

PERSON^L COMPUTER

UCSD p-System
FORTRAN Language User Guide

olivetti

PREF^CE

This manual describes Sofiech Microsystems
FORTRAN 77 Language, which can be used
within the UCSD i)-System, running on the
M20. It is assumed that the reader is alread}' ra-
miliar with the UCSD p-System.

The manual is reprinted wi(h the permision of
Softech Microsystems, Inc.

p-System is a trademark of softech Microsystem
lnc.

UCSD and UCSD Pascal are trademarks of the
Regents of the Universit)' of California.

© Copyright 1980 by Silicon Valley Software,
Inc. Revisions copyright © 1980,1981, 1983 by
Softech Microsystems, Inc.

© Copyright 1983 by Softech Microsystems,
Inc. San Diego, California.
All rights reserved.

© Copyright 1983 by Olivetti.
`-Äll rights reserved.

REFEREr`'cEs:

UCSD p-System Operaiing S}'stem User
Guide
Code: 3986630 L

UCSD p-S}'stem ProgTam Development
User Guide
Code: 3986640 M

DISTR]BUT]ON: General (G)

ED]TION: December 1983

RELEASE: p-S}.stem IV

DISCLAIMER:

This document and the software it descri-
bes are subject to change without notice.
No warranty expressed or implied covers
the]r use. Neither the manufacturer nor
the seller is responsible or liable for any
consequences of their use.

PUBLICATION ISSUED BY:

Ing. C. 0livetti & C , S.p.A.
Direzione Documentazione
77. Via Jervis - 10015 IVREA (Italy)

UCSD p-System

FORTRAN Language User Guide

TABLE

OF

CONTENTS

INTRODUCTION...............1-3

MANUAL OVERVIEW 1-3

NOTATI0NAL CONVENTIONS 1-4

FORTRAN 77 2-3

A FORTRAN PROGRAM 2-3

Compiling a FORTRAN program 2-3
Providing Runtime Support 2-4
Executing a FORTRAN program 2-5

Table of Contents

FORM OF INPUT PROGRAMS .

SINCLUDE Ststement

COMPILER ljlsTING 2-6

THE CODEFILE 2-9

STRUCTURE 0F A PROGRAM . . .` 3-3

CHARACTER SET 3-3

LINES....................3-4

COLUMNS..................3-4

BLANKS...................3-5

COMPILER DIRECTIVE LINES 3-6

SINCLUDE......

SUSES........

SXREF........

SEXT........,

3-6

3-6

3-7

3-7

COMMENT LINES 3-7

STATEMENTS, LINES, AND LABELS 3-8

Labels.......

nitial Lines
Continuation Lines .
Ststements.....

......... 3-8

.......... 3-9

Table of Contents

STATEMENT ORDER 3-10

Program Units 3-10
Statement Ordering 3-10
Source Program Final Ststement 3-12

DATA TYPES 4-3

THE INTEGER TYPE 4-3

THE REAL TYPE 4-3

THE LOGICAL TYPE 4-5

THE CHARACTER TYPE 4-5

FORTRAN NAMES 5-3

SCOPE OF FORTRAN NAMES 5-3

UNDECLARED FORTRAN NAMES 5-5

SPECIFICATION STATEI\,4ENTS 6-3

IMPLICIT STATEMENT 6-3

DIMENSION STATEMENT 6-5

DIMENSION Declarators 6-5

Array Element N&me 6-6

Table of Contents

TYPE STATEMENTS . . ; 6-7

INTEGER, REAL, LOGICAL Tyms 6-7

CHARACTER Type Statement 6-8

COMMON STATEMENT 6-9

EXTERNAL STATEMENT 6-10

INTRINSIC STATEMENT 6-11

SAVE STATEMENT 6-11

EQUIVALENCE STATEMENT .

Statement Restrictions. . .
. 6-12

6-13

DATA STATEMENT 7-3

EXPRESSIONS.................8-3

ARITHMEHC EXPRESSIONS 8-3

Integer Division 8-5

Type Conversions and Result Types, 8-5

CHARACTER EXPRESSIONS 8-6

RELATIONAL EXPRESSIONS 8-6

LOGICAL EXPRESSIONS 8-8

PRECEDENCE 0F OPERATORS 8-9

Table of Cbntents

EVALUATTON OF EXPRESSIONS 8-10

ASSIGNMENT STATEMENTS 9-3

COMPUTATIONAL STATEMENTS 9-3

LABEL ASSIGNMENT STATEMENT 9-4

CONTROL STATEMENTS. . .` 10-3

UNCONDITIONAL GOTO 10-3

COMPUTED GOTO ` 10-4

ASSIGNED GOTO 10-5

ARITHMETTC IF 10-5

LOGICAI. IF 10-6

BLOCK IF TIIEN ELSE 10-7

Block IF 10-9

ELSEIF..................10-10

ELSE 10-11

ENDIF..................10-11

DO 10-12

CONTINUE................10-14

STOP...................10-14

Table of Contents

PAUSE 10-15

END 10-15

1/0 SYSTEM 11-3

1/0 SY.STEM OVERVIEW .

Records.........

Files .,..,.,. ® ,

File Properties
File Name,

File Position

11-4

11-4

.11-5

11-6

11-6

.11-6

Formatted and Unformatted Files 11-7
Sequential/Direct Access 11-7

Internal Files 11-8

Special Properties of lnternsl Files. . 11-9
Units...................11-9

CONCEPTS AND LIMITATIONS 11-10

The FORTRAN 1/0 System 11-10

Common 1/0 Operations 11-11

Less Common File Oper&tions 11-12

Limitations of 1/0 System 11-14
Direct Files with Blocked Devices. . 11-14
BACKSPACE Use 11-14

BACKSPACE Restrictions 11-14

1/0 Statement Side Effects 11-15

Table of Contents

1/0 STATEMENTS 11-15
Elements of V0 Statements 11-16
The Unit Specifier ('u') 11-16
The Format Specifier ('f') 11-17
The mput/Output List (liolistl) 11-17
Input Entities 11-18
0utput Entities 11-18
ImpHed DO lists 11-19

1/0 Statements 11-19

0PEN Statement 11-20
CLOSE Statement 11-22
READ Statement 11-23

WRITE Statement 11-25
BACKSPACE Ststement 11-26

ENDFILE Ststement 11-26

REWIND Statement 11-27

1/0 Side Effects R.estriction 11-27

FORMA_mED I/o 12-3

FORMAT SPECIFICATIONS 12-3

FORMAT AND 1/0 LIST 12-5

EDIT DESCRIPTORS 12-7

Nonrepeatable Edit D?scriptors 12-7
'xxxx' (Apostrophe Editing)]2-7

H (Hollerith Editing) 12-8

X (Positional Editing) 12-8

Table of Contents

/ (Slash Editing)

\ (Backslash Editing). . .
P (Scale Factor Editing) .

. 12-8

12-9

12-9

BN and BZ (Blank lnterpretation). . .12-10
Repeatable Edit Descriptors 12-11

1, F, and E (Numeric Editing) 12-11

I (Integer Editing). . .

F (Real Editing)

E (Real Editing)

L (Logical Editing) . .

A (Chsracter Editing) .

12-12

12-12

12-13

. 12-14

12-15

PROGRAMS AND SUBROUTINES 13-3

MAIN PROGRAM 13-3

SUBROUTINES...............13-4

SUBROUTINE Ststement 13-4

CALL Statement 13-5

FUNCTIONS................13-6

External Functions 13-7

Intrinsic Functions 13-9
Statement Functions 13-10

RETURN STATEMENT 13-11

PARAMETERS...............13-12

Table of Contents

COMPILATION UNITS 14-3

PARTIAL COMPILATI0N 14-3

THE SUSF.S COMPILER I)IRECTIVF,.... 14-5

Separate Compilation 14-6

LINKING PASCAL AND FOFTRAN 14-7

THE SEXT COMPII,ER DIRECTIVE 14-12

APPENDICES

A: ANSI FORTRAN DIFFERENCES A-3

8: SAMpljE PROGRAM A-9

C: FORTRAN ERROR MESSAGES A-13

INDEX.....................1-1

C H A P TE R I

INTRODUCTION

Introduction

MANUAL OVERVIEW

This manud is intended as a user reference manual
for the SofTech Microsystems FORTRAN 77
language system. SofTech Microsystems FORTRAN
77 is a dialect of FORTRAN which is closely
related to the ANSI Standard FORTRAN 77 Subset
language defined in ANSI X3.9-1978. Readers
famniar with the ANsl standard win find a concise
description of the differences between SofTech
Microsystems FORTRAN 77 and the standard in
Appendix A; in general, this manud does not
presume that the reader is familiar with the
standard.

SofTec Microsystems FORTRAN 77 runs on the
p-machine architecture, which is available on a
variety of host machines as a language system
integrated into the UCSD Operating System. The
reader is assumed to be somewhat familiar with the
use of the Operating System and Text .Editor,
although the specifics of how to compile, 1ink, and
execute a FORTRAN program in the environment
are covered in this manual.

This manud is intended primarily as s reference
manual for the FORTRAN system and contains all
of the information necessary to fully utilize it.
The reader is assumed to have some prior
knowledge of some dialect of FORTRAN, dthough
someone familiar with another high level language
should be able to learn FORTRAN from this
manual. The manud is not a tutorial in the sense
that it does not 'teach the reader, step by step, the
concepts necessary to write successively more
complex programs in FORTRAN; rather, each

1000201=01A 1-3

htroduction

section of the manud fu]ly explains one part of the
FORTRAN language system.

