M 20 PERSONAL COMPUTER

UCSD p-System

FORTRAN Language User Guide







M 20 PERSONAL COMPUTER

UCSD p-System |
FORTRAN Language User Guide




PREFACE

This manual describes Softech Microsystems
FORTRAN 77 Language, which can be used
within the UCSD p-System, running on the
M20. It is assumed that the reader is already fa-
miliar with the UCSD p-System.

The manual is reprinted with the permision of
Softech Microsystems, Inc.

p-System is atrademark of Softech Microsystem
Inc.

UCSD and UCSD Pascal are trademarks of the

Regents of the University of California.

© Copyright 1980 by Silicon Valley Software,
Inc. Revisions copyright © 1980, 1981, 1983 by
Softech Microsystems, Inc.

© Copyright 1983 by Softech Microsystems,
Inc. San Diego, California.
All rights reserved.

r©‘Copyright 1983 by Olivetti.
~ All rights reserved.

REFERENCES:

UCSD p-System Operating System User
Guide
Code: 3986630 L

UCSD p-System Program Development
User Guide
Code: 3986640 M

DISTRIBUTION: General (G)

EDITION: December 1983

RELEASE: p-System IV

DISCLAIMER:

This document and the software it descri-
bes are subject to change without notice.
No warranty expressed or implied covers
their use. Neither the manufacturer nor
the seller is responsible or liable for any
consequences of their use.

PUBLICATION ISSUED BY:

Ing. C. Olivetti & C , S.p.A.
Direzione Documentazione

77, Via Jervis - 10015 IVREA (Italy)



UCSD p-System

FORTRAN Language User Guide






TABLE
OF
CONTENTS!

INTRODUC’I‘ION. e ¢ & o ¢ & o 0 & e o ¢ s 1-3
MANUAL OVERVIEWQ s o & ¢ ¢ s s 0 0 0@ 1-3
NOTATIONAL CONVENTIONS., .. .. .. 1-4

FORTRAN77.................2-3

A FORTRAN PROGRAM. . ¢ ¢ ¢ ¢ ¢ ¢« » 2-3
Compiling & FORTRAN program. . « « + « 2-3
Providing Runtime Support. . . « « « » « 2-4
Executing a FORTRAN program. . « « « « 2-5




Table of Contents

FORM OF INPUT PROGRAMS. . ... ..
$INCLUDE Statement . « « + v « o « « o

COMPILER LISTING. ¢ v ¢+ ¢ ¢ ¢ ¢ ¢ v o o

THE CODEFILE. . ¢ ¢ v v ¢ ¢ ¢ 0 ¢ o o o

STRUCTURE. OF A PROGRAM, . .. . . ..
CHARACTER SET. . v v v v e v v v v s s s
LINES . v o v v v oo oo o ansannnos
COLUMNS . ¢ v o e v v o v v o e v onnns
BLANKS . v v v v o v o o ot o o na s oo

COMPILER DIRECTIVE LINES. . . . . ..
$INCLUDE., ¢ ¢ ¢ ¢ o s v o 0 0o 00 oo
SUSES. v ¢ v v v v v v v e v et oo v e

COMMENTLINES..-...'oo-ovtn

STATEMENTS, LINES, AND LABELS. . . .
Labels. . v ¢ o v v 0 v v 0 v e e e e e
Initial Lines. « « v v ¢« « ¢ v 4 ¢ v o 0 o s
Continuation Lines., . . + « « ¢« v ¢« ¢ « 4 &
StatementS. + o v o ¢ ¢ ¢ o ¢ 6 0 0 0 s o @

2-5
2-6

2-6

2-9

3-4

3-5

3-6

3-6
3-7

3-7

3-8
3-8
3-9
3-9
3-9



Table of Contents

STATEMENT ORDER. e 8 6 ¢ 0 o & 8 8 s o 3-10
Program Units. ® ¢ 6 & 2 0 3 8 8 5 o 0 o 3"10
Statement Ordering. « « « ¢« ¢« o ¢« « ¢ « « 3-10
Source Program Final Statement. .. .. 3-12

DATA TYPES. e o o o 86 & o o &8 & 0 8 & o o @ 4-3

THE INTEGER TYPE ¢ o ¢ 2 o s 0 ¢ o o 0 s 4"3

THE REAL TYPE. * o s & ¢ ¢ 9 e e o 0 0 » 4"3

THE LOGICAL TYPE * o o 8 ¥ e & ¢ & s o @ 4-5

THE CHARACTER TYPE L ] . . L ] L] L] . L] . . 4_5

FORTRANNAN,ESOQOoooo-ocoou'os-3
SCOPE OF FORTRAN NAMES' e o o o o » 5-3

UNDECLARED FORTRAN NAMES. .. .. 55

SPECIFICATION STATEMENTS. . ... ... 6-3
IMPLICIT STATEMENT. . .+ ¢« ¢ s s« . . 6-8

DIP‘“ENSION STATEMENTo e o o 0o o o 0 o ¢ 6_5
DIMENSION DeCIaP&tOPS * 8 8 e e & o 0 o @ 6-5
Array Flement Name. . . ¢« ¢« ¢ ¢ s + ¢ & & 6-6




Table of Contents

TYPE STATEMENTS . + o « ¢ o o o o o o o o 67
INTEGER, REAL, LOGICAL Types. . . . 6-7
CHARACTER Type Statement. .. ... .6-8

COMMON STATEMENT. . « « o o o v o .. 6-9
EXTERNAL STATEMENT. . . ...... 6-10
INTRINSIC STATEMENT. « « + « o . . . . 6-11
SAVE STATEMENT . « o v o v v v v v ... 6-11
EQUIVALENCE STATEMENT. . . .. .. .6-12
Statement Restrictions. . ... ... .. 6-13

DATASTATEMENT..--..ocoooc'o 7-3

EXPRESSIONS.....'C.l'.'lt'l.8-3

ARITHMETIC EXPRESSIONS., . ... .. . 83
Iﬂtegel‘ DiViSiOﬂ. " & 8 2 ® e 0 e o o o 2 & 8—5
Type Conversions and Result Types. . . . 8-5

CHARACTER EXPRESSIONS. . .. .. .. 86
RELATIONAL EXPRESSIONS. ., ... .. . 86
LOGICAL EXPRESSIONS. « & o ¢ 2 s o o ¢ 8-8

PRECEDENCE OF OPERATORS. e oo . 89



Table of Contents

ASSIGNMENT STATEMENTS. . + ¢ ¢« ¢ ¢ &« « « 9-3

.COMPUTATIONAL STATEMENTS. ... .. 9-3
LABEL ASSIGNMENT STATEMENT. . ... 9-4

CONTROL STATEMENTS . &+ « « o o ¢ « « o » 10-3

UNCONDITIONAL GOTO. « « ¢« ¢« ¢ » « «» 10-3
COMPUTED GOTO. . ¢« ¢ ¢ ¢ s s o o s «10-4
ASSIGNED GOTO. « v v ¢ ¢ o o s o s s o 10-5
ARITHMETIC IF. ¢ ¢« ¢« ¢ ¢ v ¢ ¢ o o o s o 10-5
LOGICAL IF. ¢ ¢ ¢ ¢« s ¢ o o 6 o ¢ s o s o 10-6

BLOCK IF THEN ELSE. « « « ¢« ¢« s « « « 10-7
Bloek IF . & ¢ ¢« ¢ ¢ o o o 0 o 0 o e 0 s o10-9
ELSEIF . v ¢ ¢« v ¢ ¢ ¢ o 0 ¢ o o 0 o+ 10-10
ELSE . v ¢ ¢ ¢ s oo e v o o s oo 1011
ENDIF. . ¢ v v e ¢ o s o v 0o o oe.eas 10-11

Do.uo-..oot'nu-ooﬁoco. 10—12
CON“NUEcoot.lloooillooo10-14

STOP..--. ooooo e o v o ¢ o s o o 10-14




Table of Contents

PAUSE...I.........I.I.I 10-15

END..oo'.lot'o‘ctl.'ll-.lo-ls

I/OSYSTEM..-.-;.-..0000000011-3

I/O SYSTEM OVERVIEW, ., . ... .. .. 11-4
Records. « v ¢« ¢ ¢ ¢ o ¢ v o s s 0 o s oo 11-4
FileSe v ¢« o ¢ o ¢ ¢ 0 s o e o s o o0 s o11-5
File Properties. . « « « « ¢+ ¢ + ¢ ¢« o . . 11-6
File Name. . « + « ¢ ¢ ¢« o ¢ o s o+ s 11-6
File Position, . « « « ¢ v v v v ¢« ¢« . . 11-6
Formatted and Unformatted Files. . . . 11-7
Sequential/Direct Access. , « + « « « o 11-7
Internal Files. + ¢« ¢« ¢ ¢ ¢ o ¢« ¢ ¢ o o o » 11-8
Special Properties of Internal Files., . 11-9
UnitS. &« ¢« v ¢« ¢ o ¢ o o o o ¢ s o s oo 11-9

CONCEPTS AND LIMITATIONS., ... . 11-10
The FORTRAN I/O System, . . ... . 11-10
Common I/O Operations. . . . . . .. . 11-11
Less Common File Operations. . . . . . 11-12
Limitations of I/O System. . .. .. .. 11-14

Direct Files with Blocked Devices. . 11-14
BACKSPACE Use., « v « « ¢« s ¢ « s » 11-14
BACKSPACE Restrictions., . . . . . . 11-14
1/0 Statement Side Effects. ... .. 11-15



Table of Contents

I/O STATEMENTS . ¢ ¢ ¢ ¢ ¢ o o ¢ s o « » 11-15
Elements of I/O Statements. . . ... . 11-16
The Unit Specifier ('), . . . . . .. 11-16
The Format Specifier (f*). . . ... . 11-17
The Input/Output List (‘iolist')., . . . 11-17
Input EntitieS. o« v o o o o o oo o o . 11-18
Output Entities. « « « ¢« o ¢ ¢ o « o . 11-18
- Implied DO lists. . « ¢« ¢« o ¢ o o o« 11-19
/O StatementS. « o o o v o v o o+ o o o 11719
OPEN Statement. « o ¢ ¢« ¢ ¢ s o « +» « 11-20
CLOSE Statement, . « « « ¢ o « « « » 11-22
READ Statement. « « ¢« ¢« o ¢« o ¢ o » o 11-23
WRITE Statement.. . . . ¢« o ¢ » o « 11-25
BACKSPACE Stetement., . « « « « » . 11-26
ENDFILE Stetement. . . . « ¢ ¢« +» « « 11-26
REWIND Statement. . . . .. .. . . . 11-27
I/0 Side Effects Restriction. .. ... 11-27

FORMA_’]V[‘ED I/O ® o & o o o @ 6 » s s 0 s ¢ 12"3
FOR“’AT SPECIFICATIONS e o ¢ 8 * o o @ 12—3
FORMAT AND I/O LIST ¢ o e @ ® B e s o @ 12-5

EDIT DESCRIPTORS . « v ¢ « o ¢ o ¢ « o o« 12-7
Nonrepeatable Edit Descriptors. . . . . 12-7
'xxxx' (Apostrophe Editing). ... ... 12-7
H (Hollerith Editing). « « « v o ¢« « . . 12-8
X (Positional Editing), . . + . v o « . . 12-8




Table of Contents

/ (Slash Editing). . . . . . v v o v o . . 12-8
\ (Backslash Editing). . . . .. .. .. 12-9
P (Scale Factor Editing). . .. ... . 12-9
- BN and BZ (Blank Interpretation). . . 12-10
Repeatable Edit Descriptors. . .. .. 12-11
I, F, and E (Numeric Editing). . . . . 12-11
I (Integer Editing). . . . . ... .. . 12-12
F (Real Editing). « v ¢ v v v v ¢ o o . 1212
E (Real Editing). . « « v v v v v o .. 12-13
L (Logical Editing). . . . . .+« . . . 12-14
A (Character Editing). . . ... ... 12-15

PROGRAMS AND SUBROUTINES. .. ... 133
MAIN PROGRAM . . L] L] L] . L] . . L] . . L] L] 13-3

SUBROUTINES o & o o 3 * 0 s s s s & 0 0 e 13-4
SUBROUTINE St&tement ® 8 s s 8 & o v o 13—4
CALL Statement ¢ o ¢ & @ e 9 8 8 o e ° » 13-5

FUNCTIONS. . « v 4 ¢ ¢ o s s ¢ 0 s 0o« 13-6
External Functions. « « « « ¢ « ¢ o o o o 13-7
Intrinsic Functions. . . « v v ¢« ¢ v o o« 13-9
Statement Functions. . « « « + ¢« « « « « 13-10

RETURN STATEMENT. . . o ¢ ¢« ... 13-11

PARAMETERS . & ¢ o o o o o o o o o o o «13-12



Table of Contents

COMPILATION UNITS. . ¢« v ¢« ¢ ¢ o s o o« » 143
PARTIAL COMPILATION. e o o o o e o o 14-3

THE $USES COMPILER DIRECTIVE., . . . 14-5
Separate Compilation. . « « ¢« ¢ ¢ v o« » + 14-6

LINKING PASCAL AND FORTRAN. ... 14-7
THE $EXT COMPILER DIRECTIVE. . . .14-12

APPENDICES
A: ANSI FORTRAN DIFFERENCES. ... . . A-3
B: SAMPLE PROGRAM . . (] . L] L] L] L] L L] . L] A-g

C: FORTRAN ERROR MESSAGES. . . .. . A-13

INDEX.C‘.Q..'0000.0000.000I-l







CHAPTER 1
INTRODUCTION







Introduction

MANUAL OVERVIEW

This manual is intended as a user reference manual
for the SofTech Microsystems FORTRAN 77
language system, SofTech Microsystems FORTRAN
77 is a dialect of FORTRAN which is closely
related to the ANSI Standard FORTRAN 77 Subset
language defined in ANSI X3.9-1978. Readers
familiar with the ANSI standard will find a concise
description of the differences between SofTech
Microsystems FORTRAN 77 and the standard in
Appendix A; in general, this manual does not
presume that the reader is familiar with the
standard.

SofTec Microsystems FORTRAN 77 runs on the
p-machine architecture, which is available on a
variety of host machines as a language system
integrated into the UCSD Operating System. The
reader is assumed to be somewhat familiar with the
use of the Operating System and Text Editor,
although the specifics of how to compile, link, and
execute a FORTRAN program in the environment
are covered in this manual.

This manual is intended primarily as a reference
manual for the FORTRAN system and contains all
of the information necessary to fully utilize it.
The reader is assumed to have some prior
knowledge of some dielect of FORTRAN, although
someone familiar with another high level language
should be able to learn FORTRAN from this
manual. The manual is not a tutorial in the sense
that it does not teach the reader, step by step, the
concepts necessary to write successively more
complex programs in FORTRAN; rather, each

1000201:01A 1-3



Introduction

section of the manual fully explains one part of the
FORTRAN language system,

The manual is organized as follows: Chapters 1, 2,
and 3 are general, and describe the manual and
basic information required to successfully use
FORTRAN in even a trivial way. Chapters 4, 5,
and 6 describe the data types available in the
language and how a program assigns a particular
data type to an identifier or constant., Chapter 7
deals with the DATA statement, which is used for
initialization of memory. Chapters 8, 9, 10, and 11
define the executable parts of programs and the
meanings associated with the various executable
constructs. I/0O statements are presented in
Chapter 11, and the associated FORMAT statement
and formatted I/O are described in Chapter 12,
The subroutine structure of a FORTRAN
compilation, including parameter passing and
intrinsic (system provided) functions, is the topic of
Chapter 13. Finally, Chapter 14 discusses the
rather sophisticated means which exist for compiling
FORTRAN subroutines separately, overlaying, and
linking in subroutines which are written in other

languages.

NOTATIONAL CONVENTIONS

These are the notational conventions used
throughout this manual:

Upper Case and Special Characters - are written as
they would be in a program.

1-4 1000201:01A



Introduction

Lower Case Letters and Words - indicate
generalizations which must be replaced by actual
FORTRAN syntax in a program, as described in the
text. The reader may assume that once a
lowercase entity is defined, it retains its meaning
for the entire context of discussion.

Example of Upper and Lower Case: The format
which describes editing of integers is denoted 'lw’,
where w is a nonzero, unsigned integer constant.
Thus, in an actual statement, a program might
contain I3 or 144. The format which describes
editing of reals is 'Fw.d', where d is an unsigned
integer constant. In an actual statement, F7.4 or
F22.0 are valid. Notice that the period, as a
special character, is taken literally.

Brackets - indicate optional items.

Example of Brackets: 'A[w]' indicates that either A
or Al2 are valid (as a means of specifying a
character format).

e = is used to indicate ellipsis. That is, the
optional item preceding the three dots may eappear
one or more times.

Example of .... The computed GOTO statement is
described by 'GOTO ( s [, s] ...) [, i' indicating
that the syntactic item denoted by s may be
repeated any number of times with commas
separating them. '

1000201:01A 1-5



Introduction

Blanks normally have no significance in the
description of FORTRAN statements. The general
rules for blanks, covered in Chapter 3, govern the
interpretation of blanks in all contexts.

1-6 1000201:01A



CHAPTER 2
SOFTECH MICROSYSTEMS
FORTRAN 17717






Sof Tech Microsystems FORTRAN 77

This chapter describes how to use SofTech
Microsystems FORTRAN 77. It assumes that the
reader is familiar with the basic operation of the
p-System. The mechanies of preparing, compiling,
linking, and executing a FORTRAN program are
outlined, and an explanation of the Compiler listing
file is given.

A FORTRAN PROGRAM

Compiling a FORTRAN program

The SofTech Microsystems FORTRAN 77 Compiler
is invoked as the Pascal Compiler would be
invoked: by typing 'C' at the command level.
The R(un command, which will compile and
execute a program, may also be used. If the file
has already been compiled, the R(un command
will simply execute the code file. For these
commands to call FORTRAN, the FORTRAN
Compiler must be named SYSTEM.COMPILER.
When your disk is shipped, the FORTRAN
Compiler is named FORTRAN.CODE. To make it
SYSTEM.COMPILER, type 'F' to enter the Filer,
C(hange SYSTEM.COMPILER to PASCAL.CODE,
and C(hange FORTRAN.CODE to
SYSTEM.COMPILER. To start using Pascal again,
reverse the renaming process.

Typing 'C' or 'R' at the command level causes
the compiler to use the workfiles
SYSTEM.WRK.TEXT and SYSTEM,WRK.CODE., I
no workfile is present, the Operating System will
prompt for the name of a .TEXT file to use.

1000201:02A 2-3



SofTech Microsystems FORTRAN 77

The FORTRAN Compiler will prompt for a listing
file. If a <return> is typed, no listing will be
generated.

Once the prompts are all answered, the actual
compilation begins. The progress of the
compilation will be shown on the console by a
successive display of dots. Each dot represents
one line of source code.

Remember that anything which applies to the
Pascal SYSTEM.COMPILER will now apply to
FORTRAN. For more information, refer to the
manual UCSD p-System Operating System User
Guide.

Providing Runtime Support

To run any program on the p-System, some
runtime support is needed. The package of
routines which do this for FORTRAN is distinct
from the package which does this for Pascal and
is originally shipped in the file RTUNIT.CODE.
When you change FORTRAN.CODE to
SYSTEM.COMPILER, you must also change
SYSTEM.LIBRARY to PASCAL.LIBRARY (or some
other name you will remember) and
RTUNIT.CODE to SYSTEM.LIBRARY. After this
is done, you may run your FORTRAN programs.

It may be that you have placed programs of your
own in SYSTEM.LIBRARY. In this case, you will
be familiar with the use of the Librarian.
RTUNIT.CODE should be added to the

2-4 1000201:02A



SofTech Microsystems FORTRAN 77

SYSTEM.LIBRARY file. The library text file
facility described in Chapter 2 of the UCSD
p-System Operating System User Guide , is also
available to FORTRAN programmers.

Executing a FORTRAN program

A compiled, linked FORTRAN program is
executed in the same manner as any other user
progam, i.e., by typing an 'X' at the command
level, followed by the name of the file containing
the linked program.

FORM OF INPUT PROGRAMS

All input source files read by FORTRAN must be
JEXT files. This allows the Compiler to read
large blocks of text from a disk file in a single
operation, increasing the compile speed
significantly. The simplest way to prepare .TEXT
files is to use the Screen Oriented Editor. For &
more precise description of the fields in a
FORTRAN 77 source statement, see Chapter 3,
which explains the basic structure of a FORTRAN

program.

1000201:02A 2-5



SofTech Microsystems FORTRAN 77

$INCLUDE Statement

To facilitate the manipulation of large programs,
the SofTech Microsystems Compiler has extended
the FORTRAN 77 standard with an $INCLUDE
Compiler directive. The format of the directive
is:

$INCLUDE file.name

with the $ appearing in column 1 (see Chapter 3
for an explanation of Compiler directives in
general). The meaning is to compile the contents
of the file 'file.name' and insert the code into
the current code file, before continuing with
compilation of the current file. The included file
may contain additional $INCLUDE directives, up
to a maximum of five levels of files (four levels
of $INCLUDE directives). It is often useful to
have the description of a COMMON block kept in
a single file and to include it in each subroutine
that references that COMMON area, rather than
making and maintaining many copies of the same
source, one in each subroutine. There is no limit
to the number of $INCLUDE directives that can
appear in a source file.

COMPILER LISTING

The Compiler listing, if requested, contains various
information that may be useful to the FORTRAN
programmer., The listing consists of the user's
source code as read, along with line numbers,
symbol tables, error messages, and optional cross-
reference information.

2-6 1000201:02A



Sof Tech Microsystems FORTRAN 77

The following is a sample listing:

FORTRAN Compiler IV.0 [0.0)

0.
1. 0 C --- Example Program #1234
2. ¢ cC
3. []
4. 0 $XREF
S. 0
6. [ PROGRAM EX1234
7. [4
8. (] INTEGER A(10,10)
9. [ CHARACTER*4 C
10. 0
11, 0 CALL INIT(A,C)
12. 6 Ie=1
13. 9 200 A(I) = 1
%2442 Frror number: 57 in line: 13
14. 20 I=1I+1
1s. 26 IF (IABS(10-I) .NE. 0) GOTO 200
16. 37
17. 37 END
A INTEGER 3 8 11 13
(o CBAR* ¢ 103 ] 11
EX1234 PROGRAM 6
1 INTEGER 105 12 13 13 14
14 15
IABS INTRINSIC 15
INIT SUBROUTINE 2,PWD 11
18. [ SUBROUTINE INIT(B,D)
19. [ INTEGER B(10,10}
20, 0 CHARACTER*4 D
21. 0
22. 0 RETURN
23. 2 END
B INTEGER 2 18 19
D CHAR* 4 1 18 20
INIT SUBROUTINE 2 18
EX1234 PROGRAM
INIT SUBROUTINE 2,7

24 lines. 1 errors.

