   information
is   returned  about   the  validity  or  EOF  state  of  the  DID.

1f  the  device   is  the   RS-232-C   port,   and  the   port   is   not   ready     to     send,
the     driver     will     wait   for  a  timeout  period  and  then  return  an  error   if
nothing   is  sent.

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in       R5.     If     there
are  no  errors,   a   zero   (0)   will   be   returned.

Valid   DID   Numbers

1-15
17

18
20   -   24
19 , 25 , 26

disk   files   (BASIC)
console
printer
disk   f iles   (PCOS)
Com    (RS-232-C).    Coml.    Com2



Reads   and   counts   bytes,   f rom  a   device,    into  a   buffer   in   memory.

1nput/Output  Parameters

lnput :

Output :

R8        =             DID
R9       =          count   to   be   read
RRIO=__pointer   to  memory  buffer

R7             =    count   returned
R5            =    error   status

Characteristics

FILES

This   function   reads   a   specified     number     of     bytes     from     a     file        into
memory,   and   returns  a   count   of   the   number   of   bytes   actually   read.

count   returned   is   used   to  determine   EOF   status   for     the     file.        The
is     determined  when  the   "count   returned"   in   R7   is   less   than

to  be   read"   input   in   R9,    (because   there   are   no  more   bytes     to

The   input   to   RR10   is   a   segmented   pointer   to   the     first     byte     of     memory
where     these     bytes     will     be   stored.   The   output   "count   returned"   is  the
actual   number   of     bytes     read.

RS-232-C

This   call   transfers  a   specified   number   of  bytes   from  the   input   buffer   to
the   user  specified  buffer.

1f   the  number   of   characters   in   the   input   buffer   is   less   than   the     number
requested,   the  driver  will   wait   for  the  needed  characters   to  arrive.

fffiäi_iz_T      '    )y,(...::
ASSEMBLER   USER   CUID€

g

-®

L=

e



TllE   IJ120    SYSTEM   CALLS

Errors

lf   there  are  any  errors,   the  status  code   is   returned   in       R5.     If     there
are   no  errors,   a   zero   (0)   will   be   returned.

Valid   DII)   Numbers

1   -15                      disk   files   (BASIC)
17                              console
20   -24                   disk   files   (PCOS)
19,25,26                  Com    (RS-232-C),    Coml,    Com2



Writes  a   specified   number   of  bytes   from  memory   to  a   file   or   device.

1nput/Output  Parameters

lnput :

Output :

R8       =             DID
R9      =           count
RR10  =          start

R7              =  count   returned
R5              =  error   status

Characteristics

FILES

This   function   writes   a   specified   number   of     bytes     from     memory     into     a
file.        1t       returns       a       count       of       the     number     of     bytes     actually
transferred.      Valid   DIDs   are   listed   below.

The   input   "count"   is  the   number   of  bytes   to  be     transferred.     The     input
"start"     is     a     segmented   pointer   to   the   first   byte   in   memory   from  which
these  bytes  will   be  written.

The   output   "count   returned"   is   the  actual   number   of   bytes   transferred.

RS-232-C

This   call   transfers   data   bytes   from  the   specif ied  memory  buffer     to     the
RS-232-C   port.

The  meanings   of   the   inputs   and   outputs   is   the   same.   1f   the   port     is     not
ready  to   send,   the   driver   will   wait  a   timeout  period,   and  then   return   an
error   if   nothing   is   sent.

Errors

lf   there   are   any  errors,   the  status   code   is   returned   in       R5.      1f     there
are   no   errors,   a   zero   (0)   will   be   returned.

LJ

®

®

Cj



THE   M20    SYSTEM   CALLS

Valid  DID  Numbers

1-15

17

20  -  24
19,25,26

disk   files   (BASIC)
console
disk   files   (PCOS)
Com   (RS-232-C),    Coml,    Com2



F}eads   and   counts   bytes   input   from   the   keyboard,   until
into   a   memory  buffer    (at   a   specified   address).

1nput/Output  Parameters

lnp ut :

Output :

R8         =             DID
R9       =          count
RRIO=         destination

R6              =   count   returned
R5             =   error   status

the     f irst     /CR/,
c^ L^   Pr c` =        ,.,,- '

LD       R97# ...-  T,

p     F8,flr,
L[:iA     RRIC,,r`.',   .-i6:d

ii€st  R6

Characteristics

This   function   reads  a   specified   number   of   bytes   from  the   standard     input
device   into  memory.    1nput   will   be   terminated   when   the   next   input   byte   is
equal   to   /CR/   or   if   the  maximum  "count"   is   exceeded.      The     /CR/     is     not
put   into  the  string.

The   input   DID   (17)   identifies   the   standard   input.    1t   is   the     only     valid
DID     for     this      call.      The   input   "count"   specifies   the   maximum   number   of
bytes   to   be   read,   and   the   input   "destination"   is   a   pointer   to   address   of
the   first  byte   of   memory  where  these   bytes  will   be   stored.

The  output   "count   returned"   is   the  actual   size,   in   bytes,   of     the     input
string.      1f   a   /CTRL//C/   is   pressed,   R6   will   return  a    'FFFF'.      Characters
are     echoed     to     the     standard     output     device      (DID     17)      and        editing
features,(/CTRL//H/     i.e.:backspace     and     /CTRL//I/,    i.e.:   TAB)   and   hide
mode   /CTRL//G/  are   implemented.

Errors

lf   there   are   any   errors,   the   status   code   is   returned   in     R5.        1f     there
are  no  errors,   a   zero   (0)   will   be   returned.

Valid   DID   Numbers

17 Console   (keyboard)   only

ASSEMBIER   ÜSER   6ÜIDE



THE   M20    SYSTEM   CALLS

Checks   if  an   input   character   is  available   from  a   device.

1nput/Output  Parameters

lnput:

Output :

R8      =               DID

R9            =    returned   status
R5            =    error   status

16` Eaf

Characteristics

The   function   "EOF"   (end   of   file)   will   return   a     zero      (0)      if     an     input
character   is  available   from  the   selected  device.

lt   returns  a  one   (1)   in   each  of   the   following  cases:

1.   The   selected   file   is   not  open.

2.   The   file   is   open   for   output   only.

3.   The   console   has   been  selected  but   rio   key  has   been   struck.

4.   The   end   of   the   disk   fiLe   has   been   reached.

The   input   "D10"   identifies  the   device;   valid  OlDs  are   listed  below.

RS-232-C

For   use  with  the  RS-232-C,   this  call   returns  a   zero     (0)     if °  the     input
buffer   is   not   empty,   and  a   one   (1)   if  the  buffer   is   empty.

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in  R5.   1f  there  are
no  errors,   a   zero   (0)   will   be   returned.

8-9



Valid   DID   Numbers

1-15
17
19 , 25 , 26

disk   files    (BASIC)
console
Com    (RS-232-C),    Coml,    Com2

-_==-.-=::.-== ASSEMBLER    USER   6UIDE



THE   M20    SYSTEM   CALLS

Resets  an   input  file  or  device.

1nput/Output  Parameters

lnput:

Output :

R8    =              DID

R5            =   error  status

Characteristics

This  function   is   used  to   reset  an   input  device.   ln  the  case  of  the    con-
sole,     it  will   clear  the  keyboard  ring  buffer,   and   initialize  the  screen
driver.    lt   can   also   be   used   with     communications      (RS-232-C),      in     which
case     it     re-initializes     the     hardware  and  clears  the   input  buffer.   The
input   "DID"   identifies   the  device.

Errors

lf  there  are  any  errors,   the  status   code   is   returned   in     R5.        1f    there
are  no  errors,   a   zero   (0)   will   be   returned.

Valid   DID   Numbers

17
19 , 25 , 26

console
Com    (RS-232-C),    Coml,    Com2

8-11



Closes   a   specif ied   disk   file   or   device.

1nput/Output   Parameters

lnput:                             R8     =              DID   number

Output:                       R5              =   error   status

Characteristics

This   call   closes   the   specified   file   or   device     and     then     releases     both
buffer     and     table   space.   The   input   "DID"   is   an   integer   representing  the
file   or   device.

Note:   This   call   is   not   used   to   close   screen   windows   (see   Closewindow,   SC
5,).

RS-232-C

When   used   with  the  RS-232-C,   the   call   disables   the   hardware     interrupts,
and  the   input  buffer   is   removed   f rom  the   heap.

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in     R5.       lf     there
are   no  errors.   a   zero   (0)   will   be   returned.

Valid   DID   Numbers

1-15
20  -,  24
19,    25,    26

disk   files    (BASIC)
disk   files    (PCOS)
Com    (RS-232-C),    Coml,    Com2

ASSEMBLER    USER    GUIDE



THE   M20   SYSTEM   CALLS

Writes  a  word   into  the  Device   Parameter  Table.

lnput/Output  Parameters

lnput:                       R8      =            Dlo
R9       =              word   number
R10    =              word

Output:                   R5              =   error   status

Characteristics

This  call   allows  a   single  word   to  be  written   into   the     Device     Parameter
Table   (see   appendix   H).   The   input   to   R9   is   the  word   number   to   be   written
to;   the   input  to  R10   is   the  word   to  be  written  to   the     Device     Parameter
Table.

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in  R5.   If  there  are
no  errors,   a   zero   (0)   will   be   returned.

Valid   DIO   Numbers

19.    25,    26               Com    (RS-232-C),    Coml,    Com2,

8-13



Reads  a   single   word   f rom   the   Device   Parameters  Table.

Input/Output  Parameters

lnput:                          R8      =              DID
R9     =             word   number

Output:                      R10            =   word   read
R5             =   error   status

Characteristics

This   call   allows   a   single   word   to   be     read     from     the     Device     Parameter
Table      (see     appendix   H).   The   input   to   R9   is   the  word   number   to   be   read.
The   outputs   are   the  words   read   from  the   Device   Parameter   Table   (in   R10),
and  the   error   status   (in   R5).

Errors

lf   there  are   any  errors,   a  non-zero  number   will   be   returned   in     R5.        lf
there  are   no  errors,   a   zero   (0)   will   be   returned.

Valid   DID  Numbers

19,    25,    26                           Com(RS-232-C),    Coml,    Com2

ASSEMBLER    USER    6UIDE



THE   M20    SYSTEM   CALLSJ'``          '   _        _-a

Opens  a  specified  file  or  device   for   read,   write,   etc.

1nput/Output  Parameters

Files

lnput:          R6     =         extent  length
R7       =           mode
R8        =            DID
FZ9     =+-file  identifier  length
RR10  =          address

Output:       R5     =          error  status

RS-232-C

i_:_`_E

R8     =               DID

R5           =    error  statiis

Characteristics

DEVICES

The  function  of  this  call   is  to  open  the  specified  device;     its     charac-
teristics,   however,   depend  upon  the   device.   For   example,   for  the   RS-232-
C   there  are   no   parameters   except  the   input  DID.

FILES

ln  this  case  the  function  of  this  call   is  to  open  the    designated    file,
specify     the     mode   (append,   read,   write,   or   read/write),   and   to  allocate
sectors   (write   or   append  modes   only).

The   input   "file   identifier   length"   is  the  number   of    characters     in    the
file     identifier.     The  input     "address"  is  the  address  of  the  file   iden-
tifier.

The   input   "mode"  designates  whether   the  file   will   be     opened     for     read,
write  or  append,   as   follows:

0:     Read,   always   from  current   position.

1:     Write,   always   placing  a   new  end   of   file.

2:      Read/Write,   allocating   sectors   beyond   old  EOF.

3:     Append,   seeks   to   end   upon  open,   and  then  writes.

A  file   that   does   not   exist   cannot   be  opened   in  the     read     mode.     A    non-



existent     file,   if  opened  by  write  or   read/write,   will   be   created.   1f   it
does   exist,   write   mode  will   write   over   the  old   file.

1f  an  existing   file   has   been  opened   in  the   read/write  mode,   the   user   can
then     position   the   file   pointer   to   its   end,to  extend   it,   using   Dseek   (SC
23).   However,   Append  mode   does   this   automatically,   and   then   operates   the
same   as   the  write   mode.

The  input  "extent   length"  designates   the  number   of  sectors   to     be    allo-
cated     if     the     f ile     is   to  be  created.   The   request   should   always   be   one
sector   larger   then  the  data   requirements.   1f     a     zero     is     entered,     the
number     of     sectors   will   be   the   default   value   (usually  8).   The   input   DID
number   identifies   the   file   (see   list   below).

Errors

lf  there  are  any  errors,   the  status   code   is   returned   in  R5.   lf  there  are
no   errors,   a   zero   (0)   will   be   returned.

Valid   DID   Numbers

1-15
20   -   24
19 , 25 , 26

disk   files    (BASIC)
disk   f iles   (PCOS)
Com    (RS-232-C),    Coml,    Com2



THE    M20    SYSTEM   CALLS

Positions  a   file  pointer  as   specified.

1nput/Output  Parameters

lnput:

Output:

R8       =             OID
Rmo=          position

R5             =  error   status

Characteristics

Thiswill   position     the     file       pointer       for       the       specified       stream
(opened       file)        to  the  position   specified.     The   input   "DID"   identifies
the  device.      The   input   "position"   is     a     32-bit   pointer.        Zero     is     the
first  byte.

Seeking  past   the  EOF   while     the     file     is     opened     for     read/write     will
automatically  allocate   new  sectors.

Errors

lf  there  are  any  errors,   the  status   code   is   returned   in     R5.        lf     there
are  no  errors,   a   zero   (0)   will   be   returned.

Valid   DID   Numbers

1-15
20  -   24

disk   files   (BASIC)
disk   f iles   (PCOS)

8-17



Returns  either  the   length  of  a   file  or  the  number  of  bytes   in  the     input
buf fer .

1nput/Output  Parameters

Files Devices

Input:             R8  -DID                     R8   -DID

Output:             RR10-1ength                  R10  -zero  status
R5    -error                      R11          =  number

status                      R5             =  error  status

Characteristics

DEVICES

Thiscall   returnsthe     number     of       bytes       currently       in       the       input
buffer.      There   are   no   inputs   except   the   DID  number.

FILES

This   call   returns   the   length  of  the   file  as     a     long     word.     The     output
"1ength"   is  the   length  of  the   file.

Errors

lf   there  are   no  errors,   a   zero   (0)   will   be   returned     in       R5.           1f     the
disk     file   is   not  open,   a   -1    is   returned   in   RR10   and   error   code   (hex)   4E
is   returned   in   R5.   1f   a   bad     parameter      is     input,      error      (hex)     4C     is
returned   in   R5.

Valid   DID  Numbers

1-15
20   -   24
19 , 25 , 26

8-18
`&  ____

disk   files   (BASIC)
disk   files   (PCOS)
Com,    Coml,    Com2

ASSEMBLER    USER    GUIDE



THE   M20    SYSTEM   CALLS

-  l_-_u.--

Gets  the  position  of  the  next  byte  to  be  read  or  written.

1nput/Output  Parameters

lnput:                                R8     =       __        DID

Output:                  RR10±position
R5              = error  status

Characteristics

This  call   returns  the  position,   in  bytes,   of     the       next       byte     to       be
read  or  written.     The   input  "DID"   identifies  the   file.     A   list  of     valid
DIDs      is     given   below.

The  output   "position"  contains  the  position   in  the  file,   in  bytes,   where
the  next  byte  will   be   read  or  written.

Errors

lf  there  are  any  errors,   the  status   code   is   returned   in     R5.        1f     there
are  no  errors,   a   zero   (0)   will   be   returned.

Valid   DID   Numbers

1-15
20  -   24

disk   files    (BASIC)
disk   f iles    (PCOS)

8-19



Removes   a   specified   file   name   from  a   disk   directory.

1nput/Output  Parameters

lnput:                                       R9     =            1ength
RR10  =           address

Output:                                   R5             =   error   status

Characteristics

This   call   is   used   only   for   disk   files.      1t   removes   the        specified     disk
file   (and   related   data)   from   the   directory   of   the   volume.

The   input   "address"  points   to   the   file   identif ier.        The     input   "length"
is  the  length  of  the   file   identifier.

Errors

lf   there   are  any   errors,   the   status   code   is   returned   in     R5.        1f     there
are   no   errors,   a   zero   (0)   will   be   returned.



THE    M20    SYSTEM   CALLS

Renames   a   specified   file.

1nput/Output  Parameters

lnput:                           RR6   =            01d   address
R8     =           old   length
RRIC=            new   address
R9     =   _new  length

Output:                     R5            = error   status

2? qR-

Characteristics

This   call   is   used   only   for   disks.      1t  will   rename   the   file   specified     by
the  old   file   identifier  with  the   new   file   name.

The  input  addresses   point  to  the  old   file   identifier  and  to   the  new  file
name     respectively.        The     inputs  called  "length"  are  the   lengths  of  the
old   file   identifier   and     new     file     names,   and  are   given   in  words.

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in     R5.       If    there
are  no  errors,   a   zero   (0)   will   be   returned.



Oisplays  a   list   of   f iles   from  a   specified  disk.

1nput/Output  Parameters

lnput:                   R9     -file  identifier  length
RR10  =          file   identifier   address

Output:                  R5    --error  status

Characteristics

Thiscall   is   usedonly   for   files.        1t     lists       the       contents       of     the
directory        of     the     specified     volume,   on   the   current   window  of   the  M20
screen.   The   input   "length"   is   the   number   of  bytes   in     the   file     identif-
ier.      The      input     "address"     is   the   address   of  the   file   identifier.     The
file     identifier     may     contain     a     volume   identifier     and/or     wild     card
characters      (''*"     and      "?").      1f   R9   is   zero,   DDirectory   assumes   the   name
"*",   and  will   list   the  entire   directory.

The   display   lists  the   names   of   the   specif ied   files     on       the       specif ied
(or   default)   volume   in   compact   form.

Errors

lf   there   are   any  errors,   the   status   code   is   returned   in     R5.        1f     there
are   no   errors,   a   zero   (0)   will   be   returned.

p ` ,' ,-,."/



THE    M20    SYSTEM   CALLS

Sets  a  block  of  bytes  to  a  specified  value.

1nput/Output  Parameters

lnput:                          F`L7   =           n   (byte   value)
RR8   =          start
Ftl0   =           length

Output:                     R5             =  error   status

Characteristics

This  call   sets   a  block  ofmemoryto     the     indicated     byte       value.        The
input       "start"       is    a  segmented  pointer  to  the   f irst  byte   of  memory  to
be  set.     The  input  "length"  is  the  nuber  of    bytes     to  be  set.

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in     R5.        If    there
are   no  errors,   a   zero   (0)   will   be   returned.



Sets  a   block  of  words   to  a   specified   value.

1nput/Output  Parameters

lnput:                       R7     =  _n   (word   value)
RF`8   =           start
R10   =           length

Output:                      R5             =   error   status

Characteristics

This   routine   sets   the  block  of   memory   specified   to   the   input     value,     n.
The      input   ''n"   is   the   word   value   to   be   loaded   into   each  memory   location.
The   input   "start"   is   a   segmented   pointer   to   the   first   word   of   memory     to
be   set.      The   input   "1ength"   is   the   number   of   words   to   be   set.

Errors

lf   there   are   any  errors,   the   status   code   is   returned   in     R5.        1f     there
are   no  errors.   a   zero   (0)   will   be   returned.

ASSE"lER ER   6Ü18E



THE   M20   SYSTEM   CALIS

Sets  a   specified  block  of  memory  to   zero.

Input/Output  Parameters

lnput:                              RR8  =            start
RIO + _  1ength

Output:                           R5              =  error   status

Characteristics

block  of  bytes,   of  the  length  specified,     and       starting    at    a  speci-
ed       source,      is  set  to  zero.   The   input  "start"   is  a   segmented  pointer

the   first  byte  of  memory  to  be  set.     The     input     called     "1ength"     is
e  number  of  bytes  to  be  set  to  zero.

Errors

lf  there  are  any  errors,   the  status  code  is  returned   in     R5.       If    there
are  no  errors,   a   zero   (0)   will   be   returned.

8-25

_____        _          =

®



-_-1_-`-                              -E?`::`-

Moves  a  block  of  bytes   from  one   location  to  another.

1nput/Output  Parameters

Search                              R7       =           1ength
RR8    =          start
RR10 =          destination

Output:                          R5              =  error  status

Characteristics

A  block  of  bytes,   of  specifie.d  length,   and       starting    at       a     specified
source,      is     moved     to  a  block  starting  at  a   specified  destination.     The
input   "start"  is  a     segmented     pointer     to    the  first     byte     of       memory
to       be     moved.        The   input   "1ength"   is   the   number   of   bytes   to   be   moved.
The  input   "destination"     is     a     segmented  pointer   to  the  first     byte     of
the   destination  memory   block.

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in     R5.        1f     there
are  no  errors,   a   zero   (0)   will   be   returned.

ASSEMBLER    USER   CUIDE



THE    M20    SYSTEM   CALLS

Allocates  a  block  of  bytes   from  heap   in  the  current  segment.

1nput/Output  Parameters

lnput:                    RR8  -address  of  block  pointer
R10   =            1ength

Output:                     R5              = error   status
®RR8           = block  pointer

Characteristics

This  call   allocates   blocks   in     the     "Samesegment".     This     is     segment     2
unless     the     program   has   done  a   "BrandNewAbsolute"  system   call,   in  which
case  the  segment  number   is  that  specified   in     the     most     recent     "Brand-
NewAbsolute".

This   call   is   a   subset   of   System   Call   120   "New".   1t   has     been     maintained
for  compatibility  with  preceding  releases.

A  simple   way  to  change   the   segment   number   for   a   program   is   to     do     a     SC
121   "BrandNewAbsolute"   with  a   block   length   of  0.

The   input   "address   of   block  pointer"   is  the  address   of  a   long  word  which
specifies     the     start  address  where  Newsamesegment  will   store  the  block.
The  input   'length'   is.the     number     of     bytes  to  be  allocated.        If       the
block        cannot        be     allocated,   ©RRs     will      contain  a   nil    (hex   FFFFFFFF)
pointer,   without   returning  an  error   in  R5.

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in     R5.       1f     there
are  no  errors,   a   zero   (0)   will   be   returned.

_jBf



-                    .         -`             ``-          `

Releases   heap.space.

1nput/Output  Parameters

lnput:                         RR8   =           address   of  block  pointer
R] o  -L+-T6FiarE-h ----  L-` ------ ~

Output:                          @RR8            =  hex   FFFFFFFF
R5              =  error   status

Jc^s    wi`rol   hi`er Jcihh  a/e}=!e!SL_
+;vo_    TAclressp   V(+We.r/CJ1:J=__

Characteristics

This   routine   releases     memory   space.      The     input   address   is   a   long  word,
pointing    to  the  start  address  of  this  space.     1t  is   important  that  this
be   a   valid   heap   space.      Once   the  call   has     been     executed.      the     address
specified   in   RRs   will   contain   hex   FFFFFFFF   (nil).

E XAMPL E :

1n   this   example   assume   that  addptr   is   a     long     variable     which   has     been
imit±aiized  iis :n___the  exiFNple  W  NeN,, (S/ß _" ..   ii)L w`,rd  m., t  Fip)/u } i.n  R5-_beqofworfcl !

tg:    RR::J.'a°df:dpbtf       ( i:;/[ {z";}#r/=°'*d"mds/8:'J:::=j£if#p5+£f_:Tn-s-Pc`g/`Dt +~--Lö           R10 , #1ength

sc          #34

Errors

lf   'addptr'   does  not  point  to  the  start  of  a  valid  heap  space,   the    sys-
tem     issues     an     error.       If    there    are    any  errors,   the  status  code  is
returned   in     R5.        If  there  are   no  errors,   a   zero   (0)   will   be   returned.

u±L£1++r      `i`iirol     hi`er   Dils    re.(Ci+ivLer_  Aclrei3zti£tr    veiiv'tm/e+   :-=---=fwkF:#!;:,:bdlFd:P:fisF#:ttfä€PT!%ar,'es;-p

#=,ü#S#p8+r:2dB}9§t,,as+Ufo#±+S£:Fbe-e::d°/::_:.
s;cb;-§E-Ü12o   Newb-z8 - ^

IEI
SSEMBIER   USER   6UIOE



THE   M20    SYSTEM   CALLS

Clears   the  current  window.

-,>s_     -_

1nput/Output  Paraneters

This  call   has   no  parameters.

Characteristics

This   routine  clears     the  current  window  to  the  current  background  colour
(usually       black).        There  are   no  parameters.   The   call   sets  the  position
of  thetextcursortothetopleft    of     the       window,     and       sets       both
the     graphics     cursor  and  the  accumulator   to  the   center   of  the  window.

Errors

No  error   checks  are  iTLade  and  no  errors   are   reported.

8-29



Positions  the  text  cursor.

Input/Output  Parameters

lnput ,

Output :

R8     =              column
R9   =           row

R5            =    error   status

Characteristics

This   routine  sets   the  position  of  the  text  cursor,   on  the     current    win-
dow,        to     the   column  and   row  specified.      The   upper   left   corner   position
of   thecurrentwindowis   (1,1).     The     position       of     the       lower       right
corner     depends     upon  the  display  character   size   (64  by  16   or   sO  by  25),
and   the   size   of   the  window   (see   example     below).

(1,1  )

(32'16)      ,

*        current   window,    64   by   16   mode

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in     R5.        If    there
are  no  errors,   a  .zero   (0)   will   be   returned.



-[E= THE   M20    SYSTEM   CALL

Positions  the  graphics  cursor.

1nput/Output  Parameters

lnput:

Output:

R8=x
R9=y

there  is  no  output

-_--iä*3i£-

3r#

Characteristics

This  routine  sets  the    position    of    the       graphics       cursor,       of       the
current  window,   to  the   x-position  and  y-position  specified.

The   lower   left  corner   position  of  the  current     window     is     always   (0,0).
The    position  of  the  upper   right  corner  will   depend  upon  the   size  of  the
window  and   the   display   character   size   (64   by  16   or   sO   by  25).      The   exam-
ple  below  shows  the  coordinates   for  a   full   screen   in  64  by  16  characters
format .

( 512 , 256 )

Errors

Range  checking   is     done,     and     if     out     of     bounds     the     cursor     is     not
moved;   however   no   error   code   is   returned.



Sets  the  blink  rate  of  the  text  cursor.

1nput/Output  Parameters

lnput:                               R8   =             rate

Output:                            there   is  no  output

Characteristics

This   routine   changes   the  blink   rate   of  the  cursor   of   the     current  window
to    a     new     value.        The   value  will   be  the  blink   rate   per   second.

Valid   values  are   0  to  20,   with  a     resolution     of  50   ms.   A  zero   value     is
non-blinking.

Errors

No  error   codes   are   returned.

`,`    ASSEMBLER   USER   GUIDE



THE   M20   SYSTEM   CALLS

Sets  the  blink  rate  of  the  graphics  cursor.

1nput/Output  Parameters

lnput:                                 R8     =           rate

Output:                               there   is   no  output

IF-q3

Characteristics

This   routine  changes  the  blink  rate  of  the  cursor  of  the     current  window
to    a     new     value.      The     value  will   be  the   blink   rate   per   second.

Valid   values   range   from  0  to  20,   with  a   resolution   of     50     ms.        A     zero
value   is   non-blinking,

Errors

No  error   codes   are   returned.

8-33



Sets  the   shape  of  the   text   cursor.

1nput/Output  Parameters

\nput..               RR8 -addres*`` !+~+ +~v.v&

Output:                         there   is   no   output

Characteristics

This   call   is   used  to  change  the  shape  of  the  text  cursor   of  the     current
window.     The   input   "address"  points   to  the   address   of   the   new  byte   array
which   describes   the   new  shape   of   the   cursor.      This     array     is     12     bytes
long,   the   first  byte  being  the   first   scan   line  of  the   cursor.

It   is   suggested  that  the  most  significant   bit  of  each  byte   is     not     used
as  part  of  the  cursor  as   it  would  then  touch  the  previous  character.

1f   the  text   cursor   is   being  displayed  at   the  time     this     call     is     made,
it  will   be  turned  off .   updated,   and  then   turned  back  on.

E XAM PL E S :

For   a   solid   cursor:

array   =   P~o7F   %7F   %7F   r>o7F
%7F    tJo7F   9Jo7F   9.o7F
•J67F    ®~b7F    %7F   %7F

For   a   checkerboard:

array   =   9600   %55   9o.o2A   9655
%2A    9655    9Jo2A   9655
9ro2A    9655    962A   9ro55

Errors

No  errors  are   returned.

--_.--'    _

]i8_4_t  ri   15   6:4



THE   M20   SYSTEM   CAILS

Sets  the  shape  of  the  graphics  cursor.

1nput/Output  Paraiieters

lnput:                         RR8    =            address

Output:                     there   is  no  output

'ftJ   J-j.,-L ---- J+

Characteristics

This  call   is  used  to  change  the  shape  of  the  graphics       cursor       of     the
current     window.        The     input   "address"  points  to  the   address   of  the   new
byte  array  which  describes   the  new  shape  of   the  cursor.   This  array   is   12
bytes  long,   the  first  byte  being  the  f irst  scan  line  of  the  cursor.

lt   is  suggested  that  the  most  significant  bit  of  each  byte  is     not    used
as  part  of  the  cursor  as   it  would  then  touch  the  previous  character.

lf  the  graphics  cursor   is  being  displayed  at  the    time       this       call     is
made,   it  will   be   turned  off ,   updated,   and  then  turned  back  on.

Errors

No  errors   are   returned.

8-35



Returns  the  position   (column  and   row),   and  the  blinkrate   of  the     current
window's   text  cursor.

1nput/Output  Parameters

lnput:                            RR10-address        T-iF\    -'`

Output:                           R7             =   blinkrate
R8              =   column
R9               =    row
R5            =   error   status

iH-

Characteristics

This   call   is   the   same   as   Readcurl    (SC   43),     except       that        it       returns
the     blinkrate        and       position   (column   and   row)   of   the   current   window's
text  cursor.     The   input   'address'   points     to     the     byte     array     for     the
current  shape.

Errors

No  errors   are   returned.

ASsrilER  USER  6UIDE



THE    M20    SYSTEM   CALLS

Returns   the  position   (column  and   row),   and   the  blinkrate   of   the     current
window's  graphics   cursor.