'ITie manud is organized as follows: Chapters 1, 2,
and 3 are general, and describe the manu81 and
basic information required to successfully use
FORTRAN in even a trivisl way. Chapters 4, 5,
and 6 describe the data types avaflable in the
language and how a program sssigns a particular
data type to an identifier or constant. Chapter 7
deals with the DATA ststement, which is used for
initialization of memoi.y. Chapters 8, 9,10, and 11
def ine the executable parts of programs and the
meanings sssoclated with the various executable
constructs. 1/0 statements are presented in
Chapter 11, and the associated FORMAT statement
and formstted VO are described in Chapter 12.
The subroutine structure of a FORTRAN
compilation, including parameter psssing and
intrinsic (system provided) functions, is the topic of
Chapter 13. Fimlly, Chapter 14 discusses the
rather sophisticated means which exist for compiling
FORTRAN subroutines sepaLrately, overlaying, and
linking in subroutines which sre written in other
languages.

NOTATIONAL CONVENTIONS

These are the notational conventions used
throughout this manual:

Upper Case and Specid Characters - are written ss
they would be in Q program.

1-4 1000201:01A

htroduction

Lower Case Letteps and Words - indicate

geon;ia!if£tiso#s,awxwhii:haB:ä::,r±p'daecsecd,ibbeydT:trha:
text. The reader may sssume that once a
lowercase entity is defined, it retains its meaning
for the entire context of discussion.

Example of Upper snd l,ower Case: The format
which describes editing of integers is denoted 'lw',
where w is a nonzero, unsigned integer corBtant.'mus, in an actual statement, a program might
contain 13 or 144. The format which describes
editing of reals is 'Fw.d', where d is Qn unsigned
integer constant. In an actual statement, F7.4 or
F22.O are valid. Notice that the period, as a
specid character, is taken literally.

Brackets - indicate optioml items.

Example of Brackets: 'A[w]' indicates thst either A
or A12 are valid (as a means of specifying a
character format).

...- is used to indicate ellipsis. That is, the
optiond ite.m preceding the three dots may appear
one or more times.

Example of ...: The computed GOTO statement is
described by 'GOTO (s [, s] ...) [,] i' indicating
that the syntactic item denoted by s m&y be
repeated any number of times with commas
separating them.

1000201:01A 1-5

htroduction

Blanks normally have no significünce in the
description of FORTRAN statements. The generd
rules for blanks, covered in Chapter 3, govem the
interpretation of blanks in all contexts.

1-6 1000201:01A

C H A P TE R 2

SO P TB C H N IC R O SY STE M S

PO RTR AN 7 7

SofTech Microsystems FORTRAN 77

This chapter describes how to use SofTech
Microsystems FORTRAN 77. It assumes that the
reader is familiar with the basic operation of the
p-System. The mechanics of preparing, compiling,
linkirg, and executing a FORTRAN program ai.e
outlined, and an explanation of the Compfler listing
fne is given.

A FORTRAN PROGRAM

Compiling & FORTRAN progr&m

The SofTech Microsystems FORTRAN 77 Compner
is invoked as the Pascal Compiler would be
invoked: by typing 'C' at the command level.
The R(un command, which will compile and
execute a program, may also be used. H the file
has already been compiled, the R(un command
will simply execute the code file. For these
commands to call FORTRAN, the FORTRAN
Compner must be named SYSTEM.COMPILER.
When your disk is shipped, the FORTRAN
Compiler is named FORTRAN.CODE. To make it
SYSTEM.COMPILER, type 'F' to enter the Fner,
C(hange SYSTEM.COMPILER to PASCAL.CODE,
and C(hange FORTRAN.CODE to
SYSTEM.COMPILER. To start using Pascd again,
reverse the renaming process.

Typing 'C' or 'R' at the command level causes
the compiler to use the workfiles
SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE. If
no workfile is present, the Operating System will
prompt for the name of a .TEXT fne to use.

1000201:02A 2-3

SofTech Microsystems FORTRAN 77

The FORTRAN Compner win prompt for a listing
fne. If a ¢etun> is typed, no listing will be
generated.

Once the prompts are an answered, the actual
compilation begins. The progress of the
compnation wm be shown on the corBole by a
successive display of dots. Each dot repi.esents
one line of source code.

Remember that anything which applies to the
Pascal SYSTEM.COMPILER will now apply to
FORTRAN. For more information, refer to the
manual UCSD p~System Operating System User
Guide.

Providing Runtime Support

To run any program on the p-System, some
runtime support is needed. The package of
routines which do tliis for FORTRAN is distinct
from the psckage which does this for Pascd and
is originally shipped in the fne RTUNIT.CODE.
When you change FORTRAN.CODE to
SYSTEM.COMPILER, you must also change
SYSTEM.LIBRARY to PASCAL.LIBRARY (or some
other name you will remember) and
RTUNIT.CODE to SYSTEM.LIBRARY. After this
is done, you may run your FORTRAN programs.

It may be that you have placed programs of your
own in SYSTEM.LIBRARY. h this csse, you will
be familiar with the use of the Librarian.
kTUNIT.CODE should be added to the

2-4 1000201:02A

SofTech Microsystems FORTRAN 77

SYSTEM.LIBRARY file. The library text file
facility described in Chapter 2 of the !2£§J2
p£±Lstem Operating System User Guide , is also
available to FORTRAN programmers.

Executing a FORTRAN program

A compiled, linked FORTRAN program is
executed in the same manner as any other user
progam, i.e., by typing an 'X' at the command
level, fouowed by the name of the fne containing
the linked program.

FORM OF "PUT PROGRAMS

An input source fnes read by FORTRAN must be
.TEXT ffles. This allows the Compner to read
lsrge blocks of text from a disk file in a single
operation, increasing the compile speed
significantly.
fnes is to use
more precise
FORTRAN 77
which explains
Program.

1000201s02A

The simplest way to prepare .TEXT
the Screen Oriented Editor. Foi. a
description of the fields in s
source statement, see Chapter 3,
the basic structure of a FORTRAN

2-5

SofTech Microsystems FORTRAN 77

SINCLUDE Statement

To facilitate the manipulation of large programs,
the SofTech Microsystems Compfler has extended
the FORTRAN 77 stsndsrd with an S"CLUDE
Compiler directive. The format of the directive
is:

SINCLUDE file.name

with the S appesring in column 1 (see Chapter 3
for an explamtion of Compiler directives in
gener81). The meaning is to compfle the contents
of the file 'fne.name' and insert the code into
the current code f ile, before continuing with
compilation of the current file. The included file
may contain additional SINCLUDE directives, up
to a maximum of f ive levels of files (four levels
of SmcLUDE directives). It is often useful to
have the description of a COMMON block kept in
a single file and to include it in each subroutine
that references thst COMMON are8, rather than
making and maintsining many copies of the same
source, one in each subroutine. There is no limit
to the number of S"CLUDE directives that can
appear in a source fne.

COMPILER LISTING

The Compner listing, if requested, contaim5 various
informstion that may be useful to the FORTRAN
programmer. The listing consists of the user's
source code as read, dong with line numbers,
symbol tables, error messages, and optiond cross-
reference information.

2-6 1000201:02A

SofTech Microsystems FOR'IRAN 77

The fonowii¥ is a sample listing:
10.0]

A ltmEx;ER 3 e 11 13
C CBAR* . 103 9 11
EZ123. PF`OCRJIX 6
I lmEGEB lo5 12 13 13 1.
1,15

IABs lmlNslc 15
iN]T SUBRouTiNE 2,rlllD 11

1®. 0 SUBROUTINE INIT(B,I})
19. o lmEcfl` B(lo,lo)
20. 0 CHAR^CTER*I D
21.0
22. 0 RETÜRll
23. 2 END

B lmEÄ;ER 2. 1e 19
D CH^R. . 1. 18 20
I»IT st)BFtoüTINe 2 1®

Exl23. pROCRAri
IHIT SUBROÜTINE 2 , 7

2. 11f`ee. 1 e[[or..

'ITie first line indicates which version of the
Compiler was used for this compflation. In the
examme it is version 0.0 for p-System version ry.0.
The leftmost column of numbers is the souceiline
number. The next eolumn indicates the
procedureielative instruction counter that the
corresponding line of source code occupies as
object code. It i§ only meaningful for executable
statements and data stQtements. To the right of
the irptruction counter is the source statement.

1000201:02A 2-7

SofTech Microsystems FORTRAN 77

Eri.ors are indicsted by a row of asterisks fonowed
by the eri.or number and line number, as appeaLrs in
the example between lines 13 and 14. h this case
it is error number 57, "Too few subseripts",
indicating that there are not enough subscripts in
the ari.ay reference A(I).

At the end of each routine (function, subroutine, or
main program), a loed symbol table is printed.
This table lists all identifiers that were referenced
in that program unit, dong with their definition.
If the SXREF Compiler directive has been given, a
table of all lines containing an instance of that
identif ier in the current program unit is slso
printed. If the identifier is a variable, it is
accompanied by its type and lcN3ation. ff the
variable is a parameter, its location is followed by
an asterisk, such eß the variables 8 and D in the
SUBROUTmE INIT. If the variable is in a common
block, then the name of the blcN3k follows enclosed
by slashes. If the identif ier is not a vsrisble, it is
described appropristely. For subroutines and
functions, the unit-relative procedure number is
given. If it resides in a different segment, then
the segment number follows. If the Compiler
aLssumes that it wnl reside in the same segment,
but has not yet appeared, it is listed as a forward
program unit by the notation 'FWD'.