The first line indicates which version of the
Compiler was used for this compilation. In the
example it is version 0.0 for p-System version IV.0.
The leftmost column of numbers is the source-line
number. The next column indicates the
procedure-relative instruction counter that the
corresponding line of source code occupies as
object code. It is only meaningful for executable
statements and data statements. To the right of
the instruction counter is the source statement.

1000201:02A 97




Sof Tech Microsystems FORTRAN 77

Errors are indicated by a row of asterisks followed
by the error number and line number, as appears in
the example between lines 13 and 14. In this case
it is error number 57, "Too few subsecripts”,
indicating that there are not enough subscripts in
the array reference A(I).

At the end of each routine (function, subroutine, or
main program), a local symbol table is printed.
This table lists all identifiers that were referenced
in that program unit, along with their definition.
If the $XREF Compiler directive has been given, a
table of all lines containing an instance of that
identifier in the current program unit is also
printed. If the identifier is a variable, it is
accompanied by its type and location. If the
variable is a parameter, its location is followed by
an asterisk, such as the variables B and D in the
SUBROUTINE INIT. If the variable is in a common
block, then the name of the block follows enclosed
by slashes. If the identifier is not a variable, it is
described appropriately. For subroutines and
functions, the unit-relative procedure number is
given, If it resides in a different segment, then
the segment number follows. If the Compiler
assumes that it will reside in the same segment,
but has not yet appeared, it is listed as a forward
program unit by the notation 'FWD',

At the end of the compilation, the global symbol
table is printed. It contains all global FORTRAN
symbols referenced in the compilation. No cross-
reference is given. The number of source lines
compiled and the number of errors encountered
follow. If there were any errors, then no object
file is produced,

2-8 1000201:02A



Sof Tech Microsystems FORTRAN 177

THE CODEFILE

The object codefile generated by the FORTRAN
Compiler is compatible with the p-System Linker
and Librarian. Indeed, it is hard to tell by
examining a codefile whether it was created by the
FORTRAN Compiler or the Pascal Compiler. For a
description of the binary format of a codefile,e see
the UCSD p-System Operating System User Guide.

1000201:02A 2-9







CHAPTER 3
BASIC STRUCTURE OF
A FORTRAN PROGRANM







Basic Structure of a FORTRAN Program

In the most fundamental sense, a FORTRAN
program is & sequence of characters which, when
fed to the Compiler, are understood in various
contexts as characters, identifiers, labels, constants,
lines, statements, or other (possibly overlapping)
syntactic substrueture groupings of characters. The
rules which the Compiler uses to group the
character stream into certain substructures, as well
as various constraints on how these substructures
may be related to each other in the source program
character stream, are the topic of this chapter.

CHARACTER SET

A FORTRAN source program consists of a stream
of characters, originating in a .TEXT file,
consisting of:

Letters - The 52 upper and lower case letters A
through Z and a through z.

Digits - 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Special Characters - The remaining printable
characters of the ASCII character set.

The letters and digits, treated as a single group,
are called the alphanumeric characters. FORTRAN
interprets lower case letters as upper case letters
in all contexts except in character constants and
Hollerith fields. Thus, the following user-defined
names are all indistinguishable to the FORTRAN
Compiler:

ABCDE abede AbCdE aBeDe

1000201:03A 3-3




Basic Structure of a FORTRAN Program

In addition to the above, actual source programs
given to the FORTRAN Compiler contain certain
hidden (nonprintable) control characters inserted by
the Text Editor which are invisible to the user.
FORTRAN uses these control characters in exactly
the same way as the Text Editor and transforms
them, using the rules of .TEXT files, into the
FORTRAN character set.

The collating sequence for the FORTRAN character
set is the ASCII sequence,

LINES

A FORTRAN source program may also be
considered a sequence of lines, corresponding to the
normal notion of line in the Text Editor. Only the
first 72 characters in a line are treated as
significant by the Compiler, with any trailing
characters in a line ignored. Note that lines with
fewer than 72 characters are possible and, if
shorter than 72 columns, the Compiler does treat as
significant the length of a line. For an illustration
of this, see the paragraph entitled, "The Character
Type," in Chapter 4.

COLUMNS

The characters in a given line fall into columns,
with the first character being in column 1, the
second in column 2, ete. The column in which a
character resides is significant in FORTRAN, with
columns 1 through 5 being reserved for statement
labels, column 6 for continuation indicators and
other column conventions, and columns 7 through 72

3-4 1000201:03A




Basic Structure of a FORTRAN Program

for actual statements,

BLANKS

The blank character, with the exceptions noted
below, has no significance in a FORTRAN source
program and may be used for the purpose of
improving the readability of FORTRAN programs.
The exceptions are:

Blanks within string constants are significant.
Blanks within Hollerith fields are significant.

Blanks on Compiler directive lines are
significant,

A blank in column 6 is used in distinguishing
initial lines from continuation lines.

Blanks count in the total number of characters
the Compiler processes per line and per
statement.

1000201:03A 3-5



Basic Structure of a FORTRAN Program

COMPILER DIRECTIVE LINES

A line is treated as a Compiler directive if the $
character appears in column 1 of an input line.
Compiler directives are used to transmit various
kinds of information to the Compiler. A Compiler
directive line may appear any place that a comment
line can appear, although certain directives are
restricted to appear in certain places. Blanks are
significant on Compiler directive lines and are used
to delimit keywords and filenames. The set of
directives is described below:

$INCLUDE
$INCLUDE filename

Include textually the file 'filename' at this point
in the source. Nested includes are implemented
to a depth of nesting of five files, Thus, for
example, a program may include various files with
subprograms, each of which includes various files
whieh describe COMMON areas (which would be a
depth of nesting of three files).

$USES

$USES ident
[ IN filename ]
[ OVERLAY ]

This is similar to the USES command in the
Pascal Compiler. The already compiled

FORTRAN subroutines or Pascal procedures
contained in the .CODE file 'filename' (or in the

3-6 1000201:03A



Basic Structure of a FORTRAN Program

file '*SYSTEM.LIBRARY' if no file name is
present) become callable from the currently
compiling code. This directive must appear
before the initial non-comment inpﬁt line.  For
more details, see Chapter 14,

$XREF

$XREF

This produces a cross-reference listing at the end
of each procedure compiled.

$EXT

$EXT SUBROUTINE name #params
or
$EXT [ type ] FUNCTION name #params

The subroutine or function called 'name' is an
Assembly Language routine, The routine has
exactly '#params' reference parameters,

COMMENT LINES

A line is treated as a comment if any one of the
following conditions is met:

A 'C' (or 'e') in column 1,
A ' in column 1,

Line contains all blanks.

1000201:03A 3-7



Basic Structure of a FORTRAN Program

Comment lines do not effect the execution of the
FORTRAN program in any way. Comment lines
must be followed immediately by an initial line or
another comment line., They must not be followed
by a continuation line. Note that extra blank lines
at the end of a FORTRAN program result in a
compile time error, since the system interprets
them as comment lines, but they are not followed
by an initial line,

STATEMENTS, LINES, AND LABELS

The following paragraphs define a FORTRAN
statement in terms of the input character stream.
The Compiler recognizes certain groups of input
characters as complete statements according to the
rules specified here. The remainder of this manual
will further define the specific statements and their
properties. When it is necessary to refer to
specific kinds of statements here, they are simply
referred to by name,

Labels

A statement label is a sequence of from one to
five digits. At least one digit must be nonzero.
A label may be placed anywhere in columns 1
through 5 of an initial line. Blanks and leading
zeros are not significant,

3-8 1000201:03A



Basie Structure of a FORTRAN Program

Initial Lines

An initial line is any line which is not a
comment line or a Compiler directive line and
contains a blank or a 0 in column 6. The first
five columns of the line must be either all blank
or contain a label. With the exception of the
statement following a logical IF, FORTRAN
statements all begin with an initial line,

Continuation Lines

A continuation line is any line which is not a
comment line or a Compiler directive line and
contains any character in column 6 other than a
blank or a 0. The first five columns of a
continuation line must be blanks. A continuation
line is used to increase the amount of room to
write a given statement. If it will not fit on a
single initial line, it may be extended to include
up to 9 continuation lines,

Statements

A FORTRAN statement consists of an initial line,
followed by up to 9 continuation lines. The
characters of the statement are the up to 660
characters found in columns 7 through 72 of
these lines. The END statement must be wholly
written on an initial line, and no other statement
may have an initial line which appears to be an
END statement.

1000201:03A 3-9




Basic Structure of a FORTRAN Program

STATEMENT ORDER

The FORTRAN language enforces a certain ordering
among statements and lines which make make up a
FORTRAN compilation. In general, a compilation
consists of some number of subprograms (possibly
zero) and, at most, one main program (see sections
on compilation units and subroutines). The various
rules for ordering statements appear below.

Program Units

A subprogram begins with either a SUBROUTINE
or a FUNCTION statement and ends with an END
statement. A main program begins with a
PROGRAM statement or any other, but not a
SUBROUTINE or FUNCTION statement, and ends
with an END statement. A subprogram or the
main program is referred to as a program unit,

Statement Ordering

Within a program unit, whether a main program
or a subprogram, statements must appear in an
order consistent with the following rules:

A SUBROUTINE or FUNCTION statement, or
PROGRAM statement, if present, must appear
as the first statement of the program unit.

3-10 1000201:03A



Basic Structure of a FORTRAN Program

FORMAT statements may appear anywhere
after the SUBROUTINE or FUNCTION
statement, or PROGRAM statement if present.

All specification statements must precede all
DATA statements, statement function
statements, and executable statements,

All DATA statements must appear after the
specification statements and precede all
statement function statements and executable
statements,

All statement function statements must precede
all executable statements.

Within the specification statements, the
IMPLICIT statement must precede all other
specification statements.

These rules are illustrated in the following chart:

PROGRAM, FUNCTION, or SUBROUTINE Statement
IMPLICIT Statements
Other Specification Statements
Comment FORMAT
Lines Statements DATA Statements
Statement Function Statements
Executable Statements
END Statement

Table 3.1. Order of Statements
within .Program Units,

1000201:03A 3-11




Basic Structure of a FORTRAN Program

The chart is to be interpreted as follows:

Classes of lines or statements above or below
other classes must appear in the designated
order,

Classes of lines or statements may be
interspersed with other eclasses which appear
across from one another,

Source Program Final Statement

When creating FORTRAN - programs with the
Editor, the final END statement must be entered
as a complete line, That is, there must be a
"return™ character following the statement.
Otherwise, the Compiler will not find the END
statement and will issue an error message. In
addition, that "return" character must be the
final character in the program source file, Any
further characters, even blanks, might be
considered part of a subsequent subprogram by
the Compiler.

3-12 1000201:03A



CHAPTER 4

DATA TYPES







Data Types

There are four basic data types in SofTech’
Microsystems FORTRAN 77: integer, real, logical,
and character. This chapter describes the
properties of each type, the range of values for
each type, and the form of constants for each

type.

THE INTEGER TYPE

The integer data type consists of a subset of the
integers. An integer velue is an exact
representation of the corresponding integer. An
integer variable occupies one word (two bytes) of
storage and can contain any value in the range
-32768 to 32767. Integer constants consist of a
sequence of one or more decimal digits preceded by
an optional arithmetic sign, + or -, and must be in
range. A decimal point is not allowed in an
integer constant. The following are examples of
integer constants:

123 +123 -123 0
00000123 32767 -32768

THE REAL TYPE

The real data type consists of a subset of the real
numbers. A real value is normally an approximation
of the real number desired. A real variable
occupies two consecutive words (4 bytes) of
storage. The range of real values is approximately:

—107E+38 (Y1} -5.8E-39 0.0
5.8E-39 ... 1.7E+38 (LSI-11)

1000201:04A 4-3



Data Types

The actual range depends upon which computer is
being used. The precision is greater than 6
decimal digits.

A basic real constant consists of an optional sign
followed by an integer part, a decimal point, and a
fraction part. The integer and fraction parts
consist of 1 or more decimal digits, and the
decimal point is a period, '.'. Either the integer
part or the fraction part may be omitted, but not
both. Some sample basic real constants follow:

-123.456 +123.456  123.456
-123. +123. 123.
-.456 +.456 456

An exponent part consists of the letter 'E' followed
by an optionally signed integer constant. An
exponent indicates that the value preceding it is to
be multiplied by 10 to the value of the exponent
part's integer. Some sample exponent parts are:

E12 E-12 E+12 EO

A real constant is either a basic real constant, a
basic real constant followed by an exponent part,
or an integer constant followed by an exponent
part. For example:

+1.000E-2 1,E-2 1E-2
+0.01 100.0E-4 0001E+2

all represent the same real number, one one-
hundredth.

4-4 1000201:04A



Data Types

THE LOGICAL TYPE

The logical data type consists of the two logical
values, true and false. A logical variable occupies
one word (two bytes) of storage. There are only
two logical constants, .TRUE. and .FALSE.,
representing the two corresponding logical values.
The internal representation of .FALSE. is a word
of all zeros; and the representation of .TRUE. is
a word of all zeros, but a one in the least
significant bit. If a logical variable contains any
other bit values, its logical meaning is undefined.

THE CHARACTER TYPE

The character data type consists of a sequence of
ASCH characters. The length of a character value
is equal to the number of characters in the
sequence. The length of a particular constant or
variable is fixed, and must be between 1 and 127
characters. A character variable occupies one
word of storage for each two characters in the
sequence, plus one word if the length is odd.
Character variables are always aligned on word
boundaries. The blank character is allowed in a
character value and is significant.

A character constant consists of a sequence of one
or more characters enclosed by a pair of
apostrophes. Blank characters are allowed in
character constants and count as one character
each. An apostrophe within a character constant is
represented by two consecutive apostrophes with no
blanks in between. The length of a character
constant is equal to the number of characters
between the apostrophes, with doubled apostrophes

1000201:04A 4-5



Data Types

counting as & single apostrophe character. Some
sample character constants are:

lAl LI | lHelp!i [ ARE}
'A very long CHARACTER constant'

Note the last example, '''', that represents a single
apostrophe, '.

FORTRAN allows source lines with up to 72
columns. Shorter lines are not padded out to 72
columns, but left as input. When a character
constant extends across a line boundary, its value
is as if the portion of the continuation line
beginning with column 7 is juxtapositioned
immediately after the last character on the initial
line. Thus, the FORTRAN source:

200 CH = 'ABC<er>
X DEF!

(where the '<cr>' indicates a carriage return or the
end of the source line) is equivalent to:

200 CH = 'ABC DEF'
with the single space between the C and D being
the equivalent to the space in column 7 of the

continuation line. Very long character constants
can be represented in this manner.

4-6 1000201:04A




CHAPTER 5
FORTRAN NAMES







FORTRAN Names

A FORTRAN name, or identifier, consists of an
initial alphabetie character followed by a sequence
of 0 through 5 alphanumeric characters. Blanks
may appear within & FORTRAN name, but have no
significance. A name is used to denote a user- or
system-defined variable, array, function, subroutine,
etec. Any valid sequence of characters may be used
for any FORTRAN name. There are no reserved
names as in other languages. Sequences of
alphabetic characters used as keywords are not to
be confused with FORTRAN names. The Compiler
recognizes keywords by their context and in no way
restricts the use of user chosen names. Thus, a
program can have, for example, an array named IF,
READ, or GOTO, with no error indicated by the
Compiler (as long as it conforms to the rules that
all arrays must obey). Using such names, however,
is not a recommended practice.

SCOPE OF FORTRAN NAMES

The scope of a name is the range of statements in
which that name is known, or can be referenced,
within a FORTRAN program. In general, the scope
of a name is either global or local, although there
are several exceptions., A name can only be used
in accordance with a single definition within its
scope, The same name, however, can have
different definitions in distinet scopes.

A name with global scope may be used in more
than one program unit (a subroutine, funetion, or
the main program) and still refer to the same
entity. In fact, names with global scope can only
be used in a single, consistent manner within the
same program. All subroutine, function subprogram,
and common names, as well as the program name,

1000201:05A 5-3




FORTRAN Names

have global scope. Therefore, there cannot be a
function subprogram that has the same name as a
subroutine subprogram or as a common data area.
Similarly, no two function subprograms in the same
program can have the same name.

A name with local scope is only visible (known)
within a single program unit. A name with a local
scope can be used in another program unit with a
different meaning, or with a similar meaning, but is
in no way required to have similar meanings in a
different scope. The names of variables, arrays,
parameters, and statement functions all have local
scope. A name with a local scope can be used in
the same compilation as another item with the same
name, but a global scope as long as the global
name is not referenced within the program unit
containing the local name., Thus, a function can be
named FOO, and a local variable in another
program unit can be named FOO, without error, as
long as the program unit containing the variable
FOO does not call the function FOO. The
Compiler detects all scope errors and issues an
error message when they occur, so the user need
not worry about undetected scope errors causing
bugs in programs.

One exception to the scoping rules is the name
given to common data bloeks. It is possible to
refer to a globally scoped common name in the
same program unit that an identical locally scoped
name appears. This is allowed because common
names are always enclosed in slashes, such as
/NAME/, and are therefore always distinguishable
from ordinary names by the Compiler.

5-4 1000201:05A



FORTRAN Names

Another exception to the scoping rules is made for
parameters to statement functions. The scope of
statement function parameters is limited to the
single statement forming that statement function.
Any other use of those names within that statement
function is not allowed, and any other use outside
that statement function is allowed.

UNDECLARED FORTRAN NAMES

When a user name that has not appeared before is
encountered in an executable statement, the
Compiler infers from the context of its use how to
classify that name. If the name is used in the
context of a variable, the Compiler creates an
entry into the symbol table for a variable of that
name. Its type is inferred from the first letter of
its name. Normally, variables beginning with the
letters I, J, K, L, M, or N are considered integers,
while all others are considered reals. These
defaults can be overridden by an IMPLICIT
statement (see Chapter 6). If an undeclared name
is used in the context of a function cell, a symbol
table entry is created for a function of that name,
with its type being inferred in the same manner as
that of a variable. Similarly, a subroutine entry is
created for a newly encountered name that is used
as the target of a CALL statement. If an entry
for such a subroutine or function name exists in
the global symbol table, its attributes are
coordinated with those of the newly created symbol
table entry. If any inconsistencies are detected,
such as a previously defined subroutine name being
used as a function name, an error message is
issued. :

1000201:05A 5-5



FORTRAN Names

In general, one is encouraged to declare all names
used within a program unit, since it helps to assure
that the Compiler associates the proper definition
with that name. Allowing the Compiler to use a
default meaning can sometimes result in logical
errors that are quite difficult to locate. Indeed,
most modern programming languages require the
programmer to declare all names, to avoid any such
potential difficulties.

5-6 1000201:05A



CHAPTER 6
SPECIFICATION
STATEMENTS






Specification Statements

This chapter describes the specification statements
in SofTech Microsystems FORTRAN 77,
Specification statements are non-executable. They
are used to define the attributes of user defined
variable, array, and function names. There are
eight kinds of specification statements:

IMPLICIT
DIMENSION
Type Statements
COMMON
EXTERNAL
INTRINSIC

SAVE
EQUIVALENCE

Specification statements must precede all
executable statements in a program unit, If
present, any IMPLICIT statements must precede all
other specification statements in a program unit as
well, Otherwise, the specification statements may
appear in any order within their own group.

IMPLICIT STATEMENT

An IMPLICIT statement is used to .define the
default type for user-declared names. The form of
an IMPLICIT statement is:

IMPLICIT type (a [,al..) [,type (a [,al..)])...

The 'type' is one of INTEGER, LOGICAL, REAL,
or CHARACTER[*nnn}

1000201:06A 6-3




Specification Statements

The 'a' is either a single letter or a range of
letters. A range of letters is indicated by the
first and last letters in the range separated by a
minus sign. For a range, the letters must be in
alphabetical order.

The 'nnn' is the size of the character type that
is to be associated with that letter or letters.
It must be an unsigned integer in the range 1 to
127, If *nnn is not specified, it is assumed to
be *1,

An IMPLICIT statement defines the type and size
for all user-defined names that begin with the
letter or letters that appear in the specification.
An IMPLICIT statement applies only to the program
unit in which it appears. IMPLICIT statements do
not change the type of any intrinsic functions.

Implicit types ecan be overridden or confirmed for
any specific user-name by the appearance of that
name in a subsequent type statement. An explicit
type in a FUNCTION statement also takes priority
over an IMPLICIT statement. If the type in
question is a character type, the user-name's length
is also overridden by a latter type definition.

The program unit can have more than one IMPLICIT
statement, but all implicit statements must precede
all other specification statements in that program
unit, The same letter cannot be defined more than
once in an IMPLICIT statement in the same program
unit,

6-4 1000201:06A



Specification Statements

DIMENSION STATEMENT

A DIMENSION statement is used to specify that a

user-name is an array. The form of a DIMENSION

statement is: :
DIMENSION var{dim) [,var(dim))...

where each 'var(dim)' is an array declarator. An
array declarator is of the form:

name(d [,d)... )
'name' is the user defined name of the array.

'd* is a dimension declarator.

DIMENSION Declarators

The number of dimensions in the array is the
number of dimension declarators in the array
declarator. The maximum number of dimensions
is three. A dimension declarator can be one of
three forms:

An unsigned integer constant.

A user-name corresponding to a non-array
integer formal argument,

An asterisk.

A dimension declarator specifies the upper bound
of the dimension. The lower bound is always
one. If a dimension declarator is an integer
constant, then the array has the corresponding

1000201:06A 6-5




Specification Statements

number of elements in that dimension, An array
has a constant size if all of its dimensions are
specified by integer constants. If a dimension
declarator is an integer argument, then that
dimension is defined to be of a size equal to the
initial value of the integer argument upon entry
to the subprogram unit at execution time. In
such a case, the array is called an adjustable-
sized array. If the dimension declarator is an
asterisk, the array is an assumed-sized array, and
the upper bound of that dimension is not
specified.

All adjustable- and assumed-sized arrays must
also be formal arguments to the program unit in
which they appear. Additionally, an assumed-size
dimension declarator may only appear as the last
dimension in an array declarator.

The order of array elements in memory is
column-major order. That is to say, the leftmost
subseript changes most rapidly in a memory-
sequential reference to all array elements.

Array Element Name

The form of an array element name is:
arr(sub [,subl... )
‘arr' is the name of an array.

'sub’ is a subscript expression.

6-6 1000201:06A



Specification Statements

A subscript expression is an integer expression
used in selecting a specific element of an array.
The number of subscript expressions must mateh
the number of dimensions in the array declarator.
The value of a subscript expression must be
between 1 and the upper bound for the dimension
it represents.