Input/Output  Parameters

lnput:                      RRIO-address       C*//   -'i`// 444-4.L4

0utput:                          R7            =   blinkrate
R8         +   x  position
R9       -=   yposition
R5           =   error  status

Characteristics

This  call   is   the  same   as   Readcuro   (SC   42),   except  that     it     returns     the
x,y     position       and       blinkrate     of  the   current  windows   graphics   cursor.
The   input   'address'   points   to  the  byte  array  for  the  current   shape.

Errors

No  errors  are   returned.

8-37



``       `;..

Selects  the  graphics  or  the  text  cursor,   or   turns   off  the     current     cur-
Sor.

lnput/Output  Parameters

lnput:                      R8  -select     ''f':/7 ;/Z

Output:                            there   is  no  output

Characteristics

This   routine   chooses   the   state   of   the   cursor     for     the     current     window,
according  to  the  value  of  the   input  "select"  as   follows:

0:               Turns   off   the   cursor   for   the   current  window.
(selecting  another  window  will   also   turn   off
the  cursor).

1:               Selects   and   displays  the  graphics   cursor   in
the   current   window.

2:              Selects  and  displays  the  text  cursor   in  the
current   window.

Notethatonlyonecursor     can       be       displayed       at       a       given       time,
regardless   of  the   number   of   windows.

Errors

No  errors  are   returned.



___   __        --=
THE    M20    SYSTEM   CALLS

1nitializes  the  screen  and  sets  defaults.

1nput/Output  Parameters

lnput:                                   there  are   no   inputs

Output:                           R8    -colour  flag
RRI 0-pointer

Characteristics

This   function  must  be  called  to   initialize  the  screen.          lt       sets     the
screen     to  contain  one  window   (number  1),   sets   default   global   attributes
for  the  screen,   and  default  attributes   for   the  window.

Default     conditions     are:     one  window   for  a   full   screen,   green   or     white
colour   (depending   upon   hardware)   on  a   black  background  and   cursor   off .

The  outputs  are  a  pointer  and  a  colour   flag.   The   latter     is     "0"     for    a
black     and     white   system,   and   "1"   for   a   colour   system.      These   values  are
determined  by  hardware   jumpers.

The  pointer   is  the  address  of  a  milbox  area   (8     bytes),     also     used     by
the        lEEE     driver,      and   declared   globally  by  PCOS.     These  s   bytes   (0-7)
are   used  by  the   lEEE-488  and     keyboard     drivers.      On       calling     Grflnit,
the  interpreter  will  be  passed  the  address  of  this  area   in  RR10.

Errors

No  errors  are   returned.

8-39



rTJ......_1
Selects  a  global   four  colour   set   (only  for   four   colour  systems).

1nput/Output  Parameters

Output:                      R5             =   error   status

Characteristics

Thiscall   selects4coloursoutof     a     possible       s       for       the       global
colour   set.      The   four   inputs  are  chosen   from  the   following   set:

0                 black
1                  green
2                 blue
3                  cyan
4red
5                  yellow
6                  magenta
7                 white

and  a   check   is  made   that   the   inputs   are   in   the   range   from  0  to  7,   but   no
check   is  made   for   colour   duplications.
The   BASIC   COLOUR   statement   is   implemented   by   a   call   to        this        routine.
Also,       this     routine     is  called  by  Grflnit  to   initialize   to  the   default
colours.

Note:   This   system   call   has   no   effect   on  black  and  white   and   eight  colour
systems .

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in     R5.        If     there
are   no  errors,   a   zero   (0)   will   be   returned.

ASSEMSLER   USER   CUIDE



THE    M20    SYSTEM   CALLS

Creates   a   new   window.

1nput/Output  Parameters

Output:

r4: De=e=:dow

R8     =    _quadrant
R9      =        _position
RIO   =       _vertical   spacing
R12-_horizontalspacing

R11               =   window   number
R5             =  error  status

Characteristics

Thisroutineisusedto     create     a       new       window       by       splitting       the
current       window     into     two     parts.        A   unique  window  number   is   returned
for   the     new     window     and     the     current     window     remains   selected.

The   input   'quadrant'   indicates  that  part  of  the   old     window     from    which
the  new  one   is   to  be   created.     The   choices  are   as   follows:

TOP   PORTION

B0TTOM    PORTION
LEFT    PORTION
RIGHT    PORT10N

Thevalueand       meaning       of       the        input        'position'        depends       upon
whether       the     split     is     done  horizontally  or   vertically.      If  the  split
is   to  be   on  a   horizontal   line   (quadrant  =  0  or     1),      'position'   is  meas-
ured     in     scanlines,      f rom     the  top   of  the   current  window.   The  allowable
range   is   then:

(Vspace   +  1)   to   (Height   -Vspace);

where   `Vspace'   is  the  text   line   spacing   of  the       existing       window.        If
the  split   is   to  be  on  a  vertical   line   (quadrant  =  2  or   3),    'position'   is
measured   in  the  number   of  characters,        counting     from       the     left.     The
allowable   range   is   then   from  1   to  width  minus   1.

The   input   'vertical   spacing'   is  the   number     of     scanlines       between     the
tops     of     the     characters     in     two     consecutive  text  lines.     1t  my  be  a
number   from   10   to   16.

:!:h{npu:d;::r± ::nt::oS::::::|ti;et::a::T:::s. °f„  :::e.;:ve  :e:::::  o:h:
or   8.     lf  the  values   for   vertical   or   horizontal     spacing  are  omitted     or

8-41



entered     as     zero,     their     spacing  defaults  to  the   values   for  the  parent
window.

When   a  window   is   created,   it  will   have   the     same     foreground     and     back-
ground       colours     as      its     parent   window   (window  1   is   always   initialised
with   foreground     and     background     colours     of     1      and       0,      respectively
i.e.      green       and       black     in     a   colour   system,   and  white   and   black   in   a
monochrome   system).      Thenew        window        will        have        its     text        cursor
placed     at  the   top   left   of  the  window.      The  graphics   cursor   and  graphics
accumulator   positions     will     be     set     at     the  center   of   the   new     window,
with   no   cursor   displayed.

The   parent   window's   cursor     and     graphics     accumulator        positions     will
automatically     be     adjusted     by  the   amount   taken   by   the   new   window.      The
parent   window  remains   selected.

1n   the   graphics   coordinate   system   supported     by     the     PCOS,      the        lower
left-hand       corner     of     a     window   is  the   origin.   with   coordinates   (0,0);
the  coordinates  will   be   scanlines     vertically     and     pixels     (bits)     hor-
izontally.        The  origin  of  the  text  coordinate  system   is  the  upper   left-
hand   character   position   of   the  window,   with     coordinates   (1,1).

Calling  Definewindow  with   quadrant  =  0   and   position  =   0     will     have     the
effect     of   setting  the   spacing  of   the  current  window.   1f  window  1   is   the
only  window  and   its     spacing     is     changed,     then     the   display     character
size     is     changed     from     the  current   format  to  the  other.      1f  horizontal
spacing   is  6  then  the  system  goes   into  80x25   format.     The     size     of     the
screen   is   reduced   from   512   by  256   pixels   to  480   by  256   (with   2-byte   nür-
gins  onthe  right  and  left).      If  horizontal   spacing     is    given       as       8,
then       the     system   goes   into   64xl6  mode,   and  the   screen   is   expanded  back
to   512   by   256  pixels.

Errors

An  error   condition   leaves   the   returned  window  number   equal     to     -1,     and
returns     a      (hex)     24   in   R5.      lf  there  are   no  errors,   a   zero   (0)   will   be
returned.

8_42 ASSEMBLER    USER    GUIDE



THE   M20   SYSTEM   CALLS

Selects   another   window.

1nput/Output  Parameters

lnput:                                   R8   =               window   number

Output:                            R5           =    error  status

Characteristics

Thisroutine   is   used     to     change       the       current       window       to       another
already  existing  window.      The   input   "window  number"   is   the   number   of   the
window   (1   to   16)   to  be   selected.      Any   screen   output   routines   which     have
a   window   number   as   a   parameter   must   call   Selectwindow.

Errors

lf  there  are  any  errors,   a  status   code     is     returned     in     R5.     lf     there
are     no     errors,   a   zero   (0)   will   be   returned.     A  hex   value   of  23  will   be
returned   in   R5   if   the  window  specified   does   not   exist.



Returns  the  attributes  of  the  current  window.

1nput/Output  Parameters

lnput:                                 there  are   no   inputs

Output:                                R7   _   +   window  number
R8=x
R9=y
R10           =    foreground
R11           =    background
R5           =    error   status

Characteristics

This   routine   returns  the  attributes   of  the  current  window.     The     outputs
are:

'window'             --     current   window   identifier   number

'x'                         --window   width   in   bytes

'y'                         --window   hight   in   pixels

'foreground'   --     foreground  colour   of   current  window

'background'   --     background   colour   of   current   window

Colour  Attributes

The  colour   values   returned  will   belong  to  one   of   the  sets   shown  below.

ASSEMBIER   USER   GÜIDE



`++

y{z``       Uä*,``    >`,        .+>,`€```,``,  ,.v>¢,>`*+c,,`d::

i_
-+o



`*

`\
-``\`

\\,d
-,

RHl

\\



THE   M20    SYSTEM   CALLS

The  colour   selection  of   four   (A  -  D)   is  originally  made   from     the     eight
listed  under  Paletteset   (SC  46):

Monochrome 1__:
Four-Colour
Systems

Eight-Colour
Systems

0     black                                    0     colour  A                               0       black

1      white

Errors

No  errors  are   returned.

1      colourB                                 1        green
1

2     colourc              '!                2        blue

3      colourD                 j                 3        cyan

4red

8-45



E_c`riä-
Changes   window   colours.

Input/Output  Parameters

lnput:                                     R8   =             foreground
R9   =             background

Output:                                  R5           =    error   status

Characteristics

This   routine   changes   the  colour  attributes   for   the  current   window.       The
inputs     'foreground'     and   'background`   are   integers  specifying  the   fore-
ground  and     background     colours   respectively.   They  are   chosen   from  those
listed   under   "Colour  Attributes"   (see  below).

Colour  Attributes

The  colour   values   selected  must  belong  to   one   of   the   sets     shown     below.
The     colour     selection  of   four   (A  -  D)   is   originally  made   f rom  the   eight
listed  under   Paletteset   (SC  46):

Monochrome                   |  i

0     black
1      white

Four-Colour
Systems

Eight-Colour
Systems

i                o        black
1        green
2       blue
3       cyan
4red

i                   5        yellow
6       magenta
7       whiteu_

Errors

lf  there  are  any  errors,   the  status  code  is   returned  in    R5.       If    there
are  no  errors,   a  zero   (0)   will   be   returned.

ASSEMBIER   USER   6UI0E



'''= THE   M20    SYSTEM   CALLS

Closes   the   selected   window.

1nput/Output  Parameters

lnput:                                R8    =             window

Output:                          there  are  no  outputs

Characteristics

This   routine   is   used   to  close  an   existing  window.

The   input   'window'    is   the   window   number.      The     area      of     the     window     is
returned     to     the   parent  window,   and   the  background   colour   is   cleared   to
that  of  the  parent  window.

It   should   be   noted   that   window  1   cannot   be   closed.

Errors

No  errors  are   returned.

'      8_47



Checks   coordinates   against  the   current   window  boundaries.

1nput/Output  Parameters

lnput:                                            R8    =             x
R9   =-             y

Output: R10            =   return   value

Characteristics

The   inputs   'x'   and   'y'   are   graphics   coordinates.

The   system  call   checks     their   values  against     the     window     size     of     the
current     window,and   returns  a   true   value   in  R10   if  and   only   if   the   coor-
dinates  are  within  the  boundaries   of  the  window.   The   'return'   is     1      for
true.

Errors

No  errors  are   returned.

„   ,._¢c+t^;,;..€,f,„     `{L[F<~   c+f.3      . ;,L ..,,..r;+;A..„„.`,:  ^j,L`. ,!,;;^r:=,r*#4--=-f#3

ASSEMBIER   USER   6UIDE +  ^^



'
::`:,



\

7,-,'

mEE

00€000#
#Ei»üt£"

800080£0
mfflfflfiflEgmE]MmfflJt)08

£t]00'0{Ü
riHL!MHriLH

__Oj_JJTT£'d

nHL!Ä

_'-'``'`'i'iiä
-_`9d'0_06fi-ä`

_j-i`l'ü~____-'_''-'_.:'



THE   M20   SYSTEM   CALLS

111
Converts   x-y  to  absolute  coordinates  and  stores   the   result   in  the  graph-
ics  accumulator.

lnput/Output  Paraneters

lnput :

Output:

R8=x
Ft9     =            y

there ar#utputs

;r ¢h,J  l  rrujJ /
Characteristics

The   inputs   'x'   and   'y'   are   the  specified   screen   coordinates.

The  system  call   converts  these  coordinates   to  the  absolute   screen    posi-
tion     (of  C-type)   for   the   current  window,   and  stores   the   resulting  value
in  the  graphics  accumulator.

Note:   The   input   values   are   not   checked   for   being  within   range.        ScalexY
should  be  called   first.

Errors

No  errors  are   returned.

8-49



Converts  the  C-value   in  the  graphics   accumulator   to   x-y   coordinates.

1nput/Output  Parameters

lnput :

Output:

there  are  no   inputs

R8=x
R9=y

Characteristics

This  call   converts   the  current   value   in  the  graphics  accumulator   to     x-y
coordinates   for  the  current  window.

lf   the  value   in   the  graphics  accumulator   is   outside   the   current     window,
the  results  are  undefined.

Errors

There  are  no  errors   returned.

'`     ASSEMslER   USER   GUIDE



"E   M20   SYSTEM   CALLS

Returns   the   contents   of   the  graphics   accumulator.

1nput/Output  Parameters

lnput :

Output :

there  are   no   inputs

RR8             =   C-value

Characteristics

This   call   saves   the   current   value   of  the  graphics   accumulator   for   future
use.

There   are   no   input   parameters.   The   output   "C~value"   is   the     contents     of
the   32-bit  graphics   accumulator.

Errors

No  errors   are   returned.



Sets  the  graphics   accumulator   to  a   specified  C-value.

1nput/Output  Parameters

lnput:                                 RR8   =            C-value

Output:                           there   are   no   outputs

Characteristics

This   call   sets   the   graphics  accumulator   to  a  specified  C-value.

The   structure  of  the  C-value   is   described   in  chapter  7.    1f     the     C-value
input   is   outside   the  current   window,   the   results   are   undefined.

Errors

No  errors   are   returned.

ASSEMBLER   USER   6U10E



df s  #JS



llLl

T_,,-"

)

J,

'I



TllE   M20   SYSTEM   CAILS

Moves   the  position  of   the  graphics  accumulator   up  by  one   pixel.

1nput/Output  Parageters

This   call   has   no  parameters

Characteristics

This  call   moves  the  graphics  accumulator   up  by  one  pixel   position.

There   is   no  checking  with   respect   to  window     boundaries     or     the     screen
boundary;      it   is  expected  that   the  calling     program  will   perform  a   check
before  executing  a   sequence  of  code   using  these   routines.

Errors

No  errors   are   returned.

Remarks

For   the   routine  which   does   perform   checks,   see   TUpC   (SC   70).

8-53



Moves  the  position   of   the  graphics   accumulator   down   by   one   pixel.

1nput/Output  l]arameters

This   call   has   no   parameters

Characteristics

This   call   move   the   graphics   accumulator   down   by   one   pixel   position.

There   is   no   checking  with   respect   to  window     boundaries     or     the     screen
boundary;      it   is   expected   that   the   calling     program   will   perform   a   check
before  executing  a   sequence   of   code   using  these   routines.

Errors

No   errors   are   returned.

Remarks

For   the   routine   which   does   perform   checks,    see   TDownc   (SC   69).

i±::L5l§+;LH-----------ri»TAS+ffiri`ffi:¢;triri]



THE   M20    SYSTEM   CALLS

Moves  the  position  of  the  graphics  accumulator   left  by  one  pixel.

1nput/Output  ParaDeters

This   call   has  no   parameters

Characteristics

This  call   move   the  graphics  accumulator   left   by  one   pixel   position.

There   is  no  checking  with   respect   to  window    boundaries     or     the     screen
boundary;      it   is  expected  that  the  calling     program  will   perform  a  check
before  executing  a   sequence  of  code   using  these   routines.

Errors

No  errors   are   returned.

Remarks

For   the      routine   which   does   perform   checks,   see   ScalexY   (SC   52).

8-55   r



Moves  the  position  of  the  graphics  accumulator   right   by   one   pixel.

1nput/Output  Parameters

This   call   has   no   parameters

Characteristics

This   call   move   the   graphics   accumulator   right   by   one   position.

There   is   no   checking  with   respect   to   window     boundaries     or     the     screen
boundary;      it   is   expected   that   the   calling     program   will   perform   a   check
before  executing  a   sequence   of   code   using   these   routines.

Errors

No  errors   are   returned.

Remarks

For   the   routine   which   does   perform   checks,   see   ScalexY   (SC   52).



THE   M20    SYSTEM   CALLS

Sets  the  current  colour  attribute.

lnput/Output  Paraleters

lnput:                                     R8    =            colour

Output:                                 R5            =   error   status

-g{`&

11.-.1

Characteristics

The  input   "colour"   is  the  desired  current  attribute,     or     brush    colour.
This  call   sets  the  current  attribute  to  that  colour.

Errors

lf  there  are  any  errors.   the  status  code   is  returned  in     R5.       lf    there
are  no  errors,   a  zero   (0)   will   be   returned.

8-57



R.I
Plots  a  single  point.

lnput/Output  Parameters

lnput:                         R8     =            operation

Output:                     there  are  no  outputs

Characteristics

This  system  call   plots  a  single  point.      lf     the     input        'operation'     is
equal       to       0,     a     point  having  the  current  colour  attribute   is  plotted
at   the  position   specified  by  the  graphics   accumulator.

For  other     values   of      'operation',1ogical     operations     are       performed
(see     table     below).        These     are   between  the   current  attribute   and     the
attribute     of    the    pixel     at    the  specified  point;   the  result     is    then
stored   for  the  specified   location.

0         PSET
IXOR

2AND

3NOT

40R
5         PRESET

The  current  attribute   is   stored.
The  current   attribute   is   XORed  with  the   pixel.
The   current   attribute   is  ANDed  with   the   pixel.
The   complement   of   the  pixel   is   stored.
The   current  attribute   is  ORed  with  the  pixel.
The   current   background   colour   is   stored.

For   example,   the  X-OR   function   with  a   current  attribute   of     1      for     mono-
chrome       or     3     for   colour   can   be   used   for   plotting  a   temporary  point   or
line  on  the  screen;   repeating     the     function       will       then     restore    the
screen  to  its  original   state.

Errors

No  errors   are   returned.



THE    M20    SYSTEM   CALLS

_          .t`              .                     `:_.        _         _

Returns  the  colour  attribute  of  the  current  point.

1nput/Output  ParaDeters

lnput:

Output:

there  are  no  inputs

R8            =    colour

Characteristics

This   routine   returns  the  attribute  of  the  current    point     ("colour")     as
an     integer   (0..7)   for  eight  colour  systems,    (0..3)   for   four  colour  sys-
tems.   or   (0..1)   for  monochrome,   and  stores   it   in   register   R8.

Colour  Attributes

The  colour  values  returned  will   belong  to  one  of  the  sets     shown     below.
The  colour   selection  of  four   (A  -  D)   is  made  from  the  eight   listed  under
Paletteset   (SC  46):

Four-Colour
Monochrome                 <                    Systems

0     black
1      white

Errors

No  errors  are   returned.

Eight-Colour
Systems

0       black
1        green
2       blue
3       cyan
4red
5       yellow
6       magenta
7      white

8-59



--=I
ü NsetcT

Draws  a   horizontal   line.

1nput/Output  ParaDeters

lnput:                                R8     =            count
R9    =           operation

Output:                            there  are   no  outputs

Characteristics

This   call   draws   "count"   number   of  pixels  along  a   horizontal   1ine,   start-
ing     from     the     position     specified  by  the  current  value  of  the  graphics
accumulator   towards  the   right.   The   inputs  are     "count"     (the     number     of
points  to  be  plotted)   and  "operation"  which   has  the   same  meaning  as   used
in   Setc   (62).

This   call   is   the   same   as   calling     Setc     (62)     and     Rightc     (60)      'count'
times,   but   it  has  been  optimized   for   speed.

Errors

No  error   checking   is   done.      It   is   assumed   that   range   checking   is   done   by
the  caller.

Plc«Li      :le+,     '`/ci±i`    F!c},l   o/tF        Ji-_c:(      e[ii+     {    r`*

pö;c/.sf     recl?f<h       Purikf

ASSEMBLER    USER    GU10E



THE   M20    SYSTEM   CALLS

Draw  a   vertical   line.

lnput/Output  Parameters

lnput:                       R8  -_  count
R 9  -_  o p e r a t i o n

Output:                              there  are  no  outputs

___ _                        _=L=

Characteristics

This  call   draws  "count"  nunber   of  pixels  along  a  vertical   1ine.   starting
from  the  position  specified  by  the  current  value  of  the  graphics  accumu-
1ator   downwards.     The   inputs  are   "count"   (the  number     of     points     to     be
plotted)     and     "operation"     which     has     the   same  meaning  as   used   in  Setc
( 62 ) .

Using  this   call   is   the   same  as  calling     Setc   (62)   and  Downc   (58)   'count'
times,   but   it  has  been  optimized   for  speed.

Errors

No  error   checking   is  done.      1t   is  assumed   that   range  checking       is     done
by  the  caller.

_,

::,.    'r     .rJ,i,,r,'       /  ,.., €,^     .`  -,,, '.,.t    :   1.-       J{`...`l(

r;;,,^bgf   u,r#tr+r7    Puf,kf

8+t



-.`--_-`                .                       `::.`,

Fieads  a   screen   rectangle   into  an  array,

1nput/Output  Parameters

lnput:                              R8     =_width  (in  pixels)
R9    -_height  (in  pixels)
RR10=         pointer   to  byte  array

output:                      *R'O=:f::;:sc::a:::e (::r:¥ror  conditions)

Characteristics

This   call   reads   a   screen   rectangle   into  an  array   in  memory.

The   size   (in  pixels)   of  a   rectangle   on  the   screen   is     specified     by     the
first  two  coordinates.   The  position  of  the  upper   left-hand  corner   of  the
rectangle   is   determined   by  the   current   Graphics  Accumulator      (which     can
be   set   using   system  call   53   MapxYC).

The  third  parameter   is  a  pointer  to  a  byte  array  which  consists  of  a     6-
byte  header   followed  by  an   array  of  two-byte   entries,   each   of  which   is  a
sixteen-bit   integer.

The  byte  array  is  structured  as   follows:

contents

width   (high   byte)
"        (1owbyte)

hight   (high  byte)
"        (1owbyte)

colour   flag   (high  byte   -  always   0)
"             "        (1owbyte)

picture  data

picture  data

CÜ+QU-C+   r

The  colour   f lag   is  equal   to  0   for  a  monochrome  system,   1   for   a     4-colour
system  and  2   for  an  8-colour   system.



_ -                ffi THE   M20   SYSTEM   CALLS

1f  the  width  of  the  rectangle   is  W  pixels,   each  scanline  of  the    rectan-
gle   (for  each  colour   plane)   is   stored   in   INT((W+15)/16)   two-byte   integer
entries  in  the  byte  array,  with  the    bit    array    left-justified    in    the
integer    array,     so    that    the  last  two-byte  entry  for  each  scanline  may
have  up  to  fifteen  undefined  bits.

The  screen  data  is  stored  starting  from  top  to    bottom,     with    data     for
various  colour  memory  planes  interleaved  scanline  by  scanline.
1n  other  words,   the  integer  array  for     the    top    scanline,     plane    0    is
stored     first,     followed    in  succession  by  the  integer  arrays  for  screen
memory  planes   1   and  2,   if  they  exist  on  the  system;   these     are     followed
in  turn  by  the  data   for  successive  scanlines.

Errors

The  caller   is  assumed   to  have  done  error   checking.

dst    Qwnr.Nlcilw     imLii3 i.u|   v`'i{ö     u&''5fe     ¥J{,€+Jl{   3e`Sdz+  Sii{V}

jc #  u- 3
•Crc



Transfers  a  graphics   rectangle  from  an  array  to  the  screen.

1nput/Output  Parameters

lnput:                         R7     =_  1ogical   function
R8       =    _   _    maximum  width   of   rectangle   in   pixels
R9     -  maximum  height  of  rectangle  in  scanlines
RR10  =            pointer   to  a   byte   array

Output : R5     -always  cleared  (no  error  condition)

Characteristics

This   system   call   is   used   for   inserting  screen   data,   previously   read   from
the   screen   using  the   NRead  system   call,   somewhere   on  the   screen.

Values   of   logical   function   for   Nwrite   system  calls:

0              overwrite  what   is   already  there

1                XOR   (exclusive   OR)   array   contents   with   destination

2              AND   array   contents   with   destination

3               COM:   complement   destination,   no   copy

4              0R  array  contents  with  destination

5                 1NVERT:   complement   text,    copy

The   logical   function   is   useful   in  a   variety   of   situations.     For   example,
XOR     n"y     be     used   to   display  an   object   which   can   be   erased   with  another
XOR,   leaving  the   screen   as   it   was   before   the   first  XOR.      AND   may   be   used
to     selectively  erase  parts  of  the  screen  to  colour  0,   using  a  specially
constructed  array.     OR  may  be   used   similarily     to     erase     parts     of     the
screen  to  all   white.

The   height  and  widtli  parameters  are   used   to   determine   what   proportion   of
the     rectangle     saved     in  the  array   is  actually  written  onto  the  screen;
this   has   dimensions   which  are   the  minima       of     the     parameters     and     the
height     and     width     values     saved     in     the     array;   the   rectangle  written
includes   the  upper   left-hand  corner   of  the  saved   rectangle   in  all   cases.

ASSEMBLER   USER   GUIDE-`     ,



1

THE    M20    SYSTEM   CALLS

As  with  NRead,   the   upper   left-hand   corner   of   the   rectangle   is   determined
by   the   current   6raphics  Accumulator.

Compatibility   exists   between   colour   and   monochrome   systems   in     the     fol-
1owing   sense:
if   screen   data   is   read   with  NRead   on   a   monochrome     system,      and     written
with     Nwrite     on     a     colour   system,   the   data   is  written   only   into   screen
plane   0;   screen     plane     1      (or     2     for     the     8-colour     system)      is     left
unchanged.      On   the   other   hand,   if   screen   data   is   read   on  a   colour   system
and   written   from  the   same   array  on   a   monochrome   system,      only     data      for
colour   memory   plane   0   is   written   on   the   monochrome   system.

Errors

The  caller   is   assumed   to   have   done   error   checking.

~/'`    5i'`         ;Ji+u     ,ni,r:,i    u-|`     dw     ./,  *;   C;[¢(le   ap$4ttee',q

^' .-,,_-        €C   #    S3

3j  ,5£

8-65



Specifies  the  global   colour  attributes  for  paint  routines.

1nput/Output  Parameters

lnput:                            R8    ±      paint  colour
R9     =      __  border   colour

Output:                            R5           =   error  status

Characteristics

The   inputs   'paint'   and   'border'   must  be   legal   screen     colours     as     shown
below.      The     colour     selection     of     four      (A   -  D)   is   made   f rom  the   eight
listed  under   Paletteset   (SC  46):

Monochrome

0     black
1      white

Four-Colour
Systems

----------------------
Eight-Colour
Systems

0       black
1         green
2       blue
3        cyan
4red
5        yellow
6       magenta
7       white

The  attributes  set  are  globals,   1ike  the  main   screen  attribute,   not  win-
dow  attributes.

This   routine   must   be   called   before   doing   "ScanL"   (SC   71)   or   "ScanR"      (SC
72)      or     they   will   be   undefined.    (   Usually,   both   paint   colour   and   border
colour   are   1).

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in     R5.        1f     there
are   no  errors,   a   zero   (0)   will   be   returned.

8-66 :       ASSEMBLER   USER   6UIDE



THE   M20   SYSTEM   CALIS

Moves   the   graphics   accumulator   down   by   one   pixel   after   checking   the  win-
dow  boundary.

1nput/Output  Para.eters

lnput :

Output,

there  are   no   inputs

R8              =   check   value

Characteristics

This   has   the   same   effect   as  Downc,   except  that     the       position       of     the
graphics     accumulator     is  checked  against  the   lower   boundary  position   of
the  current  window  before   it   is   changed.

1f  the     newposition     isout     of     bounds,     a     false        'check     value'      is
returned     in     Rs     and   the  graphics  accumulator   is   unchanged.      lf  the   new
position     is     within     bounds,   the   position   is  moved   down   one   pixel   and   a
true  value   is   returned.

Errors

No  errors  are   returned.

8-67



Moves   the   graphics   accumulator   up   by   one   pixel   after   checking  the  window
boundary.

1nput/Output  Parameters

lnput :

Output:

there  are  no   inputs

R8              =    check   value

Characteristics

This   has   the  same   effect   as   UpC,   except  that   the  position   of     the   graph-
ics       accumulator     is   checked  against  the   lower  boundary  position   of  the
current  window  before   it     is     changed.

If  the   newposition     is     out     of     bounds   ,     a     false      'check     value'      is
returned     in     Rs     and   the   graphics   accumulator   is   unchanged.      1f   the   new
position   is  within  bounds,   the  position   is  moved  up   one  pixel   and  a   true
value   is   returned.

Errors

No  errors   are   returned.

^    ASSEMBLER    USER   6UIDE



THE   M20   SYSTEM   CALLS

•.}-;{...rw   ,„,.7A`    `+c-I-(Y     .;/   #L/.8    :  'vf3f-/W-7   /,

Paints   left  on  a  scanline  up  to  a  border.

1nput/Output  Parameters

lnput:                                     there  are  no  inputs

Output:                                     R9             =   count-1
R 1 0 -_ m a r g i n f l a g
R11 -  painted  flag

11

Characteristics

The  purpose  of  this   routine   is     to     paint     part     of    an     enclosed   region
in  the  current  window,   moving   left  along  a   scanline.