At the end of the compnation, the globd symbol
table is printed. It contains a]l globd FORTRAN
symbols referenced in the compnation. No cross-
ref erence is given. 'n`e number of source lines
compned and the number of errors encountered
fonow. If there were any errors, then no object
file is produced.

2-8 1000201:02A

SofTech Microsystems FORTRAN 77

THE CODEFILE

The object codefile gen.erated by the FORTRAN
Compiler is compatible with the p-System Linker
and Librarian. Indeed, it is hard to tell by
examining a codefile whether it was created by the
FORTRAN Compiler or the Pascal Compiler. For a
description of the binary format of a codefile,e see
the UCSD stem 0 eratin stem User Guide.

1000201:02A 2-9

C H A P TE R 3

B A SI C ST R U C T U R E O F

A P O R TR A N P R O G R A H

Basic Structure of a FORTRAN Program

In the most f undamental sense, a FORTRAN
progi`am is a sequence of characters which, when
fed to the Compner, 8re understood in various
contexts as characters, identifiers, labels, constants,
lines, statements, or other (possibly overlapping)
syntactic substructure groupings of characters. The
rules which the Compiler uses to group the
character stream into certain substructures, as well
as various constraints on how these substructures
may be i.elated to each other in the source program
character stream, are the topic of this chapter.

CHARACTER SET

A FORTRAN source program consist§ of a stream
of characters, originating in 8 .TEXT file,
coiBisting of :

I.etters - The 52 upper and lower case letters A
through Z and a through z.

Digits - 0, 1, 2, 3., 4, 5, 6, 7, 8, and 9.

Specid Characters - The remaining printable
characters of the ASCIl character set.

The letters and digits, treated as s single g`roup,
are called the alphanumeric characters. FORTRAN
interprets lower case letters as upper case letters
in all contexts except in cnai.acter constants and
Hollerith fields. 'ITius, the following user-def ined
names are dl indistinguishable to the FORTRAN
Compner:

ABCDE abcde AbcdE aBCDe

1000201s03A 3-3

Basic Structue of a FORTRAN Program

In addition to the above, 8ctud source pi.ograms
given to the FORTRAN Compüer contain certain
hidden (nonprintable) control characters inserted by
the Text Editor which are invisible to the user.
FORTRAN uses these control characters in exactly
the same way as the Text Editor and transforms
tliem, using the rules of .TEXT files, into the
FORTRAN character set.

"e conating sequence f or the FORTRAN character
set is the ASCIl sequence.

LINES

A FORTRAN source program may also be
considered a sequence of lines, corresponding to the
norm8] notion of line in the Text Editor. Only the
first 72 characters in a line are treated as
signif icant by the Compiler, with any trailing
characters in a line ignored. Note thst lines with
fewer than 72 characters are possible and, if
shorter tlian 72 columns, the Compiler does treat as
significant the leiEtli of a line. For an nlustration
of this, see the paragraph entitled, "The Character
Type," in Chapter 4.

COLUMNS

The characteps in a given line f all into columns,
with the first character being in column 1, the
second in column 2, etc. The column in which a
character resides is significant in FORTRAN, with
columns 1 thi`ough 5 being reserved for statement
labels, column 6 for continuation indicators and
other column conventions, and columns 7 through 72

3-4 1000201:03A

Basic Structure of a FORTRAN Program

for actual statements.

BLANKS

The blank character, with the exceptions noted
below, has no significance in a FORTRAN source
program and may be used for the purpose of
improving the readability of FORTRAN progi.ams.
The exceptions are:

Blanks within string constants are significant.

B18nks within Hollerith fields are significant.

Blsnks on Compiler directive lines are
significant.

A blsnk in column 6 is used in distinguishing
initial lines from continustion lines.

Blanks count in the total number of characters
tlie Compiler processes per line and per
statement.

1000201:03A 3-5

Basic Structure of a FORTRAN Program

COMPILER DIRECTIYE LINES

A line is treated as a Compiler directive if the S
charscter appears in column 1 of an input line.
Compiler directives are ued to transmit various
kinds of informstion to tlie Compiler. A Compiler
dii.ective line may appear any place tliat s comment
line can appear, although certain directives are
restricted to appear in certain places. Blanks are
significant on Compiler directive lines and are used
to delimit keywords and filenames. The set of
directives is described below:

SINCLUDE

SINCLUDE filename

lnclude textually the file 'filename' at this point
in the source. Nested includes are implemented
to a depth of nesting of five files. Thus, for
example, a program msy include various files with
subprograms, each of which includes various files
which describe COMMON areas (which would be a
depth of nesting of three files).

SUSES

SUSES ident
[IN filename]
[OVERLAY]

'ITiis is similar to the USES command in the

Pascal Compiler. The already compiled
FORTRAN subroutines or Pascal procedures
eontained in the .CODE file 'filename' (or in the

3-6 1000201:03A

Basic Structure of a FORTRAN Program

file '+SYSTEM.LIBRARY' if no file name is
present) become callable from the currently
compiling code.
before the initiQi noi:*mdLhe::tjrnep&m¥:e.ap¥::
more detans, see Chapter 14.

SXREF

SXREF

This produces a cross-reference listing &t the end
of each procedue compiled.

SEXT

SEXT SUBROUTINE name #params
Or

SEXT [type] FUNCTION nsme #params

The subroutine or function cslled 'name' is an
Assembly Language routine. The routine has
exactly '#par&ms' reference pai.ameters.

COMMENT LINES

A line is trested sLs a comment if any one of the
fouowing conditions is met:

A 'C' (or 'c') in column 1.

A 't' in column 1.

Line contsins all blanks.

1000201:03A 3-7

Basic Structure of a FORTRAN Program

Comment lines do not effect the execution of tlE
FORTRAN program in any way. Comment lines
must be followed immediately by an initisl line or
another comment line. They must not be fouowed
by a continuation line. Note that exti.a blank lines
st the end of a FORTRAN program result in a
compile time error, since the system interprets
them as comment Unes, but they are not followed
by an initisl line.

STATEMENTS, LINES, AND LABELS

Tlie fonowing paragraphs define s FORTRAN
statement in terms of the input character stream.
The Compiler recognizes certain groups of input
chsracters as complete ststements according to the
rules specified here. Tlie remainder of tliis manual
will futher define tlie specific ststements and their
properties. When it is necessary to refer to
specific kinds of statements here, they are simply
referred to by name.

I,abels

A ststement label is a sequence of from one to
five digits. At least one digit must be nonzero.
A label may be placed anywhere in columns 1
through 5 of an initial line. Blanks and leading
zeros are not significant.

3-8 1000201:03A

Basic Structure of a FORTRAN Program

Initial Lines

An initial line is
comment line or s
contains a blank or
five columns of the
or contain a label.
statement following
statements an begin

any line which is not a
Compiler dii.ective line and

a 0 in column 6. The first
line must be eitlier all blank

With the exception of the
s logical IF, FORTRAN

with an initial line.

Continuation Lines

A continuation line is any line which is not a
comment line or a Compiler directive line and
contains any character in column 6 other than a
blank oi. a 0. The first five columns of a
continuation line must be blanks. A continuation
line is used to incresse the amount of room to
write a given statement. If it will not fit on a
single initial line, it may be extended to include
up to 9 continuation lines.

Statements

A FORTR.AN statement consists of an initid line,
followed by up to 9 continuation lines. The
characters of the ststement are the up to 660
charscters found in columns 7 through 72 of
these lines. The END statement must be wholly
written on an initial line, and no other statement
may have an initial line which appears to be an
END statement.

1000201:03A 3-9

Basic Structure of a FORTRAN Program

STATEMENT ORDER

The FORTRAN language enforces a certain ordering
among ststements and lines which make make up a
FORTRAN compilation. In general, 8 compilation
consists of some number of subprograms (possibly
zero) and, at most, one main program (see sections
on compilation units and subroutines). The various
rules for ordering statements appear below.

prograD units

A subprogram begins witli either a SUBROUTINE
or a FUNCTION ststement and ends with an END
ststement. A main program begins with a
PROGRAM statement or any other, but not a
SUBROUTINE or FUNCTION statement, and ends
with an END statement. A subprogram or the
main program is referred to as a program unit.

St&tement Ordering

Within a program unit, whether a main program
or a subprogram, statements must appear in an
order consistent with the fouowing rules:

A SUBROUTINE or FUNCTTON statement, or
PROGRAM ststement, if present, must appear
as the first st&tement of the program unit.

3-10 1000201:03A

Basic Structure of s FORTRAN Pi`ogrsm

FORMAT stetements may appear anywhere
after the SUBROUTINE or FUNCTI0N
statement, or PROGRAM ststement if present.

All specificstion statements must precede all
DATA ststements, statement function
statements, and executable statements.

An DATA ststements must appear after the
.specification ststements and precede all
statement function statements and executable
statements.

All ststement function statements must precede
all executsble ststements.

Within the specification statements, the
IMPLICIT ststement must precede all other
specification statements.