TYPE STATEMENTS

Type statements are used to specify the type of
user—defined names. A type statement may confirm
or override the implicit type of a name. Type
statements may also specify dimension information.

A user-name for a variable, array, external
function, or statement function may appear in a
type statement. Such an appesrance defines the
type of that name for the entire program unit.
Within a program unit, a name may not have its
type explicitly specified by a type statement more
than once. A type statement may confirm the type
of an intrinsic function, but is not required. The
name of a subroutine or main program cannot
appear in a type statement.

INTEGER, REAL, LOGICAL Types

The form of an INTEGER, REAL, or LOGICAL
type statement is:

type var [,varl...

1000201:06A 6-7




Specification Statements

'type' is one of INTEGER, REAL, or
LOGICAL.

'var' is a variable name, array name, function
name, or an array declarator. For a definition
of an array declarator, see the section on the
DIMENSION statement in this chapter.

CHARACTER Type Statement

The form of a CHARACTER type statement is:

CHARACTER [*nnn [,]! var {*nnn] [, var [*nnnl 1...

'var' is a variable name, array name, or an
array declarator. For a definition of an array
declarator, see the section on the DIMENSION
Statement.

'nnn' is the length in number of characters of
a character variable or character array
element. It must be an unsigned integer in
the range 1 to 127,

The length nnn following the type name
CHARACTER is the default length for any name
not having its own length specified. If not
present, the default length is assumed to be one.
A length immediately following a variable or
array overrides the default length for that item
only. For an array, the length specifies the
length of each element of that array.

6-8 1000201:06A




Specification Statements

COMMON STATEMENT

The COMMON statement provides a method of
sharing storage between two or more program units,
Such program units can share the same data
without passing it as arguments. The form of the
COMMON statement is:

COMMON [/ [ename] /] nlist [[,] / [ename] /
nlist]...

‘ecname' is a common block name, If a 'ename'
is omitted, then the blank common block is
specified.

'nlist' is a comma separated list of variable
names, array names, and array declarators.
Formal argument names and function names
cannot appear in a COMMON statement.

In each COMMON statement, all variables and
arrays appearing in each nlist following a common
block name cname are declared to be in that
common block. If the first cname is omitted, all
elements appearing in the first nlist are specified
to be in the blank common block.

Any common block name can appear more than once
in COMMON statements in the same program unit.
All elements in all nlists for the same common
block are sequentially allocated storage in that
common storage area in the order that they appear.

All elements in a single common area must be
either all of type CHARACTER or none of type
character, Furthermore, if two program units
reference the same named common area containing

1000201:06A 6-9



Specification Statements

character data, association of character variables
of different lengths is not allowed. Two variables
are said to be associated if they refer to the same
actual storage.

The size of a common block is equal to the number
of bytes of storage required to hold all elements in
that common block. If the same named common
block is referenced by several distinet program
units, the size must be the same in all program
units. :

EXTERNAL STATEMENT

An EXTERNAL statement is used to identify a
user-defined name as an external subroutine or
function, The form of an EXTERNAL statement is:

EXTERNAL name [,namel...

'name' is the name of an external subroutme or
function. 3

Appearance of a name in an EXTERNAL statement
declares that name to be an external procedure.
Statement function names cannot appear in an
EXTERNAL statement. If an intrinsic funetion
name appears in an EXTERNAL statement, then
that name becomes the name of an external
procedure, and the corresponding intrinsic function
can no longer be called from that program unit. A
user-name can only appear once in an EXTERNAL
statement.

6-10 1000201:06A



Specification Statements

INTRINSIC STATEMENT

An INTRINSIC statement is used to declare that a
user-name is an intrinsic function., The form of an
INTRINSIC statement is:

INTRINSIC name [,namel...

'name' is an intrinsic funetion name.

Each user-name may only appear once in an
INTRINSIC statement. If a name appears in an
INTRINSIC statement, it cannot appear in an
EXTERNAL statement. All names used in an
INTRINSIC statement must be system-defined
INTRINSIC functions. For a list of these functions,
see Chapter 13,

SAVE STATEMENT

A SAVE statement is used to retain the definition
of a common block after the return from a
procedure that defines that common block. Within
a subroutine or function, a common block that has
been specified in a SAVE statement does not
become undefined upon exiting from the subroutine
or function. The form of a SAVE statement is:

SAVE /name/ [,/name/]...

where: 'name' is the name of a common block.

NOTE: In SofTech Microsystems FORTRAN 77 all
common blocks are statically allocated, so the
SAVE statement is not necessary., Common blocks
are never disposed on exiting a procedure. The

1000201:06A 6-11




Specification Statements

SAVE statement is implemented here for the sake
of program portability.

EQUIVALENCE STATEMENT

An EQUIVALENCE statement is used to specify
that two or more variables or arrays are to share
the same storage. If the shared variables are of
different types, the EQUIVALENCE does not cause
any kind of automatic type conversion. The form
of an EQUIVALENCE statement is:

EQUIVALENCE (nlist) [, (nlist)l...

where: ‘'nlist' is a list of at least two variable
names, array names, or array element names.
Argument names may not appear in an
EQUIVALENCE statement. Subscripts must be
integer constants and must be within the bounds
of the array they index.

An EQUIVALENCE statement specifies that the
storage sequences of the elements that appear in
the list nlist have the same first storage location.
Two or more variables are said to be associated if
they refer to the same actual storage. Thus, an
EQUIVALENCE statement causes its list of
variables to become associated. An element of
type character can only be associated with another
element of type character with the same length., If
an array name appears in an EQUIVALENCE
statement, it refers to the first element of the
array.

6-12 1000201:06A



Specification Statements

Statement Restrictions

An EQUIVALENCE statement cannot specify that
the same storage location is to appear more than
once, such as:

REAL R,S(10)
EQUIVALENCE (R,S(1)),(R,S(5))

which forces the variable R to appear in two
distinet memory locations. Furthermore, an
EQUIVALENCE statement cannot specify that
consecutive array elements are not stored in
sequential order. For example:

REAL R(10),5(10)
EQUIVALENCE (R(1),5(1)),(R(5),5(6))

is not allowed.

When EQUIVALENCE statements and COMMON
statements are used together, several further
restrictions apply. An EQUIVALENCE statement
cannot cause storage in two different common
blocks to become equivalenced. An
EQUIVALENCE statement can extend & common
block by adding storage elements following the
common block, but not preceding the common
block. For example:

COMMON /ABCDE/ R(10)
REAL S(10) ‘
EQUIVALENCE (R(1),5(10))

is not allowed because it extends the common

block by adding storage preceding the start of
the block.

1000201:06A 6-13






CHAPTER 7

DATA STATEMENT







Data Statement

The DATA statement is used to assign initial values
to variables. A DATA statement is a non-
executable statement. If present, it must appear
after all specification statements and prior to any
statement function statements or executable
statements. The form of a DATA statement is:

DATA nlist / clist /[,] nlist / elist /..

'nlist' is a list of variable, array element, or
array names,

'elist' is a list of constants or constants
preceded by an integer constant repeat factor
and an asterisk, such as:

5*3.14159 3*'Help' 100*0

A repeat factor followed by a constant is the
equivalent of a list of all constants of that
constant's value repeated a number of times
equal to the repeat constant.

There must be the same number of values in each
clist as there are variables or array elements in
the corresponding nlist. The appearance of an
array in an nlist is the equivalent to a list of all
elements in that array in storage sequence order.
Array elements must be indexed only by constant
subseripts.

The type of each non-character element in a clist
must be the same as the type of the corresponding
variable or array element in the accompanying nlist.
Each character element in a clist must (1)
correspond to a character variable or array element
in the nlist and (2) have a length that is less than
or equal to the length of that variable or array

1000201:07A 7-3




Data Statement

element. If the length of the constant is shorter,
it is extended to the length of the variable by
adding blank characters to the right. Note that a
single character constant cannot be used to define
more than one variable or even more than one
array element.

Only local variables and array elements can appear
in a DATA statement. Formal arguments, variables
in common, and function names cannot be assigned
initial vaelues with a DATA statement,

7-4 1000201:07A



CHAPTER 8
EXPRESSIONS







Expressions

This chapter describes the four classes of
expressions found in the FORTRAN language. They
are:

Arithmetic Expressions.
Character Expressions.
Relational Expressions.
Logical Expressions.

ARITHMETIC EXPRESSIONS

An arithmetic expression produces a value which is
either of type integer or of type real. The
simplest forms of arithmetic expressions are:

Unsigned integer or real constant.
Integer or real variable reference,
Integer or real array element reference.
Integer or real function reference.

The value of a variable reference or array element
reference must be defined for it to appear in an
arithmetic expression. Moreover, the value of an
integer variable must be defined with an arithmetic
value, rather than a statement label value
previously set in an ASSIGN statement.

Other arithmetic expressions are built up from the
above simple forms using parentheses and these
arithmetic operators:

1000201:08A 8-3




Expressions

Operator Representing Operation Precedence

** Exponentiation Highest
/ Division
Intermediate
* Multiplication

- Subtraction or Negation
Lowest
+ Addition or Identity

Table 8.1. Arithmetic Operators.

All of the operators are binary operators, appearing
between their arithmetic expression operands. The
+ and - may also be unary, preceding their operand.
Operations of equal precedence are left-associative,
except exponentiation, which is right-associative.
Thus, A / B * C is the same as (A / B) * C; and
A ** B ** C js the same as A ** (B ** C),
Arithmetic expressions may be formed in the usual
algebraic sense, as in most programming languages,
except that FORTRAN prohibits two operators from
appearing consecutively. Thus, A ** -B is
prohibited, although A *#¥ (-B) is permissible. Note
that unary minus is also of lowest precedence, so
that - A * B is interpreted as - (A * B).
Parentheses may be used in a program to control
the associativity and the order of operator
evaluation in an expression.

8-4 1000201:08A



Expressions

Integer Division

The division of two integers results in a value
whiech is the quotient of the two values,
truncated toward 0. Thus, 7 / 3 evaluates to 2,
(-7) / 3 evaluates to -2, 9 / 10 evaluates to 0,
and 9 / (-10) evaluates to 0.

Type Conversions and Result Types

Arithmetic expressions may involve operations
between operands which are of different type.
The general rules for determining type
conversions and the result type for an arithmetic
expression are:

An operation between two integers results in
an expression of type integer.

An operation between two reals results in an
expression of type real.

For any operator except **, an operation
between a real and an integer converts the
integer to type real and performs the
operation, resulting in an expression of type
real.

For the operator **, a real raised to an
integer power is computed without conversion
of the integer and results in an expression of
type real. An integer raised to a real power
is converted to type real, and the operation
results in an expression of type real. Note
that for integer I and negative integer J, I **
J is the same as 1 / (I ** IABS(J)) which is
subject to the rules of integer division; so, for

1000201:08A 8-5




Expressions

example, 2 ** (-4) is 1 / 16 which is 0.

Unary operators result in the same result type
as their operand type.

The type which results from the evaluation of an
arithmetic operator is not dependent on the
context in which the operation is specified. For
example, evaluation of an integer plus a real
results in a real, even if the value obtained is to
be immediately assigned into an integer variable.

CHARACTER EXPRESSIONS

A character expression produces a value which is
of type character. The forms of character
expressions are:

Character constant.

Character variable reference.

Character array element reference.

Any character expression enclosed in parenthesis.

There ere no operators which result in character
expressions.

RELATIONAL EXPRESSIONS

Relational expressions are used to compare the
values of two arithmetic expressions or two
character expressions, It is not allowed to compare
an arithmetic value with a character value. The
result of a relational expression is of type logical.

8-6 1000201:08A




Expressions

Relational expressions may use any of these
operators to compare values:

Operator Representing Operation
LT, Less than
.LE. Less than or equal to
EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

Table 8.2. Relational Operators.

All of the operators are binary operators, appearing
between their operands. There is no relative
precedence or associativity among the relational
operands, since an expression of the form A .LT.
B .NE, C violates the type rules for operands.
Relational expressions may only appear within
logical expressions.

Relational expressions with arithmetic operands may
have an operand of type integer and one of type
real. In this case, the integer operand is converted
to type real before the relational expression is
evaluated.

Relational expressions with character operands
compare the position of their operands in the ASCII
collating sequence, An operand is less than
another if it appears earlier in the collating

1000201:08A 8-7



Expressions

sequence, etc. If operands of unequal length are

compared, the shorter operand is considered as if it
were blank extended to the length of the longer
operand.

LOGICAL EXPRESSIONS

A logical eXpression produces a value which is of
type logical. The simplest forms of logical
expressions are:

Logical constant.

Logical variable reference.
Logical array element reference.
Logical function reference.
Relational expression.

Other logical expressions are built up from the
above simple forms using parentheses and these
logical operators:

8-8 1000201:08A



Expressions

Operatof Representing Operation  Precedence

.NOT. Negation Highest

JAND, Conjunction

OR. Inclusive disjunction Lowest
Table 8.3. Logical Operators.

The .AND. and .OR. operators are binary
operators, appearing between their logical
expression operands. The .NOT. operator is unary,
preceding its operand. Operations of equal
precedence are left associative; so, for example, A
AND, B .AND. C is equivalent to (A .AND. B)
.AND. C. As an example of the precedence rules,
.NOT. A .OR. B .AND. C is interpreted the
same as ((NOT. A) .OR. (B .AND. C). It is not
permitted to have two .NOT. operators adjacent to
each other, although A .AND., .NOT. B is an
example of an allowable expression with two
operators being adjacent,

The meaning of the logical operators is their
standaerd semantics, with .OR. being "nonexeclusive";
that is, .TRUE. .OR.

PRECEDENCE OF OPERATORS

When arithmetie, relational, and logical operators
appear in the same expression, their relative
precedences are:

1000201:08A 8-9




Expressions

Operator Precedence
Arithmetic Highest
Relational

Logical Lowest

Table 8.4. Relative Precedence
of Operator Classes.

EVALUATION OF EXPRESSIONS

Any variable, array element, or function referenced
in an expression must be defined at the time of the
reference. Integer variables must be defined with
an arithmetic value, rather than a statement label
value as set by an ASSIGN statement.

Certain arithmetic operations are prohibited if they
cannot be evaluated (e.g., dividing by zero). Other
prohibited operations are raising a zero valued
operand to a zero or negative power and raising a
negative valued operand to a power of type real.

8-10 1000201:08A



CHAPTER 9
ASSIGNMENT

STATEMENTS







Assignment Statements

An assignment statement is used to assign a value
to a variable or an array element. There are two
basic kinds of assignment statements: computational
assignment statements and label assignment
statements,

COMPUTATIONAL STATEMENTS

The form of a computational assignment statement
iss

var = expr
'var' is a variable or array element name, and

'expr' is an expression.

Execution of a computational assignment statement
eveluates the expression and assigns the resulting
value to the variable or array element appearing on
the left. The type of the variable or array
element and the expression must be compatible.
They must both be either numerie, logical, or
character, in which case the assignment statement
is called an arithmetic, logical, or character
assignment statement.

If the type of the elements of an arithmetic
assignment statement are not identical, automatic
conversion of the value of the expression to the
type of the variable is done. The following table
gives the conversion rules:

1000201:09A 9-3



Assignment Statements

Type of Type of expression
variable or

array element integer real
integer expr INT(expr)
real REAL(expr) expr

Table 9.1. Type conversion for arithmetic
assignment statements.

If the length of the expression does not match the
size of the variable in a character assignment
statement, it is adjusted so that it does. If the
expression is shorter, it is padded with enough
blanks on the right to make the sizes equal before
the assignment takes place. If the expression is
longer, characters on the right are truncated to
make the sizes the same.

LABEL ASSIGNMENT STATEMENT

The label assignment statement is used to assign
the value of a format or statement label to an
integer variable. The form of the statement is:

ASSIGN label TO var
'label’ is a format label or statement label, and

'var' is an integer variable,

Execution of an ASSIGN statement sets the integer
variable to the value of the label. The label can
be either a format label or a statement label, and
it must appear in the same program unit as the

9-4 1000201:09A




Assignment Statements

ASSIGN statement. When used in an assigned
GOTO statement, a variable must currently have
the value of a statement label. When used as a
format specifier in an 1/O statement, a variable
must have the value of a format statement label.
The ASSIGN statement is the only way to assign
the value of a label to a variable.

1000201:09A 9-5







CHAPTER 10
CONTROL
STATEMENTS







Control Statements

Control statements are used to control the order of
execution of statements in the FORTRAN language.
This chapter describes the following control
statements:

Unconditional GOTO.
Computed GOTO.
Assigned GOTO.
Arithmetic IF,
Logical IF,

Block IF THEN ELSE.
Bloek IF.

ELSEIJF.

ELSE.

ENDIF.

DO.

CONTINUE.

STOP.

PAUSE.

END.

The two remaining statements whieh control the
order of execution of statements are the CALL
statement and the RETURN statement, both of
which are described in Chapter 13.

UNCONDITIONAL GOTO

The syntax for an unconditional GOTO statement is:
GOTO s

where s is a statement label of an executable
statement that is found in the same program unit
as the GOTO statement, The effect of executing a
GOTO statement is that the next statement
executed is the statement labeled s. It is not legal

1000201:10A 10-3



Control Statements

to jump into a DO, IF, ELSEIF, or ELSE block from
outside the block (see the various sections for an
explanation of the kinds of blocks).

COMPUTED GOTO

The syntax for a computed GOTO statement is:
GOTO (s [, s] «.J,] i

where i is an integer expression, and each s is a
statement label of an executable statement that is
found in the same program unit as the computed
GOTO statement. The same statement label may
appear repeatedly in the list of labels. The effect
of the computed GOTO statement can be explained
as follows: Suppose that there are n labels in the
list of labels. If i < 1 or i > n then the computed
GOTO statement acts as if it were a CONTINUE
statement, otherwise, the next statement executed
will be the statement labeled by the ith label in
the list of labels. It is not allowed to jump into a
DO, IF, ELSEIF, or ELSE block from outside the
block (see the various sections for an explanation
of the kinds of blocks).

NOTE: computed GOTOs are often used to
implement a CASE construct.

10-4 1000201:10A



Control Statements

ASSIGNED GOTO

The syntax for an assigned GOTO statement is:
GOTO i [,] (s [, s] ...)]

where i is an integer variable name, and each s is
a statement label of an executable statement that
is found in the same program unit as the assigned
GOTO statement. The same statement label may
appear repeatedly in the list of labels. When the
assigned GOTO statement is executed, i must have
been assigned the label of an executable statement
that is found in the same program unit as the
assigned GOTO statement., The effect of the
statement is that the next statement executed will
be the statement labelled by the label last assigned
to i. If the optional list of labels is present, a
runtime error is generated if the label last assigned
to i is not among those listed, It is not legal to
jump into a DO, IF, ELSEIF, or ELSE block from
outside the block (see the various sections for an
explanation of the kinds of blocks).

ARITHMETIC IF

The syntex for an arithmetic IF statement is:
IF (e) s1, s2, s3

where e is an integer or real expression, and each
of s1, s2, and s3 are statement labels of executable
statements found in the same program unit as the
arithmetic IF statement., The same statement label
may appear more than once among the three labels.
The effect of the statement is to ‘evaluate the
expression and then select a label based on the

1000201:10A 10-5

|




Control Statements

value of the expression. Label sl is selected, if
the value of e is less than 0; s2 is selected, if the
value of e equals 0; and s3 is selected, if the
value of e exceeds 0. The next statement
executed will be the statement labeled by the
selected label. It is not legal to jump into a DO,
IF, ELSEIF, or ELSE block from outside the block
(see the various sections for an explanation of the
kinds of blocks).

LOGICAL IF

The syntax for a logical IF statement is:
IF (e) st

where e is a logical expression; and st is any
executable statement, except a DO, block IF,
ELSEIF, ELSE, ENDIF, END, or another logical IF
statement, The statement causes the logical
expression to be evaluated; and if the value of that
expression is .TRUE., then the statement, st, is
executed. Should the expression evaluate to
.FALSE., the statement st is not executed, and the
execution sequence continues as if a CONTINUE
statement had been encountered.

10-6 1000201:10A




Control Statements

BLOCK IF THEN ELSE.

The following paragraphs describe the block IF
statement and the various statements associated
with it. These statements are new to FORTRAN
77 and can be used to dramatically improve the
readability of FORTRAN programs and to reduce
the number of GOTOs of the various forms. As an
overview of these sections, the following three
code skeletons illustrate the basic concepts:

Skeleton 1 - Simple Block IF which skips a group
of statements if the expression is false:

IF(I.LT.10)THEN
Some statements executed only if I.LT.10

ENDIF

Skeleton 2 - Bloek IF with a series of ELSEIF
statements:

IF(J.GT.1000) THEN
Some statements executed only if J.GT.1000
ELSEIF (J.GT.100) THEN

Some statements executed only if J.GT.100 and
. J.LE.1000
FLSEIF(J,.GT.10) THEN

Some statements executed only if J.GT.10 and
. J.LE.1000 and J.LE.100
ELSE

Some statements executed only if none of above
conditions were true
ENDIF

1000201:10A 10-7




Control Statements

Skeleton 3 - Dlustrates that the constructs can be
nested and that an ELSE statement can follow a
block IF without intervening ELSEIF statements
(indentation solely to enhance readability):

IF(I.LT.100)THEN
. Some statements executed only if I.LT.100
IF(J.LT.10) THEN

. Some statements executed only if I,LT.100
. and J.LT.10
ENDIF

. Some statements executed only if I.LT.100
ELSEIF(I.LT.1000) THEN

. Some staterents executed only if 1.GE.100 and
. I.LT.1000
IF(J.LT.10)THEN

. Some statements executed only if I.GE.100
. and I.LT.1000 and J.LT.10
ENDIF

. Some statements executed only if I.GE.100 and

. I.LT.1000
ENDIF

In order to understand, in detail, the bloek IF and
associated statements, the concept of an IF-level is
introduced. For any statement, its IF-level is

nl - n2

where nl1 is the number of block IF statements
from the beginning of the program unit that the
statement is in, up to and including that statement,
and n2 is is the number of ENDIF statements from
the beginning of the program unit up to, but not
including, that statement. The IF-level of every
statement must be greater than or equal to 0; and
the IF-level of every block IF, ELSEIF, ELSE, and
ENDIF must be greater than 0. Finally, the IF-
level of every END statement must be 0. The IF-
level will be used to define the nesting rules for
the block IF and associated statements and to

10-8 1000201:10A



Control Statements

define the extent of IF blocks, ELSEIF blocks, and
ELSE blocks.