A11   points  starting  at  the   initial   position  of  the  graphics     accumulator
are       painted       to       the     paintcolour.        lf     any  points  painted  were  not
already  painted,   the   'painted  flag'   is  set.

The   routine  stops  when  the  border   colour   has   been   reached   or       when     the
left       margin       of       the     window   has   been   reached.     The   'margin   flag'   is
set   if  the   left  margin  has     been     reached.

The  output   called   'count-1'   is   the  number   of   pixels     scanned     (painted),
regardless  of  whether  their  original   colour  was  the  paintcolour.

The  graphics  accumulator  position   is   left  at  the  end  of  the  scan.

Errors

No  errors   are   returned.

8-69-



`.,,`,.[_cr   n4    TeLr4,    ,r„ ,,,, f    #   $8      c„.,.,.,.  r,.,,. :  .,

Paints   right  on  a   scan   line   up   to  a  border.

1nput/Output   Parameters

lnput:                                 R8      =             maxcount

Output:                              RR6            =   C-type
R8                =   maxcount
R9              =   count-r
RIO  ---+  margin   flag
R11            =   painted   flag

Characteristics

The  purpose   of   this   routine   is     to     paint     part     of     an     enclosed   region
in  the   current  window,   moving   right   along  a   scanline.      At   first   the   rou-
tineskips   over     a     maximum     of        'maxcount'        points        of     the        border
colour.

lf   more   than   'maxcount'   border   points   are   skipped,      then        ScanR        stops
immediately     and      returns   R8   =   0   and   R9   =   0   (and   RR6   undefined).

A11   points   following  the   initial   border   region   are   then   painted     to     the
paintcolour.      lf     any     points       painted       were     not   already   painted,   the'painted   flag'   is   set.

The   routine   stops   when   the   border   colour   has   been   reached   or        when     the
right   margin   of   the   window   has   been   reached.   The   'margin   flag'    is   set   if
the   right  margin   has   been   reached.   The  output   called   'count-r'   value     is
the   length   in  pixels   of  the   painted   segment.

Theoutput   'C-type'   points     to     the     position       of       the       first       pixel
painted.        The     graphics     accumulator   position   is   left   at  the   end   of  the
Scan.

Errors

No  errors  are   returned.

^SSEMslER   USER   GUIDE



THE   M20    SYSTEM   CAILS
•ä#

?!`*-i.=`

Sets  the  system   clock.

1nput/Output  Parameters

lnput:                              RR8   =             address
R10   =              length

Output:                          R5              =    error   status

Characteristics

The   input   'address.   points   to  an  address     in     the     caller's       data     area
which       contains       the   time   of   day.      The   input   'length'   gives   the   length
of   the  ASC11   string.      The   format   of   the     data      in     the   string  must   be:

hh:m:ss

where   'hh'    is   the   hour   (in   24-hour   time),    'iim'   is   minutes,   and      'ss'      is
seconds.      Leading     zeros   need   not   be   supplied.   Any   non-numeric   character
can   be   selected   for   delimiter   as   shown   in   examples   below,   using   the   PCOS
SSYS   (set   system)    command.

ss   04/15/82,13:12:45

ss   "0415   82",08:10:00

Time   is   initialized   to     00:00:00     at     s`/stem     startup.        1f     blanks     are
selected     for     delimiters,   as   in  the   second  example,   the  expression  must
be  put   in  quotes.

Errors

The  value   returned   in  R5   is  zero   if  the  clock  was  correctly  set.

8-71



Sets  the  system   date-clock.

lnput/Output  Parameters

lnput:                               RR8    =           address
RIO   =            length

Output:                           R5              =  error   status

Characteristics

The   input   'address'   points   to   an  address     in     the     caller's       data     area
which       contains       the       date.        The     input   'length'   gives  the   length   of
the   ASC11   string.

The   format   of   the   data   in   the   string,   except   for   the   delimiter,   must  be:

dd : mm : yyyy

where    'dd'    is   the   day,    'mm'   is   the   month,   and    'yyyy'    is   the   year;      lead-
ing     zeroes     need   not   be   supplied.

Any   non-numeric   character   may   be   used   in   place   of   the   colon,   as   shown   in
the   examples   for     SetTime   (73).

The   date   is   initialized   to  January  1,1982   at   system  startup.        lf     only
two  digits  are   input   for  the   year,   the   century   is   assumed   to   be   19.

Errors

ThevaluereturnedinR5iszero     if     and       only       if       the       date       was
correctly  set.

ASSEMBLER   USER   GUIDE



Bi5a5n   HTh,      :,Op        'Jer5,   2,Oh

bitte  Par,]meter   iri   hE;{   -Dhne   &-Zeii:heTi!

!g"er,tr,,J"e,, : , , 0
!ginriadres5e :  .  , 367e

fiTii.]hl   bytg5:  ,  ,  ,62

{0ß}367E         LD

{80}3684        CP

{00}3688         FtET

too)368fl        DI

{08}368t         CLRB

{00)368E        LSB

{08}569:        Ls
io)3694         LDP,

18>369a         LD

`Ü0)369fl        L8!.

{Ö0}369E         LD

{OO)36flo         EI

{80}.36Ä2         LDB

{88}.36Ä6          LDE.

{DO}36Äs        mm

{08)36f]fl         RET

{80}36flt        LD

tß0)36B£         CF'

{Ö8}3686         FiET

{80}3688        DI

{08)36Bfl        €LRB

{OO}36BC          LDB
no,36Cß        LB.

O>36C2         LDe.

_Ö)36e6         LD

{08)36CS         LB

toö)36«      EI
{OO>36CE          eF'E,

(00)3684        ,.lFt

{00}36D6         EX

(00}36DS         LDP.

{00).36BC         LD9.

{ß0}36ÖE         CflLF:

}8}36E:O           F{ET

{0:)0098,#2826

R10, #8

ULT

WI
R`H1

S!fÄ.'f,äffS:Fffßti„A

4B050:'9BÜ065

0P.mD008

Tti,u=----pft
-_t`

7;.'  J 4-.Ä;_

{OZ} 0828                          60090:28

t02)00£7

R12`RI

RL1,_to£)0ü6      _

F13,R1

lwI
RH7,qELOPLE9_...

FtL7,#2

to8)378E

{Ü:}0098,#28=6

R10,#10

lJLT

WI
RHI

RL| , {0:}0ÖZ9

Rll,ftl

RL1, {82} 882C

R12,R1

_Ri3,{0`2)OÖ:E
NIJI

t80'0884,#4

NE ,  {08} 3688

Ftll,RIZ

H7Ji8_?_)_E__
RL7,#2

too)370E

Ä11E'

60890227

S/,-._J./r

Ä11C

6mgo226      uCo4„,zt
flllD

?e86

6oo702m     //;  '/Ji„",.'  `:'!,   `e,.i£
CF02                   `--9

DFeE

9EÜs

tD050£980065  X  S C #t f,,.,. Ör4.,`,,~„.
OP,OfloooA

9E87

7C02

8t:18

60090:29            re~;     i'Gr@' )

flllE'

60090#C        ,,'ro-`   .`/#+,'
flll(:
610D02£E         ~+^:z  ,.    .  :fv.`¢dj)

7'to_6__-____________  _    _   __--

«818Ö8484Ö4
EE01

ÄDCB

6087üEi



;

j

i;

_r,

J

+

L'l

;-       `    :+

+    _    _.  =

-    -i    -ii
`.        _                               __                                      _:

_l_-_T_                   \        _

tl

-'J+
:+

=

;

---T
_._~

1                                         _       _;            !_

___-..---\

1                      _    -f   _

Jri,      1

"     r,!    -        '`

J
i-      ..       _

11
+

llt

IE_
;S

E

_..   i     `  .   :  `

i`'±+`
_'-j                                           _`L

+

="

i
"i:.j    -j

;

;

:`

_;  +  ;  _    J

1

`i;

=

lh11

1

1

']

;

i

1

1



THE   M20   SYSTEM   CALLS

Returns  the  system  time.

1nput/Output  Parameters

lnput:                              RR8   =            address
R10    =              1ength

Output:                          R5              =  error  status

75  GetTim.

Characteristics

This  call   returns   the  ASCIl   string  giving  the   system       time.          The     two
inputs       are       the       address     and  maximum  length  of  the   string,   which   is
stored   in   the  BASIC   data   area.

The   format   of  the   time   returned   is:

hh : mm : ss

where   'hh'   is   the  hour   (in   24-hour   time),    .m'      is       the       minutes,     and
'ss'      is     the   seconds.

There  will   be   leading   zeroes  to  make   each   field  2   characters   in     length,
and    the     character     separating    the  various   fields   for  the  time  will   be
that   used   in  the  last  call   to     'SetTime'.     The     system     initializes     the
separator  character  to   .:'.

Errors

lf  there  are  any  errors,   a   non-zero  value   is   returned     in     R5;       a     zero
is   returned  if  there  were  no  errors.

8-73



¥_:i-I

Returns  the  system  date.

lnput/Output  Parameters

lnput:                              RR8   =           address
R10   =            1ength

Output:                           R5              =  error   status

Characteristics

This   call   returns   the  AScll   string  giving  the   system       date.          The     two
inputs       are       the       address     and  maximum   length   of   the   string,   which   is
stored   in   the  BASIC   data   area.

The   format   of  the   returned  date   is:

dd : mm : yyyy

where    .dd'    is   the   day,    'mm'    is   the   month,   and    'yyyy'    is   the   year.

There  will   be   leading   zeroes  to  make   each   field  two  characters   in   length
and     the  character   separating  the  various     fields     for     the  date  will   be
that  used   in  the   last   call   to   'SetDate'.       The     system     initializes     the
separator  character  to   ' : ' .

Errors

lf  there  are   any  errors,   a   non-zero   value   is   returned     in     R5;
is   returned   if  there  were  no  errors.

ASSEMBLER    USER    GUIDE



THE   M20    SYSTEM   C

Calls   a   user   or   a   PCOS   utility   or   command.

1nput/Output  Parameters

lnput:                               RR14   =            stack  pointer

Output:                           R5                =  error   status

Characteristics

This   SC   allows   the   Assembler   programmer   to   invoke   from   his   programs   PCOS
utilities     and  other   utilities   resident  on   disk   or   in  memory.     The   input
to   RR14  points   to  an  area   in   the   stack  where   the   parameters   to  the     rou-
tine     being   called  have   been   stored.      Before   invoking  the   SC   77  the   user
must   prepare   his   parameters   in  the  stack   in   the   following  way:



As  far  as  the   "types"     are   concerned,   the   same   rules   apply  as   previously
stated     in   chapter   2   in   the   section  which   deals  which   the  PCOS   standard.
In  this   case   however   the   command   parameters   will     have     to     be     obtained
using     a   series   of   "push"es   rather   than  a   series   of   "pop"s.      The  parame-
ter  pointers  will   be  of  the  Z-8001   format.

The  following  table   illustrates   schematically  the     types     already     dealt
with   in  chapter   2.

Data   Types

Data                   Pointer
Category            Type                    Value                                 Description

null                          0                    %0000FFFF                       for   null   parameters

integer                 2                    segmented  ptr             integers   occupy   one   word

string                   3                   segmented   ptr            pointer     to       a       3-byte
descriptor:     1-byte     for
the     string       length       &
2-byte     unsegmented     ptr
to  the  actual   string

The   following   is   an   example   of   an     Assembler      source      file,      which,      (by
means   of   SC   77)   makes   use   of   the  PCOS   utility   "filenew",   which   allocates
a   certain   number   of   blocks   on   disk   under   the   name   of  a   given   file.

1n   practice,   it   is   a   question   of   invoking     from     an     assembler     utility,
that   which   can   be   invoked   from   PCOS   in   the   following   way:

fn   FILE,100

ASSEMBLER    USE



THE    M20    SYSTEM   CALLS

The   following   is  a   sequence   of  Assembler   instructions     to     be     used     for
preparing  the   stack  before  the   SC   77.

Push           @rrl4 ,#9ro0300
1da              rr2,cmd
ld               ptrcmd+2,r3
1da              rr2 ,ptrcmd+1
pushl       @rrl4,rr2
push           @rrl 4 ,#%0300
lda            rr2, filenam
ld              ptrl+2,r3
1da            rr2 ,ptrl+1
pushl       @rrl4,rr2
push           @rrl 4 ,#%0200
lda             rr2 ,nblock
pushl       @rrl4,rr2
push          @rrl4,#2
sc              #77

cmd

ptrcmd
filenam
ptrl
nblock

type  3(string)

store  off set

type  3(string)

store  off set

type  2(integer)

no.   of   parameters

no.   of   blocks

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in  R5.   1f  there  are
no  errors  a   zero  will   be  returned.

8-77



Disables  the   service   request   (SRQ)   interrupt.

1nput/Output  Parameters

lnput:                              there   are   no   input   parameters

Output:                           R5             =   error   status

Characteristics

The   statement   "ON   SRQ   GOSUB   0"   will   cause   the   system   call      1BsrQ0   to     be
executed;     this   system  call   will   c'isable  the   SR0   interrupt   (for     further
details     on     the     interrupt   system,   see   SC   79).

Errors

lf   the   system   does   not   have   an   lEEE   option   board,   R5   will   contain   a     Hex
OA.    If  there   are   no   errors,   a   zero   (0)   will   be   returned.

ASSEMBLER   USER   6UIDE     ^r,  ,
\



Enables   the  service   request   (SRQ)   interrupt.

lnput/Output  Parameters

lnput:                             there  are   no   input   parameters

Output:                          R5             =  error   status

Characteristics

The   statement   "ON   SRQ   GOSUB   <1ine   number>"   will   cause   the        system      call
lBsrQl      to     be     executed;      this   system   call   enables   the   SRQ   interrupt.

The   lEEE-488   interrupt     service     routine     will     set     the       global        flag
"srq_488"        (byte)        to     1      when   an   SRQ   interrupt   occurs.      (This   flag   is

stored   in   the   rnailbox   area).

This   flag  will   be   tested   by  the   interpreter  before   the  execution  of  each
source   statement   following   the  ON   SR0   GOSUB.    1f   set,    it   will   be   reset   by
the   interpreter,   and   the   subroutine   entered   (see   call   Grflnit   (SC   45)).

Errors

lf   the   system   does   not   have   an   IEEE   option   board,   R5   will   contain   a     Hex
OA.    lf   there   are   no   errors,   a   zero   (0)   will   be   returned.

8-79



Polls  a   specif ied   device   on  an   instrument   bus.

1nput/Output  Parameters

lnput:                        R8    =           talker   addr

Output:                       RR10          =  ptr   to   status
R5              = error   status

Characteristics

This   call   polls   the  device   specified,   within  a     serial     service     request
poll.   The   input   'talker  addr'   identifies   the  device.

The  call   tests   the  device  address,   reads   the     device     status     byte,     and
•  saves   it   in  an  address  pointed  to  by'ptr  to  status'.

Errors

lf   the   system   does   not   have   an   lEEE   option   board,   R5   will   contain   a     Hex
OA.         1f  the   talker   address   is   invalid   (ie.,   greater   than   OolE),   R5   will
contain   .09'.      1f   there   are   no   errors,   a   zero   (0)   will   be   returned.

\'\   ASSEMBLER   USER   6UIDE   `



THE   M20    SYSTEM    CALLS

Causes   a   remote   enable   (REN)   or   an   interface   clear   (1FC)   to   be   sent.

1nput/Output  Parameters

lnput:                    R8   =    _  operand

Output:                   R5            =   error   status

Characteristics

This   call   causes   the   remote   enable   (REN)   message   or   the   interface     clear
(1FC)     pulse     to     be     transmitted,   depending  upon  the   value   of  the   input
' operand '  .

1f   '0'   is   loaded   into   R8,   then   the   REN   message   is   sent   true;    if      '1'      is
loaded,   then  the   lFC   pulse   is   sent.

Errors

lf   the   system   does   not   have   an   lEEE   option   board,   R5   will   contain   a     Hex
OA.    1f  there   are   no   errors,   a   zero   (0)   will   be   returned.



Causes   the   remote   enable   (REN)   message   to   be   sent   false.

1nput/Output  Parameters

lnput:                              there   are   no   parameters

Output:                            R5             =    error   status

Characteristics

This   call   causes   the   remote     enable      (REN)      message     to     be     sent   false.

Errors

lf   the   system   does   not   have   an   lEEE   option   board,    R5   will   contain   a     Hex
OA.    If  there   are   no   errors,   a   zero   (0)   will   be   returned.

ASSEMBIER   USER   6UloE



THE   M20    SYSTEM   CAILS

Checks  the  address  and  then  causes   output   of   data   bytes.

1nput/Output  Paraieters

lnput:                          RR6   =           buffer   addr
R8      =            1istener   addr
R9     =           buffer   len,   in  bytes
R10   =            delimiter

Output:                      R5              =   error   status

Characteristics

Before   calling  the   driver,   the  BASIC     interpreter       will       transfer     the
output       bytes       to       a     buffer,      from     which     they  will   be   sequentially
transferred  by  the  driver.

This   call   will   test   the   listener   address     in     R8;      if     less     than     OolF,
writes     listener  address,   if  specified.

The   input   to   RIO   is   zero   if     EN0     is     to     be     specified     as     data-stream
delimiter,      and     1      if     it     is     not     (CR,     END     asdata-streamdelimiter
sequence).1f  there  are  any  output  bytes  for  transfer,     writes     them     to
bus.   with   ATN   false.

Errors

lf   the   system   does   not   have   an   lEEE   option   board,   F`5   will   contain  a     Hex
OA.      1f     the     listener     address     in     Rs     is  greater   than  OolF,   this   call
returns  an  error   code  of  09.      lf  there  are  no  errors,   a     zero     (0)     will
be   returned.

8-®3



Outputs   commands   (optional)   and  writes   data   bytes   (optional).

1nput/Output  Parameters

lnput:                            RR6    =            numval   addr
R8      =          comlist   length
R9      =         numval   length
RR10 =           comlist   addr

Output:                      R5              =  error   status

Characteristics

lf   there   is   a   command   list,   asserts   ATN   and   outputs   commands.      If     there
are     any     data   bytes   to   be   output,   writes   them   to   bus   with   ATN   false.

The   input   'comlist   addr'   points   to   the     address     of     the     command     list.
This     list,   if   present,   is   stored  as  a   sequence   of  bytes,   2   to  the  word.
The   input    'comlist      length'      is     the     command     list   length     in     15     1ow-
order     bits;   high-order   bit:   1    if   "@"   option   (END   sent   with   last   byte   of
data   as   statement   delimiter)   specified,      0   if     not      (END     with     CR     ter-
minates   data).

Theinput   'numvaladdr'   points     to       the       address       of       the       list     of
numeric   values   .    1t,   too,   is   stored  as  a   sequence   of   bytes,   2   to   a   word.
The   input   'numval   length'   is   0   if   not   specified.

Errors

lf   the   system   does   iiot   have   an.1EEE   option   board,   R5   will   contain   a     Hex
OA.    If  there   are   no   errors,   a   zero   (0)   will   be   returned.

ASSEMBLER   USER   6lllDE  `4a:`



€   THE   M20   S
TEM   CALL

Places  bytes   received,   into  a  buffer.

1nput/Output  Parameters

lnput:                      R7      =         buffer   length
R8     =-         talker   addr
R9      =          1istener   addr
RR10 =           buffer   addr

Output: R5            =    error   status
R7             =    number   of   bytes   not   read

Characteristics

This   procedure   calls     IBLinpt.      Both     IBlnpt     and     lBLinpt     place     bytes
received     sequentially     f rom  a   driver   into  a   single  buffer.     They   differ
in   that,   for   IBlnpt,   the  BASIC   interpreter  transfers  the  buffer   contents
to     the  variables   in  the   variable   list  provided  by  the   user;   for   lBLinpt
the  user   specifies  the  buffer   for  a  single   line   of  data.

On   entry,   the   'buffer   length'    (R7)   is  given   in     bytes;      on       exit,     this
represents     the     number   of   bytes   not   read   (buffer   length  minus   number   of
bytes   read).      The   'buffer   addr'   points   to  the  buffer  which  will     receive
the     data      bytes.      The      'talker   addr'    (R8)   and   'listener   addr'    (R9)   will
both   be   OolF   if   not   specified.

Errors

The   error   codes   which   can   be   returned   in   R5   are:



_IIliiil-
ERROR    CODE

03

MEANING

1nvalid   termination   of   input   bytestream.
The   two   valid   cases   are:
-   the   number   of   data   bytes   received     equals

the   value   provided   in   R7   (string   variable
length,   in  bytes).   The  last  data   byte     is
accompanied      by     the     END     condition    (E01
true,   ATN   false).

-  the  number   of   data   bytes   received     equals
the   value   provided   in   R7   (string   variable
length,   in   bytes).   The   last   data   byte     is
followed   by  a      CR,    LF      pair     with   the   END
condition   accompanying   the   LF.

Talker   or  Listener   address   greater   than  lF.

1EEE   board   not   present.

15   second     polling      loop      (    for      'byte   in.,
'byte     out'    ,        or        'input     buffer     empty'

condition)   timed   out;   handshake     could     not
be   completed   within   15   seconds.

1f  there   are   no   errors,   a   zero   (0)   will   be   returned.



THE    M20    SYSTEM   CALLS
•`stf:,

Places  bytes   received   into  a  buffer   as  a  single   line  of  data.

1nput/Output  Parameters

lnput:                 R7     =  _buffer  length
R8     =          talker   addr
R9     +         1istener   addr
RR10=-       __buffer   addr

Output : R5            =    error   status
R7   ---- =    number   of   bytes   not   read

Characteristics

Both   lBLinpt  and   lBlnpt   place   bytes   received   sequentially   from     a  driver
into       a       single     buffer.       They     differ     inthat,   for   lBLinpttheuser
specifies   the  buffer   for   a   single   line   of   data;   for     lBlnpt,      the     BASIC
interpreter     transfers  the  buffer  contents  to  the  variables   in  the  vari-
able   list  provided  by  the  user.

On   entry,   the   'buffer   length'    (R7)   is   given   in     bytes;      on       exit,      this
represents     the     number  of  bytes   not   read   (buffer   length  minus   number   of
bytes   not   read).     The   'buffer   addr'   points     to     the    buffer     which     will
receive     the   data   bytes.   The   'talker  addr'    (R8)   and   'listener   addr'    (R9)
will   both  be   OolF   if   not   specified.

Errors

The   error   codes   which   can   be   returned   in   R5   are:

8-87



_ illlm hlllllllll
ERROR    CODE

__--------
03

MEANING

1nvalid   termination   of   input   bytestream.
The   two   valid   cases   are:
-   the  number   of   data   bytes   received     equals

the   value   provided   in   R7   (string   variable
length,   in   bytes).   The   last   data   byte     is
accompanied      by     the      END      condition    (E01
true,    ATN   false).

-   the  number   of   data   bytes   received     equals
the   value   provided   in   R7   (string   variable
length,   in   bytes).   The   last   data   byte     is
followed   by   a      CR,    LF      pair      with   the   END
condition   accompanying   the   LF.

Talker   or   Listener   address   greater   than   lF.

1EEE   board   not   present.

15   second     polling      loop      (   for      'byte   in',
'byte     out'    ,        or        'input     buffer     empty'
condition)   timed   out;   handshake     could     not
be   completed   within   15   seconds.

1f   there   are   no   errors,   a   zero   (0)   will   be   returned.

ASSEMBLER   USER   GU1



THE   M20    SYSTEM   CALLS

Outputs   coiTmands   (optional)   and   reads   data   bytes   (optional).

1nput/Output  Parameters

lnput:                         F`R6   =          buffer   addr
R8    -comlist  length
R9   -_buffer  len,  in bytes
RR10=          comlist   addr

Output:                      R5              =  error   status

Characteristics

lf   there   is  a   comand   list.   asserts  ATN  and   outputs   commands.        lt     then
reads     the     assigned     number   of  bytes.   and   places  them   sequentially   in  a
buffer.

The   input   'comlist  addr'   points  to  the     address     of     the     comand     list.
This   list,   if  present,   is  stored  as  a   sequence  of  bytes,   2  to  the  word.

The   input   'comlist     length'      is     the     comand     list   length     in     15     1ow-
order  bits;   high-order  bit   is  always   zero   (0).

The   input   'buffer   addr'   points   to  the  buffer  which       will       receive     the
data       bytes.        The   input   'buffer   len,   in  bytes'   indicates  the  number   of
bytes   to  be   read.

Errors

lf   the   system  does   not   have  an   (EEE  option   board,   R5  will   contain  a     Hex
OA.    lf   any   handshake   is   not   completed  within   15   seconds,   R5   will   contain
Hex   '0008'.      1f  there   are   no  errors,   a   zero   (0)   will   be   returned.

8-89



Displays   standard  error   message.

1nput/Output  Parameters

lnput:                        RH5   =            parameter   number
RL5  =           error   code

Output:                   there  are   no  outputs

Characteristics

This   procedure   is   only     called     if     there     are     errors.          The       routine
displays     the     message      'Error   nn.    in   parameter   xx'   where     nn     is   one   of
the   standard   error   codes  and   xx   is     the     parameter       number     passed       in
RH5.      1f   xx   is   00   then   only  the   message   'Error   nn'    is   displayed.

Note :

lf   theEPRINTcommand   is      resident,      then     an        error     message     will     be
displayed.

8-% ASSEMBLER   USER   6UIDE



THE   M20   SYSTEM   CALLS

Displays  a  string  message.

3,O=-_=-

1nput/Output  Parameters

lnput:                       RR12+    _address

Output:                     R5             =  error   status

Characteristics

This   routine  displays  a  string  message.   The  string     must     be     terminated
with   a   null   (0)   byte.

The  message  may  include  any  number   of  carriage   returns,   but   note   that     a
linefeed     will     be  automatically  displayed  after  each  carriage   return   in
the  string.

The  input   'address'   is  the  address   of  the  string.

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in     R5.       1f     there
are  no  errors,   a   zero   (0)   will   be   returned.

8-91



Does   a   CR   and   a   LF.

tnput/Output  Paraiieters

lnput:                           there   are   no   parameters

Output:                        R5             =   error   status

Characteristics

This   routine  will   do  a   carriage   return  and  a   line   feed.        There     are     no
parameters.

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in     R5.       If     there
are   no  errors,   a   zero   (0)   will   be   returned.

8-92 ASSEMBLER    USER   GUIDE



Di5,]5m   fflTri,       i`,0[,         lJer5,    !,Ori

:,itta   F`,]``,]metEr   iri   he:.:   -Öhrie   Ä-Zai;:heri!

;ai3nientri"mer :  !  , £

J,!,!irinadre's5E :  ,  , ae7,.:

Ärii,]hl   E.'y'tes:  ,,,. :
•¢86}8E7C           F'UEHL

{06)8E7E        Lm

{86>8E84         !:aLR

:06}8E86          F'OF'L

:06}8E88          RET

ui5,]5ni   mTh,       2,OFl

L

#O__fi+t
--'.{-knpk#------

ab  * €e'-jtwdwdn`mai¢If

§RR14 ,F:R12                                       91E{:

RF'l'1£ ,  {:0:} 2154                          760€8200£1.54

t: 0'i`\ 80D,]                                         D05E'

RF`:12 , §RR14                                        9.5Ei:`

ffifffiE

'Jer5,   :,Oh

iitt!   F',]i`,]metei`   iri   he}`'   -ohrie   &-Zeii:hen!

iegüeTitTiij»mEr :  ,  , 6

!,egiriri,]dres5e :  ,  , 9ddiJ

Änzahl   t,yteE:  ,  ,  , le
{.C£,}8BB0          F'U5HL

{06.\BDD2          F'U5H

{06}.8BB4          LDE.

{06;8m£,         TESTE,

{:06>8DBa          ,jR

h{86}88m      cfiLR'
{06}BDDC         "C

{06:,`BDDE           CF.B

{:06}8DE2          ,jF:

{86>8DE4        np,
•::g6}8DE,±           £ÄLF:

06}8DE8          ,JFi

O6}aDEÄ          F'oF

{06)8DEC          F'OPL

{Ü6}8DEE          Ä'ET

iF:R14 , FiFil:                                    91E(:

§RR.14 , F`'?                                          93E7

F:L7 , iRF;1:                                       £ÖCF

RL7                                                    8£F4

Eg[  {06}8BEfi                               E6Ö8

o/c*            Dm l

F:1.3,#1            '2ti     v',:el                    fi9D0

Fl'L7 , #13                                         moF.oDm

NE,  'n6)8DD4                             EEFS

F{L7, #10                                         CFü

{86}8E9fl                                      Dm?

{06)8884                            ESF5

R7 jRR'14                                     97E7

R'R1:, 5RF{14                                       95EC

9EO8

}i5,]!a}   »Th,       !,OF,         !y!ers,    £,Dh

E,itte   F'.]``~]»)eter   iTi   hE;{   -ohrie   ,£-Zei,:rieTi!

5eqBgritriijme`` :  ,  , £

P,e,!iT!Ti,]dressg:„8e9,]

Rnz-]hl   b}'te5 :  ,  ,  , i£.

tof')8E9ß         :`LIBi

]6}8#E        LDH

D6}BEfl!         t:üLL
•\i]6}SERS        L"

(06}8EÄ`:         flDB

{86}8EP,Ö          RET

F:15 , #:£                                         03ÖF801i`

eÄ`R14j R8., #14                              1!:E988m
•::l]6)8E,fl+

R8 , SRF(14 , #14

R'15,#28

5F.0086008P.fl4

1eEl88ßD

810FSÖIC

9EÜ8





THE   M20   SYSTEM   CALLS

Displays  a  byte   in   Hex.

1nput/Output  Paradeters

lnput:                R12 =-byte

Output:                   R5             =   error   status

O/;ft J B

Characteristics

The  byte   supplied   in   the   lower   half   of   R12   is     displayed       as       two     hex
digits.

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in     R5.       If    There
are   no  errors,   a   zero   (0)   will   be   returned.

8-93



Displays   a   word   in   hex.