These rules are illristrated in the fonowing chsrt:

PROGRAM, FUNCTION, or SUBROUTINE Statement

IMPLICIT Statements

Otr,er Specif ication Staten`ents
Comrnent FORMAT
Lines Statements DATA staterr,ents

Statement function Stateri`ents

Execiitable Statements

END Statement

Table 3.1. Order of Statements
within `Program Units.

1000201:03A 3-11

Basic Structure of a FORTRAN Program

The chsrt is to be interpreted as fouows:

Classes of lines or statements above or below
other classes must appear in the desigmted
Order.

Classes of lines or statements may be
interspersed with other classes which appear
across from one anotl"r.

Source Program Find StateDent

When creating FORTRAN .programs with the
Editor, the final END statement must be entered
as s complete line. Thst is, there mLöt. be a
"return" character following the statement.
Otherwise, the Compiler will not find the END
statement and win issue an error message. n
addition, that "retun" character must be the
final cliarQcter in the program source file. Any
furtl`er characters, even blanks, might be
considered part of a sutBequent subprogram by
the Compiler.

3-12 100020ls03A

C H A P T E R 4

D A T A T Y P E S

Data Types

There are four basic dsta types in Sof Tech
Microsystems FORTRAN 77: integer, real, 1ogical,
and character. This chapter describes the
properties of each type, the range of values for
each type, and the form of constants for each
type.

THE INTEGER TYPE

The integer data type consists of s subset of the
integers. An integer value is an exact
representation of the corresponding integer. An
integer variable occupies one word (two bytes) of
storage and can contain any value in the range
-32768 to 32767. Integer constants consist of a
sequence of one or more decima] digits preceded by
an optional arithmetic sign, + or -, and must be in
range. A decimal point is not anowed in an
integer coiEtant. 'ITie following are examples of
integer constants:

123 +123 -123 0
00000123 32767 -32768

THE REAL TYPE

The real data type consists of a subset' of the real
numbers. A real vslue is normally sn approximation
of the i`eal number desired. A real varisble
occupies two consecutive words (4 bytes) of
storage. The range of red values is approximately:

-1.7E+38 ...- 5.8E-39 0.0

5.8E-39...1.7E+38 (LSI-11)

1000201:04A 4-3

Dats Types

The actual range depends upon which computer is
being used. The precision is greater than 6
decimal digits.

A basic red constant consists of an optiond sign
f ollowed by an integer part, a decimd point, and a
fraction part. The integer and fraction parts
consist of .1 or more decimal digits, 8nd the
decimal point is s period, '.'. Either the integer
part or the frsction part may be omitted, but not
both. Some sample basic resl constants fonow:

-123.456 +123.456 123.456
-123. +123. 123.
-.456 +.456 .456

An exponent part corEists of the letter 'E' followed
by an optionally signed integer constant. An
exponent indicates that the vdue preceding it is to
be multiplied by 10 to the value of the exponent
part's integei.. Some sample exponent parts are:

E12 E-12 E+12 E0

A red constant is either a basic real constant, a
basic real constant followed by an exponent part,
or an integer constant followed by an exponent
part. For example:

+1.000E-2 1.E-2 1E-2
+0.01 100.OE-4 .0001E+2

dl represent the same re8] number, one one-
hundredth.

4-4 10002 01 :04A

Data Types

THE LOGICAI. TYPE

"e logical data type consists of the two logical
vdues, true snd false. A logicd variable occupies
one word (two bytes) of storage. There are orny
two logical constants, .TRUE. and .FALSE.,
representing the two corresponding logicd values.
The internal representation of .FALSE. is a word
of all zeros; and the representation of .TRUE. is
a word of sll zeros, but a one in the least
significant bit. ff a logical variable contains any
other bit values, its logicd meaning is undefined.

THE CHARACTER TYPE

The chsracter data type consists of a sequence of
ASCIl characters. The length of a character vdue
is equal to the number of characters in the
sequence. The length of a particulaLr constant or
variable is fixed, and must be between 1 and 127
charscters. A character variable occupies one
word of storage for each two chai.acters in the
sequence, plus one word if the length is odd.
Character variables ai.e always aligned on word
boundaries. The blank character is allowed in a
chsracter v8]ue and is significsnt.

A chai.acter constant consists of a sequence of one
or more characters enclosed by a pair of
apostrophes. Blank characters are allowed in
character constants and count as one character
each. An apostrophe within a character constsnt is
represented by two consecutive apostrophes with no
blanks in between. The length of a charscter
constant is equal to the number of characters
between the 8.postrophes, with doubled apostrophes

1000201=04A 4-5

Dats Types

counting as a single apostrophe charscter. Some
sample character corBtsnts are:

'A' ' ' 'Help!' ''"
'A very long CHARACTER constant'

Note the last example, "", tliat represents a single
apostrophe, '.

FORTRAN allows source lines with up to 72
columns. Shorter lines are not padded out to 72
columns, but left as input. When a cliai.acter
constant extends scross a line boundary, its vdue
is as if tlie portion of the continuation line
beginning with column 7 is].uxtapositioned
immediately after the lGLst charaeter on tlie initial
line. Thus, the FORTRAN source:

200 CH = 'ABC<ci.>
X DEF,

(whei`e the '<cr>' indicates s carriage return or the
end of the source line) is equivdent to:

200 CH = 'ABC DEF'

with the single space between the C and D being
the equivalent to the spsce in column 7 of the
continuation]ine. Very long character constants
can be represented in this manner.

4-6 1000201:04A

C H A P TE R 5

P O R T R A N N A M E S

FORTRAN Nsmes

A FORTRAN name, or identifier, consists of an
initial alphabetic character fonowed by a sequence
of 0 through 5 dphanumeric characters. Blsnks
may appear within a FORTRAN name, but have no
significance. A name is used to denote a user- or
systemiefined variable, 8rray, function, subroutine,
etc. Any valid sequence of characters may be used
for any FORTRAN name. There are no reserved
names as in other languages. Sequences of
dphabetic characters used as keywords are not to
be confused with FORTRAN names. The Compner
recognizes keywords by their context and in no way
restricts the use of user chosen names. Thus, a
program can have, for example, an array named IF,
READ, or GOTO, with no error indicated by the
Compiler (as long as it conforms to the rules that
all arrays must obey). Usirg such names, however,
is not s recommended practice.

SCOPE OF FORTRAN NAMES

The scope of a name is the range of statements in
which that name is known, or can be referenced,
within s FORTRAN progrsm. h general, the scope
of a name is either globsl or local, although there
are several exceptions. A name csn only be used
in accordance witli a single definition within its
scope. The sarrie nsme, however, can have
different definitions in distinct scopes.

A name with global scope may be used in more
than one progi.am unit (a subroutine, function, or
the main program) and still refer to the same
entity. In fact, names with globd scope can only
be used in a single, consistent manner within the
same program. All subroutine, function subprogram,
and common names, as weu as the program name,

1000201 :05A 5-3

FORTRAN Names

have global scope. Therefore, there cannot be a
function subprogram that has the same name as a
subroutine subprogram or as a common data are8.
Simflarly, no two f unction subprograms in the same
program can have the same name.

A name with local scope is only visible (known)
within a single program unit. A name with a local
scope can be used in another program unit with a
different meaning, or with a simnar meaning, but is
in no way required to have simnar meanings in a
different scope. The names of variables, arrays,
parameters, and statement functions all have locd
scope. A name with a locd scope can be used in
the same compil8tion as another item with the same
name, but a global scope as long as the global
name is not referenced within the program unit
containing the locd name. Thus, a function can be
named FOO, 8nd a local variable in another
program unit can be named FOO, without error, as
long as the program unit containing the variable
FOO does not call the function F00. The
Compner detects dl scope errors and issues an
error message when they occur, so the user need
not worry about undetected scope errors c&using
bugs in programs.

One exception to the scoping rules is the name
given to common data blocks. It is possible to
refer to a globauy scoped common name in the
same program unit thst an identicd locally scoped
name appears. This is allowed because common
names are always enclosed in slashes, such as
/NAME/, and are therefore dways distinguishable
from ordimry names by the Compiler.

5-4 1000201:05A

FORTRAN Names

Another exception to the scoping rules is made for
parameters to ststement functiorLs. The scope of
statement function parameters is limited to the
single statement formirü that statement function.
Any other use of those names within that statement
function is not allowed, and any other use outside
that statement function is allowed.

UNDECLARED FORTRAN NAMES

When a user name thst has not appeared before is
encountered in an executable statement, the
Compner infers from the context of its use how to
classify that name. If the name is used in the
context of a variable, the Compfler ci.eates an
entry into the symbol table for a variable of that
name. Its type is inf erred from the first letter of
its name. Normally, variables beginning with the
letters 1, J, K, L, M, or N are considered integers,
while. all others are considered reals. These
defaults can be .overridden by an IMPLICIT
statement (see Chapter 6). If sn undeclared name
is used in the context of a function call, a symbol
table entry is created for a function of that name,
with its type being inferred in the same manner as
that of a variable. Simnarly, a subroutine entry is
created for a newly encountered name that is used
as the target of a CALL statement. If an entry
f or such a subroutine or function name exists in
the globsl symbol tsble, its attributes are
coordinated with those of the newly created symbol
table entry. If any inconsistencies are detected,
such as a pi`eviously defined subroutine name being
used as s function name, an error message is
issued.

1000201:05A 5-5

FORTRAN Names

In general, one is encouraged to declare sll names
used within a program unit, since it helps to sssure
that the Compiler associates the proper definitiori
with that name. Allowing the Compiler to use a
default mesning can sometimes result in logical
errors that are quite diff icult to locate. hdeed,
most modei.n programming languages require the
programmer to declare all names, to avoid any such
potenti81 difficulties.