Block IF

The syntax for a block IF statement is:
IF (e) THEN

where e is a logical expression, The IF block
associated with this block IF statement consists
of all of the executable statements, possibly
none, that appear following this statement. This
is up to, but not including, the next ELSEIF,
ELSE, or ENDIF statement that has the same IF-
level as this block IF statement. (The IF-level
defines the notion of "matching" ELSEIF, ELSE,
or ENDIF.) Executing the block IF statement
first causes the expression to be evaluated. If it
eveluates to .TRUE., and there is at least one
statement in the IF block, the next statement
executed is the first statement of the IF block.
Following the execution of the last statement in
the IF block, the next statement to be executed
will be the next ENDIF statement at the same
IF-level as this block IF statement. If the
expression in this block IF statement evaluates to
.TRUE., and the IF block has no executable
statements, the next statement executed is the
next ENDIF statement at the same IF level as
the block IF statement. If the expression
evaluates to .FALSE., the next statement
executed is the next ELSEIF, ELSE, or ENDIF
statement that has the same IF-level as the block
IF statement. Note that transfer of control into
an IF block from outside that bloek is not
allowed.

1000201:10A 10-9




Control Statements

ELSEIF

The syntax of an ELSEIF statement is:
ELSEIF (e) THEN

where e is a logical expression. The ELSEIF
block associated with an ELSEIF statement
consists of all of the executable statements,
possibly none, that follow the ELSEIF statement.
This is up to, but not including, the next ELSEIF,
ELSE, or ENDIF statement that has the same IF-
level as this ELSEIF statement. The execution
of an ELSEIF statement begins by evaluating the
expression, If its value is .TRUE., and there is
at least one statement in the ELSEIF block, the
next statement executed is the first statement of
the ELSEIF block. Following the execution of
the last statement in the ELSEIF block, the next
statement to be executed will be the next ENDIF
statement at the same IF-level as this ELSEIF
statement. If the expression in this ELSEIF
statement evaluates to .TRUE., and the ELSEIF
block has no executable statements, the next
statement executed is the next ENDIF statement
at the same IF level as the ELSEIF statement.
If the expression evaluates to .FALSE., the next
statement executed is the next ELSEIF, ELSE, or
ENDIF statement that has the same IF-level as
the ELSEIF statement. Note that transfer of
control into an ELSEIF block from outside that
block is not allowed.

10-10 1000201:10A




Control Statements

ELSE

The syntax of an ELSE statement is:

ELSE

The ELSE block associated with an ELSE

- statement consists of all of the executable
statements, possibly none, that follow the ELSE
statement up to, but not including, the next
ENDIF statement that has the same IF-level as
this ELSE statement. The "matching"” ENDIF
statement must appear before any intervening
ELSE or ELSEIF statements of the same IF-level.
Note that transfer of control into an ELSE block
from outside that block is not allowed.

ENDIF

The syntax of an ENDIF statement is:
ENDIF

There is no effect of executing an ENDIF
statement. An ENDIF statement is required to
"mateh" every block IF statement in a program
unit in order to specify which statements are in
a particular block IF statement.

1000201:10A 10-11




Control Statements

DO

The syntex of a DO statement is:
DO s [,] i=el, e2 [, e3]

where s is a statement label of an executable
statement, The label must follow this DO
statement and be contained in the same program
unit, In the DO statement, i is an integer
variable; and el, e2, and e2 are integer
expressions. The statement labeled by s is called
the terminal statement of the DO loop. It must
not be an unconditional GOTO, assigned GOTO,
arithmetic IF, block IF, ELSEIF, ELSE, ENDIF,
RETURN, STOP, END, or DO statement., If the
terminal statement is a logical IF, it may contain
any executable statement except those not
permitted inside a logical IF statement.

A DO loop is said to have a "range" beginning with
the statement which follows the DO statement and
ending with (and including) the terminal statement
of the DO loop. If a DO statement appears in the
range of another DO loop, its range must be
entirely contained within the range of the enclosing
DO loop, although the loops may shere a terminal
statement. (This is not recommended.) If a DO

statement appears within an IF block, ELSEIF
block, or ELSE block, the range of the associated

DO loop must be entirely contained in the
particular block. If a block IF statement appears
within the range of a DO loop, its associated
ENDIF statement must also appear within the range
of that DO loop. The DO variable, i, may not be
set by the program within the range of the DO

10-12 1000201:10A



Control Statements

loop associated with it. It is not allowed to jump
into the range of a DO loop from outside its range.

The execution of a DO statement causes the
following steps to happen in order:

The expressions el, e2, and €3 are evaluated. If
e3 is not present, e3 defaults to 1 (e3 must not
evaluate to 0).

The DO veariable, i, is set to the value of el.

The iteration count for the loop is computed to
be MAXO0(((e2 - el + e3)/e3),0) which may be
zero (Note: unlike FORTRAN 66) if either el >
e2 and e3 > 0, or el < e2 and e3 < 0.

The iteration count is tested; and if it exceeds
zero, the stetements in the range of the DO
loop are executed.

Following the execution of the terminal statement
of a DO loop, the following steps occur in order:

The value of the DO variable, i, is incremented
by the value of e3 which was computed when
the DO statement was executed.

The iteration count is decremented by one.

The iteration count is tested; and if it exceeds
zero, the statements in the range of the DO
loop are executed again.

The value of the DO variable is well-defined after
execution of the loop; no matter if the DO loop
exits as a result of the iteration count becoming

1000201:10A 10-13



Control Statements

zero, as the result of a transfer of control out of
the DO loop, or as the result of a RETURN
statement.

Example of the final value of a DO variable:

C This program fragment prints the number 1 to 11 on
C the CONSOLE:

DO 200 I=]1,10

200 WRITE(*,'(IS)")I

WRITE(*,' (IS)")I

CONTINUE

The syntax of a CONTINUE statement is:

CONTINUE

There is no effect associated with execution of a
CONTINUE statement. The primary use for the
CONTINUE statement is a convenient statement to
label, particularly as the terminal statement in a
DO loop.

STOP

The syntax of a STOP statement is:
STOP [n]

where n is either a character constant or a string
of not more than 5 digits. The effect of executing
a STOP statement is to cause the program to

terminate. The argument, n, if present, is
displayed on CONSOLE: upon termination,

10-14 1000201:10A



Control Statements

PAUSE

The syntex of a PAUSE ‘statement is:
PAUSE [n]

where n is either a character constant or a string
of not more than 5 digits. The effect of executing
a PAUSE statement is to cause the program to be
suspended, pending an indication from the
CONSOLE: that it is to continue. The argument,
n, if present, is displayed on the CONSOLE: as
part of the prompt requesting input from the
CONSOLE:. If the indication from the CONSOLE:
is received to continue execution of the program,
execution resumes as if a CONTINUE statement had
been executed.,

END

The syntax of an END statement is:

END

Unlike other statements, an END statement must
wholly appear on an initial line and contain no
continuation lines. No other FORTRAN statement,
such as the ENDIF statement, may have an initial
line which appears to be an END statement. The
effect of executing the END statement in a
subprogram is the same as execution of 8 RETURN
statement, and the effect in the main program is to
terminate execution of the program. The END
statement must appear as the last statement in
every program unit,

1000201:10A 10-15







CHAPTER 11

I1/0 SYSTEM






I/O System

Chapters 11 and 12 of this manual describe the
FORTRAN I/O System. Chapter 11 describes the
basic FORTRAN ]/O concepts and statements, and
Chapter 12 describes the FORMAT statement. The
four major Sections of these chapters are:

I/O System Overview - Provides an overview of
the FORTRAN file System. Defines the basic
concepts of I/O records, I/O units, and the
various kinds of file access available under the
System.

General Discussion of 1/O System Concepts. and
Limitations - The definitions made in the I/O
System Overview are related to how to
accomplish various simple, as well as complex,
tasks using the I/O System. There is a general
discussion of 1/O System limitations.

I/O Statements - The statements of the 1/0
System ' are presented with the exception of the
FORMAT statement.

Formatted 1/O and the FORMAT Statement - The
FORMAT statement and formats in general are
described.

NOTE: Refer to "Concepts and Limitations" in this
chapter for a brief discussion of the most commonly
used forms of files and 1/O statements, and for a
complete sample program that illustrates the most
commonly used forms of 1/0.

1000201:11A 11-3



I/O System

I/O SYSTEM OVERVIEW

In order to fully understand the 1/O statements, it
is necessary to be familiar with a variety of terms
and concepts related to the structure of the
FORTRAN I/O System. Most I/O tasks can be
accomplished without a complete understanding of
this material, thus, the reader is encouraged to skip
®"Concepts and Limitations" on the first reading and
subsequently use the "I/O System Overview"
primarily for reference.

Records

The building block of the FORTRAN file system
is the Record. A Record is a sequence of
characters or a sequence of values. There are
three kinds of records:

Formatted.
Unformatted.
Endfile.

A formeatted record is a sequence of characters
terminated by the character value which
corresponds to the "return" key on a terminal
(character value 13). Formatted records are
processed on input consistent with the way that
the Operating System and Text Editor process
charaecters. Thus, reading characters from
formatted records in FORTRAN is identical to
reading characters in other System programs and
other languages on the System. Formatted files
are normally transportable aecross p-System
implementations on different processors.

11-4 1000201:11A



I/O System

An unformatted record is a sequence of vealues,
with no System alteration or processing; no
physical representation for the end of record
exists, Unformatted files generated on different
processors are not generally interchangable, since
the internal representations of integers and reals
differ among processors.

The System makes it appear as though an endfile
record exists after the last record in a file,
although no physical endfile mark ever exists.

Files

A FORTRAN file is a sequence of records.
FORTRAN files are one of two kinds:

External.
Internal.

An external FORTRAN file is a file on & device
or the device itself. An internal FORTRAN file
is a character veariable which serves as the
source or destination of some I/O action. From
this point on, both FORTRAN files and the
notion of a file as known to the Operating
System and the Editor will be referred to simply
as files, with the context determining which
meaning is intended. (The OPEN statement
provides the linkage between the two notions of
files; and in most cases the ambiguity disappears,
since after a file has been opened, the two
notions are one and the same.)

1000201:11A 11-5




1/0 System

File Properties

A file which is being acted upon by a FORTRAN
program has a variety of properties. These
properties are described in the following
paragraphs.

File Name

A file may have a name. If present, a name is
a character string identical to the name by
whieh it is known to the File System. There
may be more than one name for the same file,
such as SYS:A.TEXT and #4:A.TEXT.

File Position

A file has a position property which is usually
set by the previous I/O operation. There is a
notion of the initial point in the file, the
terminal point in the file, the current record,
the preceding record, and the next record of
the file. It is possible to be between records
in a file, in which case the next record is the
successor to the previous record and there is
no current record. The file position after
sequential writes is at the end of file, but not
beyond the endfile record. Execution of the
ENDFILE statement positions the file beyond
the endfile record, as does a read statement
executed at the end of file (but not beyond
the endfile record). Reading an endfile record
may be trapped by the user using the END=
option in a READ statement.

11-6 1000201:11A



I/O System

Formatted and Unformatted Files

An external file is opened as either formatted
or unformatted. All internal files are
formatted. Files which are formatted consist
entirely of formatted records, and files which
are unformatted consist entirely of unformatted
records. Files which are formatted obey all
the structural rules of .TEXT files, so that
they are fully compatible with the System Text
Editor.

Sequential/Direct Access

An external file is opened as either sequential
or direct. Sequential files contain records with
an order property determined by the order in
which the records were written (the normal
sequential order). These files must not be read
or written using the REC= option whiech
specifies a position for direct access I/0. The
System will attempt to extend sequential access
files, if a record is written beyond the old
terminating boundary of the file; but the
success of this depends on the existence of
room on the physical device at the appropriate
location.

Direct access files may be read or written in
any order (they are random access files),
Records in a direet access file are numbered
sequentially, with the first record numbered
one, All records in a direct access file have
the same length, which is specified at the time
the file is opened. Each record in the file is
uniquely identified by its reeord number, which

1000201:11A 11-7



I/O System

was specified when the record was written. It
is entirely possible to write the records out of
order, including, for example, writing record 9,
5, and 11 in that order without the records in
between. It is not possible to delete a record
once written, but it is possible to overwrite a
record with a new value. It is an error to
read a record from a direct access file which
has not been written; but the System will not
detect this error, unless the record which is
being read is beyond the last record written in
the file (a non-written record before the end-
of-file contains garbage). Direct access files
must reside on block-structured peripheral
devices such as the diskette, so that it is
meaningful to specify a position in the file and
reference it. The System will attempt to
extend direct access files, if an attempt is
made to write to a position beyond the
previous terminating boundary of the file.
However, the success of this depends on the
existence of room on the physical device at
the appropriate location.

Internal Files

Internal files provide a mechanism for using the
formatting capabilities of the I/O System to
convert values to and from their external
character representations, within the FORTRAN
internal storage structures. That is, reading a
character variable converts the character values
into numerie, logical, or character values; and
writing into a character variable allows values to
be converted into their (external) character
representation.

11-8 1000201:11A



I/O System

Special Properties of Internal Files

An internal file is a character variable or
character array element. The file has exactly
one record, which has the same. length as the
character variable or character array element.
‘Should less than the entire record be written
by a WRITE statement, the remaining portion
of the record is filled with blanks. The file
position is always at the beginning of the file
prior to I/O statement execution. Only
formatted, sequential I/O is permitted with
internal files; and only the I/O statements
READ and WRITE may specify an internal file.

Units

A unit is a means of referring to a file. A unit
specified in an /O statement is one of:

External unit specifier.
Internal file specifier.

External unit specifiers are either integer
expressions which evaluate to non-negative
values; or the character *, which stands for the
CONSOLE: device. In most cases, external unit
specifier values are bound to physical devices (or
files resident on those devices) by name (using
the OPEN statement). Once this binding of value
to System file name occurs, FORTRAN I/O
statements refer to the unit number as a means
of referring to the appropriate external entity.
Once opened, the external unit specifier vealue is
uniquely associated with a particular external
entity until an explicit CLOSE occurs or until

1000201:11A 11-9



I/O System

the program terminates. The only exception to
the above binding rules is that the unit value 0
is initially associated with the CONSOLE: device
for reading and writing, and no explicit OPEN is
necessary. The character * is interpreted by the
System as specifying unit 0.

An internal file specifier is a character variable
or character array element which directly
specifies an internal file.

CONCEPTS AND LIMITATIONS

The FORTRAN I/0O System

FORTRAN provides a rich combination of possible
file structures. Choosing from among these many
structures may at first seem somewhat confusing.
However, two kinds of files will suffice for most
applications.

* - CONSOLE:, a sequential, formatted file,
also known as unit 0 - This particular unit has
the special property that an entire line
terminated by the return key must be entered
when reading from it, and the various
backspace and line delete keys familiar to the
System user serve their normal functions.
Note that a READ from any other unit will
not have these properties, even if that unit is
bound to CONSOLE: by an explicit OPEN
statement.

11-10 1000201:11A



I/O System

Explicitly opened external, sequential,
formatted files - These files are bound to a
System file by name in an OPEN statement.
They can be read and written in the System
Text Editor compatible format.

Common 1/O Operations

Here is a sample program which uses the kinds of
files discussed in the previous paragraph for
reading and for writing. The various I1/0
statements are explained in detail later in this
chapter in the "I/O Statements" Section.

C Copy a file with three columns of integers, each 7
C columns wide, from a file whose name is input by the
C user to another file named OUT.TEXT, reversing the
C positions of the first and second column.
PROGRAM COLSWP
CHARACTER*23 FNAME
C Prompt to the CONSOLE: by writing to *
WRITE(*,900)
900 FORMAT ('Input file name - '
C Read the file name from the CONSOLE: by reading from *
READ(*,910) FNAME
910 FORMAT (A)
C Use unit 3 for input, any unit number except 0 will do
OPEN(3,FILE=FNAME)
C Use unit 4 for output, any unit number except 0 and 3
C will do
OPEN(4,FILE='OUT.TEXT',STATUS='NEW")
C Read and write until end of file
100 READ(3,920,END=200)1,J,K
WRITE(4,920)J,1,K
920 FORMAT (BN, 317)

GOTO 100
200 WRITE(*,910) 'Done’
END

1000201:11A 1111



I/0O System

Less Common File Operations

The less commonly used file structures are
appropriate for certain classes of applications. A
very general indication of the intended usages for
them are as follows: If the I/O is to be random
access, such as in maintaining a database, direct
access files are probably necessary. If the data
is to be written by FORTRAN and reread by
FORTRAN (on the same brand of processor),
unformatted files are more efficient both in file
space and in I/O overhead. The combination of
direct and unformatted is ideal for a database to
be creasted, maintained, and accessed exclusively
by FORTRAN., If the deta must be transferred
without any System interference, especially if all
256 possible bytes will be transferred,
unformatted I/O will be necessary, since .TEXT
files are constrained to contain only the printable
character set as data. An example of a usage of
unformatted I/O would be in the control of a
device which has a single byte, binary interface.
Formatted I/O would, in this example, interpret
certain characters, such as the ASCII
representation for carriage return, and fail to
pass them through to the program unaltered.
Internal files are not I/O in the conventional
sense but rather provide certain character string
operations and conversions within a standard
mechanism. .

Use of formatted direct files requires special
caution. FORTRAN formatted files attempt to
comply with the Operating System - rules for
TEXT files (for a discussion of .TEXT files, see
the UCSD p-System Operating System User Guide
manual). FORTRAN 1/0 is able to enforce these
rules for sequential files, but it cannot always

11-12 1000201:11A



I/O System

enforce them for direct files. Direct files are not
necessarily legal .TEXT files, since any unwritten
records contain undefined values which do not
follow .TEXT file constraints. Direct files do, of
course, obey FORTRAN 1/0 rules.

A file opened in FORTRAN is either "old" or
"new", but there is no concept of "opened for
reading™ as distinguished from "opened for
writing". Therefore, you may open "old"
(existing) files and write to them, with the effect
of modifying existing files. Similarly, you may
alternately write and read to the same file
(providing that one avoids reading beyond end of
file or reading unwritten records in a direct
files)). A write to a sequential file effectively
deletes any records which had existed beyond the
freshly written record. Normally, when a device
is opened as a file (such as CONSOLE: or
PRINTER:), it makes no difference whether the
file is opened as "old" or "new". With diskette
files, opening "new" creates a new temporary
file. If that file is closed using the "keep"
option, or if the program is terminated without
doing a CLOSE on that file, a permanent file is
created with the name given when the file was
opened. If a previous file existed with the same
name, it is deleted. If closed using the "delete"
option, the newly created temporary file is
deleted, and any previous file of the same name
is left intact. Opening a diskette file as "old"
will generate a run time error if the file does
not exist and alter the existing file if written.

1000201:11A 11-13




I/O System

Limitations of 1/0 System

Direct Files with Blocked Devices

The Operating System uses two kinds of
devices: block-structured and sequential,
Sequential files may be thought of as streams
of characters, with no explicit motion allowed
except reading and/or writing., CONSOLE: and
PRINTER: are examples of sequential devices.
Block-struetured devices, such as diskette files,
allow the additional operation of seeking a
specific location., They can be accessed either
sequentially or randomly and thus can support
direct files. Since there is no notion of
seeking a position on a file which is not block-
structured, FORTRAN [I/O does not allow
direct file access to sequential devices.

BACKSPACE Use

Sequential devices can not be backspaced
meaningfully under the Operating System, so
FORTRAN I/O disallows backspacing a file on
a sequential device (see the next paragraph).

BACKSPACE Restrictions

It is not possible to implement BACKSPACE on
unformatted sequential files, since there is no
indication in the file itself of the record
boundaries. It would be possible to append end
of record marks to unformatted sequential files,
but this would interfere with the notion of an

11-14 1000201:11A



I/O System

unformatted file being a "pure" sequence of
values and would interfere with the most
common usage for such files, such as the direct
control of an external device. Direct files
contain records of fixed and specified length,
so it is possible to backspace direct
unformatted files,

I/O Statement Side Effects

During the course of executing any I/0
statement, the evaluation of an expression may
cause a function to be called. That function
call must not cause any I/O statement to be
executed.

I/0 STATEMENTS

This Section describes these I/O statements which
are available from FORTRAN:

OPEN
CLOSE
READ

WRITE
BACKSPACE
ENDFILE
REWIND

1000201:11A 11-15




I/O System

In addition, there is an I/O intrinsic function EOF,
presented in Chapter 13, which returns a logical
value indicating whether the file associated with
the unit specifier passed to it is at end-of-file. A
familiarity with the FORTRAN file system, units,
records, and access methods as described in the
previous Sections is assumed.

Elements of I/O Statements

The various I/O statements take certain
parameters and arguments which specify sources
and destinations of data transfer, as well as
other facets of the I/O - operation. The
abbreviations used throughout this Section are
defined in the following three subsections,

The Unit Specifier ('u')

The unit specifier, 'u', can take one of these
forms in an I/O statement:

* - refers to the CONSOLE:.

integer expression - refers to external file
with unit number equal to the value of the
expression (¥ is unit number 0).

name of a character variable or character
array element - refers to the internal file
which is the character datum,

11-16 1000201:11A



I/O System

The Format Specifier ('f')

The format specifier, 'f', can take one of these
forms in an I/O statement:

statement label - refers to the FORMAT
statement labeled by that label.

integer variable name - refers to the
FORMAT label which that integer variable
has been assigned to using the ASSIGN
statement.

character expression - the format which is
specified is the current value of the
character expression provided as the format
specifier.

The Input/Output List ('iolist')

The input/output list, ‘'iolist', specifies the
entities whose values are transferred by READ
and WRITE statements. An iolist is a possibly
empty list, separated by commas, of items
which consist of:

Input or Output entities - see the following
two subsections.

1000201:11A 11-17



I/O System

Implied DO lists - see "Implied DO Lists" in
this section,

Input Entities

An input entity may be specified in the iolist
of a READ statement and is of one of these
forms:

Variable name.
Array element name,

Array name - this is a means of specifying
all of the elements of the array in storage
sequence order,

Output Entities

An output entity may be specified in the
iolist of a WRITE statement and is of one of
these forms:

Variable name;

Array element name;

Array name - this is a means of specifying
all of the elements of the array in storage
sequence order;

11-18 1000201:11A



I/O System

Any other expression not beginning with
the character '(* - to distinguish implied
DO lists from expressions.

Implied DO lists

Implied DO lists may be specified as items in
the I/O list of READ and WRITE statements
and are of the form:

(iolist, i = el, e2 [, e3))

where the iolist is as above (including nested
implied DO lists); and i, el, e2, and the
optional e3 are as defined for the DO
statement. That is, i is an integer variable;
and el, e2, and e3 are integer expressions.
In a READ statement, the DO variable i (or
an associated entity) must not appear as an
input list item in the embedded iolist, but
may have been read in the same READ
statement outside of the implied DO list.
The embedded iolist is effectively repeated
for each iteration of i with appropriate
substitution of values for the DO variable i.