1nput/Output  Parameters

lnput:                                      R12  =             word

Output:                                R5            =    error   status

Characteristics

This   routinedisplaysthe       16-bit        number        in        R12        as        four        hex
digits.

Errors

lf  there  are  any  errors,   the  status   code   is   returned   in     R5.        1f     there
are  no   errors,   a   zero   (0)   will   be   returned.

ASSEMBLER   USER   GUIDE



THE   M20   SYSTEM   CALLS

•1         1   ...-. *:,'

Displays  a   long  word   in   hexadecimal.

1nput/Output  Parameters

lnput:                            RR12    =            1ong   word

Output:                     R5                = error   status

Characteristics

The   long  word   supplied   in   RR12   1s   displayed   as   eight   hex  digits.

Errors

lf  there  are  any  errors,   the  status  code  is   returned  in     R5.       If    there
are  no  errors,   a   zero   (0)   will   be   returned.

8-95



Displays   a  .number   as   an   unsigned   decimal   integer.

1nput/Output  Parameters

lnput:                   R12  -integer
R13   =           field   width

Output:                      R5              =   error   status

Characteristics

The   number   in   R12   is   displayed   as      an      unsigned     decimal      integer.         R13
specif ies  the   f ield  width   for   display.

The  display  is   right-justified   in  the   field,   with  leading  zeroes  changed
to  spaces.

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in     R5.        1f     there
are   no   errors,   a   zero   (0)   will   be   returned.

ASSEMBLER   US



THE   M20    SYSTEM   CALLS

Displays   a   number   as   an   unsigned   decimal   integer.

1nput/Output  ParaAeters

lnput:                    RR12-1ong  integer

Output:                     R5           =  error   status

1.1

Characteristics

The   number   supplied   in      RR12      is     displayed     as      an        unsigned        decimal
integer,   left-justified  with   leading  zeroes  omitted.

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in  R.     If  there  are
no   errors,   a   zero   (0)   will   be   returned.

8-97



Parses  a   file   or   a   volume   name.

tnput/Output  Parameters

lnput :

Output:

R9    +_string  length
RR10= _string  address
RR12 =          names   record   address

@RR12         =names    record
R7                 =  volume   number
R5      .        =error   status

Characteristics

This   call   takes  a   file   identifier   of  the   form

"<volname> ' / ' <volpswd> '  :  ' <f i lename> ' / ' <f i lepswd>"

and   parses   it   into   its   various   components.   A  drive   unit   is   ac;eptable   as
<volname>.

Each   component   is   placed   into   the   appropriate   compartment   of     the     names
record  as   follows:

volname    :   14   byte   array
volpswd   :   14   byte   array
filename    :   14   byte   array
filepswd   :   14   byte   array

The  input  string  length  is  the  length    of     the     file     identifier     string
(this     includes     the     volume     identifier).   which   in   turn   is   input   in  the
address   specified   in   RR10.

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in     R5.        1f     there
are  no  errors,   a   zero   (0)   will   be   returned.

8_98



Disasü   ÄTh[       2,8D         [Jer5,    £`Oh

itte   F'.]raneter   iri  hg).:   -   ohnE  fi-Zeif:hen!

!göeritTiijmer :  ,  , 6

BEgimadrEsse : , , 9f f2

Ärizahl   byte5 :  .  , , 2.]

(06}9FF2         LDK

{86}9FF4       L»

{06)PFFÄ         LD

{8£.}9FFE         CPP,

t86)Ä00=        ,JR

t06)ß004        LDL

{86)fl006         INC

{[i6}AC89         LDL

{06)Äsm        LD

{C6}fl80E         DE€

(06)F\Ö10         ,JR

]6}AB1:          INC

]6}A814         JR

\J6}fl816         CALL

{06}flolc         RET

Ä'9 , # 1

RR`10 ,  {02) 1E86

R8 , #96

§F\'h'10,#255

EQ,  {06)RB0E

RR12,Fi'R10

R13 , #2

RR12,§RR12

RFtl2 (#56)  [ F{9

R8 , #6

LE ,  {06}A016

R11, #6

B#;FE

s,f ># 9!N





THE   M20   SYSTEM   CALLS

Forces   a   check   of   disk   volumes

1nput/Output  Parameters

lnput:                        there  are  no  parameters

Output:                      R5              =   error   status

l--..-, _ . `-..` .-l.r     .-.- :  _ ,.-..,, ';äiii:iä

.                        .         _..

Characteristics

There  are  no   input   registers   for     this     call.        All     volumes     are   forced
to  read  their  verification  codes  on  their  access.

Errors '

If  there  are  any  errors,   the  status  code   is   returned   in     R5.        1f     there
are  no  errors,   a   zero   (0)   will   be   returned.

8-9,



Searches   on  a   specified  disk   for  a   specified   file   name.

Input/Output  Paraleters

lnput :
R6      =       __drive
R7      =           search  mode

R3"=::T:t:ointeräg4#|,          ,
RR12-_namepointer

Output : R9              =  length   of   output   filename
RR10-file  pointer
RR12        -=  modified
F{5              =  error   status

Characteristics

This   call   searches   on  a   disk   for   a   file   name   supplied  by  the     user.      The
file   name   may   contain   wild   card   characters.

The   input     called   'drive'   identifies     the   drive   to  be   searched   (input     a
'-1'   for   the   current   drive).   The   input   'search  mode'    is   either  a   '1'   for
a   search   fromthebeginning,   ora      '0'      for     a       search     fromthe       last
file       found.        The     input      'length'      is   the   length   of  the   file   name,   in
bytes.     Tosearchfor   any     file,        input       a       zero   length.

The   input   'file  pointer'   points   to  the   memory   location  where       the     name
of       the     file,      if   found,   will   be  written.     The   input   'name   pointer'   is
the  address  where  the   input  string     will     be     stored.      1f     the     file     is
found,   the  address   of   the     name     of   the     file     is   returned   in   RR10.     The
content  of  the   register   RR12   is  modified  by  the  Operating   System.

ACAt~*          Q`RIC     +  f ;lepcl`ntFF                kciib.n.i.'./fh+,`i}C`/.   `Sc:i.

R1.`|q    +   name   po`inJ(r
Errors

1f  there  are  any  errors,   the  status  code     is   returned     in     R5.       lf     the
file   is   found,   a   zero   (0)   will   be   returned.

NSEMslER   ÜSER  6UIDE



9¥  m*5izo

Returns   maximum   free   heap   size

1nput/Output  Parameters

lnput:                               there   are   no   parameters

Output:                                R8               =   size
R5              =   error   status

Characteristics

This   call   returns  the  size  of   the   largest   free   heap  block  in   the  current
segment.   Size   is   returned   in  bytes.

!::§:;:::t::e::::;:::a:i::!::ri:#i#¥:?::::::!i:mse:£:ntd:::be:]:r::::
A   simple   way  to  change   the   segment   number   for   a   program   is   to     do     a      SC
121   "BrandNewAbsolute"   with   a   block   length   of   0.

¢2~..A  fll-.    £f3z~pä`.   &

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in     R5.        1f     there
are  no  errors,   a   zero   (0)   will   be   returned.



Sets  a   specified   volume   for  the   next   access.

1nput/Output  Parameters

lnput:                  R7   -vol  number

Output:                   R5             =  error   status

Characteristics

This   call   sets   the   volume     for     the     next       access.        The        input        'vol
number'   is   the   volume   number   to   be   used   for   the   next   access.

Errors

lf   there   are   any  errors,   the  status   code   is   returned   in     R5.        1f     there
are   no   errors,   a   zero   (0)   will   be   returned.

L-_,__„_.=±===...T=£ASSEt.[HU5ER-6uibE



THE   M20   SYSTEM   CALLS

1.,.

Allocates  a  block  at  a  specified  address.

1nput/Output  Parameters

lnput:                          RR8  =--address  of  block  pointer
R10+       1ength
@RR9-_blockpointer

Output:                          R5            =   error   status

Characteristics

This   call   is   similar   to   Newsamesegment   (SC   33)   except     that     the       block
allocated     will       be       at       a   specified  address.   The   input   address   (RR8)
should  be   the  address   of  a   long   (4-byte)   memory  location;   this   is     where
the       desired         address     is     stored.     The   input   to   R10   is  the   number   of
bytes   requested,   and   must   be   even.

On   exit   from  this   call,   the  memory  location   that     RRs       points     to     will
contain    a     32-bit     address     of    the     actual     block    allocated.        If  the
requested  value   is   too  close  to  the  end  of  a  previous     block,   the  actual
value     may   be   two  bytes   lower   than  the   requested   value,   but     will     still
include     the     requested     length.        If     the       space     requested       is       not
available,     a     nil-pointer   (hex   FFFFFFFF)   will   be   returned   in  the  memory
location   that   RRs   points   to,   but   no  error  will   be   returned   in   R5.

1t   is   important   to   remember   that   RRs   does   not   contain   the     memory     block
address  specified.

This   call   allocates   blocks   in     the     "Samesegment".      This     is     segiTient     2
unless     the     program  has   done   a   "BrandNewAbsolute"   system   call,    in  which
case  the   segment   number   is   that   specif ied   in     the     most     recent     "Brand-
NewAbsolute".   A   simple   way   to   change  the   segment   number   for   a   program   is
to   do   a   SC   121    "BrandNewAbsolute"   with   a   block   length   of   0.
This   call   is  a   subset   of   system   call   121   "BrandNewAbsolute".   It   has   been
maintained   for   compatibility  with  preceding   releases.

Errors

lf  there  are  any  errors,   the  status  code   is   returned  in     R5.        1f     there
are  no  errors,   a   zero   (0)   will   be   returned.

8-"3



Returris  the   length   of  the   input   string.

lnput/Output  Parameters

lnput:                                   RR12 =           pointer

Output:                                 R7                =   1ength
R5              =  error   status

Characteristics

This   call   returns   the   length  of  the   input   string.      The     input      'pointer'
points     to  the  string;   the  output   in  R7   is  the   length   read   (until   a   null
encountered,   or   14,   if   no   null   in   that   length).

Errors

lf  there  are  any  errors,   the  status   code   is   returned   in  R5.   lf  there  are
no  errors,   a   zero   (0)   will   be   returned.

„0<(.        r,`L`b+`        ,.cl     `r-         (r-üL~~`.r_,`

ASSEMBLER    IISER   GUIDE        `



•.-==

Tl+E   M20   SYSTEM   CALLS

i¥F._,-:_+J

Returns  the  nurrber   of   free  sectors  on  the  disk.

1nput/Output  Paraleters

lnput:                     R7    =            volume   number

Output:                  RRIO          =  num  of   sectors
R5              =  error   status

Ih--,I

Characteristics

This  call   returns  the  number  of  sectors   that  are  available     for     use     on
the     disk.      The   input   'volume   number'   is  the   volume   to  be  checked   (enter
-1   for   the  current   volume).

The  number   of   sectors   that   are   free   on  the   volume  will     be     returned     in
RRIO.

Errors

lf  there  are  any  errors,   the  status  code  is   returned  in       R5.     lf    there
are  no  errors,   a   zero   (0)   will   be   returned.



Reboots   (initializes)   the  system.

1nput/Output  Parameters

lnput:                      this   call   has   no  parameters

Output:                    R5             =   error   status

Characteristics

This   system  call   can   be   used  to   reboot     the     system,      exactly       as     does
pressing     the     blue     shift     plus     reset   keys.   1n  other  words,   the   system
reboots,   but  bypasses  the  diagnostic   checks.

Errors

There  are  no  error  checks  with  this  call.   If  an   error   occurs,   the  status
code     is     returned     in     R5.      1f     there  are   no   errors,   a   zero   (0)   will   be
returned .

8-106 ASSEMBLER    USER    GUIDE



THE   M20   SYSTEM   CALIS

_____            .        ::_:.      _____

Returns  the  caller  to  segmented  system  mode.

1nput/Output  Paraneters

lnput:                       this   call   has   no  parameters

Output :
R5            =   error   status

Characteristics

This  call   will   return  the  caller   to  the  segmented     system    mode,   regard-
less  of  which  mode  the  system   is   in.

Errors

There  are  no  error   checks  with  this     call.        If     an     error     occurs,     the
status     code     will   be   returned  in  R5.   If  there  are  no  errors,   a   zero   (0)
will   be   returned.

8-107



_      __:_..        HH

109 Sürclo.vTd

Searches   the  system  device   table   for   a  device   name.

Input/Output  Para-ters

lnput:                     RR10|    _ptr   to  device  name
R9      =         device  name   length

Output :
FiL5            =   entry   number
RH5            =   device  type
RF{8           =   ptr   table   entry
R5             =  error  status

Characteristics

This   command   searches   the   system   device   table   for   the   device   named.     The
input      `ptr   to  device   name'   is  the   address  where  the   first  ASC11   charac-
ter  of  the  name   is   stored;   the   input   'device   name   length`   is   the     number
of  bytes   in  the  name.      1f  the  call   f inds  the  device  name,   it   returns  the
entry  number   of   the   device   in   RL5   and   the   device   type   in   Fm5   (1   =     Read,
2  =  Write,   3  =  Read/Write);   it  also  returns  a  pointer   to  the   first  entry
in  the  particular   device   table   in   RR8.

EXAMPLE :

table  pointer     DSL
devici  name           DDB

ld
lda
SC
test
jr
ldl

1
„cons"

r9 , #4
rrl0,device   name
#109
r5
nz,command   err
table_poinEer,rr8

search  devtab  string  1ength
search-devtab  string  pointer

name   not   found

Errors

lf   the  device   is   not   found,   a  Hex  FFFF   (nil)   is   returned   in   R5.

ASSEMBLER    USER   GUIDE



THE   M20    SYSTEM   CALLS

IIIF,,__--..±:
11t  Ct

Enables  or  disables   the  display  of  special   control   characters.

1nput/Output  Parameters

lnput :                         Rs                        on/off   (nonzero/zero)

Output                       there   is  no  output

Characteristics

This  system  call   will   enable  the  display  of   special     control     characters
if  a   nonzero  value   is   input   to   R8.    lf  Rs  contains   zero,   then  the   display
of  special   control   characters   is  disabled.

For  a   list  of  special   control  characters  and  their   respective    character
font   definitions   see   the   "M20   PCOS   User   Guide".

Errors

No  errors  are   returned.

8-109



Closes  any  existing   windows   from  2   to   16.

lnput/Output  Parameters

This   call   has   no   parameters

Characteristics

This   call   will   close   all   existing  windows   except   for   window  1.

Errors

No  errors  are   returned.

LER   USER   6UIDE



THE   M20    SYSTEM   CALLS

Sets  the  state  of  both  the  shift  lock  and  the  cursor   lock  flags.

1nput/Output  Parameters

lnput:                R6      =           integer  flag

Output:               R7              =    previous   flag
R5            =   error  status

Characteristics

The  "integer   flag"   input   in  R6   is   in   the  range  0-3  and     sets     the     shift
lock      (for     the     alpha     keys   on  the  alphanumeric   keypad)   and   cursor   lock
(for   the   numeric   keypad)   as   follows:

0  =  Both  f lags   reset

1   =  Shift   lock  on  and   cursor   lock  off

2  =  Shift   lock   off  and   cursor   lock  on

3   =  Both   flags   set

Note:   The   cursor   lock  condition   can  also  be   obtained  with   the   key  combi-
nation     "Control   /",   while   the   shift   lock   with  the  key  combination   "Com-
mand   /".

Errors

lf  there  are  any  errors  the  status   is   returned   in   R5.   If     there    are     no
errors,   a   zero  will   be   returned   in   R5.

8-111

•,,,,,,,,,,,,.---'"T±



I    ,.ä.-*.l
Clears   a   rectan.gle   of   text   in   the   current   window.

tnput/Output  Parameters

lnput:                R10    -column   (1eft  edge  of  cleared   rectangle)
R11    -row   (top   row  of  cleared  rectangle)
R12    _  column  count   (width  of  rectangle)
R13    -_  row  count   (height  of  rectangle)

Output:               R5               =   error   status

Characteristics

ClearText   simply  clears   the   specif ied   rectangle     to     the     current     back-
ground   colour   of   the   window.    ln  a   colour   system,   ClearText   always   clears
all   screen   planes   in   the     specified   rectangle,   which   have     corresponding
bits   set   in   the   Colour   Plane   Mask   parameter   (see   ScrollText   SC   116).

1n   this   system   call,   the   Colour   Plane   Mask   parameter   is     set     to     7,      so
that     a     complete     clear   of  the   rectangle   is   done,   no   matter  what   system
this   is  executed   on.

Therangeof   acolumnparameteris     from       1        to        the     width       of     the
current  window,   and  the   range   of  a   row  parameter   is   from   1   to   the   number
of   text   lines   in   a   window,   i.e.    :

1    <=   Column   +  Column   count   -1    <=   width   of   window,    and

1   <=   Row   +   Row   count   -   1   <=   number   of   text   lines   in   the   window

Errors

The   ranges   of  the  above   parameters   are   checked.     An   error   is   returned   in
R5   if  the   specified   rectangles  are   not   entirely  within  the  window.

8_11_2 ASSEMBLER   USER   GUIDE          '`=:



THE   M20    SYSTEM   CALLS

iiLi-uumzH
---_--i<`.L_

Copies   a   rectangle   of   text   characters   in  a  window  to  another   position   of
the   same   window.

1nput/Output  Parameters

R6       =             colour   plane   mask
R7     -  1ogical   function   (0  for  normal   copy)
R8    _  source  column  (left  edge  of  source)
R9    -_  source  row  (top  row  of  source)
R10  -  destination  column   (left  edge  of  destination)
R11   -  destination  row  (top  row  of  destination)
R12  -_   column  count   (width  of  rectangle)
R13    =_           row   count   (height   of   rectangle)

Output:               R5              =    error   status

Characteristics

ScrollText   is   used   for   copying  a   rectangular   block     of     text     from
porticm     of     a   screen  window  to  another.      (Note  that  this   cannot  be
for   copying   from  one   window     to        another        window.)      The        source
destination       areas     nüy  overlap;      in  this   case,   copying   is   done   in
a  way  that   the  overlapped  area   is     copied   last:     the     destination
be    a     true     copy  of  the  the  original   source,   even  though  the   source
been  overwritten.

The  values   for   the   ''logical   function"   input   in   R7  are:

Copy   text

XOR   (exclusive   OR)   source  with   destination

AND   source   with   destination

COM:   Complement   destination,   no   copy

OR   source  with  destination

lNVERT:   Complement   text,    copy

The   "colour   plane   mask"   parameter   determines     which     memory     planes     are

8-113



affected     by  the   ScrollText   call.   1t  only  applies  when   logical   functions
1,   3,   or   5  are   used,   otherwise   this   parameter   is   ignored,   and   its     value
is     preserved.      This     contains  a   bit   for   each  memory  plane   to   be  written
in:   bit  0  denotes   the   first   16K  block  of  screen  memory,     bit     1     denotes
the     second     16K     block     (in     4-colour     and     8-colour   sytems),   and   bit   2
denotes   the   third   block  used   in   the   8-colour   system.     Bits     higher     than
appropriate   for  a   particular   system  will   be  ignored:   for   example,   bits   1
and   2   will   be   ignored   on   monochrome   hardware.

Any   program  which   does   not   make   use   of     colour      (i.e.      which     only     uses
colours     0     and     1)     should     use     the   value   1   for   the   .'colour   plane   msk
parameter";   this  will   prevent  writing   in  the   second     (or     third)     screen
planes   of   a   colour   system,    if   the   XOR   or   COM   functions   are   used.

On  the   other   hand,   programs  which   do   use   colours     other     than     0     and     1
should   use   values   3   (bits   0  and   1)   for   a   4-colour   system,   and   7   (bits   0,
1,   and  2)   for   an  8-colour  system   (actually,   7  may  be   used   for     all     sys-
tems,     in     this     case,     the  apparent   effect  of  certain   logical   functions
will   vary  between     different  types   of   display).

1f   the   logical   function   is   0,   2  or   4,   ScrollText     will     obey     the       same
convention      regarding     the   number   of   screen   memory   planes   written   as   the
screen  text  and     graphics     driver:      e.g.    if   the   foreground       colour       is
1        and     the   background   is   0,   only  the   first   screen   memory   plane  will   be
written   in.

Therangeof   acolumnparameter   is     from       1        to        the     width       of     the
current   window,   and  the   range   of  a   row   parameter   is   f rom   1   to   the   number
of   text   lines   in   a   window,   i.e.    :

1   <=   Column   +   Column   count   -1   <=   width   of   window,    and

1    <=   Row   +   Row   count   -   1   <=   number   of   text   lines   in   the   window.

Errors

The   ranges   of   the   above   parameters   are   checked     by     these     system   calls;
an  error   is   returned  if  the  specified   rectangles  are   not   entirely  within
thewindow.      No   clipping     is     done     the     rectangles     specified     must     be
entirely   within   the   window.

ASSEMBLER    USER    GUIDE



Returns   the  current   default   volume   number.

"`"-t_vdq

1nput/Output  Parameters

lnput:                         F{R12    =       --pointer   to   volume   identifier   buffer
R6        =            ö`uffer   size

Output:                      R7                =     size   of   volume   identifier
R5               =     error   status

Characteristics

This  call   returns  the  current  default   volume   identifier     in     the    buffer
pointed   to   by   RR12.

Errors

lf  there  are  any  errors,   the  status   code   is   returned   in   R5.   If  there  are
no  errors,   a   zero   (0)   will   be   returned.

:n`,_       Civt)lvrnc.  Sci`,:'

LDA     RR`12`/   oLob~
LD        R`£,#264
sc#    113
OR-            R5-lRS

*DD          R13,R:/



A11ocates  a   block   of   bytes   from   heap.

1nput/Output  Parameters

lnput :                       BB|=-add_ress  of block pointer-#?3--g#p+?:e4„"a/¥t£-J±#rz
FHo-\e;rrf t+h                          |ikLAdrGss e  ;ddpfr_S_hhf__ _

output:                  3:R8= ::::: ;:::::r        riL24*4d=¢4e€44;tff`£j#=*S-

Characteristics

This   call   allocates   a   block  of  bytes   from   the   heap,   returning  a     pointer
to     the     location   of  the   first  byte   of   the   block.     The   input   "address   of
block   pointer"   is   the   address   of   a   long   (4byte)      memory     location,      that
is,   the   address   where   'New'   stores   the   block.      The   input    'length'    is   the
number   of   bytes   to  be   allocated.

EXAMPLE :

addptr
length

LDA

LD

SC

LDL

DSLI

ASS16N    ...

RR8 ,addptr
R10 , #1 engt h
#120
RR6 ,@RR8

1n   this   example,   RR6   contains   the  block  starting  address.    lf   the       block
cannot     be     allocated,@RRs   contains   a   nil   pointer   (hex   FFFFFFFF),   but   no
error   will   be   returned   in   R5.

Errors

lf  there  are  any  errors,   the  status   code   is   returned   in  R5.   1f  there  are
no  errors,   a   zero   (0)   is   returned.

_--        i= --.----__-=_-_                   _

ASSEMBLER   USER   GU10E



THE   M20    SYSTEM   CALIS

Allocates   a   block  at   a   specified  address.

1nput/Output  Paranete.rs

Input :

Output:

RR8   -address  of  block  pointer

A,3;88¥:i:::hpo,ntw

..~,     R5               =  error   status

Characteristics

This   call   is   similar   to   a   New   (SC   120)   except   that     the     block   allocated
is  at  a   specified  address.

The   input   address   (RR8)   is   the   address   of   a   long   (4-byte)     memory     loca-
tion;     this     is  where  the   desired  address   is   stored.   The   input   to  R10   is
the   number   of   bytes   requested,   and  must   be   even.

On  exit   from  this   call,   the  memory   location  that     RRs  points   to   contains
a     32-bit  address  of  the  actual   block  allocated.      lf  the  space   requested
is   not   available,   a   nil-pointer   (hex   FFFFFFF)      is   returned   in   the   memory
location   pointed   to   by  RR8,   but   no   error   is   returned   in   R5.

It   is   important  to  remember     that     RRs     does     not     contain     the       memory
address  specified.

Errors

lf  there  are  any  errors,   the  status   code   is   returned   in   R5.   1f  there  are
no  errors,   a   zero   (0)   is   returned.

8-117



Allocates  the   largest   block   of  bytes   from  heap.

Input/Output  Parameters

1nput:                                      RR8  =           address   of   block   pointer

Output:                                     @RR8           =  block   pointer
R10              =  1ength
R5               =  error   status

Characteristics

This   procedure   allocates   a   the   largest   free   block   in  memory,   returning  a
pointer   to  the   location  of  the   first  byte   of  the  block  and  the   length  of
that   block.

The   input   pointer   should   be   the   address   of   a   long   (4byte)      hemory     loca-
tion;   that   is  the  address  where   'NewLargestBlock'   stores  the   block  start
address.

lf   the   block   cannot   be   allocated,©RRs      contains     a     nil      (hex     FFFFFFFF)
pointer  but   no   error   is   returned   in   R5.

Errors

lf   there  are   any  errors,   the   status   code     is       returned       in       R5.          1f
there  are   no  errors,   a   zero   (0)   is   returned.



THE    M20    SYSTEM   CALLS

A11ocates  a   block  of  bytes   from  heap   that   remains     allocated     after     the
program  doing  this  call   terminates.

1nput/Output  Parameters

lnput:                                     RR8   =           address   of   block  pointer
R10   =            length

Output:                                    @RR8          =  block   pointer
R5             = error  status

iH  4  "Characteristics"  This  call   allocates  a  block     of     bytes     from     the
heap,     returning    a     pointer     to    the     location  of  the  f irst  byte  of  the
block.

The   input   "address   of  block  pointer"   is   the  address   of     a     long     (4byte)
memory     location,     that   is,   the  address  where  the  block  start  address   is
stored.     The   input   'length'   is   the   number   of   bytes   to  be  allocated.

This   call   is   just   like   ''New",   but   i;   used   for  those   rare   occasions     when
the  allocated   block   is   not   to  be   de-allocated  when   the   "calling"  program
te rmi nates .

Errors

lf  there  are  any  errors,   the  status  code   is   returned   in   R5.   1f  there  are
no   errors,   a   zero   (0)   is   returned.





9.   INTRODUCTION  TO  GRAPHICS



AB0UT    THIS    CHAPTER

This   chapter   is   an   introduction   to   the   graphics   facilities   available     in
the      M20      Graphics      Package.       1t      includes     a   summary   of   features   and   an
explanation   of   graphics   concepts;    the   graphics   routines     are      listed     in
functional   groups.   A   list   of   the   default   conditions   for   the   M20   is   given
and   error   reporting   is   explained.

CONTENTS

lNTRODUCT10N 9-1

SUMMARY    0F    FEATURES                                       9-1

CONCEPTS                                                                        9-2

FUNCT10NAL    GROUPS                                            9-4

ERRORS                                                                              9-6

DEFAULT   CONDITI0NS                                        9-6



111 INTRODUCTION    TO   GRAPHICS

lNTRODUCT10N

The  M20   Graphics   Package   is   implemented   in   the   form   of   a   library.        This
M20     Graphics     Library   is   available   in   the   file   "graph.lib",   which   is   an
integrated  package  of  over   forty  routines   offering  a   set   of   functionali-
ties     for     tm     dimensional     graphics     applications.   This   library  may  be
called   by   the   PASCAL   and   Assembly   programming   languages    (for   more   detail
see  Chapter   6).      Chapter   10   contains  a   detailed   description   of   each   rou-
tine,   in  alphabetical   order.

SUMMARY   0F    FEATURES

The  M20   6raphics   Package   presents   a   consistent   and   easily   comprehensible
structure     that   ref lects  proposed   international   standards   for   such  pack-
ages.

Besides   the   full   complement   of     standard     output     primitives,      including
lines,   polylines,   markers,   etc..   there   are   several   added   features:

-     line   drawings  and  move  operations   may  be   optionally  specified     as     an
off.set   f rom  the  current  position

-     circle,   ellipse  and   rectangle   functions  are  available

-     output   primitives  may  be   drawn   in   any  of     eight     colours     (on     eight-
colour   systems)   or   four   colours   (on   four-colour   systems)

-     polygons,   circles   and   ellipses   may  be   solid   filled

-     intercharacter   spacing  for   text  may  be  adjusted.

The   screen  may  be   subdivided   into   rectangular   regions   called   view  areas.
View     areas     are   independent   from   one   another   and   there   my  be   a  maximum
of  16   on  the   screen.   1f  the   user   tries   to   draw  a  picture  which   does     not
fit  within  the  view  area   then  only  the  visible  portion  of  the  drawing  is
displayed  and  the   rest   is  discarded   (clipped).

Pictures,   or   parts   of   pictures,   may  be   stored  and     redrawn     when     neces-
sary.        For     every     feature  that   may  be   set   by  the  M20  Graphics  Package,
there   is  an   inquiry  function  which    permits     the     user     to     request     its
current  state.     The   inquiry   functions   return:

-     the  colour,   logic  operator   and   line  class   for   the  current   view  area

-     the   number   of  the   current   view  area

-     the  position  and  blink  rate   of  the  graphics   cursor     for     the    current
view  area

9-1



-     the   location  at  which  graphics   output  will   begin

-     the  colour   number   of   the  pixel   which   is   nearest   to   a   specified   point

-     the   device   coordinates   of  a   given  point  expressed     in     world     coordi-
nates

-     the  next  text  entry  point  and  the  text    cursor     blink     rate     for     the
current   view  area

-     the  size  and  text  parameters  of  the  current   view  area

-     the  world   coordinate   space   for   the   current   view  area.

The  M20   Graphics   Package   defaults   to   an   operating     mode     that     automati-
cally     makes   all   format   decisions   (see   Default   Conditions).   The   user   may
change  these   default   conditions   to   other   values  which   will     better     suit
the   specif ic   problem.

CONCEPTS

Graphical   output   generated   by   the  M20     Graphics     Package     comprises     two
general       classes       of       functions:        output     primitives     and     primitive
attributes.

Output  primitives  are  abstractions   of  basic  actions   that     graphics     dev-
ices   can   perform,    1ike   drawing   lines   and   locating   cursors.   Output   primi-
tives   are   defined   in   a   two-dimensional   user   coordinate   space      (known     as
world   coordinates,   see   below).   The   units   and  the   coordinates   of  the   user
coordinate   space   are   established   by  the  application   program.