5-6 1000201:05A

C H A P T E R 6

SPECIFICATI0N

STATEMENTS

Specification Statements

This chapter describes the specification statements
in SofTech Microsystems FORTRAN 77.
Specification statements are non-executable. They
are used to define the attributes of user def ined
variable, array, and function names. There are
eight kinds of specification statements:

IMPLICIT
DIMENSION
Type Statements
COMMON
EXTERNAL
INTRUNSIC
SAVE
EQUIVALENCE

Specification statements must precede all
executable statements in a program unit. ff
present, any IMPLICIT statements must precede dl
other specification statements in a program unit as
well. Otherwise, the specification statements may
appear in any order within their own group.

IMPLICIT STATEMENT

An IMPLICIT statement is used to .define the
default type for userdeclared names. The form of
an IMPLICIT statement is:

IMPLICIT type (a [,a]...) [,type (a [,a]...)]...

The 'type' is one of "TEGER, LOGICAL, REAL,
or CHARACTER[*nnn]

1000201:06A 6-3

Specification Statements

The 'a' is either a single letter or a range of
letters. A range of letters is indicated by the
first and last letters in the rarEe separated by a
minus Sign. For s rsnge, tlie letters must be in
alphabetical order.

'ITie 'nnn' is the size of the character type that
is to be associated with that letter or letters.
It must be an unsigned integer in the range 1 to
127. If *nnn is not specified, it is assumed to
be *1.

An IMPLICIT statement defines the type and size
f or dl useri]efined names that begin with the
letter or letters that appear in the specification.
An IMPLICIT statement applies only to the program
unit in which it appears. IMPLICIT statements do
not change the type of any intrinsic functiorB.

Implicit types can be overridden or confirmed for
any specific user-name by the appearance of that
name in a subsequent type statement. An explicit
type in a FUNCTION statement also takes priority
over an IMPLICIT statement. If the type in
question is a character type, the user-name's length
is also overridden by a latter type definition.

The progi`am unit can have more thm one IMPLICIT
statement, but sll implicit statements must precede
au other specification statements in that pro.gram
unit. The same letter camot be defined more than
once in an IMPLICIT ststement in the same program
unit.

6-4 1000201:06A

Specification Statements

DIMENSI0N STATEMENT

A D"ENSION statement is used to specify that s
user-mme is an array. The form of a DIMENSION
statement is:

DIMENSI0N var(dim) [,vQr(dim)]...

where each 'var(dim)' is an aDray declarator. An
array declarator is of the form:

mme(d ['d]...)

'name' is the user defined name of the array.

'd' is a dimension declarator.

DIHENSION Declü.tors

Tt`e number of dimensions in the array is the
number of dimension declarators in the array
declarator. The maximum number of dimensions
is three. A dimension decla[.ator can be one of
three forms:

An unsigned integer corBtant.

A user-name corresponding to a norrarray
integer fopmd argument.

An aLsterisk.

A dimerBion declarator specifies the upper bound
of the dimension. The lower bound is always
one. If a dimension declarator is an integer
constant, then the array has the corresponding

1000201:06A 6-5

Specificstion Ststements

number of elements in that dimension. An array
has a constant size if au of its dimeTBions are
specified by integer constants. If a dimension
declarator is sn integer argument, then that
dimerBion is defined to be of a size equ8] to tlie
initid vdue of the integer argument upon entry
to the subprogram unit at execution time. In
such a case, the array is cdled an adjustabler
sized array. If the dimension declsLrator is an
asterisk, the array is an assumed€ized array, and
the upper bound of that dimension is not
specified.

iul adjustable- and assumediized arrays must
also be formal arguments to the program unit in
which they appear. Additionally, an assumediize
dimension declarator may only appear as the last
dimension in an arrsy declarator.

The order of array elements in memory is
columirmajor order. That is to say, the leftmost
subscript changes most rapidly in a memoryL
sequentid reference to all arrsy elements.

Array Element N&me

TTie form of &n array element name is:

arr(sub [£ub]...)

'arr' is the name of an aLrray.

'sub' is a subscript expression.

6-6 1000201=06A

Specification Statements

A subscript expi.ession is sn integer expression
used in selecting s specific element of an array.
The number of subscript expressions must mstch
the number of dimensioiB in the array declarator.
The value of a subscript expression must be
between 1 and the upper bound for the dimension
it represents.

TYPE STATEMENTS

Type statements sDe used to specify the type of
user-defined names. A type statement may confirm
or override the implicit type of a name. Type
statements msy also specify dimension information.

A user-name for a variable, array, external
function, or statement function may appear in a
type statement. Such an appearance defines the
type of that name for the entire program unit.
Within a pi.ogram unit, a name may not have its
type explicitly specified by a type ststement more
than once. A type statement may confirm the type
of an intrinsic function, but is not required. The
name of a subroutine or main program cannot
appear in a type ststement.

INTEGER, REAL, LOGICAL Types

The form of an NTEGER, REAL, or LOGICAL
type statement is:

type Vsr [,Var]...

1000201:06A 6-7

Specification Statements

'type' is one of INTEGER, REAL, or
LOGICAL.

'var' is a variable name, array name, function
name, or an array declarator. For a definition
of an array declarator, see the section on the
DIMENSI0N ststement in this chapter.

CHARACTER Type Statement

The form of a CHARACTER type ststement is:

CHARACTER [`nnn [,]1 va[I.nnn] [, var [*nnn]]...

'var' is a vsriable name, array name, or an
array declarator. For a definition of an array
declarator, see the section on the DIMENSI0N
Statement.

'nnn' is the lergth in number of characters of
a character variable or character array
element. It must be an unsigned integer in
the range 1 to 127.

The length nnn f ollowing the type name
CHARACTER is the default length for any name
not having its own length specified. If not
present, the default length is assumed to be one.
A length immediately following a variable or
array overrides the default length for that item
only. For an srray, the length specif ies the
length of each element of that array.

6-8 1000201:06A

Specification Statements

COMMON STATEMENT

'me COMMON statement provides a method of
sharing storage between two or more program units.
Such program units can share the same data
without passing it as srguments. The form of the
COMMON statement is:

COMMON [/ [cname] /] nlist [[,] / [cname] /
n,ist]...

'cname' is a common block name. If a 'cname'
is omitted, then the blQnk common block is
specified.

'nlist' is a comma separated list of variable
names, array names, and array declmators.
Formal argument names and function names
cannot appear in a COMMON statement.

In each COMMON ststement, all variables and
arrays appearing in each nlist following a common
block name cname are declared to be in that
common block. ff the first cname is omitted, all
elements appearing in the first nlist are specified
to be in the blank common block.

Any common block name can appear more than once
in COMMON statements in the same program unit.
All elements in all nlists for the same common
block are sequentially allöcated stoi`age in that
common storage ai.ea in the order that they appear.

All elements in a si.ngle common area must be
either sn of type CHARACTER or none of type
character. Furthermore, if two program units
reference the ssme named common ares containing

1000201:06A 6-9

Specification Statements

character dat8, association of character variables
of different lengths is not allowed. Two variables
are said to be associated if they refer to the same
actusl storsge.

The size of a common block is equd to the number
of bytes of storage required to hold all elements in
that common block. If the same named common
block is ref erenced by several distinct program
units, the size must be the same in all program
units,

EXTERNAL STATEMENT

An EXTERNAL statement is used to ident.ify a
useri]ef ined name as an externd subroutine or
function. The form of an EXTERNAL statement is:

EXTERNAL name [pame]...

'name' is the name of an externd subroutine or
function.

Appearance of a name in an EXTERNAL statement
declares that name to be an external procedure.
Statement function names cannot appear in an
EXTERNAL statement. If an intrinsic function
name appears in an EXTERNAL statement, then
that name becomes the name of an externd
procedure, and the corresponding intrinsic function
can no longer be called from that ppogram unit. A
username can ohly appear once in an EXTERNAL
statement.

6-10 1000201s06A

Specification Ststements

INTRINSIC STATEMENT

An nvTRINSIC statement is used to declare that a
user-name is an intrinsic function. The form of an
INTRINSIC statement is:

INTRINSIC name [,name]...

'name' is an intrinsic function name.

Each user-name may only appear once in an
INTRINSIC statement. If a name appears in an
INTRINSIC ststement, it cannot appear in an
EXTERNAL ststement. All names used in an
INTRINSIC ststement must be systemiefined
INTRINSIC functiorB. For a list of these functions,
see Chapter 13.

SAVE STATEMENT

A SAVE ststement is uBed to retain the definition
of a common block after the peturn fi.om a
procedure that defines that common block. Within
a subroutine or function, 8 common block that hsLs
been specified in a SAVE statement does not
become undefined upon exiting from the subroutine
or function. The form of a SAVE statement is:

SAVE /name/ [,/name/]...

whei.e: 'name' is the name of a common block.

NOTE: In SofTech Microsystems FORTRAN 77 an
common blocks are ststically allocated, so the
SAVE statement is not necessary. Common blocks
are never disposed on exiting a procedure. The

1000201:06A 6-11

Specification Statements

SAVE statement is implemented here for the sake
of program portsbility.