I/O Statements

The following I/O statements are supported by
FORTRAN. The possible form for each
statement is specified first, with an explanation
of the meanings for the forms following. Certain
items are specified as required, if they must
appear in the statement; and are specified as
optional, if they need not appear. Typically,

1000201:11A 11-19




I/O System

optional items have defaults. Examples are
provided.

OPEN Statement

OPEN(

11-20

u,

Required; must appear as the first argument,
Must not be internal unit specifier.

FILE=fname,

The file name, 'fname', is a character
expression, This argument to OPEN is
required and must appear as the second
argument.

The following arguments are all optional and
may appear in any order. The options are
character constants with optional trailing
blanks (except RECL=). Defaults are
indicated.

STATUS='OLD'

Default, for reading or writing existing files.

1000201:11A



I/0 System

STATUS='NEW'

For writing new files.
ACCESS="'SEQUENTIAL' (Default)
ACCESS='DIRECT"
FORM='FORMATTED' (Default)
FORM='UNFORMATTED'
RECL=r])

The record length, 'rl', is an integer
expression. This argument to OPEN is for
DIRECT access files only, for which it is
required. ’

The OPEN statement binds a unit number with
an external device or file on an external
device by specifying its file name. If the file
is to be direct, the RECL=rl option specifies
the length of the records in that file.

1000201:11A 11-21



I/O System

Example program fragment 1:

C Prompt user for a file name
WRITE(*,'(A'Specify output file name - '
C Presume that FNAME is specified to be CHARACTER*23
C Read the file name from the CONSOLE:
READ(*,"'(A) ') FNAME
C Open the file as formatted sequential as unit 7, note
C that the ACCESS specified need not have appeared since
C it is the default.
OPEN(7,FILE=FNAME,ACCESS="'SEQUENTIAL',STATUS="'NEW') ;

Example program fragment 2:

C Open an existing file created by the editor called
C DATA3.TEXT as unit 3
OPEN(3,FILE='DATA3,TEXT')

CLOSE Statement
CLOSE(
u,

Required; must appear as the first argument.
Must not be internal unit specifier.

STATUS="KEEP'
STATUS='DELETE'

Optional argument which applies only to files
opened NEW; default is KEEP. The option
is character constant.

11-22 1000201:11A




I/0O System

CLOSE disconnects the unit specified and
prevents subsequent I/O from being directed to
that unit (unless the same unit number is
reopened, possibly bound to a different file or
device). Files opened NEW are temporaries and
are discarded, if STATUS='DELETE' is
specified. Normal termination of a FORTRAN
program automatically closes all open files as
if CLOSE with STATUS='KEEP' had been
specified.

Example program fragment:

C Close the file opened in OPEN example, discarding the file
CLOSE(7,STATUS="DELETF')

READ Statement
READ(
u,
Required; must be first argument,
f,

Required for formatted read as second
argument; must not -appear for unformatted
read. :

1000201:11A 11-23



I/O System

REC=rn

For direct access only; otherwise, error.
Positions to record number rn, where rn is a
positive integer expression. If omitted for
direct access file, reading continues from
the current position in the file.

END=s)

Optional, statement label. If not present,
reading end of file results in a run time
error, If present, encountering an end of
file condition results in-the transfer to the
executable statement labeled s which must
be in the same program unit as the READ
statement,

iolist

The READ statement sets the items in iolist
(assuming that no end of file or error condition
occurs). If the read is internal, the character
variable or character array element specified is
the source of the input; otherwise, the external
unit is the source.

Example program fragment:

C Need a two dimensional array for the example

DIMENSION IA(10,20)

C Read in bounds for array off first line, hopefully less
C than 10 and 20. Then read in the array in nested
C implied DO lists with input format of 8 columns of width

(o1

990

11-24

each.
READ(3,990)1,3, ((IA(I,J),J=1,J),I=1,1,1)
FORMAT(215/, (BIS))

1000201:11A



1/0 System

WRITE Statement.
WRITE(
u,
Required; must be first argument.
f,

Required for formatted write as second
argument; must not appear for unformatted
write,

REC=rn)

For direct access only; otherwise, error.
Positions to record number rn, where rn is a
positive integer expression. If omitted for
direct access file, writing continues at the
current position in the file.

iolist

The WRITE statement transfers the iolist items
to the unit specified. If the write is internal,
the character variable or character array
element specified is the destination of the
output; otherwise, the external unit is the
destination.

1000201:11A 11-25




I/0 System

Example program fragment:

C Place message: "One = 1, Two = 2, Three = 3" on the

C CONSOLE:, not doing things in-the simplest way!
WRITE(*,980) 'One =',1,1+1,%'ee = ',+(1+1+1)

980 FORMAT(A,I2,', Two =',1X,I1,', Thr',A,Il)

BACKSPACE Statement
BACKSPACE u

Unit is not internal unit specifier. Can only
be issued on units which are bound to
blocked devices. Can only be issued on
units which are direct or sequential
formatted (i.e., not on sequential
unformatted),

BACKSPACE causes the file connected to the
specified unit to be positioned before the
preceding record. If there is no preceding
record, the file position is not changed. Note
that if the preceding record is the endfile
record, the file becomes positioned before the
endfile record,

ENDFILE Statement
ENDFILE u

Unit is not an internal unit specifier,

11-26 1000201:11A



I/O System

ENDFILE "writes" an end of file record as the
next record of the file connected to the
specified unit, The file is then positioned
after the end of file record, so further
sequential data transfer is prohibited until
either a BACKSPACE or REWIND is executed.
An ENDFILE on a direct access file makes all
records written beyond the position of the new
end of file disappear.

REWIND Statement
REWIND u
Unit is not an internal unit specifier.

Execution of a REWIND statement causes the
file associated with the specified unit to be
positioned at its initial point.

I/O Side Effects Restriction

Any function referenced in an expression within
any I/O statement must not cause any I/O
statement to be executed.

1000201:11A 11-27







CHAPTER

12

FORMATTED 1/0

AND THE

FORMAT

STATEMENT






Formatted I/O and the FORMAT Statement

This chapter describes formatted I/O and the
FORMAT statement. A familiarity with the
FORTRAN file system, units, records, access

methods, and I/O statements as described in the
previous chapters is assumed.

FORMAT SPECIFICATIONS

If a READ or WRITE statement specifies a format,
it is considered a formatted, rather than an
unformatted I/O statement. Such a format may be
specified in one of three ways, as explained in the
previous chapter. Two ways refer to FORMAT
statements, and one is an immediate format in the
form of a character expression containing the
format itself. The following are all valid and
equivalent means of specifying a format:

WRITE(*,990)I,J,K
990 FORMAT (215,13)

ASSIGN 990 TO IFMT
990 FORMAT (215,13)
WRITE(*,IFMT)I,J,K

WRITE(*,'(215,13)")1,J,K

CHARACTER*8 FMTCH
FMTCH = '(2I5,13)'
WRITE(*,FMTCH)I,J,K

The format specification itself must begin with "(",
possibly following initial blank characters, and end
with a mateching ")". Characters beyond the
matching ™)" are ignored.

FORMAT statements must be labelled, and like all
nonexecutable statements, may not be the target of
a branching operation.

1000201:12A 12-3



Formatted I/O and the FORMAT Statement

Between the initial "(" and terminating ")" is a list
of items, separated by commas, each of which is
one of:

[r] ed - repeatable edit descriptors
ned - nonrepeatable edit descripors

[r] fs - a nested format specification. At most
3 levels of nested parenthesis are permitted
within the outermost level.

where r is an optionally present, nonzero, unsigned,
integer constant called a repeat specification. The
comma separating two list items may be omitted, if
the resulting format specification is still
unambiguous, such as after a P edit descriptor or
before or after the / edit descriptor.

The repeatable edit descriptors, explained in detail
below, are:

Iw
Fw.d
Ew.d
Ew.dEe
Lw

A

Aw

where I, F, E, L, and A indicate the manner of

editing; w and e are nonzero, unsigned, integer
constants; and d is an unsigned integer constant. '

The nonrepeatable edit descriptors (also explained
in detail below) are:

12-4 1000201:12A



Formatted I/O and the FORMAT Statement

'xxxx' - character constants of any length; see
special rules below

nHxxxx - another means of specifying character
constants; see rules below

nX

/
\
kP
BN
BZ

where apostrophe, H, X, slash, backslash, P, BN,
and BZ indicate the manner of editing; x is any
ASCII character; n is a nonzero, unsigned, integer
constant; and k is an optionally signed integer
constant.

FORMAT AND 1/0 LIST

Before describing in greater detail the manner of
editing specified by each of the above edit
descriptors, it must be explained how the format
specification interacts with the input/output list
(iolist) in a given READ or WRITE statement.

repeatable edit descriptor must exist in the format
specification. In particular, the empty edit
specification, (), may be used only if no items are
specified in the iolist (in which case the only
action caused by the I/O statement is the implicit
record skipping action associated with formats).
Each item in the iolist will become associated with
a repeatable edit deseriptor during the I/0

' If an iolist contains at least one item, at least one
|
|
|

1000201:12A 12-5

T I I T o R e e




Formatted I/O and the FORMAT Statement

statement execution in turn. In contrast to this,
the other format control items interact directly
with the record and do not become associated with
items in the iolist.

The items in a format specification are interpreted
from left to right. Repeatable edit descriptors act
as if they were present r times (omitted r is
treated as a repeat factor of 1). Similarly, a
nested format specification is treated as if its
items appeared r times.

The formatted I/O process proceeds as follows: The
"format controller" scans the format items in the
order indicated above. When a repeatable edit
descriptor is encountered, either

a corresponding item appears in the iolist, in
which case the item and the edit descriptor
become associated, and I/O of that item proceeds
under format control of the edit descriptor; or

the "format controller" terminates I/0.

If the format controller encounters the matching
final ) of the format specification; and there are
no further items in the iolist, the "format
controller" terminates I/O. If, however, there are
further items in the iolist, the file is positioned at
the beginning of the next record; and the "format
controller” continues by rescanning the format,
starting at the beginning of the format
specification terminated by the last preceding right
parenthesis. If there is no such preceding right
parenthesis, the "format controller" will rescan the
format from the beginning. Within the portion of
the format rescanned, there must be at least one

12-6 1000201:12A



Formatted I/O and the FORMAT Statement

repeatable edit descriptor. Should the rescan of
the format specification begin with a repeated
nested format specification, the repeat factor is
used to indicate the number of times to repeat that
nested format specification. The rescan does not
change the previously set scale factor or BN or BZ
blank control in effect. When the "format
controller" terminates, the remaining characters or
an input record is skipped or an end of record is
written on output, except as noted under the edit
descriptor.

EDIT DESCRIPTORS

Here are the detailed explanations of the various
format specification descriptors, beginning with the
nonrepeatable edit desecriptors:

Nonrepeatable Edit Descriptors

'xxxx' (Apostrophe Editing)

The apostrophe edit descriptor has the form of
a character constant. Embedded blanks are
significant, and double '' are interpreted as a
single '. Apostrophe editing may not be used
in a READ statement. It causes the character
constant to be transmitted to the output unit.

1000201:12A 12-7




Formatted I/O and the FORMAT Statement

H (Hollerith Editing)

The nH edit descriptor causes the following n
characters, with blanks counted as significant,
to be transmitted to the output. Hollerith
editing may not be used in a READ.

Examples of Apostrophe and Hollerith editing:

C Each write outputs characters between the
C slashes: /ABC'DEF/
WRITE(*,970)

970 FORMAT ('ABC' 'DEF"')
WRITE(*,'(''ABC''''DEF'"')"')
WRITE(*,' (7HABC''DEF) ")

WRITE(*,960)
960 FORMAT (7HABC ' DEF)

X (Positional Editing)

On input (a READ), the nX edit descriptor
causes the ‘file position to advance over n
characters; thus, the next n characters are
skipped. On output (a WRITE), the nX edit
descriptor causes n blanks to be written,
providing that further writing to the record
occurs; otherwise, the nX descriptor results in
no operation.

/ (Slash Editing)

The slash indicates the end of data transfer on
the current record. On input, the file is
positioned to the beginning of the next record.

On output, an end of record is written; and
the file is positioned to write on the beginning
of the next record.

12-8 1000201:12A




Formatted 1/0 and the FORMAT Statement

\ (Backslash Editing)

Normally when the "format controller”
terminates, the end of data transmission on the
current record occurs, If the last edit
deseriptor encountered by the "format
controller™ is the backslash, this automatic end
of record is inhibited. This allows subsequent
1/0 statements to continue reading (or writing)
out of (or into) the same record. The most
common use for this mechanism is to prompt to
the CONSOLE: and read a response off the
same line as in:

WRITE(*,'(A\)") 'Input an integer -> *
READ(*,"(BN,I6)") 1

The backslash edit descriptor does not inhibit
the automatic end of record generated when
reading from the * unit. Input from the
| CONSOLE: must always be terminated by the

return Key. This permits the backspace
character and the line delete key to function
properly.

P (Scale Factor Editing)

The kP edit descriptor is used to set the scale
factor for subsequent F and E edit descriptors,
until another kP edit descriptor is encountered.
At the start of each I/O statement, the scale
factor equals 0., The scale factor affects
format editing in the following ways:

1000201:12A 12-9




Formatted 1/O and the FORMAT Statement

On input, with F and E editing, providing that
no explicit exponent exists in the field, and F
output editing, the externally represented
number equals the internally represented
number multiplied by 10**k,

On input, with F and E editing, the scale
factor has no effect, if there is an explicit
exponent in the input field.

On output, with E editing, the real part of the
quantity is output multiplied by 10**k; and the
exponent is reduced by k (effectively altering
the column position of the decimal point, but
not the value that is output).

BN and BZ (Blank Interpretation)

These edit descriptors specify the
interpretation of blanks in numeric input fields.
The default, BZ, is set at the start of each
I/O statement. This makes blanks, other than
leading blanks, identical to zeros. If a BN
edit descriptor is processed by the "format
controller", blanks in subsequent input fields
will be ignored, unless, and until, 8 BZ edit
descriptor is processed. The effect of ignoring
blanks is to taeke all the nonblank characters in
the input field and treat them as if they were
right justified in the field with the number of
leading blanks equal to the number of ignored

12-10 1000201:12A




Formatted 1/O and the FORMAT Statement

blanks. For instance, the following READ
statement shown accepts the characters shown
between the slashes as the value 123 (where
{cr> indicates hitting the return key):

READ(*,100) I
100 FORMAT (BN, 16)

/123 <cr>/,
/123 456<cr>/,
/123<cr>/, or
/ 123<cr>/.

The BN edit deseriptor, in conjunction with the
infinite blank padding at the end of formatted
records, makes interactive input very
convenient.

Repeatable Edit Descriptors

I, F, and E (Numerie Editing)

The 1, F, and E edit descriptors are used for
I/O of integer and real data. The following
general rules apply to all three of them:

On input, leading blanks are not significant,
Other blanks are interpreted differently;
depending on the BN or BZ flag in effect;
but all blank fields always become the value
0. Plus signs are optional.

On input, with F and E editing, an explicit
decimal point appearing in the input field
overrides the edit descriptor specification of
the decimal point position.

1000201:12A 12-11



Formatted I/O and the FORMAT Statement

On output, the characters generated are
right justified in the field with padding
leading blanks, if necessary.

On output, if the number of characters
produced exceeds the field width; or the
exponent exceeds its specified width, the
entire field is filled with asterisks.

I (Integer Editing)

The edit descriptor Iw must be associated with
an iolist item which is of type integer. The
field width is w characters in length, On
input, an optional sign may appear in the field,
The general rules in the preceding paragraphs
apply to the I edit descriptor.

F (Real Editing)

The edit descriptor Fw.d must be associated
with an jolist item which is of type real. The
width of the field is w positions, the fractional
part of which consists of d digits. The input
field begins with an optional sign, followed by
a string of digits, optionally containing a
decimal point. If the decimal point is present,
it overrides the d specified in the edit
descriptor; otherwise, the rightmost d digits of
the string are interpreted as following the
decimal point (with leading blanks converted to
zeros if necessary). Following this is an
optional exponent which is one of:

12-12 1000201:12A



Formatted I/O and the FORMAT Statement

plus or minus, followed by an integer; or

E or D, followed by zero or more blanks,
followed by an optional sign, followed by an
integer (E and D are treated identically).

The output field occupies w digits, d of which
falls beyond the decimal point, and the value
output is controlled both by the iolist item and
the current scale factor. The output value is
rounded rather than truncated.

The preceding general rules apply to the F edit
descriptor.

E (Real Editing)

An E edit descriptor either takes the form
Ew.d or Ew.dEe. In either case, the field
width is w characters. The e has no effect on
input. The input field for an E edit descriptor
is identical to that described by an F edit
descriptor with the same w and d. The form
of the output field depends on the scale factor
(set by the P edit deseriptor) which is in
effect. For a scale factor of 0, the output
field is a minus sign (if necessary), followed by
a decimal point, followed by a string of digits,
followed by an exponent field for exponent,
exp, of one of the following forms:

Ewd  -99 <= exp <= 99
E, followed by plus or minus, followed by
the two digit exponent.

1000201:12A 12-13




Formatted 1/O and the FORMAT Statement

Ewd -999 <= exp <= 999

Plus or minus, followed by three digit
exponent.

Ew.dEe —(10%**e) - 1) <= exp <= (10**e) -1

E, followed by plus or minus, followed by e
digits which are the exponent with possible
leading zeros.

The form Ew.d must not be used, if the
absolute value of the exponent to be printed
exceeds 999.

The scale factor controls the decimal
normalization of the printed E field. If the
scale factor, k, is in the range -d < k <= 0
then the output field contains exactly -k
leading zeros after the decimal point and d + k
significant digits after this. If 0 < k < d+2
then the output field contains exactly k
significant digits to the left of the decimal
point and d - k - 1 places after the decimal
point. Other values of k are errors.

The preceding general rules apply to the E edit
deseriptor,

L (Logical Editing)

The edit descriptor is Lw, indicating that the
field width is w characters. The iolist element
which becomes associated with an L edit
descriptor must be of type logical. On input,
the field consists of optional blanks, followed
by an optional decimal point, followed by a T

12-14 1000201:12A




Formatted 1I/O and the FORMAT Statement

(for .TRUE.) or and F (for accepted on input,
so that .TRUE. and .FALSE. are valid inputs.
On output, w - 1 blanks are followed by either
T or F as appropriate.

A (Character Editing)

The forms of the edit descriptor are A or Aw.
If w is not present, the number of characters
in the iolist item, with which it becomes
associated, determines the length (an implicit
w). The iolist item must be of character type
if it is to be associated with an A or Aw edit
descriptor. On input, if w exceeds or equals
the number of characters in the iolist element,
the rightmost characters of the input field are
used as the input characters; otherwise, the
input characters are left justified in the input
jolist item, and trailing blanks &re provided.
On output, if w should exceed the characters
produced by the iolist item, leading blanks are
provided; otherwise, the leftmost w characters
of the iolist item are output.

1000201:12A 12-15







CHAPTER 13
PROGRAMS
AND

SUBROUTINES







Programs and Subroutines

This chapter describes the format of program units.
A program unit is either a main program, a
subroutine, or a function program unit. The term
procedure is used to refer to either a function or a
subroutine. This chapter also describes the CALL
and RETURN statements as well as function calls,

MAIN PROGRAM

A main program is any program unit that does not
have a FUNCTION or SUBROUTINE statement as
its first statement. It may have a PROGRAM
statement as its first statement. The execution of
a program always begins with the first executable
statement in the main program, Consequently,
there must be precisely one main program in every
executable program. The form of a PROGRAM
statement is:

PROGRAM pname

where: 'pname' is a user defined name that is
the name of the main program.

The name 'pname' is a global name. Therefore, it
cannot be the same as another external procedure's
name or a common block's name. It is also & local
name to the main program and must not conflict
with any local name in the main program. The
PROGRAM statement may only appear as the first
statement of a main program.

1000201:13A 13-3




Programs and Subroutines

SUBROUTINES

A subroutine is a program unit that can be called
from other program units by a CALL statement.
When envoked, it performs the set of actions
defined by its executable statements and then
returns control to the statement immediately
following the statement that called it. A
subroutine does not directly return a value,
although values can be passed back to the calling
program unit via parameters or common variables.

SUBROUTINE Statement

A subroutine begins with a SUBROUTINE
statement and ends with the first following END
statement. It may contain any kind of statement
other than a PROGRAM statement or a
FUNCTION statement. The form of a
SUBROUTINE statement is:

SUBROUTINE sname [( [farg [, fargl...] )]

'sname' is the user defined name of the
subroutine.

'farg! is a user defined name of a formal
argument.

The name 'sname' is a global name, and it is
also local to the subroutine it names. The list
of argument names defines the number and
(with any subsequent IMPLICIT, type, or
DIMENSION statements) the type of arguments

13-4 1000201:13A



Programs and Subroutines

to that subroutine, Argument names cannot
appear in COMMON, DATA, EQUIVALENCE, or
INTRINSIC statements. The following is an
example of a subroutine:

program TEST
irec=3000
b=1.0

h=2.0

a=3.0

t=4.0

call prndat (irec,b,h,a,t)
end

subroutine prndat (i,u,v,x,y)
open(6,file="'printer:"')
write(6,200)i,u,v,x,y

200 format(14,4F10.2)

return
end

3000 1.00 2,00 3.00 4.00

CALL Statement

A subroutine is executed as a consequence of
executing a CALL statement in another program
unit that references that subroutine. The form
of a CALL statement is:

CALL sname [( [arg [,argl.. 1)}

'sname' is the name of a subroutine,

'arg' is an actual argument.

1000201:13A 13-5




Programs and Subroutines

An actual argument may be either an expression
or the name of an array. The actual arguments
in the CALL statement must agree in type and
number with the corresponding formal arguments
specified in the SUBROUTINE statement of the
referenced subroutine. If there are no arguments
in the SUBROUTINE statement, then a CALL
statement referencing that subroutine must not
have any actual arguments, but may optionally
have a matched pair of parentheses following the
name of the subroutine. Note that a formal
argument may be used as an actual argument in
another subprogram call.

Execution of a CALL statement proceeds as
follows: All arguments that are expressions are
evaluated. All actual arguments are associated
with their corresponding formal arguments, and
the body of the specified subroutine is executed.
Control is returned to the statement following
the CALL statement upon exiting the subroutine,
by executing either a RETURN statement or an
END statement in that subroutine.

A subroutine specified in any program unit may
be called from any other program unit within the
same executable program. Recursive subroutine
calls, however, are not allowed in FORTRAN.,
That is, a subroutine cannot call itself directly,
nor can it call another subroutine that will result
in the first subroutine being called again before
it returns control to its caller.