Primitive  attributes  determine  the  characteristics  that  an  output  primi-
tive     will   possess   when   displayed   on   an   output   device;   e.g.,   line   class,
colour,      intercharacter     spacing,     etc.     Primitive     attributes     are     set
modally;   i.e.,   they  establish  a  current   value   that   is   assigned   to   subse-
quently  generated   output   primitives.

Coordinate   data   is   subjected   to   transformations   that   perform     a     mapping
between   two   coordinate   systems,   namely:

-    world  coordinates,   defined  by  the  user     that     establish     the     scaling
basis     on     which   the   graphical   output   is   described.   The   world   coordi-
nate   space   definition   determines   how  the   coordinates   f rom  the     appli-
cation      program     shall   be   placed   within   a   view  area.      When   a   new   view
area   is   created,   it  will   have  the   same  world   coordinate   space   defini-
tion     as     the     parent   view  area,   but   since   the   proportions   of   the  two
view  areas   have   changed,   the   shape   of   subsequent   output   to   those   view
areas   will   change   too.   The   world   coordinate   space   defines   a   view  area
within   the   Cartesian   plane.        DivideviewArea     defines     a      rectangular

ASSEMBLER   ÜSER   GU10E



INTRODUCTI0N    TO   6RAPHICS

surface   on  which   the   scale   of   two  axes   (the   x  axis  and   the  y  axis)   is
determined.   The   view  area  "y   or   may  not   contain  the   plane's     origin,
that     is     the    point  of  crossing  of  the  two  axes  at  which  the  coordi-
nates   are   (0,   0);

-     device   coordinates   range   from  0  to  511   pixels   on   the  x  axis   (pixel.    =
picture     element,   the  smallest   visible   entity  on  the  screen)   and   from
0   to   255   scanlines   on  the  y  axis   (scanline  =  a   row  of  pixels),     where
each  coordinate   pair  addresses   only  one   specific   pixel.

Output   primitives  and  attributes   are  automatically     mapped     f rom     the
user's     world     coordinate     space     to     the     device     coordinates     via   a
transformation  which   need  not   concern  the   user.

The  M20  Graphics   Package  maintains   two     current     positions,     one     for
text     and  one   for  graphics,   and  two  cursors,   one   for   text  and  one   for
graphics.   Only  one  of  the  two  cursors   (or   neither,   if     so     specified)
is     displayed  at  any  one  time.   The  text  current  position  and  the  text
cursor  are   always   at  the   same   logical   1ocation:   the     point     at     which
the     next  text  output  will   appear.   The  graphics  current  position   (the
point   f rom  which  the   next  graphics   output  will   begin)   and  the     graph-
ics     cursor     do     not     coincide.   The  graphics   cursor   may  be   used  as  an
echo  symbol   to   indicate  a  position  on  the  screen    that     ref lects     the
values     entered     by  an   input   device.   The   current   graphics   position   is
used   in  many  but   not  all   graphics     output     routines,     e.g.,     Polyline
will   establish   its   own  starting  point,   but  moves   the  current  position
along  as   it  draws,   leaving   it  at  the     final     point.     The     circle     and
ellipse   routine   (GDP)   leaves   the   current   position   unaffec'ted.

Some  graphics   routines   use  absolute   coordinates,   others   use     relative
coordinates.       The     distinction   is  that  absolute  coordinates  are  dis-
tances  along  the   x  and  y  axes   from  the  origin   of   the  Cartesian  plane,
while     relative   coordinates   are   distances  along  the   x  and  y  axes   f rom
the  current  point.

Most  of  the  output     routines     are     affected     by     the     current     colour
attributes  and  the  colour  logic-operator  attribute.     There  is  a   fore-
ground   colour  which   determines  the   colour   of   text   output,   and  a   back-
ground     colour.        There     is     a     graphics     colour  which   determines   the
colour  of  graphic  output   (1ines,   circles,   dots,   etc.).     These     attri-
butes     are     selected     from     the     range     of     colours     available  on  the
specif ic  M20   configuration.      The   colours   available   on   the  M20     eight-
colour   system  are:   black,   red,   green,   yellow,   blue,   magenta,   cyan  and
white.   The   colours   available   on  the  M20   four-colour   system     are     four
colours     chosen   from   the   eight   just   mentioned.      The   monochrome   system
provides  two  colours,   black  and  white.

The  eight  colours   are   numbered   from  0  to  7.     On   four-colour     systems,
the  colours  chosen   in  the   range  4     to  7  map   to  a   value   in  the   range  0
to  3  via  a   logical   operation.   Bits  0  and  2  of  the  binary     representa-
tion   are  OR'd,   e.g.   the   values   4   (100   binary)   and  5   (101   binary)   give
1   0R  0  =  1   and  1   0R  1   =  1   respectively.   This   sets   the   least     signifi-
cant     bit   (bit  0)   and  bit  1    remains   unchanged.   Thus,   the   values  4  and
5  will   become  1   after   the   logical   operation   (4  decimal   =     100     binary
which     becomes   01   binary  =   1   decimal   and   5   decimal   =   101   binary   which
becomes   01   binary  =   1   decimal)      and     the     colour     is     green      (if     the

9-3



default   value   has   not   been   changed).   The   values   6   and  7  will   become   3
after   the   logical   operation   (6   decimal   =   110   binary   which   becomes     11
binary   =   3   decimal   and   7   decimal   =   111    binary   which   becomes   11    binary
=   3   decimal)   and   the   colour   is   red.

The   lögic-operator  attribute  determines  the   resultant   output     colour,
considering   the   type   of   graphics   routine   (text  or   graphics),   the  set-
ting   of  the   foreground,   background   or   graphics   colour     attribute     and
the  colour   of   the   target   pixels   in   the   view  area.   There   are   six   logic
operators   and   each   one   acts   on   all   pixels     in     determining     what     the
final      colour     shall   be.   The   action   occurs   one   pixel   at   a   time,   using
the   colour   of  the   target  pixel   and   that   of   the   new  graphics   output   as
operands.

FUNCTIONAL    GROUPS

The   functional   capabilities   of   the  M20   Graphics   Package   may     be     divided
into   four   general   classes,   as   follow.

-     Transformation and   control.

ClearviewArea
CloseGraphics
Closevie``.Trans
D i v i c:e v i ewA r ea
Escape
Open6raphics
SelectviewTrans
Setworldcoordsp

-     6raphics   Output.

6DP

GraphcursorAbs

GraphcursorRel

GraphposAbs

CraphposRel

LineAbs

LineRel

clears   the   specified   view  area.
closes  the  graphics   session.
closes   the   specified   view  area.
creates   a   new   view  area.
colours   an   area.
opens  the  graphics   session.
activates   the  selected   view  area.
def ines   the  world   coordinate   space.

:   Generalised  Drawing  Primitive,   creates   a   circle
or   an  ellipse.

:   moves   the  graphics  cursor   to  a  specified  absolute
position.

:   moves   the  graphics   cursor   to   a   specified   relative
position.

:   redefines  the  current  graphics   position
( absol ute ) .

:   redefines  the  current  graphics  position
( relative) .

:   draws  a   line   from  the  current  graphics   position
to  a   specif ied  absolute  position.

:   draws  a   line   from  the  current   graphics   position
to  a  specified  relative  position.

ASSEMBLER    USER    GUIDE



1NTRODUCTION    T0   GRAPHICS

MarkerAbs
MarkerRel
PixelArray
Polyline
Polymarker
Textcursor

-     Graphics

displays  a  point  at  a  specified  absolute   position.
displays  a  point  at  a   specified   relative  position.
transfers   an   image   onto   the   screen.
draws  a   connected   sequence   of   lines.
displays  the  specified  points.
moves  the   text   cursor.

Att r i butes .

Selectcursor

Sel ectGrcol our

Sel ectTxcol our
SetcolourLogic

SetcolourRep

SetGrcsrBlnkrate
SetGrcsrshape
SetLineclass

SetTextline
SetTxcsrBlnkrate
SetTxcsrshape

-      1nquiry.

Errorlnquiry           :

InqAttributes        :

InqcurTransNmbr    :
1nqGraphcursor      :

InqGraphpos              :

1nqpixel

lnqpixelArray         :

1nqpixelcoords      :

lnqTextcursor        :

1nqviewArea               :

1nqworldcoordsp    :

chooses   which   cursor   (if   any)   is   to   be
displayed.
selects   the  colour   for   subsequent  graphics
Output.
selects   the  colours   for   subsequent  text  output.
def ines  a   logic  operator  that   inf luences  the
output   colour.
sets  one  of  the   four  colour   indices   to  one   of
the  eight  M20   colours   (four-colour   systems
only) .
sets  the  blink  rate   for   the  graphics   cursor.
def ines  the   graphics   cursor   shape.
determines   the  graphics   output   for   the   LineAbs,
LineRel   and  Polyline   routines.
sets  the  character  width  and  text   line   height.
sets  the   blink   rate   for  the   text   cursor.
defines   the  text  cursor   shape.

returns  the  error   status   for   the  most   recently
called   graphics   routine   other   than  the   inquiry
routines.
returns   the   colour,   logic   operator   and   line
attributes   for  the   current   view  area.
returns   the   number   of   the  current   view  area.
returns  the  position  and  blink  rate   of  the
graphics   cursor   for   the   current   view  area.
returns  the   location  at  which   new  graphics
output   will   begin.
returns  the   colour   number   of  the   pixel   which   is
nearest  to  the  specified  point.
retrieves   a   rectangular   image   f rom  the   current
view  area   and   stores   it.
returns  the   device   coordinates   of  a   given   (x,y)
pair   of   world   coordinates.
returns  the   next  text  entry  point   and  the   text
cursor   blink   rate   for   the   current   view  area.
returns  the  size  and  text  parameters   of  the
current   view  area.
returns   the   world  coordinate   space   parameters
for   the   current   view  area.

9_5



Error   reporting   is   handled   in   two     ways.      For     all      routines,     an     error
status     is     reported;      the     value     zero  means   no   error.      If   an   error   has
occurred,   a   value   in   the   range   1   to   255   inclusive   is   returned.   The     code
numbers     used     are     the   standard   PCOS   error   codes   with   the   same   meanings
(see   Appendix   E).

For  most   routines,   this   status   value   is   transferred  to  an     error     status
variable     maintained     by     the     M20     Graphics   Package.   There   is  a   routine
(Errorlnquiry)   which   returns   the  current   value   of     this     variable     (that
is,     the   error   status   of  the  most   recent   Graphics  Package   routine   called
other   than   the   inquiry   routines).

The   inquiry  group   of   routines   handles   error   reports     differently.     These
never     touch     the     error     status   variable   (except   for   Errorlnquiry  which
retrieves   its   value).      They   report   any  error   directly  through     an     error
parameter,   and  they  do   not  generate   an   error   status.

DEFAULT   CONDITIONS

The   following   is   a   list   of   the   default   conditions   that  will     be     assumed
unless   otherwise   specified:

-world   coordinates   range   from   0.0   to   511.0   on   the   X   axis   and   from     0.0
to   255.0   on   the   Y  axis,   coinciding   with   the   device   coordinates   except
that  the  latter  are   integer   values

-     view  area   number   1    is   the   full   screen,   with   device   coordinates      rang-
ing   from   0   to   511   on   the   X   axis   and   from   0   to   255   on   the   Y   axis

-     colour   depends   on  the  system  configuration

a)   the  monochrome   system   sets   the   background   colour   to   0   =  black     and
the   text  and   graphics   colours   to  1   =  white

b)   the   four-colour   system   sets   the   background   colour   to     0     =     black;
the   text   and   graphics   colours   to  1   =  green;   2   =  blue;   3   =   red

c)   the   eight-colour   system   sets   0  =  black  to   the  background   colour,   1
=     green     to  the   text   and   graphics   colour,   2   =  blue,   3   =  cyan,   4   =
red,   5   =  yellow,   6   =  magenta,   7   =   white

-     the   logic  operator   is   PSET,   which   displays     graphics     output     in     the
chosen   colour

-     the   line  class   is  solid   line

9-6



INTRODUCT10N    TO    6RAPHICS

-     no   cursor   is   displayed

-     there   is   one   cursor   blink   per   second   (one   blink   includes   two     changes
of   state,    one   f rom   ON   to   OFF   and   one   from   OFF   to   ON)

-     the   text   cursor   shape   is   7   pixels   wide   x  11   scanlines   high   (within   an
sxl2     space)     and   is   displayed  as  a   rectangle   having   alternate  pixels
set

-     the   graphics   cursor   shape   is   2   pixels   wide   x  2   scanlines   high

-     the   graphics   position   is   (0.0,   0.0)

-     the  graphics   cursor   is   at   the   centre   of   the   screen,      i.e.      the     upper
left   hand   corner   of   the   graphics   cursor   is   at   (255,   127)

-     there   are   16   scanlines   per   text   line   and   s   pixels   per   character

-     there   are   16   textlines   (rows)   and   64  characters   (columns)   per   screen.





10,  THE  M20  GRAPHICS  ROUTINES



ABOUT    THIS    CHAPTER

This   chapter   describes   in   alphabetical   order   all   the     routines     provided
by   the   M20   Graphics   Package.

CONTENTS

ClearviewArea

C l oseG raph i cs

CloseviewTrans

D i vi dev i ewA r ea

Errorlnquiry

Escape

GDP

GraphcursorAbs

GraphcursorRel

10-1                   GraphposAbs

10-2                  GraphposRel

10-3                1nqAttributes

10-4                  1nqcurTransNmbr

10-5                 InqGraphcursor

10-7                  1nqGraphpos

10-9                 Inqpixel

10-11                1nqpixelArray

10-12              1nqpixelcoords

10-13

10-14

10-15

10-16

10-17

10-18

10-19

10-21

10-23



lnqTextcursor

lnqviewArea

lnqworldcoordsp

LineAbs

L i ne R e 1

MarkerAbs

MarkerRel

OpenGraphics

PixelArray

Polyline

Polymarker

Sel ectcur sor

Select6rcolour

SelectTxcolour

SelectviewTrans

SetcolourLogic

SetcolourRep

SetcrcsBlnkrate

S etGrc sr shape

10-24             SetLineclass

10-25             SetTextline

10-26             SetTxcsrBlinrate                                10-49

10-27              SetTxcsrshape                                         10-50

10-28              Setworldcoordsp                                    10-51

10-29             Textcursor

10-30

10-31

10-32

10-34

10-35

10-36

10-37

10-39

10-41

10-42

10-44

10-45

10-46

10-52





Clears   the   specified   view  area.

1nput/Output  Paraiiieters

lnput:     R4-view  area   number   (in  the   range  1   to  16,   inte€er)

Output:   R5-error  code   (integer)

Characteristics

This   function   clears     the     specified     view     area,      created     via     Oivide-
ViewArea.      The   view  area   is   not   closed,   this   call   merely   removes   all   its
current   contents.      The  background   colour     is     unchanged     and     fills     the
whole   view   area.

Errors

lf   there  are   any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspQnd   to  the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   SeeAPPENDIX   E   for     the     error     descriptions.1f     there     are     no
errors.   a   zero   is   returned.



Closes   the   graphics   session.

1nput/Output   Parameters

none

Characteristics

::]::ts  r::t[negi:p::::ed  ]:o::::e:e  th:us{ast  b:rip::::ke!::kag:y  Ca::;
OpenGraphics/CloseGraphics      pair,      otherwise      results        are        far        from
guaranteed.

View  area   definitions   and   graphics   package   tables   are   cleared.   The     ini-
tial      default     conditions   are   reset   (for   these   conditions   see  OpenGraph-
ics) .



THE   M20   6RAPHICS   ROUTINES

Closes   the  specified   view  area.

1nput/Output  Parameters

lnput:     R8 -view  area  number   (in  the  range  0  to  16,   integer)

Output:    none

Characteristics

This   routine   closes   the   specified   view  area   created   via     DivideviewArea.
The     view     area   is   joined  to  the   one(s)   next   to   it   and   takes   on  the   same
background   colour(s)   as   the  adjacent   view  area(s).      The     resulting     view
areas  must   be   rectangular.      The   enlarged   view  area(s)'   coordinate   defin-
itions   are   adjusted   to   nüp   the   view  area's   new  dimensions.

If  the   current   view  area   is   closed   then   view  area   number  1      becomes     the
current     view     area.      1f   register   Rs   is   loaded  with     the   value   zero   then
all   the   view  areas   are   closed   and   view  area   number  1   becomes   the   ciirrent
one,   filling  the  entire   screen.

View  area   number   1   cannot   be   closed.   If   the     input     parameter     specifies
the     value     1,      the   value   of  a   view  area   which   has   not   been   opened,    or   a
value   not  within  the   range  0  to  16,   no  error   message     is     generated     and
the  attempt  to  close  the   view  area   has   no  effect.

Errors

No  error   messages   are   returned   from  this   routine.

10-3



Creates   a   new   view  area.

1nput/Output  Parameters

lnput:     R8-division/orientation   (in  the  range  0  to  3,   integer)
R9-division  point   (integer)

Output:   R7-view  area   number   (in  the   range  2  to  16,   integer)
R5-error  code  (integer)

Valid   lnput  Values

R8:                          defines   which   part   of   the   view  area     will      become     the     new
view   area

0:   horizontal   split;   the   upper   view  area   is   the   new  one
1:   horizontal   split;   the   lower   view  area   is   the   new  one
2:   vertical   split;   the   left  view  area   is   the   new  one
3:   vertical   split;   the   right   view  area   is   the   new  one.

R9:                         defines   the   division   point

-     if  Rs   is   loaded  with  the  value   0  or   1    (horizontal   split)
then   R9   is   loaded   with   the   number   of   scanlines   (min   =   1,
max  =   current   view  area   height   -1)      counting     from     the
top   scanline   of  the   current   view  area

-     if  Rs   is   loaded  with   the   value   2  or   3   (vertical     split),
then     R9     is      loaded     with     the   required   view  area   width
expressed   as   a   number   of   characters,   in   the   range     1     to
63     or     1      to     79,      counting     from     the   left   side   of  the
current   view  area.

Characters   may  be   six   or     eight     pixels     wide,      but     the
width   in   pixels   of   the   left   view  area   must   be  a   multiple
of   s   and   is   calculated   from  the   following   formula:

left   view  area=truncate[(num  of  chars*char   width+3)/8]*8

where   "num  of   chars"   is   equal   to   the   number     of     charac-
ters     specTfi=d     by     R9     and  "char_width"   is   the   current
character   width   in   pixels   (6   or   8).

When  the   character   width   is   eigth  pixels,   this     calcula-
tion     will   always   give   exactly  sufficient   pixels   to   con-
tain  the   number   of  characters   specified   in     R9,     as     the
formula   reduces   to

10-4 ASSEMBLER   USER   GUIDE



THE   M20   GRAPHICS   ROUTINES

1eft   view  area   =   num   of   chars   *   8

However,   when   the   character   width   has   been   set   (via   Set-
Textline)      to     6     pixels,   there   is   nearly  always  a   right
margin   (of   the   left   view  area)   of   less   than   six     pixels,
and      this      formula   does   not   round   up   the   view   area   width
to   allow   space   for   the   final   character.      Hence,    in     this
case,      the   number   of   characters   allowed   will   be   one   less
than   the   value   specified      in     R9,      i.e.      one      less     than
required     unless     the   user   has   added   one   to   his   input   to
cover   this   eventuality.

-      if   R9   is   loaded   with   the   value   -1,   then   the   current   view
area   is   divided   as   equally   as   possible.

Output   Values

R7:      this   register   contains   the   number   of   the   new   view   area.      The      value
is   within   the   range   2   to   16.

Characteristics

This   roi!tine   creates   a   new  view  area   by   splitting     the     current     one     as
specified     by   the   values   loaded   in   Rs   and   R9.      R7   contains   the   number   of
the   new   view  are.a.

The  new  view  area   inherits   the   following  attributes   from   its   parent   view
area:   text   spacing,   colour,   and  world   coordinate   space   definition.

The   initial   state   is   the   full   screen   defined   as   view  area   number   1.   This
can     be     split     into  other   view  areas:   adjacent   view  areas  may  be   closed
and   joined   with   it,   as   long  as   the   resultant   view  area     is     rectangular.
View     area      number   1   always   exists,    it   can   not   be   closed.   There   may  be   a
maximum   of   16   view   areas   at   a   time.   A   new     view     area      is     assigned     the
lowest     available   number   in   the   range   2   to   16   (e.g.,   if   6   view  areas   are
created   and   view  area   number   3   is   closed,   3  will   be   assigned   to   the   view
area   next   created).

Errors

lf   there  are   any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   See   APPENDIX   E   for     the     error     descriptions.         1f     there     are     no
errors.   a   zero   is   returned.



Returns   the   error   status   for   the  most   recently  called  graphics   routine.

1nput/Output   Parameters

lnput:       nc)ne

Output:   R5  -error   code   (in   the   range  0   to   255,   integer)

Output   Values

The   output   value   of   this   function   may  be:

0:                       no   error   for   the   most   recently   called   graphics   routine

1   to   255:      an   error   has   occured   in   the     most      recently     called     graphics
routine.      The      code      numbers   used   are   the   standard   PCOS   error
codes,   with   the   same   meanings.

Characteristics

This   routine   returns   the  error     status     for     the    most     recently     called
graphics   routine  other   than  the   lnquiry   (Inq   ...)   routines.

The   lnquiry  class   of   routines   does   not  alter  or   test     the     error     status
variable:      each     one     has     its     own     error     parameter,     through  which   it
transmits   error   messages.

Routines,   other   than  the   lnquiry  routines,   clear   the  error   status     vari-
able     before     execution,     and  upon   completion  this   variable   ref lects   the
error   status  of  the  routine.   If  the  value   is   zero,     then     no     error     has
occurred.

Errors

This   routine   does   not   generate   errors.

ASSEMBLER    ÜSE



Colours   an   area.

1nput/Output  Parameters

lnput:      R1    -.-..  function   number   (1)
RR2-data  structure  pointer

Output:   R5   -error  code   (integer)

Characteristics

This   routine   paints   an  area   in   accordance   with  the  parameters   in  the  data
structure  pointed  to  by  the   input   value.

The  data   structure   (e.g.,   array,   record,   etc.)   must   contain   the   following
information:

-        an   x   coordinate   (two  16-bit   words,    1EEE   single-precision   real   number,
high-order  word   f irst)

-        a   y  coordinate   (two   16-bit   words,    1EEE   single-precision   real      number,
high-order   word   first)

-t:?  c;;ou:n:u:::r:;ro::ef::r3::nt:::ht::,:::an:::::i::e:?gi::  ::iä:

integer,   high-order   first).

The   area   surrounding   the   point   (x,   y)   is   painted   with   the     colour     speci-
f ied   in  the   data   structure,   within  a   contiguous  border.   No   colouring  will
occur   if   the  point   happens   to   fall   on   the   border.   The  border   must     be     of
only   one   colour.

The   colour   numbers   have   different   effects   on   the  monochrome,      four-colour
and   eight-colour   systems.   However,    integers   in   the   range   0   to  7   will   work
for   both  colour   parameters   without   generating  errors   on   all     three     types
of     systems.    On   the   monochrome   system,   0=black   and   a   value   in   the   range   1
to   7=white.      On   four-colour   systems,   the   two   colour   numbers     are     indices
into     a   table   of   four   pre-selected   colours   (see   Setcolourp`ep).      On   eight-
colour   systems,   the   values   in   the   range   0   to   7  have   the     following     mean-
ings      :      0=black,      1=green,      2=blue,      3=cyan,   4=red,   5±yellow,   6=magenta,
7=white,

10-7



Errors

lf  there  are  any  errors,   the   status   code   is   returned     in     R5.     The     code
numbers   correspond   to  the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   SeeAPPENDIX   E   for     the     error     descriptions.         If     there     are     no
errors.   a   zero   is   returned.



THE   M20   GRAPHICS    ROUTINES

Generalised   Orawing   Primitive,   creates   a   circle   or   an   ellipse.

1nput/Output  Parameters

lnput:     RR6-X  array  pointer
RR2-Y  array  pointer
R4  ---1   (circle)  or

2   (ellipse)

Output:   R5  -error  code   (integer)

Characteristics

The   a?plication   program   must   declare   and   allocate   the   two   coordinate     ar-
r.c::ys.         Each   array   contains   single-precision   numbers;   the   high   order   word
must   precede   the   low  order   word.   The   size   of   each   array  must   be   at      least
large      enough   to   store   as   many   double-word   numbers   as   there   are   points   (2
:?oints   for   the   circle   and   3   for   the   ellipse).

Default   values   will   be   assumed   for   colour,   world   coordinate   space   defin-
ition,   and   logic  operator.

This   function   does   not   affect   the   current   graphics   position.

Circle:   This   routine   draws   a   circle   if   R4   is   loaded   with   the   value   1.

The  world   coordinates   of   the  centre   point   must   be   stored     in     the     f irst
element      of     the   two   arrays   X[1]   and   Y[1].   The   second   element   of   the   two
arrays   X[2]   and  Y   [2]   is   the  world   coordinate   of   a     point     on     the     cir-
cumference.        The   6DP   circle   function   determines   the   radius   by   calculat-
ing  the  distance   from  the  centre   of  the  circle   to  this  absolute   location
X   [2]    and   Y    [2].

The  output   generated   by  this   function   is  always  a   circle,   regardless     of
the  coordinate   space   definition.

lf   the  coordinates   generate  a  circle   larger   than  the  view  area   then     the
portions   that   lie   outside  the   view  area   are   clipped.



Ellipse:   This   routine   draws   an   ellipse   (parallel   to   the   x   or   y   axis)      if
R4   is   loaded   with   the   value   2.

The   world   coordinates   of   the   centre   point   must   be   stored     in     the     first
element   of   the   two   arrays   X   [1]   and   Y   [1].    The   second   and   third   elements
contain   the  world   coordinates   of   one   end   of   the   minor   axis      (either     one
will      do),      and   of   one   end   of   the   major   axis.       (It   does   not   matter   which
axis   point   comes   first.)

lf   the   coordinates   generate   an   ellipse   larger   than   the     view     area     then
the   portions   that   lie   outside   the   view  area   are   clipped.

The   exact   shape   of   the   ellipse   may     vary     depending     on     the     coordinate
space   definition.

Errors

lf   there   are   any   errors,   the   status   code   is   returned     in     R5.      The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for      the      error      descriptions
errors.   a   zero   is   returned.

lf     there     are     no

ASSEMBLER    USER    GUIDE



THE    M20   GRAPHICS   ROUTINES

_"    `.- ` =  .  E`

-                                   -_,                      -`                                                                  .

r_                                 q_       +

Moves   the  graphics   cursor   to  the   specified  absolute   position.

1nput/Output  Parameters

lnput:     RRO-x   (single-precision  real)
RR2-y   (single-precision  reäl)

Output:   R5  --error  code   (integer)

Characteristics

This   routine   moves   the  graphics   cursor   to   the  absolute     position     speci-
f ied     in  world   coordinates.   The   graphics   cursor   is   displayed   only   if  the
Selectcursor   routine   has   been   previously   invoked   with   Rs   loaded   with   the
value   1.

lf   the  coordinates   specify  a   point  which   is     outside     the     current     view
area     then  the   current  position   of  the  graphics   cursor   remains   unchanged
and   an   error   code   is   generated.

The  current   graphics   position   is   not   associated  with  the   position  of   the
graphics   cursor.   The  position  of   the   graphics   cursor   coincides   with  that
of   the  current   graphics   position   only  when   both  are     assigned     the     same
coordinates.      This     separation  allows   the  application   program   to   use   the
graphics   cursor   as   an   echo  symbol   to   indicate   a   position   on     the     screen
that   reflects  the   values   entered   by   an   input   device.

Errors

lf   there  are   any  errors,   the  status   code   is   returned     in     R5.      The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for      the     error      descriptions.         1f     there     are      no
errors.   a   zero   is   returned.



`=*_r

Moves  the  graphics   cursor   to  a   specified   relative   position.

1nput/Output  Parameters

lnput:     RRO-dx   (single-precision   real)
RR2-dy  (single-precision  real)

Output:   R5  -error  code   (integer)

Characteristics

This   routine   moves   the   graphics     cursor     to     a     new     position     which     is
obtained     by     adding   the   input   values   dx,   dy   (which   specify   the   distance
between   the   old   position   and   the   new  one   in  world     coordinates)      to     the
old     graphics     cursor  position.     The   resulting  position  must   fall   within
the   user's  word   coordinate   space   definition.

The  graphics   cursor   is   displayed  only   if  the     Selectcursor     routine     has
been   previously   invoked   with   R81oaded   with   the   value   1.

1f  the   resulting  position   is   outside   the     current     view    area     then     the
current     position     of   the  graphics   cursor   is   unchanged  and   an   error   code
is  generated.

The  current   graphics   position   is   not  associated  with   the  position   of   the
graphics     cursor.   The  position   of   the   graphic   cursor   coincides  with   that
of   the   current   graphics   position   only  when   both   are     assigned     the     same
coordinates.      This     separation   allows  the   application   program   to   use   the
graphics   cursor   as   an   echo   symbol   to   indicate   a  position   on     the     screen
that   ref lects   the   values   entered   by  an   input   device.

Errors

lf   there   are   any   errors,   the   status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for      the      error      descriptions
errors,   a   zero   is   returned.

_-,:;_:;!§'±, /.     _;--f._:},*

10-12

lf     there     are     no

ASSEMBIER   USER   6U10E   /[\.    ~
=i+-_^t



Redefines   the   current   graphics   position   (absolute).

Input/Output  Parameters

lnput:     RRO-x   (single-precision   real)
RR2-y   (single-precision   real)

Output:   R5  -error  code   (integer)

Characteristics

This   routine   redefines   the     current     graphics     position     for     subsequent
graphics     output.   The   input   values   specify   an   absolute   location   in   world
coordinates.      Any   subsequent     graphics     output     that     uses     the     current
graphics   position  as   a   starting   point  will   use   this   redefined  position.