EQUIVALENCE STATEMENT

An EQUIVALENCE statement is used to specify
that two or more variQbles or arrays are to shsre
the same storage. If the shüed v8['iables sre of
different types, the EQUIVALENCE does not cause
any kind of automatic type conversion. 'ITie form
of an EQUIVALENCE statement is:

EQurvALENCE (nlist) [, (nlist)]...

where: 'nlist' is s list of at least two vsriable
names, array names, or array element names.
Argument names may not appear in an
EQUIVALENCE statement. Subscripts must be
integer constants and must be within the bounds
of the array they index.

An EQUIVALENCE statement specifies that the
storage sequences of the elements that appesr in
the list nlist have the same f irst storage location.
Two or more variQbles are said to be associated if
they refer to the Same actud storage. Thus, an
EQUIVALENCE statement causes its list of
variables to become associated. An element of
type character can only be associated with another
element of type character with the same length. If
an array name appears in an EQUIVALENCE
statement, it refers to the first element of the
array.

6-12 1000201:06A

Specification Statements

St&tenent Restrictions

An EQUIVALENCE statement cannot specify that
the same storage location is to appear more than
Once, Sucil as:

REAL R,S(10)
EQUIVALENCE (R,S(1)),(R,S(5))

which foi.ces the variable R to appear in two
distinct memory locations. Furthermore, 8n
EQUIVALENCE statement cannot specify that
consecutive ai.ray elements are not stored in
sequentid order. For exainple:

REAL R(10),S(10)
EQUIVALENCE (R(1),S(1)),(R(5),S(6))

is not anowed.

When EQUIVALENCE ststements and COMMON
stQtements are used together, several fui`ther
restrictions apply. An EQurvALENCE statement
cannot cause storage in two different common
blocks to become equivalenced. An
EQUIVALENCE ststement can extend a common
block by adding storage elements following the
common block, but not preceding the common
block. For example:

COMMON /ABCDE/ R(10)
REAL S(10)
EQUIVALENCE (R(1),S(10))

is not auowed because it extends the common
block by adding storage preceding the start of
the block.

1000201:06A 6-13

C H A P TE R 7

DATA STATENEriT

Dats Statement

The DA-TA statement is used to assign initid values
to variables. A DATA statement is a non-
executable statement. If present, it must appesr
after a]1 specification statements and prior to any
statement function statements or executable
statements. The form of a DATA statement is:

DATA nlist / clist ^,] nlist / clist /]...

'nlist' is a list of variable, array element, or
aLrray names.

'clist' is a list of constsnts or constants
preceded by an integer constant repeat f actor
and an asterisk, such as:

5*3.14159 3*'Help' 100*0

A repeat factor f ollowed by a constant is the
equivalent of a list of all constants of that
constsnt's value repeated Q number of times
equd to the repeat constant.

Thei`e must be the same number of vdues in each
clist as thepe are variables or array elements in
the corresponding nlist. The appeai.ance of an
array in an nlist is the equivaJent to a list of all
elements in that array in storsge sequence order.
Array elements must be indexed only by coristant
subscripts.

The type of each noni!haracter element in a clist
must be the same as the type of the corresponding
variable or ari`ay element in the accompanying nlist.
Each character element in a clist must (1)
correspond to a character variable or array element
in the nlist and (2) have a length that is less than
or equ81 to the length of that variable or array

1000201:07A

Data Statement

element. If the length of the constant is shorter,
it is extended to the length of the varisble by
adding blank characters to the right. Note that a
single character constant camot be used to define
more than one variable or even more than one
array element.

Only locd variables and array elements can appe&r
in a DATA statement. Formd arguments, vari&bles
in common, and function names cannot be assigned
initial vdues with a DATA ststement.

7-4 1000201:07A

C H A P T E R S

EXPRESSIONS

Expressions

This chapter describes the four classes of
expi.essions found in the FORTRAN langusge. They
aLre:

Arithmetic Expressioiu.
Character Expressions.
Relationd Expressions.
bgicd Expressions.

ARITHHETIC EXPRESSIONS

An arithmetic expression produces a value which is
either of type integer or of type real. The
simplest forms of arithmetic exppessions are:

Unsigned integer or red coiEtant.
Integer or real variable reference.
hteger or red ai.ray element reference.
hteger or red function reference.

The value of s variable reference or array element
reference must be defined for it to appear in an
arithmetic expression. Moreover, the value of an
integer variable must be defined with an arithmetic
value, rather than a statement label value
previously set in an ASSIGN statement.

Other srithmetic expressions are built up from the
sbove simple forms using parentheses and these
arithmetic operators:

1000201:08A 8-3

Expressions

9p_e_r_atpr

**

/
*

resentin eration Pr ecedence

Exponentiation

Division

Multiplication

Subtraction or Negation

Addition or ldentity

Hi8hest

Intermediate

Lowest

Table 8.1. Arithmetic Operators.

All of the operators are bimry operators, appearing
between their arithmetic expression operands. The
+ and - may dso be unary, pi'eceding their opersnd.
Opei'ations of equd precedence are left-associative,
except exponentiation, which is right-associative.
Thus, A / 8 * C is the same as (A / 8) * C; and
A ** 8 ** C is the same as A ** (8 ** C).
Arithmetic expressions mQy be formed in the usual
algebraic sense, as in most programming languages,
except that FORTRAN prohibits two operators from

Thus, A ** -13 is
Sfophei::t£endg, £:#::;hutÄve*[*y.(-B) ß permissibie. Note
that unary minus is also of lowest precedence, so
that - A * 8 is interpreted as - (A * 8).
Parentheses may be used in a program to control
the associativity and the order of operator
evduation in an expression.

8-4 1000201:08A

Expressions

Integer DivisioD

`ITie division of two integers results in a value
which is the quotient of the two values,
truncated toward 0. Thu, 7 / 3 evduates to 2,
(-7) / 3 evduates to -2, 9 / 10 evaluates to 0,
and 9 / (-10) evaluates to 0.

Type Conversions and Result Types

Arithmetic expressions may involve operstioris
between operands which are of different type.
The general ru]es for determining type
conversions and the result type for an arithmetic
expression are:

An operation between two integers results in
an expression of tyE)e integer.

An operation between two reals results in an
expression of type red.

For any operator except **, an operation
between a real and an integer converts the
integer to type real and performs the
operation, resulting in an expression of type
red.

For the operator **, a real raised to an
integer power is computed without conversion
of the integer and results in an expression of
type red. An integer raised to a real power
is converted to type real, and the operation
results in an expression of type real. Note

:ha± ft°hre £:::geera: aLnd/ |F£:jvi£%t(3f)erw:ic[h *=
subject to the rules of integer division; so, for

1000201=08A 8-5

Expressions

example, 2 ** (-4) is 1 / 16 which is 0.

Unary operators result in the same result type
as their operand type.

The type which results from the evduation of sn
arithmetic operstor is not dependent on the
context in which the operation is specified. For
example, evdustion of an integer plus a real
results in a real, even if the value obtained is to
be immediately assigned into an integer variable.

CHARACTER EXPRESSIONS

A chsracter expression produces a value which is
of type character. The f orms of character
expressions are:

ChaLracter Co"5tant.
Charscter variable reference.
Character array element reference.
Any character expression enclosed in parenthesis.

There are no operators which result in chsracter
expressions.

RELATIONAL EXPRESSIONS

Relationsl expressions are used to compare the
vslues of two arithmetic expressions or two
character expressiorB. It is not allowed to compare
sn arithmetic vdue with a character value. The
result of a relationd expression is of type logicd.

8-6 1000201:08A

ExpressioiE

Relational expressions may use any of these
operators to compare values:

QDe_rat_o_r

•LT.

.LE.

•EQ.

•NE.

•GT.

•GE.

ReDresenting Operstion

Less than

Less than or equd to

Equal to

Not equd to

Greater than

Greater than or equal to

Table 8.2. Relationd Operators.

A]l of the operators are binary operators, 8ppearing
between their operands. There is no relative
precedence or associativity among the relational
operands, since an expression of the form A .LT.
8 .NE. C violstes the type rules for operands.
Relational expressiorB may only appear within
logicsl expressions.

Relational expressions with arithmetic Qperands may
have an operand of type integer and one of type
real. In this case, the integer opersnd is converted
to type real before the relational expression is
ev81uated.

Relational expressions with character operands
compare the position of their operands in the ASCII
collating sequence. An operand is less than
another if it appears earlier in the collating

1000201=08A 8-7

Expressions

sequence, etc. If operands of unequal length are
compared, the shorter operand is considered as if it
wei.e blank extended to the length of the longer
Operand.

LOGICAL EXPRESSIONS

A logicd expression produces a value which is of
type logical. The simplest forms of logicd
expressions sre:

Iiogicd constant.
I,ogicd variable reference.
I,ogicd array element reference.
I,ogical function reference.
Relationd expression.

Other logicd expressions are built up from the
above simple forms using parentheses and these
logicd operators:

8-8 1000201:08A

Expressions

Qperet_o_r ReDresenting operation

JW OT. Negation

AND. Conjunction

Precedence

Highest

.OR. hcluive disjunction Lowest

Table 8.3. I,ogicd Operators.

The .AND. 8nd .OR. opei.ators are bimry
operators, appearing between their logical
expression operands. "e .NOT. operator is unary,
preceding its operand. Operations of equal
precedence are left associstive; so, for example, A
.AND. 8 .AND. C is equivdent to (A .AND. 8)
.AND. C. As an example of the precedence rules,
.NOT. A .OR. 8 .AND. C is interpreted the
same as (.NOT. A) .OR. (8 .AND. C). It is not
permitted to have two .NOT. operators sdjacent to
each otlier, 8lthough A .AND. .NOT. 8 is an
exsmple of an allowable expression with two
operstors being adjacent.