13-6 1000201:13A



Programs and Subroutines

FUNCTIONS

A function is referenced in an expression and
returns a value that is used in the computation of
that expression. There are three kinds of
functions: external functions, intrinsic functions,
and statement functions. This section describes the
three kinds of functions.

A function reference may appear in an arithmetic
expression. Execution of a function reference
causes the function to be evaluated, and the
resulting value is used as an operand in the
containing expression. The form of a function
reference is:

fname ( [arg [,argl..] )

'fname' is the name of an external, intrinsic, or
statement function.

'arg' is an actual argument.

An actual argument may be an arithmetic
expression or an array. The number of actual
arguments must be the same as in the definition of
the function, and the corresponding types must
agree.

External Functions

An external function is specified by a function
program unit. It begins with a FUNCTION
statement and ends with an END statement. It
may contain any kind of statement other than a
PROGRAM statement or a SUBROUTINE

1000201:13A 13-7




Programs and Subroutines

statement. The form of a FUNCTION statement
is:

[type] FUNCTION fname ( [farg [, fargl..] )

'type' is one of INTEGER, REAL, or
LOGICAL.

‘fname' is the user defined name of the
function.

'farg' is a formal argument name.

The name 'fname' is a global name, and it is also
local to the function it names. If no type is
present in the FUNCTION statement, the
function's type is determined by default and any
subsequent IMPLICIT or type statements that
would determine the type of an ordinary variable.
If a type is present, then the function name
cannot appear in any additional type statements.
In any case, an external function cannot be of
type character. The list of argument names
defines the number and, with any subsequent
IMPLICIT, type, or DIMENSION statements, the
type of arguments to that subroutine. Neither
argument names nor 'fname' can appear in
COMMON, DATA, EQUIVALENCE, or INTRINSIC
statements.

The function name must appear as a variable in
the program unit defining the function. Every
execution of that function must assign a value to
that variable. The final value of this variable,
upon execution of a RETURN or of an END
statement, defines the value of the function.
After being defined, the value of this variable
can be referenced in an expression, exactly like

13-8 1000201:13A



Programs and Subroutines

any other variable. An external function may
return velues in addition to the value of the
function by assignment to one or more of its
formal arguments.

Intrinsie Functions

Intrinsiec functions are functions that ere
predefined by the FORTRAN compiler and are
available for use in a FORTRAN program. Table
13.1 gives the name, definition, number of
parameters, and type of the intrinsic functions
available in p-System FORTRAN 177, An
IMPLICIT statement does not alter the type of an
intrinsic function. For those intrinsic functions
that allow several types of arguments, all
arguments in a single reference must be of the
same type.

All intrinsic functions used in a program unit
must appear in an INTRINSIC statement.

An intrinsic function name may appear in an
INTRINSIC statement, but only those intrinsic
functions listed in Table 13.1 may do so. An
intrinsic function name also may appear in a type
statement, but only if the type is the same as
the standard type of that intrinsic function.

Arguments to certain intrinsic functions are
limited by the definition of the function begin
computed. For example, the logarithm of a
negative number is undefined and, therefore, not
allowed.

1000201:13A 13-9




Programs and Subroutines

Statement Functions

A statement function is a funection that is
defined by a single statement., It is similar in
form to an assignment statement. A statement
function statement can only appear after the
specification statements and before any
executable statements in the program unit in
which it appears. A statement function is not an
executable statement, since it is not executed in
order as the first statement in its particular
program unit. Rather, the body of a statement
function serves to define the meaning of the
statement function. It is executed, as any other
function, by the execution of a funection
reference. The form of a statement function is:

fname ( [arg [, argl..] ) = expr
'fname' is the name of the statement function.
'arg' is a formal argument name.

'expr' is an expression.

The type of the 'expr' must be assignment
compatible with the type of the statement
function name. The list of formal argument
names serves to define the number and type of
arguments to the statement function. The scope
of formal argument names is the statement
function. Therefore, formal argument names may
be used as other user defined names in the rest
of the program unit enclosing the statement
function definition. The name of the statement
function, however, is local to the enclosing

program unit and must not be otherwise used;
except as the name of a common block or as the

13-10 1000201:13A



Programs and Subroutines

name of a formal argument to another statement
funetion. The type of all such uses, however,
must be the same. If a formal argument name is
the same as another local name, then a reference
to that name within the statement function
defining it always refers to the formal argument,
never to the other usage.

Within the expression 'expr', references to
variables, formal arguments, other functions,
array elements, and constants are allowed.
Statement function references, however, must
refer to statement functions that have been
defined prior to the statement function in which
they appear. Statement functions cannot be
recursively called, either directly or indirectly.

A statement function can only be referenced in
the program unit in which it is defined. The
name of a statement function cannot appear in
any specification statement, except in a type
statement which may not define that name as an
array, and in a COMMON statement as the name
of a common block. A statement function cannot
be of type character. '

RETURN STATEMENT

A RETURN statement causes return of control to

the calling program unit. It may only appear in a

function or subroutine. The form of a RETURN
statement is:

RETURN

1000201:13A 13-11



Programs and Subroutines

Execution of a RETURN statement terminates the
execution of the enclosing subroutine or function.
If the RETURN statement is in a function, then
the value of that function is equal to the current
value of the variable with the same name as the
function. Execution of an END statement in a
function or subroutine is equivalent to execution of
a RETURN statement.

PARAMETERS

This section discusses the relationship between
formal and actual arguments in a function or
subroutine call. A formal argument refers to the
name by which the argument is known within the
function or subroutine; and an actual argument is
the specific variable, expression, array, ete., passed
to the procedure in question at any specific calling
location.

Arguments are used to pass values into and out of
procedures. Variables in common can be used to
perform this task as well. The number of actual
arguments must be the same as formal arguments,
and the corresponding types must agree.

On entry to a subroutine or function, the actual
arguments become associated with the formal
arguments, much as an EQUIVALENCE statement
associates two or more arrays or variables, and
COMMON statements in two or more program units
associate lists of variables. This assoeciation
remains in effect until execution of the subroutine
or function is terminated. Thus, assigning a value
to a formal argument during execution of a
subroutine or function may alter the value of the

13-12 1000201:13A



Programs and Subroutines

corresponding actual argument. If an actual
argument is a constant, function reference, or an
expression other than a simple variable, assigning a
value to the corresponding formal argument is not
allowed, and may have some strange side effects.
In particular, assigning a value to a formal
argument of type character, when the actual
argument is a literal, can be disastrous.

If an actual argument is an expression, it is
evaluated immediately prior to the association of
formal and actual arguments. If an actual
argument is an array element, its subseript
expression is evaluated just prior to the association
and remains constant throughout the execution of
the procedure, even if it conteins variables that
are redefined during the execution of the
procedure.

A formal argument that is a variable may be
associated with an actual argument that is a
variable, an array element, or an expression.

A formal argument that is an array may be
associated with an actual argument that is an array
or an array element. The number and size of
dimensions in a formal argument may be different
than those of the actual argument, but any
reference to the formal array must be within the
limits of the storage sequence in the actual array.
While a reference to an element outside these
bounds is not detected as an error in a running
FORTRAN program, the results are unpredictable.

Intrinsic No. Type of
Function Defirition Args Name Argument Function

Type Conversion Conversion 1 INT Real Integer
to Integer IFIX Real Integer
int{a})

See Note 1

1000201:13A 13-13



Programs and Subroutines

Truncation
Nearest Whole
Number

Nearest Integer
Absolute Value
Remaindering
Transfer of Sign
Positive

Difference

Choosing Largest
Value

Choosing Small
est Value

Square Root
Exponential
Natural Logarithm
Common Logarithm
Sine

Cosine

Tangent

Arcsine

Arccosine

Arctangent

Hyperbolic Sine

13-14

Conversion
to Real
See Note 2

Conversion
to Integer
See Note 3

Conversion
to Character

int{(a)

See Note 1
int(a.5) ad>=0
int(a.5) a<0
int(a.5) a>=0
int(a.5) a<@
a

alint(al/a2)*a2
See Note 1

al if a2>=0
al if a2<0

ala2 if al>a2
0if al<=a2

max(al,a2,...)

min(al,a2,...)

a**0.5
e**a
log(a)
logle{(a}
sin(a)
cos{a)
tan{a)
arcsin{a}
arccos(a)
arctan{a)
arctan(al/a2)

sinh{a)

>=2

REAL
FLOAT

ICHAR

CHAR

AINT

ANINT

NINT

IABS

ABS

MOD
AMOD

ISIGN
SIGN

IDIM
DIM

MAXC
AMAX1

AMAXO
MAX1

MINO
AMIN]

AMINO
MIN1

SQRT

EXP

ALOG

ALOG10

SIN

€os

TAN

ASIN

ACOSs

ATAN

ATAN2

SINR

Integer Real
Integer Real
Character Integer
Integer Character
Real Real
Real Real
Real Integer
Integer Integer
Real Real
Integer Integer
Real Real
Integer Integer
Real Real
Integer Integer
Real Real
Integer Integer
Real Real
Integer Real
Real Integer
Integer Integer
Real Real
Integer Real
Real Integer
Real Real
Real Real
Real Real
Real Real
Real Real
Real Real
Real Real
Real Real
Real Real
Real Real
Real Real
Real Real

1000201:13A



Programs and Subroutines

Byperbolic Cosine cosh(a) 1 COSH Real Real

Hyperbolic tanh{a) 1 TANK Real Real

Tangent

Lexically Greater al >= a2 2 LGE Character Logical

Than or Equal See Note 4

Lexically al > a2 2 LGT Character = Logical

Greater Than See Note 4

Lexically Less al <= a2 2 LLE Character Logical

Than or Equal See Note ¢

Lexically al < a2 2 LLT Character Logical

Less Than See Note 4

End of File End__ Of_File(a) 1 EOF Integer Logical
See Note 5

Table 13.1 Intrinsic Functions

Table 13.1 Notes

1)

2)

3)

4)

For a of type real, if a >= 0 then int(a) is the
largest integer not greater than a, if a < 0 then
int(a) is the most negative integer not less than
a. IFIX(a) is the same as INT(a).

For a of type integer, REAL(a) is to the
greatest possible precision. This varies from
processof to processor. FLOAT(a) is the same
as REAL(a).

ICHAR converts a character value into an
integer value. The integer value of a character
is the ASCII internal representation of that
character, and is in the range 0 to 127. For
any two characters, ¢l and ¢2, (c1 .LE. cl) is
.TRUE, if and only if (ICHAR(el) .LE.
ICHAR(c?2)) is

LGE(al,a2) returns the value .TRUE.. if al =
a2 or if al follows a2 in the ASCII collating
sequence. Otherwise it returns .FALSE..

1000201:13A 13-15




Programs and Subroutines

5)

6)
7)

LGT(al,a2) returns .TRUE. if al follows a2 in
the ASCII collating sequence, otherwise it
returns ,FALSE.,

LLE(al,a2) returns .TRUE. if al = a2 or if al
precedes a2 in the ASCII collating sequence,
otherwise it returns .FALSE..

LLT(al,a2) returns .TRUE. if al precedes a2 in
the ASCII collating sequence, otherwise it
returns FALSE..

The operands or LGE, LGT, LLE, and LLT must
be of the same length.

EOF(e) returns the value .TRUE. if the unit
specified by its argument is at or past the end
of file record, otherwise it returns .FALSE..
The value of a must correspond to an open file,
or to zero (which indicates CONSOLE:).

All angles are expressed in radians.

All arguments in an intrinsic function reference
must be of the same type.

13-16 1000201:13A



CHAPTER 14
COMPILATION UNITS






Compilation Units

This chapter describes the relationship between
FORTRAN and the Pascal segment mechanism. In
normal use, the user need not be aware of such
intricacies. However, if the user desires to
interface FORTRAN with Pascal, to create
overlays, or to take advantage of separate
compilation or libraries, the details contained here
are helpful. This chapter consists of the following
sections:

Units, Segments, Partial Compilation,
and FORTRAN,

The $USES Compiler Directive.

Linking Pascal and FORTRAN,

The $EXT Compiler Directive.

The first section discusses the general form of a
FORTRAN program in terms of the operating
system object code structure. The next section
describes the $USES compiler directive. This
directive provides access libraries or already
compiled procedures, and provides overlays in
FORTRAN., The next section describes how one
links FORTRAN with Pascal. The final section
explains the $EXT compiler directive.

PARTIAL COMPILATION

If a FORTRAN compilation contains no main
procedure, then it is output as if it were a Pascal
unit compilation. The unit is given the name 'U’'
followed by the name of its first procedure. For
example:

C --- No PROGRAM statement present
SUBROUTINE X

END

1000201:14A 14-3



Compilation Units

SUBROUTINE Y
END
SUBROUTINE 2

END

"would be compiled into a single unit named 'UX'.
(Assume for later examples that the object code is
output to file 'X.CODE'.)) All procedures called
from within unit UX must be defined within unit
UX, unless a $USES or a $EXT statement has
shown them to reside in another unit. Similarly,
procedures in unit UX cannot be called from other
units unless the other units contain a $USES UX
statement. Thus, a typical main program that
would call X might be:

c
C -- This is the main program BIGGIE
C

$USES UX IN X.CODE

PROGRAM BIGGIE

CALL X

END

SUBROUTINE W

CALL ¥

END
If the $USES statement were not present, the
FORTRAN compiler would expect subroutines X and
Y to appear in the same compilation, somewhere
after subroutine W. Assume that the object code

for this compilation is output to the file
'BIGGIE.CODE"'.

Thus, the user can create libraries of functions,

partial compilations, ete., and save compilation time
and disk space, by a simple use of the $USES

14-4 1000201:14A



Compilation Units

statement. For more inforation on the $USES
statement, see the section on the $USES statement.

THE $USES COMPILER DIRECTIVE

The $USES compiler directive provides several
distinet functions to the user. It allows procedures
and functions in separately compiled units, such as
the system library, to be called from FORTRAN,
It provides the user a relatively secure form of
separate compilation for FORTRAN compilations.
It allows the user to call Pascal routines that have
been compiled into Pascal units.

The format of the $USES control statement is:
$USES unitname [ IN filename ] [ OVERLAY ]
where: 'unitname' is the name of a unit.
'filename' is a valid file name,

As with all $ control statements, the $ must appear
in column one, This compiler directive directs the
compiler to open the .CODE file 'filename', locate
the unit 'unitname', and process the INTERFACE
information associated with that unit, generating a
reasonable FORTRAN equivalent declaration for the
FORTRAN compilation in progress. All $USES
commands must appear before any FORTRAN
statements, specification or executable, but they
are allowed to follow comment lines and other $
control lines. If the optional 'IN filename' is
present, the name 'filename' is used as the file to
process. If it is not, the file "*SYSTEM.LIBRARY'
is used as a default. The optional field OVERLAY
has no effect on program execution and is included

1000201:14A 14-5



Compilation Units

in version IV.0 only for compatibility with version
H.O. '

WARNING: If a FORTRAN main program $USES a
Pascal unit, any global variables in the INTERFACE
part of that unit will not be accessible from
FORTRAN. See the next section, "Linking Pascal
and FORTRAN," in this chapter, for further
information.

Separate Compilation

Separate compilation is aceomplished by compiling
a set of subroutines and functions without any
main program. Each such compilation creates a
code file containing a single unit. Then, when
the main program is compiled, possibly along with
many subroutines or functions, it $USES the
separately compiled units. The routines compiled
with the main program obtain the correct
definition of each externally compiled procedure
through the $USES directive.

In the simplest form, when no $USES statements
appear in any of the separate compilations, the
user simply $USES all separately compiled
FORTRAN units in the main program. However,
this limits the procedure calls in each of the
separately compiled units to procedures defined in
the same unit., If there are calls to procedures
in unit A from unit B, then unit B must contain
a $USES A statement. The main program must
then contain a $USES A statement as its first
$USES statement, followed by a $USES B

statement. This is necessary for the compiler to
get the unit numbers allocated consistently.

14-6 1000201:14A



Compilation Units

In more complicated cases, the user must ensure
that all references to procedures in outside units
are preceded by the proper $USES statement in
the same order and are not missing any units. If
unit B $USES unit A, and unit C $USES unit B,
then unit C must first $USES unit A. Likewise, if
units D and E both $USES unit F, they both must
contain exactly the same $USES statements prior
to the $USES F statement.

LINKING PASCAL AND FORTRAN

In order to call Pascal routines form FORTRAN,
the Pascal routines must first be compiled into a
Pascal unit. The FORTRAN program can then
$USES that unit. Unfortunately, the exceedingly
rich type structure present in Pascal is not present
in FORTRAN, Also, the 1/0 systems of FORTRAN
and Pascal are not compatible. Therefore, it is not
possible to do everything one might desire. This
section does, however, help the user do what is
possible in interfacing the two languages.

There eare several precautions that the user must
take for FORTRAN 1/0 to work from Pascal
programs. The FORTRAN I/O procedures use the
heap for the allocation of file related storage, so
the user should not force the deallocation of heap
memory via calls to MARK and/or RELEASE,
Other restrictions may apply in special cases.

Since there are Pascal types that have no
FORTRAN equivalent, the way FORTRAN looks at
Pascal parameters is somewhat limited. FORTRAN
does recognize both reference and value parameters
when calling Pascal subroutines. The following

1000201:14A 14-7



Compilation Units

table shows how FORTRAN views Pascal
declarations:

Pascal Declaratjon: FORTRAN's View:

CONST anything ... ; Ignored.

TYPE anything ... ; Ignored.

VAR anything ... ; Ignored.

PROCEDURE X{arg-list); SUBROUTINE X(arg-list)

PUNCTION X(arg-list): type; type FUNCTION X(arg-list)
Note: type must be INTEGER,
LOGICAL, or REAL.

type:
REAL REAL
BOOLEAN LOGICAL
CHAR CHARACTER*1
ALFAn CHARACTER*n 1 <= n <= 127
any other identifier INTEGER
arg-list:
(VAR I,J: type) {1,3)
type I,J
(1,J: type) *** There is no proper

FORTRAN equivalent to value
parameters, but the FORTRAN
compiler does generate the
correct calling sequence for
Pascal routines with value
parameters.

Examples of using Pascal
from FORTRAN:

ALFA5=>CHARACTER*5
ALFA120=>CHARACTER*120

Likewise, when the INTERFACE information for a
FORTRAN program is output, it must be mapped
onto Pascal declarations. The following table gives
the corresponding declarations:

FORTRAN Declaration: Pascal's View:

SUBROUTINE X (arg-list) PROCEDURE X (arg-list);

type FUNCTION X(arg-list) FUNCTION X(arg-list): type;
type:

INTEGER INTEGER

REAL REAL

LOGICAL BOOLEAN

CRARACTER*n CHAR n=1

PACKED ARRAY of CHAR
2 <= n <= 127

arg-list:
(I) (VAR 1: type)
type 1

14-8 1000201:14A



Compilation Units

NOTE: When a Pascal compilation USES a
FORTRAN unit, it is the responsibility of the
Pascal program to make sure that any needed type
declarations for the ALFAn types are properly
defined.  This cannot consistently be done by
FORTRAN as it would lead to duplicate type
definitions should a user use two FORTRAN units
in which each declares the same type. There is
another point that must be made for Pascal
programs that call FORTRAN subroutines. I the
subroutine has a REAL parameter that is in
actuality an array, the Pascal program must pass &
scalar instead of an array. This should not be a
problem. Since the Pascal program can pass the
first element of the array, and all FORTRAN
parameters are reference pearameters, the
FORTRAN subroutine has access to the whole
array. The user is cautioned to remember that
Pascal stores its arrays in row-major order, while
FORTRAN stores them in column-major order,

When a FORTRAN program $USES a Pascal unit,
the interface section variables in that Pascal unit
are not accessible from FORTRAN.

Here are two examples which illustrate how
interfacing is accompished between FORTRAN and
Pascal. In the first example, a Pascal unit is used
by a FORTRAN host. The ALFAn construct is
employed. When the FORTRAN compiler parses the
interface section of the Pascal unit, it ignores the
type declaration where ALFA25 is defined. When
procedure APROC is parsed, however, FORTRAN
recognizes that parameter A is a 25 element
packed array of characters. This corresponds to
the FORTRAN declaration CHARACTER*25 as
shown in the host FORTRAN program below.

1000201:14A 14-9




Compilation Units

PASCAL UNIT

unit pascal;
interface
type alfa2S5=packed arrayll..25] of char;
procedure aproc(var a:alfa25);
implementation
procedure aproc{var a:alfa25};
begin
end;
end.

FORTRAN HOST PROGRAM

Suses pascal in pascal.code
subroutine frtran
character*25 array
call aproc (array)

In the next example, a Pascal program uses a
FORTRAN unit. A host Pascal program which
defines any ALFAn's must do so in a unit. In this
example, the unit is called ALFAS. Unit ALFAS is
required because the Pascal program must use the
FORTRAN unit (with a USES statement) before any
Pascal types can be declared. The unit can define
the necessary ALFAn types before the Pascal
compiler parses the FORTRAN interface text.

One thing that you may notice is that there isn't
any ALFA25 type in the FORTRAN interface text.
(There is only the standard FORTRAN
CHARACTER*25 statement.) This may lead you to
wonder why such a type has to be declared in
order for the Pascal compiler to parse that
interface text. You should note that the Pascal
compiler doesn't actually parse the original
FORTRAN text. Instead, the FORTRAN compiler
creates a Pascal interface section whenever a
FORTRAN unit is compiled. This Pascal-translated
interface section is what the Pascal compiler sees
and it contains an ALFA25 type.

14-10 1000201:14A



Compilation Units

Another point about this example concerns the fact
that when the Pascal program calls the FORTRAN
procedure FWRITE (in the second to last line), an
indexed array is passed. Since the Pascal-
translated FORTRAN interface section contains
text which makes this parameter type ALFA25, you
must call FWRITE with A[1] rather than simply A.
Passing A[1] loads the starting address of the array
A onto the stack which enables FORTRAN to
access it properly.

FORTRAN UNIT

subroutine funit
return
end

subroutine fwrite (a)

character*25 a

dimension a(15)

do 10 i=},15
write(*®,'(A)*') a(i)

10 continue
return
end

PASCAL HOST PROGRAM
program pascal2;

unit alfas;
interface
type alfa25 = packed arrayll..25) of char;
implementation
end;

uses alfas,
{$U fortran2.code} ufunit;
var
i,j:integer;
a:zarray(1..,15] of alfa2s;
begin
for j:=1 to 15 do
for i:=1 to 25 do
afj,il:=chr(i+ord('0*});
fwrite(alll);
end.