The  current   graphics   position   not   associated  with   the     position     of     the
graphics     cursor.   The   position   of   the   graphic   cursor   coincides   with   that
of   the   current   graphics   position   only   when   both   are     assigned     the     same
coordinate.      This     separation     allows   the   application   program   to   use   the
graphics   cursor   as   an   echo   symbol   to   indicate   a   position   on     the     screen
that   reflects   the   values   entered   by   an   input   device.

The  specified   point   becomes   the   current   graphics   position   even   if   it     is
not   within   the   current   view  area.

Errors

lf   there  are  any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to  the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   SeeAPPENDIX   E   for     the     error     descriptions.         If     there     are     no
errors.   a   zero   is   returned.



Redefines   the   current   graphics   position   (relative).

1nput/Output   Parameters

lnput:      RRO-dx   (single-precision   real)
RR2-dy   (single-precision   real)

Output:   R5   -error   code   (integer)

Characteristics

This   routine   redefines   the     current     graphics     position     for     subsequent
raphics     output.      The     new     graphics   position   is   obtained   by   adding   the
nput   values   dx,dy   (which   specify   a   distance   in     world     coordinates)      to

the     previous     graphic     position.   The   next   graphics   output   that   uses   the
current   graphics   position   as   a   starting  point   will     use     this     redefined
position.

The   current   graphics   position   is   not   associated  with  the   position   of   the
graphics     cursor.   The   position   of   the   graphic   cursor   coincides   with   that
of   the   current   graphics   position   only  when   both  are     assigned     the     same
coordinate     point.   This   separation   allows   the   application   program   to   use
the   graphics   cursor   as   an   echo   symbol   to     indicate     a     position     on     the
screen  that   ref lects  the   values  entered   by  an   input   device.

The   specified   point   becomes   the  current   graphics   position   even   if   it     is
not   within  the   current   view  area.

Errors

lf   there  are  any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to  the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for      the     error      descriptions
errors.   a   zero   is   returned.

If     there     are     no



THE    M20   GRAPHICS    ROUTINES

Returns   the  colour,   logic  operator  and  line  attributes   for     the    current
view  area.

1nput/Output  Parameters

lnput:      none

Output:   R5   -error  code   (integer)
R7   -1ogic  operator   (in  the   range  0  to  5,   integer)
R8    -line  class   (in  the  range  0  to  2,   integer)
R9    -current  graphics  colour   (in  the  range  0  to  7,   integer)
R10  -+  text   foreground  colour   (in  the  range  0  to  7.   integer)
R11  -background  colour   (in  the  range  0  to  7,   integer)

Characteristics

This   routine   returns   the   following     information     for     the     current     view
area:

-     current   graphics   colour   (see   SelectGrcolour)

-     text   foreground   colour   (see   SelectTxcolour)

-     background   colour   (see   SelectTxcolour   and   ClearviewArea)

-     1ine   class   (see   SetLineclass)

-     1ogic   operator   for   colour   (see   SetcolourLogic).

1f  the   view  area   is   undefined   (see     DivideviewArea)      an     error     code     is
returned .

Errors

lf  there  are  any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   See   APPENDIX   E   for     the     error     descriptions.         1f     there     are     no
errors.   a   zero  is   returned.

10-15



::-:::.                          ,_-_

Returns  the   number   of  the   current   view  area.

1nput/Output  Parameters

lnput:      none

Output:   R5 -error  code   (integer)
R7  -view  area   number   (integer,   in  the  range  1   to  16)

Characteristics

This   routine   returns   the   identification   number   of   the   current   view  area.
This   number   may   be   used   for:

-     selecting  a   different   view  area

-     redefining  the   view   area's   world   coordinate   space

-     clearing   the   view  area's  contents

-     closing  the   view  area

-     retrieving   information  about   the   view     area      (e.g.,      colour,      coordi-
nates ) .

Errors

The   only   value   returned   in   R5   is   0,   no   error.

ASSEMBIER   USER   GÜIDE



THE   M20   GRAPHICS   ROUTINES
•_!*                .                                                                    ';-_'         `,

lnqGF.gli€gF:5®r

Returns   the  position  and   blink   rate     of     the     graphics     cursor     for     the
current   view  area.

1nput/Output  Parameters

lnput:      none

Output:   RRO-X   (single-precision   real)
RR2 -Y  (single-precision   real)
R5    -error  code   (integer)
R9   -blink  rate   (in  the   range  0  to  20,   integer)

Characteristics

This   routine   returns   the   location   (X,y)      in     world     coordinates     of     the
graphics     cursor   and   its   blinkrate  expressed   in   state  changes   per   second
(from   OFF   to   ON   or   from   ON   to   OFF),       rounded      to      the      riearest      50     mil-
liseconds.      See   SetGrcsrBlnkrate.

The  graphics   cursor   is   placed  with   its   upper   left     hand     corner     of     its
sxl2   pixel   shape   at   this   (X,Y)   position.

The  graphics   cursor   position  and   the  graphics   position  are   generally  not
the     same;      the     graphics   cursor   merely  marks   a   position  within   the   view
a r ea .

The  graphics  cursor   position  and  the  text  cursor   position     are     entirely
independent   of   each  other.   Only   one   of  these   two   cursors   (or   neither,   if
so   specified)   appears   at   any  one   time.

Errors

The  only   value   returned   in   R5   is   0,   no   error.

10-17



Returns   the   location   at   which   new  graphics   output   will   begin.

lnput/Output   Parameters

lnput:       none

Output:   RR2    -Y   (single-precision   real)
R5      -error   code   (integer)
RR6   -X   (single-precision   real)

Characteristics

This   routine   returns   the   location   (X,Y),    in     world      coordinates,      within
the      current      view   area   at   which   new  graphics   output   will   begin   (e.g.,   a
LineRel   call   would   generate   a   line   with   the   first   end   at   this   point).

Errors

The   only   value   returned   in   R5   is   0,   no   error.

SSEMBLER   USER   6UIDE     ,,',\



THE   M20   GRAPHICS   ROUTINES

1=
Returns  the  colour  number   of  the  pixel  which   is   nearest   to  the  specified
point.

1nput/Output  Parameters

lnput:     RRO-X  world  coordinate
(single-precision  real)

RR6-Y  world  coordinate
(single-precision   real)

Output:   R3   -colour  number   (in  the  range  0  to  7,   integer)
R5   -error  code  (integer)

Output  Values

R3   :   this   register   contains   the  colour   number.

On   monochrome   systems:

colour   number          colour

0                         black
1                           white

On   four-colour   systems,   R3   returns   a   value   in   the     range     0     to     3     (see
SetcolourRep).      The   default   values   are:

colour   number          colour

10-19

black
green
blue
red



On   eight-colour   systems:

colour   number          colour

black
green
blue
Cyan
red
yellow
magenta
white

Characterisitcs

This   routine   returns   the  colour   number   of   the  pixel   which   is   nearest     to
the   specified  world   coordinate   (X.Y)   ,   in  the   current   view  area.

In   the  monochrome   and   eight-colour   systems,   the   colour   numbers   are     pre-
defined;   in   four-colour   systems,   the   value   is   an   index   into  a   table   (see
SetcolourRep)   of   pre-selected   colours   (four   colours     selected     from     the
eight   available).

Errors

lf   there  are   any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   See  APPENDIX  E   for     the     error      descriptions.         If     there     are     no
errors.   a   zero   is   returned.

ASSEMBLER    USER    GUIDE



THE   M20   GRAPHICS   ROUTINES

Retrieves   a   rectangular   image   from  the  current   view  area   and   stores   it.

lnput:     RRO~X  width   (single-precision   real)
RR2 -Y  height   (single-precision  real)
RR6 - array  pointer

Output:   R4   -invalid  code   (0  or  1,   integer)
R5    -+  error  code   (integer)

Valid   lnput   Values

RRO:                            width   of   the   rectangle     to     be      retrieved,      expressed      in
world   coordinates,   single-precision   real

RR2:                           height   of   the   rectangle   to     be     retrieved,      expressed     in
world   coordinates,   single-precision   real.

Output   Values

R4: this   register   reports   discovery  of   invalid     pixel     colour
values     if     it   is  set  to  1;   if  all   pixel   values  are   valid
this   register   is  set  to  0.

Characteristics

This   routine   retrieves  a   rectangular   image   from  the  current     view    area,
and  stores   it   in  the  array  pointed   to  by  RR6   to   be   displayed   later.     The
inverse   function   is   accomplished   by  PixelArray.

The  upper   left-hand  corner  of  the   rectangle   to     be     retrieved     f rom    the
screen   i.s   placed  at   the   current   graphics   position.

The   two   registers   RR0   and   RR2     specify     the     rectangle`s     dimensions      in
world     coordinates.   These   dimensions   are   transformed   into   device   coordi-
nates   (pixels).     The  size  of  the  storage     array     depends     on     the     total
number     of     pixels     in   the   rectangle.     The   user   iTEy  calculate   this   total
number   of   pixels   by:

1.   retrieving  the  device  coordinates   for  each  corner     of     the     rectangle
(via     lnqpixelcoords)   only   if  the   default  world  coordinates   have  been
changed

2.   calculating  the   rectangle's  width  and   height   in   pixels

10-21



3.   applying   the   "array   size"   formula   (see   below).

The   application   program   is   responsible   for   knowing     the     required     array
size   and  allocating   space   for   it.

The   array   cQntains   the   bit   images   of   the   scanlines   within   the   rectangle,
packed     16   bits   for   array   entry.   Each   scanline   image   will   begin  with   the
first   bit   of   the  scanline   in  bit   15  of     the     first     array     entry     (1eft-
justified).   The   size   of   the   array   (in   words)   may   be   calculated   according
to   the   following   formula:

array   size=truncate[ (pixel   width+15)/16]*pixel   height*colour_planes+3

where   "colour   planes"   is   the   number   of   colour   planes   in   the   system     con-
figuration.     -Each     colour     plane   provides   one   bit   (i.e.    two   states)   per
pixel.      With   two   colour   planes,   each  pixel   is   represented     by     two     bits
and     thus     four      states   are   possible.      By   extension,   three   colour   planes
provide   eight   states.      Therefore,   monochrome   has   1   colour     plane,      four-
colour   has   2   colour   planes   and   eight-colour   has   3  'colour   planes.

The     extra     3     words      in     the     array      (at     the     beginning)      contain     the
rectangle's  width,   height  and   special   codes   related   to   the  conditions   in
which   the   array   was   created   (number   of   colour   planes,    etc.).      The     array
is     one   dimensional.      The  maximum   size   of   the   array   is   that   needed   for   a
full   screen   rectangle,   assuming  that   there   is   suff icient  memory     in     the
system  configuration   for   an   array   that   large.

Errors

lf   there   are   any   errors,   the   status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for      the     error      descriptions
errors.   a   zero   is   returned.

10-22

lf     there     are     no



THE    M20   GRAPHICS    ROUTINES

n+ix.lc-d.

Returns   the  device   coordinates   (expressed   in   pixels)   of     a     given     point
expressed   in  world   coordinates.

lnput/Output  Parameters

lnput:     RRO  -X  world   coordinate
(single-precision  real)

RR2  -  Y  world  coordinate
(single-precision   real)

Output:   R5  -error  code   (integer)
R6   -X  device   coordinate   (in  the  range  0  to  511,   integer)
R7  -Y  device  coordinate   (in  the  range  0  to  255,   integer)

Characterisitcs

This   routine   returns   the   device   coordinates,   expressed     in     pixels,      for
the     input  world  coordinates.   The   device  coordinates   are   calculated  with
respect   to   the  borders   of   the  current   view  area.

Errors

lf  there   are  any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for     the     error     descriptions.         If     there     are     no
errors.   a   zero  is   returned.

10-23



Returns  the  next  text  entry  point  and  the  text  cursor   blink   rate   for  the
current   view  area.

1nput/Output  Parameters

lnput:      none

Output:   R5 -error  code   (integer)
R7-+blink  rate   (in  the  range  0  to  20,   integer)
R8-text  column   (in  the   range  1   to  64  or  1   to  80,   integer)
R9-text   row   (in  the   range  1   to  16  or  1   to  25,   integer)

Characterisitcs

This   routine   returns   the  next   text  entry  point,   which   coincides  with  the
location     of     the     text     cursor,     and  the  text  cursor   blink   rate   for  the
current   view  area.      See   SetTxcsrBlnkrate.

The   text   cursor   position   is   given   in   number   of   columns   (e.g.,    number     of
characters)      from   the   view  area's   left   edge  and   of   rows   (e.g.,    number   of
text   lines)   from  the   view  area's   top  edge.

The   cursor   blink   rate   is   expressed   in   state   changes   per   second   (from  OFF
to  ON   or   from   ON   to   OFF),    rounded   to   the   nearest   50-milliseconds.

If   the   information   is   not  available   it   is   because   the   view  area     is     too
small     to     contain     text.   An  error   code   is   returned   and  the   other   output
parameters   remain   undefined.

Errors

lf   there   are   any  errors,   the   status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   See  APPENDIX   E   for     the     error     descriptions.         lf     there     are     no
errors.   a   zero   is   returned.

ASSEMBLER    USER    6UIDE



THE   M20   GRAPHICS   ROUTINES

f:.

Returns   the  current   view  area's   size   definition  and   text   parameters.

1nput/Output  ParaDeters

lnput:      none

Output:   R5   -error  code   (integer)
R8   -view  area  width   (in  the   range  1   to  64  bytes,

integer)
R9   -view  area   height   (in   the  range  1   to  256   scanlines.

integer)
R10-+  text  character   width   (6  or  s  pixels,   integer)
R11  -text   line  height   (in  the   range  10  to  16   scanlines,

integer)

Characteristics

This   routine   returns   the   current   view  area's  width   (in   bytes)   and   height
(in     scanlines)   and  the   current   character's  width   (in  pixels)   and  height
(in   scanlines).

Errors

The  only   value   returned   in   R5   is   0,   no   error.

10-25



-:-. :  : -,--.l-± -`*_iiS,I  ---

•1nqwq]dcoafdsp

Returns   the   world   coordinate   space   parameters   for   the   current   view  area.

1nput/Output  Parameters

lnput:       none

Output:   R5      ~  error   code   (integer)
RR6   .-XO   (single-precision   real)
RR8   .-YO   (single-precision   real)
RRIO-X1   (single-precision   real)
RR12-Y1    (single-precision   real)

Characteristics

This   routine   returns   the  world   coordinates   of   the   lower   left-hand   corner
(XO,YO)      and   of   the   upper   right-hand   corner   (X1,Y1)    respectively,    of   the
current   view  area.

These   coordinates   do   not   c!etermine   the   proportions     of     the     view     area;
they     determine     how  points   in   world   coordinates   will   map   to   the   current
view   area.

Errors

The   only   value   returned   in   R5   is   0.   no   error.



i+

THE   M20    GRAPHICS    ROUTINES

-``'.            .         _       `_`.

Draws   a   line   from  the   current   graphics   position   to   the     specified     abso-
1ute  position.

1nput/Output  Parameters

lnput:     RRO-x   (single-precision   real)
RR2-y  (single-precision  real)

Output:   R5   -error   code   (integer)

Characteristics

This   routine   draws   a   line   from  the  current   graphic   position   to   the  abso-
1ute   (x,y)   position  which   is   specified   in   world   coordinates.

Default   values   will   be     assumed     for     coordinate     space,      colour,      1ogic
operator,   and   line   class.

1f   the   (x,y)   coordinates   specify   a   point   which   is   outside   the   view     area
but  within  the   range   of  a   single-precision   f loating-point   number,   then   a
line   is   drawn   in   the  direction   of   the   specified   point   but   is   clipped     on
the   view  area   boundary.

The  specified   point   becomes   the   current   graphics   position,   even   if   it   is
outside   the   view  area.

Errors

lf   there  are  any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   See   APPENDIX   E   for     the     error     descriptions.         lf     there     are     no
errors.   a   zero   is   returned.

10-27



Draws   a   line   from   the   current   graphics   position   to  a   specified     relative
position.

1nput/Output   Parameters

lnput:     RRO-dx   (single-precision   real)
RR2--dy   (single-precision   real)

Output:   R5   -error  code   (integer)

Characteristics

This   routine   draws   a   line,   the   length   and   direction   of   which   are     speci-
f ied      in     world     coordinates   by   the   dx   and   dy   input   parameters,    starting
from  the   current   graphics   position.

Default   values   will   be     assumed      for      coordinate      space,      colour,      logic
operator,   and   line   class.

1f   the   point,   resulting   from   the   input   distances,    is     outside     the     view
area     but     within  the   range   of  a   single-precision   floating-point   number,
then   a   line   is   drawn   in   the   specified   direction   but   is     clipped     on     the
view   area   boundary.

The   resulting  point   becomes   the  current   graphic   position,      even   if   it   is
outside   the   view  area.

Errors

lf   there  are  any  errors,   the   status   code   is   returned     in     R5.      The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for      the     error      descriptions
errors.   a   zero   is   returned.

1f     there     are     no



THE   M20   GRAPHICS   ROUTINES

Displays  a  point  at  the  specified  absolute  position.

Input/Output  Parameters

lnput:     RRO-x  (single-precision  real)
RR2-y  (single-precision  real)

Output:   R5   -error  code   (integer)

1..-----

Characteristics

This   routine   displays  a   point   at   the  absolute   (x,y)     position     which     is
specified   in  world  coordinates.

Default   values  will   be   assumed   for   coordinate   space,   colour,      and     logic
operator.

lf   the   (x,y)   coordinates   specify  a  point  which   is   outside   the   view     area
but     within     the   range   of  a   single-precision   f loating-point   number,   then
no   point   is   displayed.     The   resulting  point   becomes   the  current     graphic
position,   even   if   it   is  outside  the  view  area.

Errors

lf   there   are   any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for     the     error     descriptions.         1f     there     are     no
errors,   a   zero   is   returned.

10-2,



llllllm

Displays   a   point   at   a   specified   distance   f rom   the   current   graphics   posi-
tion.

1nput/Output   Parameters

lnput:      RRO+---dx   (single-precision   real)
RR2-dy   (single-precision  real)

Output:   R5  -error   code   (integer)

Characteristics

This   routine   displays   a   point   at   a   specified   (dx,dy)   distance     from     the
current     graphics     position.      The   distance   is   specif ied   in   world   coordi-
nates .

Default   values   will   be   assumed   for   coordinate   space,   colour,      and      logic
Operator.

1f   the  point,   resulting   from   the   input   distances,    is     outside     the     view
area     but     within  the   range   of  a   single-precision   floating-point   number,
then   no   point   is   displayed.      The   resulting     point     becomes     the     current
graphic   position.

Errors

lf   there   are  any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   See   APPENDIX   E   for     the     error     descriptions.         1f     there     are     no
errors.   a   zero   is   returned.

ASSEMBLER   USER   GU1.DE



THE   M20   GRAPHICS   ROUTINES

Sets   up  the  M20   for   creating  graphics.

1nput/Output  Parameters

none

Characteristics

This  procedure   must   be   the   first   graphics   call.   The     default     conditions
are   set:

-     a   single   view  area,   labelled   1

-     world   coordinates   coincide   with   device   coordinates   (0.0-511.0     pixels
x  0.0-255.0   scanlines)

-     black  as   the  background  colour

-     white  as   the   foreground   and  text   colours   for   the  black  and  white   sys-
tem  and   green   for   the   colour   system

-     rio   cursor   displayed

-     a   blank  screen.

lt  may  also   be   used     to     reinitialise     the     graphics     environment,     thus
clearing     the     effects   of   all   the   prc;ceding  graphics   calls.   The  applica-
tion   program   handles   subsequent   graphics   functions     and     procedures     and
their  output  as  if  starting  afresh.



Transfers   an   image  onto  the   screen.

1nput/Output  Parameters

lnput:     RRO   -X  width     (single-precision   real)
RR2   -Y  height   (single-precision   real)
RR10-array  pointer

Output:   R5         -=   error   code   (integer)

Characteristics

This   routine   retrieves  a   rectangular   image   stored
array     pointed   to   by   RR10   and   displays   it   on   the
image   stored   in     mei-iiory     is     part     of      (or     all)
displayed   on  a   view  area.

into   a   one-dimensional
screen.   The   rectangular
a     picture     previously

The   size   of   the   rectangular   image   to   be   displayed   is   loaded   in     RR0     and
RR2.      These   two   values   are   in   world   coordinates.

The   image   is   displayed  with   the   rectangle's   upper   left-hand     corner     at
the   current   graphics  position.

The   two   values   X   width   and   Y   height   loaded      in      RR0      and      RR2      need      not
correspond     to     the     full   size   of  the   image   implied  by  the   array.    lf  the
rectengular   image   stored   in   the  array   is   relatively     large     compared     to
this   routine's   arguments   X  width,   Y   height,   then   only   part   of   the   stored
image   is   displayed.   The   right   and   bottom   edge   of   the   image   are   clipped.

1f  the   rectangular   image   stored     in     the     array     is     smaller     than     that
implied     by   the   arguments   X   width   and   Y   height   of   this   routine,   then   the
full   picture   will   appear.      This  will   not  extend   to  the   right   and     bottom
borders   implied   by   the   two   arguments.

1f  the  current   graphics  position   is   too   close   to  the   right   and/or   bottom
edge     of   the   screen   for   the  entire   image   to   be   displayed,   then   only  part
of  the   image   is  displayed  and  the   rest   of   it   is   clipped     at     the     screen
edge.

The   default   value   for   logic   operator   is   assumed.

ASSEMBIER   USER   6UIDE  €`::r9j,<



•y.:`?`t
THE   M20   GRAPHICS    ROUTINES

Errors

lf   there  are   any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for     the     error      descriptions.         If     there     are     no
errors,   a   zero  is   returned.



Draws   a   connected   sequence   of   lines.

1nput/Output   Parameters

lnput:     RR6-X  array  pointer
RR2-  Y  array  pointer
R4   -number   of   points   (integer,   equal   to  or   greater   than  2)

Output:   R5  -error  code   (integer)

Characteristics

This   routine   draws   lines   connecting   the     points     specif ied     by     the     two
arrays.        The     two   arrays   are   the   same   size   and   contain   single-precision
real   numbers.   A   coordinate   is   made   up   of   element   X[J]   of   the   first   array
and     element     Y[J]     of   the   second   array.   Register   R4   contains   an   integer
specifying   the   nuiiiber   of   points   to   be   connected.   The   points   are   absolute
locations   in   world   coordinates.

Default   values   will   be     ass`Jmeci      for      coordii:\3te      space,      colour,      logic
operator,   and   line   class.

The   application   program  must   deciare   and     allocate     the     two     coordinate
arrays.        Each      array   contains       single-precision   real   numbers;   the   high
order   word   must    precede   the  low-order   word.   The   size   of   each   array     must
be     at     least   iarge   enough   to   store   as   many   double-word   numbers   as   there
are   points.

The   figure  will   not  be   a   closed   polygon   unless   the   first   and   last   points
specified   by  the   arrays   coincide.

lf  the  coordinates  specify  points   that  are   not     within     the     view    area,
then     the     figure  will   be   clipped  on  the   view  area   boundary.    1f  the   last
point   is  outside  the  view  area,     it     nevertheless     becomes     the     current
graphics  position.

Errors

lf   there  are   any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to  the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for     the     error     descriptions.         If     there     are     no
errors,   a   zero   is   returned.

i?   ASSEMBLER   USER   6UIDE  `t.\2



THE    M20   6RAPHICS   ROUTINES

Displays  the   specified   points.

lnput/Output  Parameters

lnput:     RR6-   X  array  pointer
RR2-  Y  array  pointer
R4  -number  of  points   (integer,   equal   to  or  greater  than  1)

Output:   R5  -error  code   (integer)

Characteristics

This   routine   displays   the   number   of   points   specified  by  R4;   each  one     is
identified     by  the   coordinates   specified  by  the   two   arrays.   A  coordinate
is   made   up  of   element  X[J]   of  the   first   array  and   element     Y[J]     of     the
second     array.        The     two     arrays     are  the   same   size   and   contain   single-
precision   real   numbers.   The  points   are   absolute   locations   in  world  coor-
dinates.

Default   values   will   be   assumed   for   coordinate   space,   colour,      and     logic
operator .

The  application   program  must   declare   and     allocate     the     two     coordinate
arrays.        Each     array     contains     single-precision   real   numbers;   the   high
order   word   must   precede   the   low   order   word.   The   size   of   each   array     must
be     at     least   large   enough   to  store  as   many   double-word   numbers   as  there
are   points.

The  coordinates  which  specify  points   that   are   outside   the   view  area   will
not  be  displayed  and   no  error   message   is  generated.   However,   the   current
graphics  position  will   track  these  non-visible   points  and     if     the     last
point     is     outside     the     view    area     it   nevertheless   becomes   the   current
graphics   position.

Errors

lf  there  are  any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to  the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   See   APPENDIX   E   for     the     error     descriptions.1f     there     are     no
errors.   a   zero  is  returned.

10-35



Chooses  which   cursor   is   to   be   displayed.

1nput/Output  Parameters

lnput:     R8-O  (neither  cursor)   or
1    (graphics   cursor)   or
2   (text  cursor)

Output:   R5 --error  code  (integer)

Characteristics

This   routine   chooses  which  cursor   (if  any)   is   to  be   displayed.

1f   selected,   the  text  cursor   is  displayed  and     text     will     be     displayed
starting  from  that  position.

lf  selected,   the  graphics  cursor   is  displayed  with   its   upper     left     hand
corner     at     the   current   cursor  coordinates.   However,   subsequent  graphics
output  will   not  start   from  this  point   unless   the  current  graphics     posi-
tion  has   been   updated   to  this   same  position.

The  text  and   graphics   cursor   do   not   usually  occupy     the     same     position.
The   two   cursors   cannot   be   displayed   simultaneously.

Errors

lf  there  are   any  errors,   the   status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   See   APPENDIX   E   for     the     error     descriptions.         lf     there     are     no
errors.   a   zero   is   returned.

ASSEMBLER    USER    GUIDE



TllE   M20   6RApl11CS   ROUTINES

•    `.`            .         L

Selects   the  colour   for   subsequent   graphics   output.

1nput/Output  Parameters

lnput:     R8-colour  code   (in  the  range  0  to  7,   integer)

Output:   R5 -error  code   (integer)

Valid   lnput   Values

On  monochrome   systems,   R8   (colour   code)   selects   either   black   or   white   to
be  the  graphics   colour   attribute:

colour   code              graphics   colour   attribute

0
1to7

black
white

On   four-colour   systems,   R8   (colour   code)   selects     the     colour     attribute
indirectly     by     acting     as     an     index     into    a     table     of     four     colours
preselected   from  the   eight  possible   colours   (see   SetcolourRep):

colour   code              graphics  colour  attribute

0to3

4to7

the  colour   attribute  associated  with
each  one   of   the   four   values  0,1,   2
and  3,   depends   on  the   values   set  by
default   or   via   SetcolourRep.

The   values   in  this   range  map   to  a   value
in   the  range  0  to  3  via  a   logical   opera-
tion   (see  the   following   note).

Note:   Bits   0  and  2   of   the  binary     representation     are     OR'd.     e.g.,     the
values   4   (100   binary)   and   5   (101)   give   1   OR   0   =   1   and   10R   1   =   1   respec-
tively.     This   sets  the   least  signif icant  bit   (bit  0)   and  bit    1     remains
unchanged.        Thus,      the     values     4  and  5  will   become  1   after   the   logical
operation   (4   decimal   =   100   binary  which  becomes   01   binary     =     1      decimal
and     5   decimal   =   101   binary   which   becomes   01   binary  =   1   decimal)   and   the
colour   is  green   (if  the  default   value   has   not   been  changed).   The     values
6     and     7     will     become     3     after   the   logical   operation   (6   decimal   =   110
binary   which   becomes   11   binary  =   3   decimal   and   7   decimal     =     111      binary
which  becomes   11   binary  =   3  decimal)   and   the   colour   is   red.

10-37



On   eight-colour   systems,   R8   (colour   code)   selects   the     colour     attribute
directly,   according   to   the   following   table:

colour   code              graphics   colour   attribute

black
green
blue
Cyan
red
yellow
magenta
white

Characteristics

This   routine   selects   the   specified   colour   for   subsequent     graphics     out-
put.        There  are   different   effects   on  monochrome,   four-colour   and   eight-
colour   systems.

Errors

lf   there  are   any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond  to   the   standard   PCOS   error   codes,   with   the   same   meari-
ings.   See   APPENDIX  E   for     the     error     descriptions.         If     there     are     no
errors.   a   zero   is   returned.

ASSEMBLER    USER   GUIDE



THE    M20    GRAPHICS    ROUTINES

Selects  the  colours   for  subsequent  text  output.

1nput/Output  Parameters

lnput:     R8+-foreground  colour   code   (in  the   range  0  to  7,   integer)
R9-background  colour  code   (in  the  range  0  to  7,   integer)

Output:   R5-error  code   (integer)

Valid   lnput  Values

On  monochrome   systems,   if   the  foreground  colour   is   set   to   black   (0),   the
background     colour     may   be   set   to  any   value   in   the   range   1   to   7   (white).
The  default   value   for   the  background   colour   is   black.

On  four  colour  systems,   each     parameter     selects     the     colour     attribute
indirectly     by     acting     as     an     index     into     a     table     of     four     colours
preselected   from  the   eight  possible  colours   (see   SetcolourRep):

background  colour  code  and            text  colour  attribute
foreground   colour   code

0to3

4to7

the  colour  attribute,   associated
with  each  one   of   the   four   values
0,1,   2   and   3,   depends   on   the
values   set   via   SetcolourRep.

the  colours   selected  are  not
easily  predictable.

On   eight   colour   systems,   each  parameters   selects     the     colour     attribute
directly,   according  to  the   following  table:

Background   colour   code   and       text   colour
foreground  colour  code                attribute

black
green
blue
Cyan
red
yellow
magenta
white

10-39



Characteristics

This   routine  specifies   the  colours  to  be     used     as     the     foreground     and
background     of     the     text     output.     Text     is   displayed   in  the   foreground
colour.   The  background   colour   also  affects   the  ClearviewArea   routine   and
the   "PRESET"   logic  operator   (see   SetcolourLogic).