The mesning of the logical operstors is their
standard semantics, with .OR. being "nonexclusive";
that is, .TRUE. .OR.

PRECEDENCE OF OPERATORS

When arithmetic, relationd, and logical operstors
appesr in the same expression, their relative
precedences are:

1000201:08A 8-9

Expressions

O_pel.ator Precedence

Arithmetic Highest

Relational

L08ical IJowest

Table 8.4. Relative Precedence
of Operator Classes.

EVALUATION OF EXPRESSIONS

Any variable, array element, or function referenced
in an expression must be defined at the time of the
reference. Integer variables mLst be defined with
an arithmetic value, rather than a statement label
value as set by an ASSIGN statement.

Certain arithmetic operations are prohibited if they
cannot be evalusted (eg., dividing by zero). Other
prohibited operations are raising a zero valued
operand to a zero or negative power and raising a
negative vdued operand to a power of type real.

8-10 1000201:08A

C H A P T E R 9

ASSIGNMENT

STATEMENTS

Assignment Statements

An assignment statement is used to assign a value
to a vai.iable or an ai.ray element. There are two
basic kinds of aLssignment ststements: computationd
assignment statements and label assignment
ststements.

COMPUTATIONAL STATEMENTS

The form of a computational assignment statement
is:

var = expr

'vai.' is a variable or srray element name, 8nd

'expr' is an expression.

Execution of a computatioml assignment statement
evaluates the expression and assigns the resulting
value to the variable or array element sppearing on
the left. The type of the variable or array
element and the expression must be compatible.
They mut both be either numeric, logicsl, or
chai.acter, in which case the assignment statement
is called an arithmetic, logical, or character
assignment statement.

If tlie type of the elements of an arithmetic
assignment ststement ai.e not identical, automatic
conversion of the value of the expression to the
type of the variable is done. The following table
gives the conversion rules:

1000201:09A 9-3

Assignment Statements

Type Of
variable or

Type of expression

array element int_eEe_r red

integ er expr IN T(expr)

real REA I.(expr) expr

Table 9.1. Type conversion for arithmetic
assignment statements.

If the length of the expression does not match the
size of the variable in a chsracter assignment
statement, it is adjusted so that it does. If the
expression is shorter, it is padded with enough
blanks on the right to make the sizes equd before
the assignment takes place. If the expression is
longer, characters on the right are truncsted to
mske the sizes the same.

LABEL ASSIGNMENT STATEMENT

The label assignment statement is used to assign
the value of a format or ststement label to an
integer vuiable. 'n`e form of the ststement is:

ASSIGN label TO var

'label' is a format label or statement label, and

'var' is an integer variable.

Execution of an ASSIGN statement sets the integer
variable to the value of the label. The label can
be either a format label or a ststement label, and
it must appear in the ssme ppogi`am unit as the

9-4 1000201:09A

Assignment Statements

ASSIGN statement. When used in an assigned
GOT0 ststement, a variable must currently have
the value of a statement label. When used as a
format specifier in an 1/0 statement, a variable
must have the value of a format statement label.
The ASSIGN statement is the only way to assign
the value of a label to a variable.

1000201sO9A 9-5

C H A P T E R 10

CONTROL

STATEMENTS

Control Statements

Control ststements GLre used to conti.ol the ordei. of
execution of statements in the FORTRAN lsiEuage.
This chapter describes the following contpol
statements:

Unconditiond GOTO.
Computed GOTO.
Assigned GOTO.
Arithmetic IF.
L08ical IF.
Block IF THEN ELSE.
Block IF.
EIJSEIF.
ELSE.
ENDIF.
DO.
CONTINUE.
STOP.
PAUSE.
END.

'me two remaining .statements which control the
order of execution of statements are the CALL
statement and the RETURN statement, both of
wliich are described in Chapter 13.

UNCONDITIONAL GOTO

TTie syntax for an unconditional GOTO statement is:

GOTO s

whei.e s is a ststement label of an executable
statement that is found in the same program unit
as the GOTO statement. The effect of executing a
GOTO statement is that the next statement
executed is the statement labeled s. It is not legal

1000201=10A 10-3

Control Statements

to jump into a DO, IF, ELSEIF, or ELSE block from
outside the block (see the Various sectiom5 for an
explsnation of the kinds of blocks).

COMPUTED GOT0

TTie syntax for a computed GOTO statement is:

GOTO (s [, s] ''')[,] i

where i is an integer expression, 8nd.each s is a
statement label of an executable statement thst is
found in the same program unit as the computed
GOTO statement. The same statement label may
appear repeatedly in the list of labels. The effect
of the computed GOTO statement csn be explained
as fouows: Suppose that there are n labels in the
list of labels. If i < 1 or i > n then the computed
GOTO statement acts as if it were a CONTINUE
statement, otherwise, the next statement executed
wm be the statement labeled by the ith label in
the list of labels. It is not allowed to jump into a
DO, IF, ELSEIF, or ELSE block from outside the
block (see the various sections fop an explamtion
of the kinds of blocks).

NOTE: computed GOTOs are often used to
implement a CASE corBtruct.

10-4 1000201:10A

Control Statements

ASSIGNED GOTO

TTie syntax for an sssigned GOTO statement is:

GOTO i [,] (s [, s] ...)]

where i is an integer vsLriable nsme, and each s is
a ststement label of an executable ststement that
is found in the same program unit as the sssigned
GOTO ststement. The same statement label may
appesr repeatedly in the list of labels. When the
assigned GOTO ststement is executed, i must have
been eLssigned the label of an executable statement
that is found in the same progi.am unit as the
assigned GOT0 ststement. The effect of the
statement is that the next statement executed wiu
be the statement labened by the label last assigned
to i. If the optionsl list of labels is present, a
runtime error is generated if the label laLst Qssigned
to i is not smor€ those listed. It is not legd to
jump into a DO, IF, ELSEIF, or ELSE block from
outside the blcM}k (see the various sections for an
explamtion 'of the kinds of blocks).

ARITHMETIC IP

The syntax for an arithmetic IF statement is:

IF (e) sl, s2, s3

where e is an integer or red expression, and each
of sl, s2, and s3 üe statement labels of executable
ststements found in the same program unit as the
arithmetic IF statement. The same statement label
may appear more than once among the three labels.
The effect of the statement is to .evduate the
expression and then select a label based on the

1000201:10A 10-5

Control Statements

value of the expression. Label sl is selected, if
the value of e is less than 0; s2 is selected, if the
vdue of e equals 0; and s3 is selected, if the
value of e exceeds 0. The next statement
executed win be the statement labeled by the
selected label. It is not legd to jump into a DO,
IF, ELSEIF, or ELSE block from outside the blcx3k
(see the variotJs sections for an explanation of the
kinds of blo¢ks).

LOGICAL IF

'nie syntax for a logicsl IF statement is:

IF (e) st

where e is a logical expression; and st is any
executable statement, except a DO, block IF,
ELSEIF, ELSE, ENDm, END, or another logicd IF
statement. The statement causes the logic81
expression to be evaluated; and if the value of thst
expression is .TRUE., then the statement, st, is
executed. Should the expression evsluste to
.FALSE., the ststement st is not executed, and the
execution sequence continues as if a CONTINUE
ststement had been encountered.

10-6 1000201:10A

Control Ststements

BLOCK IP THEN ElisB.

'me following paragrsphs describe the block IF
statement and the vaLrious statements associated
with it. Tliese statements are new to FORTRAN
77 and can be used to dramatically improve the
readabnity of FORTRAN programs and to reduce
the number of GOTOs of the various forms. As an
overview of these sectiorB, the following three
code skeletons iuustrate the basic concepts:

Skeleton 1 - Simple Block IF which skips a group
of statements if the expression is false:

IF (I . LT.10) THEN

. Some statements executed only if l.LT.10

E NI) I F

Skeleton 2 - Block IF with a series of ELSEIF
statements:

IF (J . GT . looo) THEN

. Some statements executed only if J.GT.1000

ELSE I F (J . GT .10 0) TH EN

. Some statements executed only if J.GT.100 and

. J.I,E.1000
EI-SEI F (J . GT .10) TH EN

. Some statements executed only if J.GT.lo and

. J.I,E.looo and J.I,E.loo
ELSE

. Some statements executed only if none of above

. conditions we[e true
ENDIF

1000201:10A 10-7

Control St&tements

Skeleton 3 - nlustrates that the constructs can be
nested and that an ELSE statement c&n fouow Q
block n without intervening ELSEIF ststements
(indentation solely to enhance readabnity):

IF (] . LT.100) TH£N

. Some stateDents executed only if l.I,T.loo

I F (J . LT.10) THEN

. Some statement5 eiecuted only if l.LT.loo

. and J.l,T.lo
E:ND I P

. Some stateDents eiecuted only if l.I,T.100

El,SEl f (I . I,T.1000) TH£N

. Sone statemei`ts executed only if l.GE.loo and

. I.LT.looo
IF (J . l,T .10) TH EN

. Sone statements eiecuted only i{ I.GB.100

. and l.l,T.looo and J.LT.lo
E:NDlr

. Some statemerits executed only if l.GE:.]OO ar`d

. I.LT.1000
E ND I F'

h order to understand, in detan, the block m and
associated statements, the concept of an IF-level is
introduced. For any statement, its IF-level is

nl - n2

where nl is the number of block IF statements
from the beginning of the program unit that the
ststement is in, up to and including that ststement,
and n2 is is the number of ENDIF statements from
the beginning of the program unit up to, but not
includirg, that statement. The IF-level of every
statement mL»t be greater than or equd to 0; and
the IF-level of every block IF, ELSEIF, ELSE, and
ENDIF must be greater than 0. Fimlly, the IF-
level of every END statement must be 0. Tt`e IF-
1evel will be used to define the nesting pules fop
the block IF and associated ststements and to

10-8 1000201sl0A

Control Statements

define the extent of IF blocks, ELSEIF blocks, and
ELSE blocks.