1000201:14A 14-11



Compilation Units

THE $EXT COMPILER DIRECTIVE

The $EXT compiler directive is used when one
desires to call assembly language routines, or
routines in $SEPARATE FORTRAN or Pascal units,
from a FORTRAN 77 routine. The form of the
$EXT directive is:

{ SUBROUTINE }
SEXT ¢ } procname #params
{ [ type ] FUNCTION }

where: 'type' is either INTEGER, LOGICAL, or REAL,
'procname' is the name of the subroutine or function, and

'#params’ is an integer equal to the number of
parameters that this procedure requires.

This directive must appear before any FORTRAN
statements, either specification or executable, but
may follow comment lines or other $ compiler
directives, All parameters are passed by reference
(called VAR parameters if Pascal) to procedures
defined by the $EXT directive, It is up to the
user to follow this convention, as the linker does
not enforce it., The linker does, however, check
the number of parameters.

14-12 1000201:14A



APPENDICES






APPENDIX A
ANSI FORTRAN DIFFERENCES

This appendix is directed to the reader who Iis
familiar with the ANSI Standard FORTRAN 77
Subset language as defined in ANSI X3.9-1978. It
concisely describes how SofTech Microsystems
FORTRAN 77 differs from the standard language.
The differences fall into three general categories:

Unsupported Features
Full-Language Features
Extensions to Standard

Unsupported Features

There are two significant places where SofTech
Microsystems FORTRAN 77 does not comply with
the standard. One is that procedures cannot be
passed as parameters and the other is that
INTEGER and REAL data types do not occupy the
same amount of storage. Both differences are due
to limitations of the p-machine architecture.

Parametric procedures are not supported simply
because there is no practical way to do so in the
p-machine. The instruction set does not allow the
loading of a procedure's address onto the stack,
and more significantly, does not provide for the
calling of a procedure whose address is on the
stack.

1000201:0AA A-3




Appendix A

REAL variables require 4 bytes of storage while
INTEGER and LOGICAL variables only require 2
bytes., This is due to the fact that the p-machine
supported operations on those types are
implemented in those sizes.

Full-Language Features

There are several features from the full language
that have been included in this implementation for
a variety of reasons. Some were done at either
minimal or zero cost, such as allowing arbitrary
expressions in subseript calculations, Others were
included because it was felt that they would
significantly increase the utility of the
implementation, especially in an engineering or
laboratory application, An example is the
generalized 1/0 that allows easier control of
peripherals, In all cases, a program which is
written to comply with the subset restrictions will
compile and execute properly, since the full
language properly includes the subset constructs. A
short description of full language features included
in the implementation follows,

Subseript Expressions - The subset does not allow
function calls or array element references in
subscript expressions, but the full language and this
implementation do.

A-4 1000201:0AA



Appendix A

Do Variable Expressions - The subset restricts
expressions that define the limits of a DO
statement, but the full language does not. SofTech
Microsystems FORTRAN also allows full integer
expressions in DO statement limit computations.
Similarly, arbitrary integer expressions are allowed
in implied DO loops associated with READ and
WRITE statements.

Unit 1/0 Number - SofTech Microsystems FORTRAN
allows an I/O unit to be specified by an integer
expression, as does the full language.

Expressions in I/0O list - The subset does not allow
expressions to appear in an I/O list, whereas the
full language does allow expressions in the I/O list
of a WRITE statement, SofTech Microsystems
FORTRAN allows expressions in the I/0 list of a
WRITE statement, providing that they do not begin
with an initial left parenthesis.

NOTE: The expression (A+B)*(C+D) can be
specified in an output list as +(A+B)*(C+D) which,
incidently, does not generate any extra code to
evaluate the leading +.

Expression in computed GOTO - SofTech
Microsystems FORTRAN allows an expression for
the value of a computed GOTO, consistent with the
full language rather than the subset language.

1000201:0AA A-5




Appendix A

Generalized I/O - SofTech Microsystems FORTRA..
allows both sequential and direct access files to be
either formatted or wunformatted, The subset
language restricts direct access files to be
unformatted and sequential files to be formatted,
SofTech Microsystems FORTRAN also contains an
augmented OPEN statement which takes additional
parameters that are not included in the subset.
There is also a form of the CLOSE statement,
which is not included at all in the subset. 1/0O is
described in more detail in Chapters 11 and 12,

Extensions to Standard

The language implemented has several minor
extensions to the full language standard, These are
briefly described below:

Compiler Directives - Compiler directives have been
added to allow the programmer to communicate
certain information to the Compiler. An additional
kind of line, called a Compiler directive line, has
been added. It is characterized by a dollar sign '$'
appearing in column 1. A Compiler directive line
may appear any place that a comment line can
appear, although certain directives are restricted to
appear in certain places, A Compiler directive line
is used to convey certain compile-time information
to the System about the nature of the current
compilation, The set of directives is briefly listed
below:

$INCLUDE filename

A-6 1000201:0AA



Appendix A

Include textually the file 'filename' at this point in
the source. Nested includes are implemented to a
depth of nesting of five files. Thus, for example,
a program may include various files with
subprograms, each of which includes various files
which describe common areas (which would be a
depth of nesting of three files).

$USES ident
[ IN filename ]
[ OVERLAY ]}

This is similar to a USES command in the UCSD
Pascal Compiler. The already compiled FORTRAN
subroutines' or Pascal procedures contained in the
.CODE file ‘'filename', or in the file
"*SYSTEM.LIBRARY' (if no file name is present),
become callable from the currently compiling code.
This directive must appear before the initial
noncomment input line, For more details, see
Chapter 14, ‘

$XREF

Produce a cross-reference listing at the end of
each procedure compiled.

$EXT SUBROUTINE name #parms
or
$EXT [type ] FUNCTION name #params

The subroutine or function named 'name' is either
an assembly language routine or a routine in a
$SEPARATE unit (either FORTRAN or Pascal),
The routine has exactly ‘'#params' reference
parameters.

1000201:0AA A-7




Appendix A

Backslash Edit Control - The edit control character
"\' can be used in formats:to inhibit the normal
advancement to the next record which is associated
with the completion of a READ or a WRITE
statement. This is particularly useful when
prompting to an interactive device, such as
CONSOLE:, so that a response can be on the same
line as the prompt,

End of File Intrinsic Function - An intrinsie
function, EOF, has been provided. The function
accepts a unit specifier as an argument and returns
a logical value which indicates whether the
specified unit is at its end of file,

Lowercase Input - Upper and lowercase source
input is allowed. In most contexts, lowercase
characters are treated as indistinguishable from
their uppercase counterparts, Lowercase is
significant in character constants and Hollerith
fields,

A-8 1000201:0AA




APPENDIX B
SAMPLE PROGRAM

This program demonstrates how some of the
FORTRAN subroutines and files are used.

There are three FORTRAN subroutines and one
Pascal procedure called from the FORTRAN host
program, The Pascal procedure INIT displays the
description and instructions of the program. Given
the radius, the FORTRAN subroutines compute the
area, surface area, and volume of a circle,

This program opens & sequential, formatted file that
is saved after program termination. Input to the
program is via the console, which is opened by
default, Both exponential and floating point
outputs are represented.

$uses PASCINIT in PASCINIT.code
program DEMO

integer COUNT

open(l,FILE='circle.data',STATUS="new',FORM='formatted’)
open(6,FILE="printer:"')

[ Print program instructions via a Pascal unit
call INIT
PI = 3.14159
COUNT = 1

50 continue

write(*,' (A'Radius for circle'
write(*,' (I3COUNT
write(*,'(a': '

[ Input radius ith blanks being ignored

read(*,'(BN,F4.0)') R
if (R .eq. 0.0) goto 100

1000201:0AA




Appendix B

c
100

115
120

200

A-10

Compute the Area, Surface Area, and Volume |
call ACOMP(PI,R,AREA) |
call SCOMP(PI,R,SAREA)
call VCOMP(PI,R,VOLUME)

write(1,200) COUNT,R,AREA,SAREA,VOLUME
COUNT = COUNT + 1
goto 50

Set end of file marker and start at the first
record of the file.

endfile 1

rewind 1

write(6,'(/)")
write(6,220)

Print the data using exponential notation
do 110 I=1,COUNT
read(1,200,end=113) I1,R,AREA,SAREA,VOLUME
write(6,200) I,R,AREA,SAREA,VOLUME
continue

Go to the beginning of the file
rewind 1

Print the data using floating point notation

write(6,'(//}"')
write(6,220)

do 115 I=1,COUNT
read(1,200,end=120) I,R,AREA,SAREA,VOLUME
write(6,230) I,R,AREA,SARE2,VOLUME
continue

close(1l,STATUS="'keep')

format (I5,4E16.5)

format (' CIRCLE',6X,'RADIUS',10X,'AREA',8X, 'SURFACE AREA',
7X,'VOLUME'/)

format (15,4F16.5)

end

subroutine ACOMP (PI,RAD,AREA)
AREA = PI* RAD**2

return

end

subroutine SCOMP (PI,RAD,SAREA)}

SAREA = 4 * PI * (RAD**2}
return
end

subroutine VCOMP(PI,RAD,VOLUME)

VOLUME = (4 * PI * (RAD**3))/3
return
end

1000201:0AA




Appendix B

The following is the Pascal unit used by the

preceding program:

unit PASCINIT;

interface
procedure INIT;

implementation

procedure INIT;
var I: integer;

begin
gotoxy (15,07);
writeln{'This program computes the area, surface area,’');
gotoxy(15,08);
writeln('and volume of a circle given the radius. To');
gotoxy(15,09) ;
writeln('end the input, enter 0 for the radius. Output');
gotoxy(15,10);
writeln('will be represented in two ways: ');
gotoxy (15,12} ;

writeln(' a) Exponential');
gotoxy(15,13);
writeln(' b) Floating Point"};
gotoxy(0,15);

end;

end.

This appears on the screen when the program
run:

This program computes the area, surface area,
and volume of a circle given the radius. To
end the input, enter 0 for the radius., Output
will be represented in two ways:

a) Exponential
b) Floating Point

Radius for circle 1: 4
Radius for circle 2: 1
Radius for circle 3: 2
Radius for circle 4: 2
Radius for circle 5: 6
Radius for circle 6: 8
Radius for circle 7: ©

1000201:0AA A-11



Appendix B

The FORTRAN program prints the following:

CIRCLE

1
2
3
4
5
6

CIRCLE

AU B WN

A-12

RADIUS

.40000E+01
.10000E+02
.20000E+02
.20000E+01
.60000E+0]
.80000E+01

RADIUS

4.00000
10.00000
20.00000

2.00000

6.00000

8.00000

AREA

.50265E+02
.31416E+03
.12566E+04
«12566E+02
.11310E+03
.20106E+03

AREA

50.26500
314.16000
1256.60000
12.56600
113.10000
201.06000

SURFACE AREA

.20106E+03
.12556E+04
.50265E+04
.50265E+02
.45239E+403
.B80425E+03

SURFACE AREA

201.06000
1256.60000
5026.50000

50.26500

452.39000

804.25000

VOLUME

.26808E+03
.41888E+04
+33510E+05
-33510E+02
.90478E+03
.21447E+04

VOLUME

268.08000
4188.80000
33510.00000
33.51000
904.78000
2144.70000

1000201:0AA



APPENDIX C
FORTRAN ERROR MESSAGES

Compile-Time Error Messages

1 Fatal error reading source block

2 Nonnumeric characters in label field

3 Too many continuation lines

4 Fatal end of file encountered

5 Labeled continuation line

6 Missing field on $ compiler directive line

7 Unable to open listing file specified on $
compiler directive line

8 Unrecognizable $ compiler directive

9 Input source file not valid textfile format

10 Maximum depth of include file nesting
exceeded

11 Integer constant overflow

12 Error in real constant

13 Too many digits in constant

14 Identifier too long

1000201:0AA A-13




Appendix C

15

16
17
18
19
20

21

22
23
24
25
26
27
28

29

30
31

A-14

Character constant extends to end of
line :

Character constant- zero length
Nlegal character in input
Integer constant expected
Label expected

Error in label

Type name expected (INTEGER, REAL,
LOGICAL, or CHARACTER[[*n])

Integer constant expected

Extra characters at end of statement
(' expected

Letter IMPLICIT'ed more than once
'} expected

Letter expected

Identifier expected

Dimension(s) required in DIMENSION
statement

Array dimensioned more than once

Maximum of 3 dimensions in an array

1000201:0AA



32

33

34

35

36
37

38
39
40

41

42

43

44

45

Appendix C

Incompatible arguments to EQUIVALENCE

Variable appears more than once in a

‘type specification statement

This identifier has already been declared

This intrinsie function cannot be passed
as an argument

Identifier must be a variable

Identifier must be a variable or the
current FUNCTION

'/t expected
Named COMMON block already saved

Variable already appears in a COMMON
block _

Variables in two different COMMON
blocks cannot be equivalenced

Number of subscripts in EQUIVALENCE
statement does not agree with variable
declaration

EQUIVALENCE subscript out of range

Two distinet cells EQUIVALENCE'C to
the same location in a COMMON block

EQUIVALENCE statement extends a
COMMON block in the negative direction

1000201:0AA A-15




Appendix C

46

47

48

49

50

51

52

53

54
55
56
57
58
59

A-16

EQUIVALENCE statement forces a
variable to two distinct locations, not in
a COMMON block

Statement number expected

Mixed CHARACTER and numeric items
not allowed in same COMMON block

CHARACTER items cannot be
EQUIVALENCE'd with non-character
items

Nlegal symbol in expression

Can't use SUBROUTINE name in an
expression

Type of argument must be INTEGER or
REAL

Type of argument must be INTEGER,
REAL, or CHARACTER

Types of comparisons must be compatible
Type of expression must be LOGICAL
Too many subscripts

Too few subscripts

~ Variable expected

'=! expected

1000201:0AA



60

61

62

63

64

65

66

67

68

69

70

71

72

Appendix C

Size of EQUIVALENCE!'d CHARACTER
items must be the same

Dlegal assignment - types do not match
Can only call SUBROUTINES

Dummy parameters cannot appear in
COMMON statements

Dummy parameters cannot appear in
EQUIVALENCE statements

Assumed-size array declarations can only
be used for dummy arrays

Adjustable-size array declarations can
only be used for dummy arrays

Assumed-size array dimension specnfler
must be last dimension

Adjustable bound must be either
parameter or in COMMON prior to
appearance

Adjustable bound must be simple integer
variable

Cannot have more than 1 main program

The size of a named COMMON must be
the same in all procedures

Dummy arguments cannot appear in
DATA statements

1000201:0AA A-17




Appendix C

73

74

75

76
(i
78
79

80
81

82

83
84

85

86

A-18

COMMON variables cannot appear in
DATA statements

SUBROUTINE names, FUNCTION names,
INTRINSIC names, etc.cannot appear in
DATA statements

Subscript out of range in DATA
statement

Repeat count must be >= 1
Constant expected
Type conflict in DATA statement

Number of variables does not match
number of values in DATA statement list

Statement cannot have label

No such INTRINSIC function

Type declaration for INTRINSIC function
does not match actual type of INTRINSIC
function

Letter expected

Type of FUNCTION does not agree with
a previous call

This procedure has already appeared in
this compilation

This procedure has already been defined
to exist in another unit via a $USES
command

1000201:0AA



817
88

89
g0

91

92

93
94

95
96
97

98

Appendix C

Error in type of argument to an
INTRINSIC FUNCTION

SUBROUTINE/FUNCTION was previously
used as a FUNCTION/SUBROUTINE

Unrecognizable statement

Functions cannot be of type
CHARACTER

Missing END statement

A program unit cannot appear in a
$SEPARATE compilation

Fewer actual arguments than formal
arguments in FUNCTION/SUBROUTINE
call

More actual arguments than formal
arguments in FUNCTION/SUBROUTINE
call ‘

Type of actual argument does not agree
with type of format argument

The following procedures were called but
not defined:

This procedure was already defined by a
$EXT directive

Maximum size of type CHARACTER is
255, minimum is 1

1000201:0AA _ A-19



Appendix C

100

101
102
103
104
105
106
107

108

- 109

110
111
112
113
114
115
116

117

A-20

Statement out of order

Unrecognizable statement

Nllegal jump into block

Label already used for FORMAT

Label already defined

Jump to format label

DO statement forbidden in this context
DO label must follow DO statement
ENDIF forbidden in this context

No matching IF for this ENDIF
Improperly nested DO block in IF block
ELSEIF forbidden in this context

No matching IF for ELSEIF

Improperly nested DO or ELSE block
(' expected

)" expected

THEN expected

Logical expression expected

1000201:0AA



118
119
120

121

122

123

124

125
126
127
128
129
131
132

133

134

Appendix C

ELSE statement forbidden in this context
No matching IF for ELSE

Unconditional GOTO forbidden in this
context

Assigned GOTO forbidden in this context

Block 1IF statement forbidden in this
context :

Logical IF statement forbidden in this
context

Arithmetic IF statement forbidden in this
context

',' expected

Expression of wrong type
RETURN forbidden in this context
STOP forbidden in this context
END forbidden in this context
Label referenced but not defined
DO or IF block not terminated

FORMAT statement not permitted in this
context

FORMAT label already referenced

1000201:0AA A-21




Appendix C

135
136
137

138
139

140

141

142
143

144

145

146

147

148

A-22

FORMAT must be labeled
Identifier expected

Integer variable expected
'TO' expected

Integer expression expected

Assigned GOTO but no ASSIGN
statements

Unrecognizable character constant as
option

Character constant expected as option

Integer expression expected for unit
designation

STATUS option expected after ',' in
CLOSE statement

Character expression as filename in
OPEN

FILE= option must be present in OPEN
statement

RECL= option specified twice in OPEN
statement -

Integer expression expected for RECL=
option in OPEN statement

1000201:0AA




149
150

151

152

153

154

155
156
157

158
159
160

161

162

Appendix C

Unrecognizable option in OPEN statement

Direct access files must specify RECL=
in OPEN statement

Adjustable arrays not allowed as 1/0 list
elements

End of statement encountered in implied
DO, expressions beginning with '(* not
allowed as I/O list elements

Variable required as control for implied
DO

Expressions not allowed as reading I/0O
list elements

REC= option appears twice in statement
REC= expects integer expression

END= option only allowed in READ
statement

END= option appears twice in statement
Unrecognizable I/O unit
Unrecognizable format in I/O statement

Options expected after ',' in I/0
statement

Unrecognizable I/0O list element

1000201:0AA A-23



Appendix C

163

164

165

166

167

169

200

201

202

203

204
205

206

207

A-24

Label used as format but not defined in
format statement

Integer variable used as assigned format
but no ASSIGN statements

Label of an executable statement used as
a format

Integer variable expected for assigned
format

Label defined more than once as format
Function with no parameters needs null
parameter list ( ) even when there are
no arguments

Error in reading $USES file

Syntax error in $USES file

SUBROUTINE/FUNCTION name in $USES
file has already been declared

FUNCTIONS cannot return values of type
CHARACTER

Unable to open $USES file
Too many $USES statements

No .TEXT info for this unit in $USES
file

Illegal segment kind in $USES file

1000201:0AA



208
209
210

211
212
213

214

400
401

402

403

404

405

Appendix C

There is no such unit in this $USES file
Missing UNIT name in $USES statement

Extra characters at end of $USES
directive

Intrinsic units cannot be overlayed
Syntax error in $EXT directive
A SUBRROUTINE cannot have a type

SUBROUTINE/FUNCTION name in $EXT
directive has already been defined

Code file write error
Too many entries in JTAB

Too many SUBROUTINES/FUNCTIONS in
segment

Procedure too large (code buffer too
small)

Insufficient room for scrateh file on
system disk

Read error on scrateh file

10006201:0AA A-25




Appendix C

Run-Time Error Messages

600
601
602
603
604
605
606

607
608

609
610
611

612

613

614

A-26

Format missing final ')!