The  values  set  by  this   function   hold  until   it   is   called  again.

There  are   different  effects  on  monochrome,   four-colour   and     eight-colour
systems .

Errors

lf  there  are   any  errors,   the   status   code   is   returned     in     R5.     The     code
numbers   correspond   to  the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   See   APPEN0IX   E   for     the     error     descriptions.         1f     there     are     no
errors.   a   zero  is   returned.

ASSEMBLER    USER   GU10E



THE   M20   GRAPHICS   ROUTINES

Activates   the   selected   view  area.

E""-_,L

1nput/Output  Parameters

lnput:      R8-view  area   number   (in   the   range   1   to   16,   integer)

Output:   R5-error  code   (integer)

Characteristics

This   routine   activates   the   specified   view  area   which   has   previously  been
defined     via     DivideviewArea.      A11      text     and     graphics     output     will   be
displayed   on   this   view  area   and   is   entered   in  accordance   with   its  attri-
butes      (colour,     world     coordinate   space,   text   spacing,   current   text   and
graphics   positions,   etc.).

Errors

lf   there  are   any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to  the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   See   APPENDIX   E   for     tlie     error     descriptions.         1f     there     are     no
errors.   a   zero   is   returned.

O-4i



Defines  a   logic  operator   that   inf luences   the   output   colour.

lnput/Output  Parameters

lnput:     Rlo-logic   operator   code   (in   the   range  0  to  5,   integer)

Output:   R5  -error  code   (integer)

Valid   lnput   Values

0       PSET:

1         XOR:

2       AND:

3       NOT:

40R:

5       PRESET:

graphics   output   is   displayed   in   the   default   colour   or     in
the  colour   specified   via   the   last   SelectGrcolour   call.

the  graphics   colour   and   the  colour   of     the     target     pixel
are      logically     XOR'd.        6raphics     output   is   drawn   in   the
resulting   colour,   e.g.,   if   the  current   graphics   colour   is
blue   (010   binary)   and  the   pixels   on  which   the   geometrical
output   will   be   drawn   are   yellow   (101      binary),      then     the
resulting   colour   is   white    (010   XOR   101    =   111).

the  graphics   colour   and  the   colour   of     the     target     pixel
are      logically     AND'd.        Graphics      output   is   drawn   in   the
resulting  colour,   e.9.,   if  the  current  graphics   colour   is
blue   (010   binary)   and   the   pixels   on  which   the   geometrical
output   will   be   drawn   are   yellow   (101      binary),      then     the
resulting   colour   is   black   (010   AND   101    =   000).

this   is   a   unary  operator   that   complements   the     colour     of
the       target       pixel     (the     current     graphics     colour     is
irrelevant),   e.g.,   if   the  target     pixel     is     yellow     (101
binary)   then  the   resulting   colour   is   blue   (010  binary).

the  graphics  colour  and  the  colour  of     the     target     pixel
are     logically     OR'd.        Graphics     output     is   drawn   in  the
resulting  colour,   e
blue   (010   binary)   a

.9.,   if  the  current  graphics   colour   is
nd  the  pixels   on  which  the   geometrical

output  will   be   drawn   are   yellow     (101      binary)     then     the
resulting   colour   is  white   (010   0R   101   =   111).

the  graphics   colour   is   set   to.the  background   colour  which
is     black     on     the  monochrome   and  eight   colour   systems   if
the   default   values   remain   unchanged;    it   is   also   black     on
the     four-colour     system     if     the     default     values   remain
unchanged.

10-42   -=`-H ---. ssE"LER mp 6uiBE-=



THE   M20   CRAPHICS   ROUTINES

Characteristics

This   routine   specifies  a   logic  operator   that  will   influence     the     output
colour      (for     all     subsequent     output     except     text)   on  a   pixel-by-pixel
ba s i s .

When   new  output   is   displayed   the   logic   operation   is   applied   one   pixel   at
a      time.   The   logic   operation5   deal   with   the   numbers   in   the   range  0   to  7,
as  three-bit  binary  quantities.

The   specific   results   vary   depending   on   the   system     configuration.      Mono-
chrome   systems   transform  the   numbers   in   the   range   2   to  7   to   the   value   1,
thus   the   only   operands   are   0   and   1,   which     are     the     colours     black     and
white   respectively.

Eight   colour   systems   make   no   transformation   and   deal     with     the     numbers
directly  as   colours,   with  corresponding   results.

Four  colour   systems   treat   the   numbers   not   directly     as     colours     but     as
indices     into  the   four-colour   table.   Predicting  the   f inal   result   is  pos-
sible   but   requires   some   calculation.

Errors

lf   there   are   any   errors,   the  status   code   is   returned     in     R5.      The     code
numbers   correspond   to  the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for      the     error      descriptions.         1f     there     are      no
errors.   a   zero   is   returned.

10-43



Sets  one  of  the   four   colour   indices   to  one   of  the   eight  M20   colours.

lnput/Output  Parameters

lnput:     R1-colour   index   (in  the  range  0  to  3,   integer)
R2--colour  code   (in  the  range  0  to  7,   integer)

Output:   R5-error  c6de   (integer)

Valid   lnput   Values

The   following  table   shows   the   corresponding  colour     attributes     for     the
colour   code    (R2):

colour                 graphics   colour
code                    attribute

black
green
blue
Cyan
red
yellow
magenta
white

Characteristics

This   routine   is   used   on   four-colour   systems   and   has   no   effect     on     mono-
chrome     and     on     eight-colour     systems.        It   sets   one   of  the   four   colour
indices   to   one   of   the   eight  M20   colours.

Errors

lf   there  are   any  errors,   the   status   code   is   returned     in     R5.     The     code
numbers   correspond   to  the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for      the     error      descriptions.         1f     there     are     no
errors.   a   zero   is   returned.

10-44 ASSEMBLER   USER   6UIDE         `



THE    M20   GR HICS   ROUTINES

Sets   the  blink   rate   for   the  graphics   cursor.

lnput/Output  Parameters

lnput:     R8-blink   rate   (in  the   range  0  to  20,   integer)

Output:   R5-error   code   (integer)

Valid   lnput   Values

Rs   is   loaded   with   a   value   in   the   range   0  to   20

0:                                the   t`ursor   is   left   ON   continuously
1   to   20:                the   cursor   blinks   n/2   times   per   second.

Characteristics

This   routine   sets   the   blink   rate     for     the     graphics     cursor,      from     the
steady     state     to   the   specified   state   changes   per   second   (from   OFF   to  ON
or   from   ON   to  OFF).      The   specified   value   is   truncated   to   the   nearest     50
mi l l i seconds .

This   routine   does   not   affect     which     cursor     is     to     be     displayed.      The
Selectcursor   routine   does  this.

Errors

lf   there  are   any  errors,   the   status   code   is   returned     in     R5.      The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for     the     error      descriptions.         If     there     are     no
errors.   a   zero   is   returned.

10-45



F5 t" sfl 1
Def ines   the   graphics   cursor   shape.

lnput/Output  Parameters

lnput:     RR8-array  pointer

Output:   R5   -error   code   (integer)

Characteristics

This   routine   def ines   the  graphics   cursor   shape   according   to   the  contents
of     the   array  pointed   to  by  the   array  pointer.     This   array   consists   of  6
one-word   (2   bytes)   elements,   each   containing   a   16-bit   unsigned      integer.
Each     byte   is   a   bit-map   of   a   scanline   of   the   cursor.   The   first   element's
high-order   byte   is   the   top   scanline   of   the   new  cursor;   the   sixth's     ele-
ment   low-order   byte   is   the   last   scanline   of  the   new  cursor.

This   routine   does   not   effect     which     cursor     is     to     be     displayed.     The
Selectcursor   routine   does  this.

Errors

lf   there   are  any   errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   See   APPENDIX   E   for     the     error     descriptions.         1f     there     are     no
errors.   a   zero   is   returned.

r`         ASSEMSLER   uSER   6u]OE



THE   M20   GRAPHICS   ROUTINES

Determines   the  graphic   output   for   the  LineAbs  and   LineRel   routines.

1nput/Output  Parameters

lnput:    R3-0  (1ine)  or
1   (hollow   rectangle)   or
2   (solid   rectangle)

Output:   R5-error  code   (integer)

Characteristics

This   routine   determines  whether   the  graphic   output   for   the     LineAbs     and
LineRel     routines     will   be  a   line,   a   hollow  rectangle   or  a   solid   rectan-
gle.   ln  the   latter   two  cases,   the  world     coordinates     specified     in     the
LineAbs     and     LineRel   routines   constitute   the   end  points   of  the   diagonal
of  the  rectangle.

The  graphics   output   will   be   displayed   in   the   current   graphics   colour.

Errors

lf   there   are  any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   See   APPENDIX   E   for     the     error     descr'iptions.        1f     there     are     no
errors.   a   zero  is   returned.

10_47



Sets  the  character  width  and  text   line   height.

1nput/Output  Parameters

lnput:     R10-1ine   height   (in  the  range  10  to  16,   integer)
R12-character  width   (6  or  8,   integer)

Output:   R5  -error  code   (integer)

Characteristics

This   routine   sets   the  width   (in  pixels)   and   the     text     line     height     (in
scanlines)      of  the   character   space.      lt   is  the   space   around   each   charac-
ter   which   grows   or   shrinks,      the     individual     character     size     remaining
unchanged .

The   values   set   by  this   routine   hold   for   the   current   view    area     and     all.
subdivisions   of   it,   or   until   the   routine   is   called  again.

This   setting   influences   the  width  of   subsequent   view     area     definitions.
In     fact,   DivideviewArea's   second   parameter   "division   point"   establishes
the  division   point   of   the   view  area.   For   vertical     divisions,      "division
point"     expresses  the   number   of   characters   from  the   old   view  area's   left
edge.   If   the   character   width   is   of  6   pixels   rather   than   8,   then   the   left
view     area     will   be   smaller   than   it   would   have   been   with  s   pixel   charac-
ters .

Errors

lf   there  are  any   errors,   the   status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for      the     error      descriptions
errors,   a   zero   is   returned.

lf     there     are     no



THE   M20   6RAPHICS   ROUTINES

Sets  the  blink  rate   for   the  text  cursor.

IIllllllllllllIR

H c  ogffl  t

1nput/Output  Paraneters

lnput:     R8-blink  rate   (in  the  range  0  to  20,   integer)

Output:   R5-error  code   (integer)

Valid   lnput   Values

Rs   is   loaded  with  a   value   in   the   range   0  to   20

0:                              the   cursor   is   left  ON   continuoulsy
1   to   20:               the   cursor   blinks   n/2   times   per   second.

Characteristics

This   function  sets  the  blink  rate   for   the  text  cursor,   from     the    steady
state     to  the   specified   state   changes   per   second   (from  OFF   to  ON  or   f rom
ON   to  OFF),   e.g.,    if   Rs   is   loaded   with   the   value   8,     then     there     are     s
states  per   second,   4  0N   states   and  4  0FF   states.     The   specified   value   is
truncated   to   the  nearest   50  milliseconds.

This   function  does   not   select  which     cursor     is     to     be     displayed,     the
Selectcursor   function  does   this.

Errors

lf   there  are   any  errors,   the   status   code   is   returned     in     R5.     The     code
numbers   correspond   to  the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for     the     error     descriptions.        If     there     are     no
errors,   a   zero  is   returned.



E-=-,=:H
Defines   the   text   cursor   shape.

1nput/Output  Parameters

lnput:     RR8-array  pointer

Output:   R5   -error  code   (integer)

Characteristics

This   routine   defines   the   text   cursor   shape   according   to   the   contents     of
the     array     pointed  to  by  the   input   value.   This   array   consists   of  6   one-
word    (2   bytes)    elements,    each   containing   a   16-bit   unsiqned   integer.    Each
byte     is  a  bit-map   of  a   scanline   of  the   cursor.   The   first   element's  high-
order   byte   is   the   top   scanline   of   the   new  cursor;      the     sixth   element's
low-order   byte   is  the   last   scanline   of  the   new  cursor.

1f   the  most   signif icant   bit   of   each  byte   is   set   then   the   leftmost   column
of  pixels  will   touch   the  character   preceding   it.

This   routine   does   not   effect     which     cursor     is     to     be     displayed.      The
Selectcursor   routine   does  this.

Errors

lf   there  are   any  errors,   the  status   code   is   returned     in     R5.      The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See  APPENDIX   E   for     the     error      descriptions.         If     there     are     no
errors,   a   zero   is   returned.

ASSEtßl£R   USER  6UIDE



THE   M20   GRAPHICS   ROUTINES

•::.        -'``    `--`-```

Defines   the  world  coordinate   space.

1nput/Output  Parameters

1nput:     RRO--XO   (single-precision   real)
RR2-YO   (single-precision  real)
R4  -view  area   number   (integer,   in  the  range  1   to  16)
RR6-  X1   (single-precision  real
RR8-  Y1   (single-precision  real

Output:   R5   -error  code   (integer)

Characteristics

This   routine   defines   the   user   coordinate   space,   known  as   the  world   coor-
dinate     space.     The     routine     may     be   called  again   to   refined  the   user's
world   coordinate   space  when   required.

The   input  coordinates  determine  the   scaling     interpretation     within     the
specified   view  area   and   not  the   view  area's   size  which   is   determined   via
the  DivideviewArea   routine.

A11   subsequent   graphic   coordinates   within   the   view  area   will     be     scaled
by     a     transformation     routine     using   the   input   coordinates   (XO,   YO)   and
(X1,   Y1),   which   define   the   endpoints   of   a   diagonal   of     the     entire     view
area.        (XO,     YO)     are  the  coordinates   of  the   lower   left-hand   corner   and
(X1,   Y1)   are   those   of   the   upper   right-hand   corner   of   the   view  area.

Errors

lf   there   are   any  errors,   the  status   code   is   returned     in     R5.     The     code
numbers   correspond   to  the   standard   PCOS   error   codes,   with   the   same   mean-
ings.   See   APPENDIX   E   for     the     error     descriptions.         1f     there     are     no
errors,   a   zero  is   returned.

10-51



Moves  the  text  cursor.

1nput/Output  Parameters

lnput:     R8-text  column   (integer,   in  the  range  1   to  64
or   1   to   80)

R9-text  row         (integer,   in  the  range  1   to  16
or   1   to   25)

Output:   R5.-error  code   (integer)

Characteristics

This   function  moves   the   text  cursor     and     thereby     determines     the     next
screen     position     at     which     text     will   be  displayed   in  the  current  view
area.     The  text  cursor   is  displayed  only  if     the     Selectcursor     function
has   been   previously   invoked,   loading   Rs   with  the   value   2.

Rs   is   loaded   with   a   number   in   the   range   1   to  64  or   1   to   80,   depending   on
whether     the     character's     width     is     s   or  6  pixels   respectively.      R9   is
loaded   with   a   number   in   the   range   1   to   16   or   1   to   25,   depending     on     the
character's   height   (see   SetTextline).

A   full-screen   view  area   may  be   64   columns   wide   and   16   rows     high     or     80
columns   wide   and   25   rows   high.   The   dimension  which   is   current   determines
the  position  of  anything  specified   in  terms  of  character   counts.      1f  the
current     view     area     is  Smaller  than   full-screen  then  the  amount  of  text
that   it  may  contain   depends   on   the  dimensions   of   the   view  area.

If  the   coordinates   specify  a   point  which   is     outside     tlie     current     view
area   then  the  current   position  of  the  text  cursor   is   unchanged.

Errors

lf   there  are  any  errors,   the   status   code   is   returned     in     R5.     The     code
numbers   correspond   to   the   standard   PCOS   error   codes,   with   the   same   mean-
ings.    See   APPENDIX   E   for     the     error     descriptions.1f     there     are     no
errors,   a   zero   is   returned.

ASSEMBLER    USER   GU10E



APPENDICES





A.   RESERVED  WORDS





RESERVED   WORDS

The   following  symbols   are   recognized   for   their   specific   meanings   by     the
assembler.      They     cannot   be   used  by  the   programmer   as   variable   names.    1f
the  programmer   uses   one   of  these  symbols  by  mistake,   the  assembler   flags
its  occurrence  with   error   86,   Multiple  Definition.

Reserved  word                                                 Use

<t3?

d

mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
directive
directive
mnemonic
mnemonic
condition  code
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic

ü4#   d34o6 mnemonic
-ective   2.£  5`

`nic
C

@®e^u,d*<<~Ö€€Q¥i:±rx¢#g%^

<Ö<A¢®±€¢+o€a,_e^%:q;::?¥^e®je:

{=<--

ff_=_
E=

T3*
E=<--

Q#g:^:e;.===;+:::a<Z::6;;::p:::tx¢^,p,



Reserved   word                                                   Use

directive
directive
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
directive
directive
directive
mnemonic
directive
condition   code
mnemonic
mnemonic
directive
mnemonic
mnemonic
mnemonic
condition   code
control   word
control   word
condition   code
directive
condition   code
mnemonic
directive
mnemonic
mnemonic
mnemonic
mnemonic
directive
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic



RESERVED    WORDS

Reserved   word                                                  Use

L00RB
LDI

LDIB

LDIR

L0lRB
LDK

LDI
LDM

LDPS

LDR

LDRB

LDRL

LE

LISTOFF
LISTON

LT

MBIT

MI

MODULE

MRE0

MRES

MSET

MULT

MULTL

NC

NE

NEG

NECB

NONSEGMENTED

NOP

NOV

NSP

NSPOFF

NSPSE6
NVI
NZ

OR

0RB
0TDR

0TDRB

OTIR
0TIRB
0UT
0UTB
OUTD

0UTDB

0UTI
OUTIB
0V
P
PAGE

PE
PL

mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
condition   code
directive
directive
condition   code
mnemonic
condition   code
directive                :,`   ;J  ;;
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
condition   code
condition   code
mnemonic
mnemonic
module   type
mnemonic
condition
control
control
control
interrupt
condition  code
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
condition   code
flag
directive
condition   code
condition   code



Reserved   word                                                    Use

condition   code
mnemonic
mnemonic
control
control
control
mnemonic
mnemonic
word   register
word   register
word   register
word   register
word   register
word   register
word   register
word   register
word   register
word   register
word   register
word   register
word   register
word   register
word   register
word   register
control   word
mnemonic
mnemonic
mnemonic
mnemonic
byte  register
byte  register
byte   register
byte  register
byte   register
byte   register
byte   register
byte   register
mnemonic
byte  register
byte  register
byte  register
byte  register
byte   register
byte  register
byte  register
byte  register
mnemonic
mnemonic
mnemonic
mnemonic
quad  register
quad  register
quad   register

ASSE»BIER   USER   6UIDE



RESERVED    WORDS

Reserved   word                                                  Use

RQS

FiR

RRO

RR10
RR12

RR14

RR2
RR4
RFt6

RRS

RRB

RRC

RRCB

RRDB

S
SBC

SBCB

SC

SDA

SDAB

SDAL

SDL

SDLB

SDLL

SECT10N
SEGMENTED

SET

SETB

SETFLC

SIN
SINB
SIND
SINDB

SINDR

SINDRB

SINI
SINIB
SINIR
SINIRB
SLA

SLAB

SLAL

SLL

SLLB
SLLL

SOTDR

SOTDRB

SOTIR
SOTIRB

SOUT

SOUTB

SOUTD

SOUTI

SOUTIB

quad   register
mnemonic
long  register
long  register
long  register
long   register
long   register
long   register
long  register
long  register
mnemonic
mnemonic
mnemonic
mnemonic
flag
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
directive
module   type
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic

A-5



Reserved   word                                                   Use

mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
directive
mnemonic
mnemonic
mnemonic
directive
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
condition   code
mnemonic
mnemonic
condition
condition
condition
condition
flag
interrupt
mnemonic
mnemonic
condition   code

ASSEMBLER   USER   6ÜIDE



8.  ASM  ERRORS AND  WARNINGS





ASM    ERRORS    AND    WARNINGS

The   following   is   a   complete   list   of   codes   of   errors     and     warnings     that
can     be   returned   by   the   ASM   command   during   assembly   time.   The   code   mean-
ing   refers   to   the  source   file   line   number   in   the   context  of   the   program.

Bad   Stateiiient :

Bad   Line
Bad   Label/Mnemonic   Field   or   Context
Bad   lF/ENDIF
Bad   Directive   or   Context
Bad  Labelled  Directive   or   Context
Bad  Module/Section   or   Context
Bad   Argument   or   Context
Bad  Byte-Data   Context
Bad  Word-Data   Context
Bad   Long-Data   Context
Source   line  truncated
IF   not   terminated   by   ENDIF
ENDIF   with   no   matching   lF

Bad  Character,   ldentifier  or  Constant:

i!i;i!;:;§§:!;§;:!:::T3:dL:::::o:aduseofgoI11egal   Character
lllegal   base  specification  in  number
lllegal   Keyword
End   of  Line   in   number
Keyword   in   label   f ield
Mnemonic   not   in   mnemonic   field

8-1



Bad  Expression:

Bad   Operand:

Bad   Parenthesis   Use
Segment/Section/External     mismatch     in     rela-
tional   expression
I11egal   relational   operands

I    lllegal   Type   Combination   in   Expression

|  !:;::::/;::t:::7Ei=e::::e::s::::h  in  additive
term
111egal   additive   operand
Address   type   mismatch   in   additive   term
lllegal   multiplicative  operand
11legal   unary   operand
Absolute   segment   number   out   of   range
lllegal     type     in     segment/offset   of  absolute
address

! i  !:;.#iui:ä;:::t:!;:::::
DD,    ODB   or   ODL   operand,    Wrong   Size
lndex  Register   is   lnvalid
DD   Repeat   Nesting   Error
Wrong   Register   Type
lndirect   Register   is   Zero
lmmediate   Operand   Wrong   Size
Base   Register   zero   not   allowed
lndex  Register   zero   not   allowed
Even   address   required
lnvalid   Relative  Address

!   !::::iäes:::t°:x:::::ion

!    £:::1ute   Address   too   Large   for   Short     Extrac-
!    Invalid   Segment   or   Offset   Extraction
i    lnvalid   Small    lmmediate

Extra   Operands   lgnored
lllegal   Operand
Truncation   Warning



ASM   ERRORS   AND   WARNINGS

Undefined   Symbol:

70

'   Section   or  Module   Name   out   of   place
"    Invalid  Address

;    DD   overf lows   64K
\i    No   prior   Section   for   SECTI0N   *
L   Page   size   specified   is   too  small

Undefined   or   non-numeric   page   size
Unexpected  end  of   line

ii    Bad   Operator/Value

Meaning
`  `:  .--

Undefined   Symbol    (Second   pass   only)

Bad  Location  or  Definition:

First  Pass  Errors:

Meaning

Symbol   not   def ined  until   second   pass
Symbol   redef ined   in   second   pass
Location   Counter   overf lowed   64K
Warning:     Address   incremented   to   even   value

Meaning

Multiple   Definition   (First   pass   error)
1F   Value   Not   Defined   (First   pass   error)
lnvalid   ATparm,   DSparm   or   DD   Repeat   Count
Undefined   ATparm,    DSparm   Template   Base   or   DD

8-3



Fatal   Errors:

Meaning

;:    Symbol   Table-Full   -Terminate

::    Unknown   Character   in   file
1nternal   Object  Table   full
lnternal   0bject  Table   full
Too   many   lNCLUDEs
Binary  data   file   absent   or   improper

ASSEMBLER    USER   GUIDE



C.   FUNCTIONAL  LIST  OF  SYSTEM  CALLS



AB0UT    THIS    APPENDIX

This   appendix   lists   the   M20   System   Calls   in   functional   groups.

CONTENTS

BYTESTREAM    CALLS C-1

BLOCK    TRANSFER    CALLS                                    C-3

STORAGE    ALLOCATION    CALLS                      C-4

GRAPHICS    SYSTEM   CALLS                               C-5

TIME    AND    DATE    CALLS                                       C-8

lEEE-488   CALLS                                                  C-9

MISCELLANEOUS     SYSTEM    CALLS               C-11



FUNCT10NAL    LIST    0F    SYSTEM   CALLS

BYTESTREAM   CALLS

Name System
Call

LookByte                          9

6etByte                           10

PutByte                              11

ReadBytes                        12

WriteBytes                    13

ReadL ine                           14

Eof 16

ResetByte                     18

Parameter

DID

returned  byte
buffer  status(00
error  status

•    Register

DID
returned  byte
error  statiis

•01D

input  byte  value
error  status

DID
input  count
input  ptr   to  memory
returned  count

i   error  status

DID

input  count
'   input   ptr   to   memory
'   returned  count

error  status
(

DID

}    input   count
input  ptr   to  memory
count   returned;   error  status

tDID

returned  status
error  status

DID
i   error  status

RS
R9
R5

RS
R5

C-1



System
Call

`   Parameter

Close                                    19

SetcontrolByte          20

GetstatusByte            21

OpenFile
(files)

OpenFile
(RS-232-C)

22

22

Dseek                                    23

DGetLen                                24
(files)

DGetL en                               24
(RS-232-C)

DGetposition               25

DRemove                                 26

DID
error   status

•DID

input   word   number
input   word
error  status

010
input   word   number
returned  word   read
error  status

DID
input  extent  length
input   mode
input  file   id.   length
input  ptr  to  addr
error  status

IDID

error  status

•DID

input  position
error  status

DI0
returned  length
error  status

DID
returned   zero   status

_T  _     __   _       __

Register

Fts

R5

RS
RR10

R5

RS
R10

returned   number   of   bytes        R11
error   status

DID
returned  position
error  status

input   length
input   ptr   to   name
error  status

R5

RS

RR10

R5

R9

RR10

R5



FUNCTloNAL    LIST   0F    SYSTEM   CALLS

Name System
Call

DRename                              27

DDirectory                    28

BLOCK   TRANSFER   CALLS

Name

Bset

System
Call

29

BWs et                                     30

Bc lear                                31

BMove                                      32

Parameter

input  old  address
input  old   length
input   new  address
input  new  length
error  status

input   file   id.   1ength
input  address
error  status

Parameter

input   n   (byte   value)
input   ptr   to  memory
input   length
error  status

input  n   (word   value)
input   ptr   to  memory
input   length
error  status

input  ptr   to  memory
input   length
error  status

input   length
input   ptr   to   old  memory
input   ptr   to   new  memory
error  status

C-3

i   Register

RR6
RS

RRIO

R9
)R5

R9
i     RRlo

R5

Register

RL7
RRS
R10
R5

R7
RRS
RIO
R5

RRS
R10
Fi5

R7
RRS

RR10
R5



STORAGE    ALLOCATloN   CALLS

Name System
Call

Newsamesegment           33

Dispose                             34

Maxsize                              99

NewAbsolute                   104

New 120

BrandNewAbsolut€         121

NewLargestBlocl  '      122

StickyNew                         123

Parameter

address   of  block  pointer
input   length
error  status
returned  block  pointer

address   of  block  pointer
input   length
error  status
Hex   FFFFFFFF

returned  size
error  status

Register

RRS

R10
R5

RRS

RRS
R10

Ft5

RRS

RS
R5

address   of   block  pointer        RRs
input   length                                       F`10
input   block  pointer                      RRs
error   status                                  R5

address   of   block  pointer        RF`8
input   length                                    RIO
error   status                                  R5
returned   block  pointer               RRs

address   of  block  pointer       RRs
input   length                                     R10
input   block  pointer                     RRs
error   status                               '   R5

address   of  block  pointer       RRs
returned   block  pointer              RRs
returned  length                            Fno
error  status                              .   R5

address   of  block  pointer       RR8
input   length
error  status
returned  block  pointer



FUNCT10NAL    llsT    0F    SYSTEM   CALLS

GRAPHICS    SYSTEM   CALLS

Name

Cls

Chgcuro                             36

Chgcurl                              37

Chgcur2                              38

Chgcur3                             39

Chgcur4                            40

Chgcur5                              41

Readcuro                         42

Readcurl                         43

Selectcur                     44

Grflnit                         45

Palattes et                46

Parameter

(no   parameters)

input   column
input   row
error  status

input   x
input   y

input  blink   rate

input  blink  rate

input  ptr  to  array

input  ptr   to  array

input  ptr  to  array
output  blink  rate
output   column
output   row
error  status

input  ptr  to  array
output  blink  rate
output  x-position
output  y-position
error  status

input  select

output  colour   flag
output  ptr   to  m-box

input   colour  A
input  colour  8
input   colour  C
input   colour  D
error  status

Register

RS
Ft9

R5

RS
R9

RS

R8



Name System
Call

Def inewindow                47

Selectwindow               48

Readwindow                      49

Chgwindow                          50

C losewindow                    51

ScalexY                              52

MapxYC                                      53

MapcxY                             i        54

Fetchc                              55

Storec                              56

UpC                                               57

Downc                                       58

Leftc                                59

Parameter

input   quadrant
input  position
input   vert-spacing
input   horz-spacing
output   window   number
error  status

input   window   number
error  status

output   window   number
output   x-size
output  y-slze
output   foreground
output   background
error  status

input   foreground   colour
input   background   colour
error  status

input   window   number

input   x-position
input  y-position
return   value

input  x-position
input   y-position

returned  x-position
returned   y-position

returned  C-value

input   C-value

(no   parameters)

(no   parameters)

(no   parameters)

Register

RS

RS
R9
R10

RS
Ft9

RS
R9

FiRS

RR8

ASSEMBLER    USER    GUIDE



FUNCTI0NAL    LIST   0F    SYSTEM   CALLS

Name System
Call

Rightc                             60

SetAtr                              61

S etc                                  62

Readc                                  63

Nsetcx                             64

NsetcY                               65

NRead                                     66

Nwrite                               67

Pntlnit                         68

TDownc                            ,      69

TUpC                                          70

ScanL                                     71

ScanR                                   72

Parameter

(no   parameters)

input  colour
error  status

input  operation

i   returned   colour

input   hor.   1ine   count
input  operation

Register

RS
R5

RS

RS

RS
R9

input   vertical   line  count     R8
input  operation

input  width   (count)
input   height   (count)
input  ptr  to  array
always   cleared
returned  addr.   of  array

input   logical   function
input  width   (count)
input   height   (count)
input  ptr  to  array
always  cleared

input  paint  colour
input  border   colour
error  status

returned  check  value

returned   check   value

returned  count-1
returned  margin   flag
returned  painted  f lag

input   maxcount
returned  C-type
returned  maxcount
returned  count-r
returned  margin  f lag
returned  painted  flag

R9



Name System
Call

Parameter

CloseA11Windows         113                       (no   parameters)

ClearText                         115

ScrollText                      116

TIME    AND   DATE    CALLS

input   column
input   row
input   column   count
input   row  count
error  status

input   color   plane   mask
input   logical   function
input   source   column
input   source   row
input   destination   column
input   destination   row
input   column   count
input   row  count
error  status

System           \    Parameter
Call

SetTime                             73

SetDate                           74

GetTime                              75

Register

input  addr  of  data
input   length  of  string
error  status

input  addr   of  data
input  length  of  string
error  status

input  addr  of  data
input  length  of  string
error  status



``  .'`  ^

FUNCTIONAL    LIST    0F    SYSTEM   CALLS

ffiBät

Name

l   ::#em

CetDate                     '      76

USER   CODE   CALIS

Name

1EEE-4es  CALIS

Name

Parameter

input  addr  of  data
input   length  of   string
error  statiis

'   Parameter

Register

Register

input  pointer
(system  stack   has   a
pointer  to  2-character
symbol,   list   of  parameter
pointers,   number   of
parameters)
error  status

System           i   parameter
Call

1BsrQO                              78                  !   error   status

lBsrQ1                            79                     error   status

1BPoll                          '      80

RM4

R5

Register

1

input  talker  addr
returned  ptr  to  status
error  status

'R5

lR5

Rs
1     RRIO

R5

C-9    -y



Name

lBWByt

1Blnpt

lBL inpt

1BRByt

System
Call

81

82

83

84

85

86

87

Parameter

input  operand
error  status

error  status

input  buffer  addr
input   listener  addr
input  buffer   length
input   delimiter
error   status

input   numval   addr
input   comlist   addr
input   numval   length
input   comlist   addr
error   status

input  buffer   length
input  talker   addr
input   listener  addr
input   buffer   addr
returned  buff er   length
error  status

input  buff er   length
input  talker   addr
input   listener  addr
input   buffer   addr
returned  buff er   length
error   status

input  buffer   addr
input   comlist   length
input  buffer   length
input   comlist   addr
error  status

Register



FUNCTIONAL   LIST   OF    SYSTEM   CALLS

MISCELLANEOUS   SYSTEM   CALLS

Name

Error

Dstring

CrLf

DHexByte

DHex

DHexLong

DNumw

DLong

System              Parameter
Call

88                   :   input   parameter   num
input  error  code

89                    input  addr   of  string
{   error   status

90                   error  status

91                   :   input   byte
error  status

92                       input  word
(   error  status

93                      input   long  word
t   error   status

94                     input   integer
input   field  width
error  status

95

Di sectName                     96

Checkvolume                   97

input   long  integer
error  status

input  string  length
input  string  addr
input   names   record  addr
error  status
returned   volume   number
returned   names   record

error  status

Register

\

RH5
RL5

RR12

Ft5

'R5

R12
R5

R12

R5

:     RR12

R5

R12
R13

R5

RR12
•R5

R9
RRIO

RR12
'R5

Ft7

RR12

'R5

C-11



Name

Search

Setvol

StringLen

DiskFree

Bootsystem

Setsysseg

SearchDevTab

Ctlcharoisp

KbsetLock

Getvol

106

119

Parameter

input   drive
input   search   mode
input    leng`ch
input   file   pointer
input   file   name   pointe
returned   length
returned   file   pointer
modified
error   status

input   volume   number
error   status

input   pointer
returned   length
error   status

-_-__  _    _          _  _

'   Regis`3r

input   volume   number
returned   num   of   sectors
error   status

error   status

error   status

input   ptr   device   name
input   dev   name   length
returned   entry   number
returned   device   type
returned   ptr   table   entry
error   status

on/off   (nonzero/zero)

input   integer   f lag
returned   previous   state
error   status

input   ptr   vol.    id.   buffer
input   buffer   size
returned   size
error   status

RR12

R7

R5

R7

RR10

R5

tR5

R6
R7
R5

RR12

R6
R7
R5

ASSEMBIER   USER



D.   FUNCTIONAL  LIST OF  GRAPHICS  ROUTINES



AB0UT    THIS    APPENDIX

This   appendix   gives   a   functional    1ist   of   graphics      routines,      subdivided
into     their      logical   groups.    The   list   comprises   the   name,    the   parameters
and   the   registers   used   by   each   graphics   routine.