Sign not expected in input

Sign not followed by digit in input
Digit expected in input

Missing N or Z after B in format
Unexpected character in format

Zero repetition factor in format not
allowed

Integer expected for w field in format

Positive integer required for w field in
format

' expected in format
Integer expected for d field in format
Integer expected for e field in format

Positive integer required for e field in
format

Positive integer required for w field in A
format

Hollerith field in format must not appear
for reading

1000201:0AA




615

616

617

618

619

620

621

622
623
624
625

626

627

628

Appendix C

Hollerith field in format requires
repetition factor

X field in format requires repetition
factor

P field in format requires repetition
factor

Integer appears before '+' or '-' in
format

Integer expected after '+' or '-' in
format

P format expected after signed repetition
factor in format

Maximum nesting level for formats
exceeded

') has repetition factor in format
Integer followed by ',' illegal in format
' is illegal format control character

Character constant must not appear in
format for reading

Character constant in format must not be
repeated :

'/* in format must not be repeated

"\' in format. must not be repeated

1000201:0AA A-27




Appendix C

629

630

631

632
633
634

635

636
637
639
640

641

642

643

644

A-28

BN or BZ format control must not be
repeated

Attempt to perform I/O on unknown unit
number

Formatted I/O attempted on file opened
as unformatted

Format fails to begin with *('
I format expected for integer read
F or E format expected for real read

Two ! characters in formatted real
read

Digit expected in formatted real read
L format expected for logical read

T or F expected in logical read

A format expected for character read
I format expected for integer write

w field in F format not greater than d
field + I

Scale factor out of range of d field in E
format

E or F format expected for real write

1000201:9AA



645
646

647

648

649
650

651

652

653

654

655

656

657

658

Appendix C

L format expected for logical write
A format expected for character write

Attempt to do unformatted I/O to a unit
opened as formatted

Unable to write blocked output, possibly
no room on device for file

Unable to read blocked input

Error in formatted textfile, no <er> in
last 512 bytes

Integer overflow on input

Too many bytes read out of direct access
unit record

Incorrect number of bytes read from a
direct access unit record

Attempt. to open direct access unit on
unblocked device

Attempt to do external I/O on a unit
beyond end of file record

Attempt to position a unit for direct
access on a nonpositive record number

Attempt to do direct access to a unit
opened as sequential

Attempt to position direct access unit on
unblocked device

1000201:0AA A-29




Appendix C

659

660

661

662

663

664

665

666

667

697

698

699

1000+

A-30

Attempt to position direet access unit
beyond end of file for reading

Attempt to backspace unit connectecd to
unblocked device

Attempt to Dbackspace sequential,
unformatted unit

Argument to ASIN or ACOS out of
bounds (ABS(X) .GT. 1.0)

Argument to SIN or COS too large
(ABS(X) .GT. 10ES6)

Attempt to do unformatted I/O to
internal unit

Attempt to put more than one record
into internal unit

Attempt to write more characters to
internal unit than its length

EOF called on unknown unit

Integer variable not currently assigned a
format label

End of file encountered on read with no
END= option

Integer variable not ASSIGNed a label
used in assigned goto

Compiler debug error messages - should
never appear in correct programs

1000201:0AA




INDEX

-A-

A (character editing)e « v « « « v v o ¢ v 00 oo 12-15
ALFAN typeS. ¢ v v v s e s o s e aoasoeoss 14-8
Apostrophe editing. . « « ¢ ¢ ¢ e e s 0 0o 0o es o 12-7
Arithmetic expressions. « « + « + + ¢ ¢ o 0 e s e 0. 83
Arithmetic IF statement, .............10-5
Arithmetic operators. . . « v c ¢ ¢ ¢ e s o 0o 0o s o 83
ATTAY.: ¢ « e ¢ e 0 s s s s s s s asnsosensess 6-5
Array element name. ... .. ¢ 0000000 c. .66
Assigned GOTO statement. . . ... 00 s e .. .10-5
Assignment statements
computational. + ¢ « « o ¢ e e st et 00 e 9
computational, automatic coversion. ..... 9
general, . ¢ v vt s e ettt st 9=
label, . v ¢ ¢ e vt s st s e st eesneees 9=

B W W W

-B-

Backslash edit control. « « « ¢ o ¢ ¢ ¢ ¢ 0 0o e o o« A-T
BACKSPACE. ¢ ¢ ¢ ¢ ¢ ¢ o e o s esessesssll-ld
BACKSPACE, not used. . « « « ¢ ¢ o o 0 e s+ o 11-14
BACKSPACE statement. . « « ¢ ¢ ¢+ ¢ o ¢ ¢ o » » 11-26
Blanks, source Pprogram. . « « e« s« o s s o o s s o o« 39
Block IF control statement. . . « « « ¢ o o ¢ o « 10-7

1000201:01A I-1



Index

-C-

Calling Pascal routineS. . « « « o ¢ o o o ¢ o o o 14-7
CALL statement. . ¢ e ¢ e e o e o 0o oo o133, 13-5
Character expressionS. « « « e s e s e o s s o o s« 86
CHARACTER type statement, .. .¢¢¢c .. .. 6-8
CLOSE statement. . « « « o ¢ ¢ ¢ e s ¢ a0 s oo 11-22
Codefile. « v e e v e e esvossseessesoess 279
Comment liN€S. ¢« e v ¢« o s o 0o s s e 0000 essdT
COMMON statement. « « « ¢« ¢ e ¢ s ¢ s 00 esos 6-9
COMMON statementS. « « o o e o s o ¢ a0 oo o 13-12
Compilation unitS. « « « « ¢ ¢ ¢ o 0 00 a0 v s o+ 14-3
Compiler directives
SEXT. v e e oo eeesceasasess 37, 14-12
extensions t0 .. ¢t et v o e e os e ses o A6
$INCLUDE. . ¢ c c ¢ ¢ e s esoessss 276, 3-6
lineS.......-.........-...... 3-6
$USES-ooono-ooocoooooooooo-. 3-6
$XREF . ¢ ¢ ¢ v o eeeeonacacsssae228 37
Compiler listing
€PPOPS e ¢ o e s e o s e s e s s s s ossooseee 2-7
global symbol table. . .. ¢ s s e 0o eos.q 2-8
local symbol table, . « ¢ ¢ ¢ e oo e o eee. 28
SEMPle. v ¢ ¢ e e e s v e et s eososanses 276
Compiling. « e e e o e s o eeesesoeneeees 2-3
Computational assignment statements. ...... 9-3
Computed GOTO statement. . « « v ¢ o ¢ v o o . 10-4
CONTINUE control statement, . . . ¢+ ¢ .. . 10-14
Control statements
arithmetic IF. .. ¢ ¢ oo eeeooosoesee 10-5
assigned GOTO...... t s e e s e eess 10-4
block IF.........-...........10"6
block IF syntaX. . « « e e ¢ s 6 o0 o000+ 10-9
computed GOTO. ¢ ¢ e v vt cesveeess 10-4 .
CONTINUE. c ¢ e ¢ e ¢ e e e ensaseees 10-14
DO..............._......'...10-11
ELSEIF..ocoo-o'c-ooooocooootlo-g
0 1 10-15

-2 1000201:0IA



Index

ENDIF. ¢« ¢ ¢« ¢ ¢ ¢ e 0o c o s e soseesaesoll-11
general. . . v ¢« e vttt e s ea e s e e 10-3
logical IF. ¢« v v ¢t ¢ 6o s e oesoaoeseesll-B
PAUSE. ¢+ v ¢t ¢t ¢t ¢t v o s s v oassessa 10-14
STOP . ¢ v ¢« ¢ e et esvsvessaseseass 10-14
unconditional GOTO. . . ¢ ¢ e o s ¢ ¢ o o« «» 10-3
$ control statementS. « « v v v ¢ e o 00 e s oo 14-5

-D -

DATA statementsS. . « o « ¢« ¢ ¢« o s o o ¢ o » 3-10, T7-3
Data types
basiC. s v v v o et et e e eeessesesess 43
character. . « v « ¢« ¢ s e e e s s oo eveeeee 4-5
integer. « v v v vttt v et e e esees 43
logical. . « e i vttt e et ecoaess 45
= - O
Dimension declarators. . « « « « ¢ ¢ s s ¢ s 0 « o « 6-5
DIMENSION statement. . « « v ¢ « ¢ ¢ s ¢ ¢ v ¢« » 6-D
Direet fileS. o « v ¢ v oo e s e s e eeeeees 11-14
DO control statement. . « « ¢ « o ¢ ¢ ¢« ¢ s o« «10-12
DO 100D. ¢ o e oo oeeecscssoeasesss 10-12
DO variable. . .. v ¢ oo o e eoeoooeeesl10-12
DO variable, example. .. « s o o s s 0004 .10-14
DO variable expressionS. . « « « « o ¢ s ¢ s ¢« o « A-D

-E-

Edit descriptors. o « « « ¢ ¢ ¢ s e o s 0o o0 o9 e 12=-7
ELSEIF control statement. .. .¢+¢¢0¢0¢ ... 10-10
END control statement. ... . ¢ o ¢o oo 10-15
ENDFILE statement. .« « « « « « o ¢ 0 0 000+ 11-26
ENDIF control statement. « « « « ¢ ¢« « o o « « » 10-11
END statement......¢«¢.... 39, 3-10, 3-12
EOF intrinsic function. . « « ¢ ¢ e 6 o 06 oo o« o« A-8
EQUIVALENCE statement. . .. .. ... 6-12, 13-12

1000201:0IA




Index

E (real editing). « ¢ « « ¢ ¢ ¢ ¢ o e e a0 oo 12-13
Error messages
compile time. .. .eoeeeeeesoesese A-13
general., . . . .ttt et e e e ese. A-13
run-time. . « « « ¢ s e s oo ssnoeseeess A-26
Executing & program. . . .. .. .ececoe oo oo+ 279
Expression, computed GOTO. ... .¢ v e e+ A-D
Expressions
arithmetic. . . . . ¢ ¢ e et v e v e v o0 ev. .83
arithmetic, different operands. . .... ... 85
arithmetic, integer division, ......... 85
arithmetic operators. . « « « « ¢ ¢ o v s 0 0« » 83
character, . « ¢ s e s s s s e oo eeeesess 86
evaluation of. . . ..o e v e s e e, 810
logical. o ¢ « ¢ ¢ ¢ ¢ et s v e es s e 8-8
logical Operators. « « « « « o « o s o 0o e s o+ 89
logical operators, precedences. . .. .. ... 89
operator precedenCe. . . « « e s « o o o o o« 8-10
relational. . .« c ¢ sttt et e e, 8-6
relational operators. . « « « « « s e 0o s 00 . . 87
Expressions in I/O list. .« v e e e o v oo s ess A-D
$EXT compiler directive. . . . v v o0 v oo .. 14-12
Extensions to standard
backslash edit control. . . .. ¢c e oo s A-T
EOF intrinsic function. . « ¢ v e ¢ s v s s« « A-8
general., « « « ¢ ¢ e s s s e e s s acsssses A-6
lowercase input. . .. .¢ ¢ e e aesee.. A-8
EXTERNAL statement. . . . « e ¢ ¢ ¢ ¢ o s .. 6-10
$EXT statement. . o v ¢« v ¢ o o s e o 0o s oo 14-4

-F-

Features, unsupported. . .. ..« s ¢ o eos 0.0 A-3
FOI‘m&t, pI‘Ogl‘&m Units. @ o 8 ¢ ¢ 0 0 0o 0 s v e e o 13-3
Format specifications

edit descriptors. . . . . . v v ¢ o 0 s e e 12-7
general. . . ¢ ¢ ¢t i et c et et s s e e o 12-3

I-4 1000201:01A




Index

input/output list, .....ccee0 0o 12-5
interactions. . « ¢ o v s v v s e s e 000 o125
Format specifier (f'). . ¢ v e v oo e oo 11-17
FORMAT statementS. ¢« « « « ¢ ¢ s ¢ 0o 000000 12-3
Formatted I/O. . v v o e e e e s s vnooeoaese 12-3
Formatted/unformatted files. « « « v ¢ ¢ o o ¢ o o 117
FORTRAN
character set. . . ¢ v oo e e oo oo veseoeas3-3
compilation, . . + v vttt it et a0 0. . 14-3
T7 Compilere ¢ « ¢ « e o e o e o0 0o a0 oeeses23
€FTOr' MESSALEES . o o v o o o o ¢ s o s 0 000 s A-13
I/O System. ¢« . voeo oo oseesq 11-3, 11-10
name or identifier.......¢ 000000453
PrOgramM. « « « o o ¢ s ¢ s o s s e s s oseses 33
sample ProgramM. o« « « « o s ¢« s s s o o o s s » A-9
scope Of NAMES.: ¢ v ¢ o ¢ o 0o s s s s sasaes 93
undeclared NaAmMeS. « ¢ v ¢« ¢ « s o o s s s s oo D=5
FORTRAN 77, .40 veeeeeocassossess 1-3
F (real editing). « v « v ¢ vt v o0 0o eewea 12212
Full-language features
computed GOTO expression. « « ¢ « o « « » « A-5
expressions in I/O list. ... ¢ e e e v e A-D
general. . . . . .ttt e et ee s ases. A-4
generalized I/O. . v e v e oeeeeeeeses A-D
subseript expressions. « « « « s s s 00000 . A-4
unit I/O number. .. ... c e e oo cs00e00A5
Functions
external. .+ ¢ ¢ sttt ettt e eses 137
general. . « « « s e s e s e s e v s es e es s 13-6
intrinsic. « o ¢ o ¢ o e e e et e neoessss 13-9
PAraMELErS. o « o ¢ o o o ¢ oo o ¢ 0o oo oo +13-12
RETURN statement. . o« o ¢ ¢ s 0 s o s o o 13-11
statement functions. ............. 13-10
FUNCTION statement. . « ¢« o « o o o 0o o ¢ o s » «3-10

1000201:01A I-5



Index

-H-
Houerith editing ® & 8 & 8 ® & & * 0 6 0 9 o 85 P 0 & 1 2_8

-]~

Identifier, FORTRAN. ... ¢ e et oo v eooss 93
I (integer editing)s « « v o v v v o000 v oo 12-12
IMPLICIT statement. .. .. .¢0¢¢0s... 311, 6-3
Implied DO listS. ¢ o ¢ ¢ v oo 00 0000 s ll-19
Initial lineS. « v v ¢ s v s e s e s o v oeeeesad-9
Input entities. « « « v ¢ o e e s s s e s e o0 11-18
Input/output list. . ... ¢e0e0e00. . 11-17, 12-5
Input program fOPM. « « « o s ¢ o o s 00 e 0 oo s 27
Internal fileS. ... .o ceeeeooeceosssll-8
INTRINSIC statement. . « « « ¢ ¢ o o s ¢ o o o0« 6-11
I/O statementS. . « « o ¢ o o ¢ 0 00 0o aeoes o 11-20
BACKSPACE. . ¢ ¢ ¢ s e s s e o s ooeoees 11-26
CLOSE. ¢ ¢ vttt v esosnosssseees 11-22
elementS. « « v c ¢ s e s s e e e oeses. 11-16
ENDFILE. ¢ ¢ ¢ e ¢ ¢ 0t eaesesasesesll-26
format specifier ((f'). . ¢ ¢ o0 o0 0o 11-17
general. « « « e s e s 0 et s 00 e e e 11-15
implied DO listS. ¢ e v o s ¢ s o 0o 00 e oo 11-19
input entities. « « ¢ v ¢ ¢ et et e 00 e 11-18
input/output list. ... ¢ ¢ oo oo e e oo 1117
OPEN. i it teoessooesssssosses 11-20
output entities, . . .« ¢ e s e v o000 11-18
READ . ¢ vt v e s e oo vosnveosoase11-23
restriction. « « « o« « o ¢ o o s s 0 00 oo s o 11227
REWIND ., ¢ ¢ ¢ e e s e os o soossesees 11-27
unit specifier ("u"). .. ¢ o e v e e oo 11-16
WRITE. ¢ v ¢ ¢ ¢ ¢ eovosseeseossesoll-2d
I/0 System
BACKSPACE. . ¢ v e e st s s s sseeass 11-14
common file operations. ... .o ¢ ... .11-11
concepts/limitations. + « « v ¢ ¢ s 00 0.0 11-10

I-6 1000201:01A



Index

direct fileS. ¢ « o e e o e ¢ e s e o eeoeoesll-14
file NAME. ¢« ¢ « e e e e e v e eooeaseees ll-B
file position. « « v v v v et e eveeoesss 11-6
file propertieS. « « « o o ¢ e ¢ s 0000 0oqa11=5
fileSe ¢ ¢ e e 0t et s eseeoreaccaessll=b
formatted/unformatted files. « « ¢ o ¢ ¢« ¢« « « 11-6
function side effects. « « ¢ « o o ¢ ¢ o o oo 11-15
general. o ¢ o v st it e v o0 s 00 e o 11-3
internal fileS. o « ¢ ¢ ¢ o ¢ e v s 0 0o se. 11-8
internal files, properties. .. .. ¢ ¢ ¢ ... 11-8
[/O statements. . . ¢ .o ¢e0 oo 11-15, 11-20
limitations. + « o o ¢« ¢ o ¢ v s e o0 eo oo 11-14
other file operations. . « « « o ¢ ¢ 0o ¢ o o« 11-12
OVEPVIEW . & 4 s ¢ ¢ s e oo 0 e s s s asoaeesll=3
PECOrdS. ¢ o o 2 e v oo s o oo oseseseseasll-d
sequential/direct access. . « v a0 e 0 00 oo 11-7
UNItS. o o e v o et e e e o vseseeosees 11-9

-L-

Label assignment statement., ... .¢¢ ¢ ¢ oo . .94
Labels. . . .« t v vttt i e e e evansaaes 3-8
Lines, continuation. . . ... cc oo eeoeesee 39
Linking Pascal/FORTRAN. . .. v ¢ o0 0 v oo 14-7
L (logical editing). « v o e ¢ ¢ o 0 e 0 00 0.0 12-14
Logical exXpressions. « « « « o s ¢ o oo 00 0o e+ 88
Logical IF statement. .... v ¢e oo o0 eeo.10-6
Logical operators. « « « « « « e o e o s e s 6 o s« 89
Lowercase input., ... ...soece0ceesaee A-8

Main program. . .. . e+ o oo 0000000000 13-3
MARK...'Q.'..I..O.'..l.‘.....14—7

1000201:0IA I-7




Index

-N-

Nonrepeatable edit descriptors
apostrophe editing. . . . v ¢ v ¢ e o0 000 12-7
H (Hollerith editing)e « v v v v v e v o0 v s . 12-8
/ (slash editing). « « v v o vt v e v eeses 12-8
X (positional editing). « « « v o ¢ o0 0o 0. 12-8
Notational conventions. . . . ... ¢ oo e e oo, .14
Numeric editing. « « « ¢ ¢ ¢ ¢ ¢ 0 e 0o 00 s0es 12-11

-0-

OPEN statement e & 0 0 ¢ ¢ 0 0 0 s et s 2 s e e 11"20
Output entities ® ¢ 0 0 0 6 0 0 0 0 ¢ @ 0 0 0 e 0 0 e 11—18
Ovel‘VieW, Manua]- ® 6 0 & 0 & o 0 2 0 0 a8 a s e s e 1-3

-P-

Parameters. « « « e o o oo s 0 s s oo asoaee 13-12
Partial compilation. . + + ¢« ¢« ¢ ¢ v e v 00 0. 143
PAUSE control statement. .....¢¢.¢... 10-15
Program cCOlUMNS. o ¢« « ¢ ¢ ¢ o e e 0o oo e ooeoees 34
Progl'&m, Sample............-..-...A"9
PROGRAM statement. . « ¢ « ¢« ¢ s 0 a0 00 v« 13-3
Program statement. . « « « e ¢ e o e s s s o o o« 3-10
Program unitS. . . ce e o v v v e eeseeeees 3-10

-R-

READ statement. . « ¢ v ¢« ¢ o ¢ ¢ ¢ oo 11-23, 12-3
Recot‘dS...................-.-..11-4
Relational expressionS. . « « ¢ s s s s ¢ s 0o 0s o0 86
Relational operators. « « « « o s e e 0o oo 00 oo 87
RELEASE. ¢ ¢ ¢ c e et o ceooaoscecsasassld=T
Repeatable edit descriptors

I-8 1000201:0IA



Index

A (character editing). « « « ¢ « ¢ ¢ ¢ ¢ o s o 12-15
E (real editing)s o « ¢« e e 00 v e 0 0oess 12-13
F(l’e&lEditing)................12-12
I (integer editing). « o o o o ¢ o0 00 000 o12-12
L (lOg‘ical editing)...........-,. 12-14
numeric editing. . « + e s v 0o e 000 12-11
RETURN statement. « « v ¢« ¢ ¢« ¢ ¢ o o 0 a0 oo« 13-3
REWIND statement. . « c ¢ ¢ ¢ ¢ e 0 0 s o s oo o 11-27
RTUNIT.CODE. ¢ ¢t ¢ ¢ v c s e s e nseosassaes 2-4
Runtime support. . .. .. ce s e eooeoeee. 2-4

-S-

Sample Program. « ¢ o o o s s o 66 0 s s 0 oo+ o A9
SAVE statement. . « « ¢« v ¢ 00 e e 00 e oes.o 6-12
Sereen Oriented Editor. « ¢ « e e e e e 000 v e 2-5
SegmentS. « o v o ¢ 0 s s 00 o0 e seesses 14-3
Separate compilation. . « « « ¢ ¢ s ¢ s o a0 0. 14-6
Sequential/direct 8CCESS. + o ¢« s s v o0 0 004 o 11-7
Slash editing. . « v ¢ v ¢ ¢ e e e 0 s 00 0oeee. 12-8
Source lineS. . .u et oo esesosesoeasss 34
Source lines, allowed. ..+ ' e e oo 0 e o ess o 46
Specification statements
CHARACTER . ¢ ¢ ¢ ¢ ¢t e s s s oo s aseoss 6-8
COMMON. ...t eeeteesesosesesss 6-9
DIMENSION. . . ¢ ¢t c s e s s oseseossb=b
EQUIVALENCE. . ¢ ¢ ¢ ¢ e ¢ o0 00 00 0ssaob-12
EQUIVALENCE, restrictions. « « « « « « » . «6-13
EXTERNAL. ¢ ¢« ¢ ¢ ¢ e e o s s 0oaaeeesssb-10
IMPLICIT. ¢ ¢ ¢ ¢ ¢ ¢ e s 0o oo oesee3-11, 6-3
INTRINSIC. ¢ ¢« « ¢ ¢ ¢ ¢ e s e aeeeesess 6-11
SAVE. ¢ v vt et et et onasacssssss 6-12
Statement ordering

Within pl‘Ogl‘am Unit . o e o o ¢ s 0 0 3_10

St&tements © 0 0 ¢ 8 8 0 0 6 0 8 0 % e 4 e 0 0 e s s 0 e 3-8
DATA @ 6 ¢ 0 0 06 % 0 s e 0 e s s e e s 0 3_10, 7_3
END © 0o 6 06 0 6 0 05 00 s 0 0 s 3-9, 3-10, 3-12

1000201:0IA I-9




Index

SEXT . et et v v essnosoaassseesss 14-4
FUNCTION. .« ¢ v et et e s noeseesas 3-10
general. « « « ¢+ s s e e v e st eeosses 3-9
INTRINSIC. ¢ ¢ ¢ ¢ ¢ e e e s s neaveeess 139
ordering, general., « « « « « o ¢ o s ¢ s o o« 3-10
program UNitS. « « « o « o o s 0 s o o s oo s o 3-10
SUBROUTINE., . v « ¢ e eo e v eesesees 310
SUSES. ¢ ¢ ¢ ¢ e et s avaeoeesoesold-4, 14-6
$USES A. ..t ¢ e eoeoossoosases 14-6
$USES Bu ¢t eeeoeesoessososesaes 14-B
$USES F. v veeeeseonsonasees 14-6
$USES UX statement. ....c0e0e 000 144
Statements, specification, . . ¢ v ¢0 e eees. 6-3
STOP control statement. ... .¢c¢¢0.... 10-14
Subroutines
CALL statement. . « ¢ « v e v e e oo 0o e s .« 13-5
general., . « « v sttt et ce e 13-4
PArameters. o « « o ¢ s ¢ o o s s 00000 0o o13-12
SUBROUTINE statement., . « « o ¢ ¢ o oo « . 13-4
SUBROUTINE statement. ., ....... 3-10, 13-4
Subseript expressionS. « « « ¢ s s o s s e 000 A-4

-T-
’I‘ype Statements s & & 6 & & & 85 & ¢ & & & & O ¢ & 0o O 6-7

-0-

Unconditional GOTO statement. . . . ¢ ¢« « ¢ o « 10~3
Unit I/O number. . .. eeeeoeeoeceeeeseosAd
UnitS.....................11-9, 14-3
Unit specifier ("u"). oo eeeeoneeesse 11-16
$USES A statement. .. ..ceecoceeeees 14-6
$USES B statement. .« « « « e o o e o s 0 e o oo +14-6
$USES compiler directivee + « e ¢ o e ¢ ¢ ¢ o« 14-5
$USES F statement. . « ¢ ¢ « ¢ o o s ¢ 0 e s oo +14-6

10 1000201:0IA



$USES statement. .. e e e e
$USES UX statement.....

- w-
WRITE statement. . ... ...

- X -
X (positional editing). ... .

1000201:0IA

Index

14-4, 14-6
e s o o 0 14—4

11-25, 12-3

ono-n12_8

I-11



Code 3986660 P (0)
Printed in Italy







Code 3986660 P (0)
Printed in Italy