CONTENTS

TRANSFORMATloN    AND    CONTROL               D-1

GRAPHICS    OUTPUT                                                   D-2

GRAPHICS    ATTRIBUTES                                      D-3

lNQUIRY 0-4



FUNCTI0NAL    LIST    0F    GRAPHICS    ROUTINES
•-;

TRANSFORMAT10N    AND    CONTROL

Name

ClearviewArea

CloseGraphics

CloseviewTrans

DivideviewArea

Escape

OpenGraphics

SelectviewTrans

Setworldcoordsp

Parameter

view  area   number
error   code

(no   parameters)

view   area   number

i   division/orientation
division   point
view  area   number
error   code

function   number    (1)
data   structure   pointer
error   code

(no   parameters)

!    view   area   number
error   code

ew  area   number

error   code

Register

R4
R5

Fts

RS
R9
R7
R5

RI

RR2

R5

D-1



GRAPHICS    0UTPUT

Name

GDP

GraphcursorAbs

GraphcursorRel

GraphposAbs

GraphposRel

L i neAbs

LineRel

MarkerAbs

MarkerRel

PixelArray

Parameter

X  array  pointer
Y  array  pointer
1    (circle)   or
2   (ellipse)
error   code

X

y
error   code

dx
dy
error   code

X

y
error   code

dx
dy
error   code

X

y
error   code

dx
dy
error   code

X

y
error   code

dx
dy
error   code

X   width
Y   height
array  pointer
error   code

Register

RR6
RR2

R4

R5

RR0

RR2

R5

RR0
RR2

R5

RR0

RR2

R5

RR0

RR2

R5

RRO

RR2

R5

RR0
RR2

R5

RR0

RR2

R5

RR0

RR2

R5

RR0

RR2

RR10

R5



FUNCT10NAI   LIST   0F    GRAPHICS   ROUTINES

Name

Polyline

Polymarker

Parameter

X  array  pointer
Y  array  pointer
number   of  points
error   code

X  array  pointer
Y  array  pointer
number   of   points
error   code

Textcursor                      ,   text   column
i   text   row
!   error   code

6RAPHICS   ATTRIBUTES

Selectcursor

SelectGrcolour

SelectTxcolour

SetcolourLogic

Parameter

0   (neither   cursor)   or
1    (graphics   cursor)   or
2   (text   cursor)
error   code

;    colour   code
error   code

foreground   colour   code
background   colour   code
error   code

logic   operator   code
'   error   code

Ü-3

i   Register

Register

RS

R5

RS
R5

RS

R9
R5

R10
R5



Name

SetcolourRep

SetGrcsrBlnkrate

SetGrcsrshape

S etL i nec l a ss

SetTextline

SetTxcsrBlnkrate

SetTxcsrshape

1NOUIRY

Name

Errorlnquiry

lnqAttributes

Parameter

colour   index
colour   code
error   code

blink   rate
error   code

array  pointer
error   code

0   (line)   or
1    (hollow   rectangle)   or
2   (solid   rectangle)
error   code

line   height
character  width
error  code

blink   rate
error   code

array  pointer
error   code

| Parameter

error  code

error  code
logic  operator
line  class
current  graphics  colour
text  foreground  colour
background   colour

Register

Register

ASSEMBLER   USER   6UIDE



111
FUNCTIONAL    LIST    OF    GRAPHICS    ROUTINES

Name

1nqcurTransNmbr

lnq6raphcursor

1nqGraphpos

1nqpixel

InqpixelArray

Inqpixelcoords

1nqTextcursor

1nqviewArea

1nqworldcoordsp

Parameter Register

error   code
view  area   number

X
Y

error   code
blinkrate

Y

error   code
X

X

Y

colour   number
\   error   code

X  width
Y  height
array  pointer

i   invalid   code
error  code

X  world   coordinate
Y  world   coordinate
error  code
X  device   coordinate
Y  device   coordinate

error  code
blink  rate
text  column

i   text   row

error   code
view  area  width

!  :::: ::::a::::h:idth
text  line  heigt`t

error  code
XO

YO

Xl
lY1

R5
;R7

RRO

RR2
R5
R9

RR2
'R5

RR6

D_5





E.  SYSTEM  ERRORS





SYSTEM   ERRORS

ERROR    CODE            ERROR

(Decimal)           Oescription

•^.1"                                        '            3

Error   code   in   hexadecimal
(returned   in   R5)

no  error

syntax  error

invalid  termination  of
input   bytestream

illegal   function  call     .

overflow

out  of   memory

9     EITHER   invalid   listener   or   talker
address  -  when   returned
by  an   lEEE-488   system   call

OR     out   of   range   -   otherwise

05

06

07

09

10      EITHER   no   lEEE   board   -when   returned        OA
by   an   lEEE-488   system   call

OR  duplicate   definition  -  otherwise

11                       time   out   error

13                      type  mismatch

15                     string  too  long

18                     undefined   function

22                      missing  operand

23                      buffer   overflow

35                       window   not   open

E-1



ERROR    CODE           ERROR

(Decimal)           Oescription
Error   code   in   hexadecimal
(returned   in   R5)

unable   to  create  window

parameter   out   of   range

file  not   found

bad   file  mode

file   already  open

disk   i/o  error

file  already  exists

disk   type   mismatch

disk  not   initialized

disk   filled

end  of  file

invalid   record  number

invalid   file   name

too  many   files

internal   error

volume   name   not   found

rename   error

invalid   volume   number

ASSEMBLER   USER   GUIDE



SYSTEM   ERRORS

ERROR   CODE         ERROR                                                       Error   code    in   hexadecimal
(Decimal)          Description                                 (returned   in   R5)

72

73

74

75

76

77

78

79

80

81

82

92

99

101

108

110

iEEl

volume   not   enabled

invalid   password

illegal   disk  change

write  protected  file

error   in  parameter

48

49

4A

48

4C

invalid   number   of   parameters          4D

file  not  open

printer  error

copy  protected  file

paper   empty

printer  fault

command   not   found

bad  load  file

error   in  time  or  date

call   user  error

time  out

invalid  device

4E

4F

50

51

52

5C

63

65

6C

6=

6F

E-3

`z`,`x"*?`äffigEgBffBä®





F.   M20  1/0  PORT ADDRESSES



ABOUT    THIS    APPENDIX

This   appendix   provides   a   list   of   M201/0   Port     Addresses     which     can     be
specified   when   using   the   two   PDEBUG   commands,    PORT   1/0   READ   and   PORT   1/0
WRITE  .

CONTENTS

MAIN    MOTHERBOARD   .PORTS

IEEE    EXPANSION     B0ARD    PORTS

HARD    DISK    UNIT    EXPANSI0N

B0ARD    PORTS

RS-232-C    TWIN    EXPANSION

B0ARD    PORTS

;:cA     iplS-
1    bwsl

;.  E,"f,/q
.5= ,: J  ,'," ,-,, \ --

q   `."JJf
r   rc'T,,',J

/L
IJ,-

=¢

F-3

r  :J+rc,l,€
6   ACK  -8st+        ..,`.`   1,,   .     i..`,    --!



M20    1/0   PORT   ADDRESSES

Port  Addresses   are   here   listed   in  4  groups:

1.   Main   Motherboard   Ports

2.    1EEE   Expansion   Board   Ports

3.   Hard   Disk   Unit   Expansion   Board   Ports

4.   RS-232-C   Twin   Expansion   Board   Ports

MAIN   MOTHERB0ARD   POF`TS

DEVICE                                              ADDRE SS                            C OMMENT

FDC                                                           %001
t~,t`.,     ,       r+,.`Q+.ÖhtrS/t-/`-%003

%005
9,.007

TTL   Latch                                  f%02|     s.:

CRTC    (Video)

8255A
(Centronics
Parallel
lnterface)

8251
(Keyboard)

8251

(TTY/PRTR)

Status/Command
Track
Sector
Data

%061    9+/                     Address
°züo63   €+g                      Data    -

:8g!`/;i         3::t3  s+#Ztt,"#
%085    ,.-:  :.i                      Port    C     ..a/c</,t  5
%087  '  :^`                Control  J>?

oz.oAi `  ;  `                Data   +S,j?r'`#5
%OA3  7t'; :3                   Status/Control

%OC17€€,                     Data
%OC3   `,;T '+                  Status/Control

K.yh"yd   4st-oh|        PFgc}..fi    :C:1.Do   SW::     S¢.,ig3
461   J~, -,`..^i.+  J'.'-cA.d.^+i:ß-";Fdm163 f-

F-1



8253

8259   (Master)

REG   FILE

(4  colours)

9Tol21.^,¥   '¥{

%123   2,  t,t,t

*125   1 -:. .'=

%127   :'    ,tT

9,ol 40-1    -:,,  :,.,,_

%142-3   .=  .`   ._

% 1 8 1  . -, P. lt

;]3:.3,?r`5
96187  `27 t`  |

1EEE    EXPANS10N   BOARD   PORTS

DEVICE

8292
(GPIB   CTLER)

8291
(GPIB   Talker/
Listener)

8259    (1EEE)

ADDRESS

%101

%103

%161

%163
'%165

%167

%169

%168
%16D

%16F

%1AO

%1A2

Ctr  0   (TTY/printer   timing)
Crt   1    (Keyboard   timing)
Crt   2   (Real   time   clock-NV1)
Control   register

LOc1

Loc2
Loc3
Loc4

COMMENT

AO=0
AO=1

Data   in  /   Data   out
lnterrupt  status  /  Mask  1
Interrupt  status  /  Mask  2
Serial   poll   status   /  Mode

Address   status   /  Mode
Cmd   pass   through   /  Aux   mode
Address   0   /  Address   0/1
Address   1    /   EOS

ASSEMBLER    USER    GUIDE



M20    1/0    PORT    AODRESSES

HARD    DISK    UNIT    EXPANSI0N    BOARD    PORTS

cyl   hi
cyl-1o
heaa

sector
command
error

ADDRESS

%1cb
%1c9
%1cd

%1c7
%1cf
%1c3

wr    prcomp                                     %1c3

data
sec  cnt

%1cl
%1c5

RS-232-C   TWIN   EXPANsloN   B0ARI)   PORTS

DEVICE                                          ADDRESS

for   the  modem   interface

modem   prt                                     f~`o881

exp   int

COMMENT

cylinder   address   high   register
cylinder   address   low   register
head   select   register   (also
contains   drive   select   and  bytes
per   s6ctor)
sector   for  operation
command   status   register   address
contains   error   information
value  *  4  =  cylinder   to   start
write   precompensation
data   port  to  the   interface  board
sector   count   for   the   format
command

COMMENT

modem   status   port

for  the   interrupt   sub-system

%841

%843

for  the  serial  ports

%803
%801

8259   interrupt   command
register
8259  data   register

8251a     0  control   port
8251a     0   data   port

F_3



tpl

exp   baud

%823
%821

%867
%861

%863
%865

8251a      1    control    port
8251a      1    data   port

8253   control   port
8253   out   0   register
8253   out   1    register
8253   out   3   register



G.   MAILBOX





MAILB0X

mailbox   area   (8   bytes),   used   by   the   IEEE   driver,   is   declared     91obally
PCOS.      The   first   6   bytes   comprise   the   array   "1EEE";   the   next   byte   is

e   flag   ``srq  488"   (see   also   section   on   IEEE   calls   and   system   calls        78
through       87)T    The   next  byte   indicates  which   carriage   raturn   key,   /S1/,
/S2/  or   the   standard   /CR/,   was   pressed   last   (it   should   be   noted     that     a
zero   is   returned   for   any   key  except   /S1/  or   /S2/).

On   calling   Grflnit   (SC   45),   the   interpreter   will   be   passed     the     address
of   this   area   in   RR10.

Format   of   Mailbox   Area

bytes                          description

0-5                                    '.1EEE..   Array;    values   set   by   lEEE   driver
for   use   by   BASIC   interpreter.

6                                      "srq488   "     flag;      value     set     bylEEE
interFupt     service   routine  "   ibsrq92  ",
tested   by   the     BASIC     interpreter.   This
indicates     that     a   service     request   has
been   received.

Sl   and   S2   key     depression   f lag.   Set      in
keyboard   driver;    (   0   =  neither   key     de-
pressed,   1   =/S1/   depressed,   2   =/S2/   de-
pressed)

Ptos      ],t   J   4,¢-1
oyJ8}ooo|0o    3uDk4    68J   9¢kt     T..Ä828oooE-4    -e,   h,`ö',,box





H.   M20-RS.232.C  DEVICE  PARAMETER  TABLE





M20   -    RS-232-C    DEVICE   PARAMETER    TABLE

This   appeandix  details   the   structure   of   the  Device   Parameter   Table     used
by     System  Calls   20   and   21.      These   system   calls   are   used   for   reading   and
writing   device   parameters   for   devices   connected  to   the     RS-232-C     inter-
faces.

A   knowledge     of     the     hardware     in     question     is     useful      for     a     deeper
comprehension   of  this   appendix   (see   M20   hardware   literature).

(long   word)
(word)
(word)
(word)
(word)
(word)
(word)

(word)
( word )
( word )
(byte)

WORD    NUMBER                '     DESCRIPT10N

Ring   buffer   address
Ring  buffer   input   address
Ring  buffer  output  address
Ring   buffer   count
Ring   buffer   size
75.~u  of   ring  buffer   size
50%   of   ring  buffer   size

8251A   USART   control   port   address
8251A   USART   state   and   error   flags
8251A   USART   time   out   for   data   output
8251A    USART   mode

8253   timer   command
8253   timer   control   port   address
8253   timer   baudrate   data   port  address
8253   timer   baud   rate   count

8259A   PIC   port   A   address
8259A   PIC   SE01   command   word
8259A   PIC   -   master   interrupt   mask   bit
8259A   U  -   slave   interrupt   mask  bit

(byte)
( word )
(word)
(word)

(word)
(word)
(word)
(word)

Word   numbers  0   to  7   contain   the   state   of   the   ring   buffer.      Words   s   to   11
(high)      contain   information   relative   to   the   8251A   (Programmable   Communi-
cation   lnterface).

Word   s   contains   the   control   port   address.      This   can   assume   the   following
values:

®;uOOC3    :    USART   motherboard   control    port.

°<0803    :    USART   expansion   board   1    control   port.

%0823    :   USART   expansion   board   2   control   port.

H-l



Word  9   represents  the   status  and  the  error   f lags   for     the     8251      and     is
organised   in   the   following   way:

STATUS                                  BIT    POSITION              LEGAL    VALUES              MEANING

Duplex   mode
r\=    Ccilc,   ry)e(/'

full   echoing   of  all
input

of   inputechoing
h. .  -.   -` .-:, ( ( I

U                           NO    ec-
eserved)                           14 0                     (not

aming                                      13 1              "   a   val
ror

i1

1

notb
thee'   chara

from
0                          NO   Fr

1

'errun
12 1                       a   cha

ror                           1

1

been
next
avail
from

0                  .,    No    Ov

rity              "          ,, 10

li:;;:NoPa

ror

meout                                      10 1                       a   tim
ror                               11 while

Trans
On   th

0                    `        NOTi

mory 9 1
•.    drive

ror toOp
Open

()    lnsuf

0                           NO   Me

ffer 8 1
i,   inter

::_¢_:fu:e#hn:;:?ZQtiNL%nz

used )

id  stop  bit   has
een  detected  at
nd   of   each
cter.    (Reported
8251A)
aming   Error

racter   has   not
read   before   the
one   becomes
able.    (Reported
8251 A )
errun   Error

nge   in   parity
has   been

ted.    (Reported
8251A)
rity   Error

eout   has   occured
waiting   for   the

mit   Ready   line
e    8251A
meout   Error

r   failed   to   open
en   buff er   -   no
Port   call   or
f icient   memory.
mory   Error

rupt   routine
tried   to   overwrite
the   buffer.
No   Buffer   Error

ASseMBIER   ÜSER   CÜID



M20    -   RS-232-C    DEVICE    PARAMETER    TABLE

STATUS                                 BIT    POSITloN             LEGAL    VALUES

( reserved )                        7

Free-running
protocol

XOFF/XON
Flag    (M20

previously
acted  as
trans-
mitter)

5

XOFF /XON                                      3

(reserved)                         2
----  _-___ ---- _r_       -_-

( reserved)                         1

( reserved)                        0

0
---++ ---------------

MEANING

(not   used)

f ree-running  protocol
Handshake   protocol
using   XON/XOFF

XOFF   character,   sent
in  previous   trans-
mission.
Buffer   is   75%   full.
XOFF   is   sent   from
M20   i.e.   other   sender
should   stop.

XON   character,   sent
in  previous  trans-
mission.
lnput  buf f er   is   ready
to   receive  characters
(default   state.)   XON
is   sent   from  M20   i.e.
other  sender   should
start  again.

hardware   present   and
8259A  passed   interrupt
mask  test.
No   hardware   or   failed
test

XOFF   character,   de-
tected  in  current
reception.
XOFF  character   is
received  from  outside.
No  characters  will   be
transmi tted .

XON  character,   de-
tected  in  current
reception.
XON   received   from
outside.   Characters
will  be  transmitted
(default  state).

(not   used)

(not   used)

(not   used)

H-3



Word   10   contains   the   time-out   value   for   the   transmission   of   data.

The   high   byte   in   word   11    is   the   8251A   Mode   byte   and   is   described   below:

76543210

S2              SI                        EP             PEN                      L2               LI                       82                81

#`_^2_3ßsr}r/  b;  tp_PtijLBft=_

Number   of   Stop   Bits:

Even   Parity/
Parity  Enable:

Character   Length:

Baud   Rate   Factor:

S2S1

01/
10A

11.?

0                0   '(/

1

!

10i

•,        82           81

i:10

00
01
i'i,

1   stop  bit
1.5   stop  bits
2   stop  bits
lLLEGAL

(default)

sc,OrTlrr..trnoi
Disable   Parity/Odd  Parity   (default)    NONE

:::B::  3::!ty;!::np;::::y                    83&N
Disabie  parity/Even  parity                      r.hm

Asynchronous   Mode
Synchronous   Mode
Asynchronous   Mode
Asynchronous   Mode

(default)

16  x -\i  {default)  -_w He.iJMr( )

;4Xx\  r.' ft ::;:fz#/C.!,!/F:n/

The   low  byte   in   word   11,   and   words   12   to   14   concern   the   8253   timer   (Pro-
grammable      interval   timer).      The   low   byte   in   word   11    is   the   8253   command
byte   described  below:

765432

SCI               SCO                      RLI               RLfj                       M 2                M 1

1 ¢

BCD



M20   -   RS-232-C    DEVICE   PARAMETER   TABIE

lR,fi.D{f¥±-3esttd-b=l-,'--=3±l
Counter   select:                     SCI        SC0

100

01
10
11

Read/Load
lnstructi on :

Mode :

4   BCD's/
Binary
Word

RLI           RLO

00
01
10
11

Select  Counter
Select  Counter
Select  Counter
lLLEGAL

Counter   Latching   Operation
Read/Load  most   sig.   byte   only   (msb)
Read/Load   least   sig.   byte  only   (lsb)
Read/Load   lsb   first,   then  msb

Interrupt  on  Terminal   Count
Programmable   One-Shot
Rate   Generator
Square  Wave   Rate   6enerator
Software  Triggered   Strobe
Hardware  Triggered   Strobe

Binary  Counter   (16   bits)
BCD  Counter      (4   decades  *  4  bits/
decade)

Word  12   contains   the   8253   control   port  address;   this   can   be   either

gio0127                 motherboard   timer   control   port

go:o0867                  expansion   board   timer   control   port

Word   13   contains  a   channel   address   of   an   8253   timer.      The   address   can   be
one   of   the   following:

9oio0121

%0123

%0125

9,.0861

9,.0863

9,.0865

channel   0  motherboard   timer

channel   1   motherboard   timer

channel   2  motherboard   timer

channel   0   expansion  board   timer

channel   1   expansion   board   timer

channel   2   expansion  board   timer

H-5



Word  14   sets  the   transmission  baud   rate  as   follows:

baud  count
baud   count
baud  count
baud  count
baud  count
baud  count
baud   count
baud   count
baud   count

Word   15   contains   the   8259   control   port     address      (Prgrammable     lnterrupt
Controller    (PIC)).      These   can   be:

A 9o.o0140                    mother  board  PIC   control   port   address

L4;     %0840                     expansion   board   PIC   control   port   A   address

Note  that   even  addresses   for   programmable   interrupt     controller     8     data

:!::::d.:::!4::.n::`:hc:#S::'::¢d+::e::f:cm:::t::n:n:::::::)P°::m::::es::S.be
issued     before     exiting     the     interrupt  routine.     The  SE0I   is  calculated
using  the   formula:

SE01   =   96CO   +    (2*    1R   No.)

where   lR  No.is   an   interrupt   routine   number   from  0   -7.

The   RS-232-C   SE0l's   are   the   following:

%00C6                master   8259A   pic   SE01   for   IR3   (tty  mother)
%00CE                master   8259A   pic   SE0l   for   lR7   (expansion)

%00C0                 Slave   8259A   pic   SE01   for   lRO   (port   i)    +  ,`tl6u`*`Ld.-1
%00C4                slave   8259A   pic   SE01   for   IR2   (port   2)                                   2



M20   -   RS-232-C   DEVICE   PARAMETER   TABLE

The   following  table  gives  all   the  M20   interrupt  assignments.

Master   8259A  PIC  Mother   Board   lnterrupt  Assignments:

1R0
1R1

1R2
1R3
IR4
IR5
IR6
1R7

Floppy  Disk  Controller
External   Daisy  Chain   Request        (potentially  a   slave   8259A)
External   Daisy  Chain  Request        (potentially  a   slave   8259A)
RXD:    DTE   TTY/Remote             8251A
RXD:    keyboard                             8251A
TXD:    DTE/TTY/Remote           8251A         (not   used)
Parallel   8255A   PC0   or   PC3
External   Daisy  Chain   Request        (used   w/   RS-232-C   Expansion   Board)

Slave   8259A  PIC   Expansion  Board   lnterrupt  Assignments:

lRO:               RXD:    DTE/TTY   port   l/Remote                 8251A
IR1  :               TXD:    DTE/TTY   port   l/Remote                 8251A                 (not   used)
1R2:               RXD      DTE/TTY   port   2/Remote                  8251A
IR3:              TXD:    DTE/TTY   port   2/Remote                8251A                 (not   used)
1R4:             grounded   (not   used)
1R5:              grounded   (not   used)
IR6:             9rounded   (not   used)

Words   17  and  18   contain  the  masks   relative   to  the   interrupt   levels.     The
mask   values   are   the   following:

8259A  PIC   lnterrrupt  Assignments   (by  bit  with   data   bus   shift):

%0100             IR7   interrupt
grooo80             IR6   interrupt
%0040             IR5   interrupt
%0020             1R4   interrupt
o,.ooio            |R3   interrupt

%0008             IR2   interrupt
%0004             IRl    interrupt
r~o0002             1R0   interrupt

H-7





1.   DEVICE  ID  (DID)  ASSIGNMENTS





lllllllllllllllllllllü
DEVICE    ID    (Dlo)    ASS16NMENTS

The   following   table   describes   the  allocation   of   DID's   to     various     func-
tions.   Some   of   these   DID's   represent   devices   which   are   always   open,   oth-
ers   are   assigned   by   system   calls.

BASIC   files

Console
Printer
Communications      RS-232-C
System   Disk   Files   (not   accessible   to   BASIC)

Coml     (RS-232-C)
Com2    (RS-232-C)

LII









AScll   CODE

This   table   shows  decimal,   hexadecimal,   and   binary   representation   of     the
AScll   code.    (Boxed  characters  are   different   on  national   keyboards.)

:::= T  ::  :  :==  ::: :  :::=,e§

:i:::;:   t ä.,
iooiiiol       !2i       DD     .1011101         ]    ü

looiiiio      222      DE      iioiiiio

100„„1       I,,      IW      1'0'1111

lolooooo      22.      Eo      llloaooo

lolooo}]       zz]      EI       HLoatßl

]oiomioL    226      E]      iuooolo

loloooll       2z7      E)      lnoooll

L0100loo      ]Z.      E.      HIOOIOO

loloolol       12.      E.      nloolol

10100110        IW       E6       11100110

lo.ooul,    2}1       E7      llloonl

J-1

;i.





NOTICE

lng.    C.    01ivetti    &   C.    S.p.A.    reserves    the    right   to   make   improvements   in
the   product   described   in   this   manual   at   any   time   and   without   notice.

This   material    was   prepared   for   the   benefit   of   Olivetti   customers.    1t   is
recommended   that   the   package   be   test   run   before   actual   use.

Anything    in    the    standard     form    of    the    Olivetti     Sales    Contract    to    the
contrary    not    withstanding,    all    software    being    licensed    to    Customer    is
licensed     "as     is".      THERE     ARE     rlo    WARRA}.lTIES    EXPRESS    0R     "PLIED     ll`lcLU01NG

wlTHouT      LIMITATJ.oN      THE       IMPLIED      w^p`RArtTv      oF      Fll.NEss      FOR      puRposE      AND

0LIVETTI     SH^LL     NOT     BE     LIABLE     FOR     Ativ     oiRECT,      lr.iDIRECT,      coNSEQUENTIAL     OR

INCIDENTAL    DAMAGES    lti    C0riiJECTloN    wlTii    suci!    S0FTUARE.

The    enclosecl    programs    are    protected    by   Copyright   anc!   may   be   used   only   by
the     Customer.     Copying     for     use     by    third    parties    without    the    express
written   consent   of   Olivetti   is   prohibitec!.



GU  Code  3987670  L  (1)
Printed  in  ltaly

olivetti





GU  Code  3987670  L  (1)
Printed  in  ltaly

olivetti

#zl