Block IF

The syntü{ for a block IF statement is:

IF (e) THEN

where e is a logicsl expression. The IF block
associated with this blcx}k IF statement eonsists
of all of the executable statements, possibly
none, thst appear fouowing this statement. This
is up to, but not including, the next ELSEIF,
ELSE, or ENDIF ststement that has the same IF-
level as this block m statement. (The IF-1evel
defines the notion of "matching" ELSEIF, ELSE,
or ENDIF.) Executing the block IF statement
f irst causes the expression to be evaluated. ff it
evaluates to .TRUE., and there is at least one
statement in the IF block, the next statement
executed is the first statement of the IF block.
Following the execution of the last statement in
the IF block, the next statement to be executed
will be the next ENDIF statement at the same
IF-level aLs this block IF statement. If the
expression in this blcw}k IF statement evaluates to
.TRUE., and the IF block has no executable
statements, the next statement executed is the
next ENDIF ststement at the same IF level as
the block IF statement. If the expression
evaluates to .FALSE., the next statement
executed is the next ELSEIF, ELSE, or ENDIF
statement that has the same IF-level as the block
IF statement. Note that transfer of control into
an IF block from outside that block is not
dlowed.

1000201:10A 10-9

Control Statements

ELSEIP

The syntax of an ELSEIF statement is:

ELSEIF (e) THEN

where e is a logicsl expression. The ELSEIF
block associated with an ELSEIF statement
consists of all of the executable statements,
possibly none, that follow the ELSEIF statement.
This is up to, but not including, the next ELSEIF,
ELSE, or ENDIF statement that has the same IF-
1evel as this ELSEIF statement. The execution
of an ELSEIF statement begirB by evduating the
expression. If its value is .TRUE., and thei.e is
st least one statement in the ELSEIF block, the
next statement executed is the first statement of
the ELSEIF block. Following the execution of
the laLst statement in the ELSEIF block, the next
statement to be executed will be the next ENDIF
statement at the same IF-level as this ELSEIF
statement. If the expression in tliis ELSEIF
statement evduates to .TRUE., and the ELSEIF
block has no executable statements, the next
statement executed is the next ENDIF statement
at the same IF level as the ELSEIF statement.
If the expression evduates to .FALSE., the next
statement executed is the next ELSEIF, ELSE, or
ENDIF statement that has the same IF-level as
the ELSEIF statement. Note that tramsfer of
control into sn ELSEIF block from outside that
block is not allowed.

10-10 1000201:10A

Control Statements

ELSE

"e syntax of an ELSE ststement is:

ELSE

The ELSE block associated with an ELSE
statement consists of all of the executable
statements, possibly none, that fonow the ELSE
statement up to, but not including, the next
ENDIF statement that has the same IF-level as
this ELSE statement. The "matchiig" ENDIF
statement must appear before any intervening
ELSE or ELSEIF ststements of the same IF-level.
Note that transfer of control into an ELSE block
from outside that block is not allowed.

ENDIF

The syntax of an ENDIF ststement is:

ENDIF

Thei.e is no effect of executing an ENDIF
statement. An ENDIF statement is required to
"match" every block IF ststement in a program
unit in order to specify which statements are in
a poLrticular block IF statement.

1000201:10A 10-11

Control Statements

D0

The syntax of a D0 statement is:

D0 s [,] i=el, e2 [, e3]

whei.e s is a statement label of an exeeutable
ststement. The label must follow this DO
statement and be contsined in the same program
unit. In the DO statement, i is an integer
variable; and el, e2, and e2 are integer
expressions. The statement labeled b} s is called
the terminal statement of the DO loop. It must
not be an unconditiond GOTO, assigned GOTO,
aritlimetic IF, block IF, ELSEIF, ELSE, ENDIF,
RETURN, STOP, END, or DO statement. ff the
termind statement is a logical IF, it may contain
any executable statement except those not
permitted inside a logicd IF stQtement.

A D0 loop is ssid to have a "range" beginning with
the statement which follows the DO statement snd
ending with (and including) the terminal statement
of the D0 loop. If a DO statement sppears in the
range of another DO loop, its range must be
entirely contained within the range of the enclosing
DO loop, dthough the loops may shsre a termind
statement. (This is not recommended.) If a DO
statement appears within an IF block, ELSEIF
block, or ELSE block, the range of the associated
DO loop must be entirely contained in the
particulsr block. If a block IF statement appears
within the range of s DO loop, its sssociated
ENDIF statement must also appear within the range
of that DO loop. Tlie DO variable, i, may not be
set by the program within the range of the DO

10-12 1000201:10A

Control Statements

loop associsted with it. It is not a]1owed to jump
into the range of a DO loop from outside its range.

The execution of a DO ststement causes the
fonowing steps to happen in order:

The expressions el, e2, and e3 are evduated. If
e3 is not present, e3 defaults to 1 (e3 must not
evaluate to 0).

The DO vQrisble, i, is set to` the value of el.

The iteration count for the loop is computed to
be MAXO(((e2 - el + e3)/e3),0) which may be
zei.o (Note: unlike FORTRAN 66) if either el >
e2 and e3 > 0, or el < e2 and e3 < 0.

The iterstion count is tested; 8nd if it exceeds
zero, the ststements in the range of the DO
loop are executed.

FoUowing the execution of the terminal statement
of a D0 loop, the fonowing steps occu in order:

The value of the DO variable, i, is incremented
by the value of e3 which was computed when
the DO statement was executed.

The iterstion count is deci`emented by one.

The iteration count is tested; and if it exceeds
zero, the ststements in the range of the DO
loop aLre executed again.

The value of the DO variable is wellTdef ined after
execution of the loop; no matter if the DO loop
exits as a result of the iteration count becoming

1000201:10A 1 0- 1 3

Control Statements

zero, as the result of a transfer of control out of
the D0 loop, or as the result of a RETURN
statement.

Exsmple of the find vdue of a DO varisble:

C This p[og[am f[agrnent prints the number 1 to 11 on
C the CONSOLE:

DO 2001-1,10
200 WRITE(., ' (15) ') I
wRIT£(*. , (15) ') I

CONTINUE

The syntax of a CONTINUE statement is:

CONT"UE

There is no effect associated with execution of a
CONTINUE statement. The pi.imary use for the
CONTINUE statement is a convenient statement to
label, particularly as the terminsl statement in a
DO loop.

STOP

'me syntax of a STOP statement is:

STOP [n]

whei`e n is either a character constant or a string
of not more than 5 digits. The effect of executing
a STOP statement is to cause .the program to
terminate. The argument, n, if present, is
displayed on CONSOLE: upon termination.

10-14 1000201:10A

Control Statements

PAUSE

TTie syntax of s PAUSE .statement is:

PAUSE [n]

where n is either a character corEtant or a string
of not more thsn 5 digits. The effect of executing
a PAUSE statement is to cause the program to be
suspended, pending sn indication from the
CONSOLE: tliat it is to continue. The oLrgument,
n, if present, is displayed on the CONSOLE: ü
part of the prompt requesting input from the
CONSOLE:. If the indication fromlhe CONSOLE:
is received to continue execution of the program,
execution resumes as if a CONTHVUE statement had
been executed.

END

TTie syntax of an END statement is:

END

Unlike other statements, an END statement must
wholly appesr on an initid line and contain no
continuation lines. No other FORTRAN statement,
such as the ENDIF statement, may have an initid
line which
eff ect of
subprogram
statement,
terminate
statement

appears to be sn END ststement. The
executing the END statement in a
is the same as execution of a RETURN

and the effect in the main program is to
execution of the program. The END
must appear as the last statement in

every program unit.

1000201:10A 10-15

C H A P TE R 11

1/0 SYSTEH

VO System

Chapters 11 and 12 of this manu81 describe
FORTRAN 1/0 System. Chapter 11 describes
basic FORTRAN 1/0 concepts and statements,
Chapter 12 describes the FORMAT statement.
four major Sections of these chapters are:

VO System Overview - Provides an overview of
the FORTRAN f ne System. Defines the bssic
concepts of 1/0 records, 1/0 units, and the
vaLrious kinds of file &ccess avsnable under the
System.

Generd Discussion of 1/0 System Concepts. and
Limitations - The definitions made in the 1/0
System Overview are related to how to
accomplish various simple, as weu as complex,
tasks using the 1/0 System. There is a general
discussion of VO System limitatiom5.

1/0 Statements - The statements of the 1/0
System` are presented with the exception of the
FORMAT statement.

Formatted 1/0 and the FORMAT Statement - The
FORMAT statement and formsts in generd sre
described.

NOTE: Refer to "Concepts and Limitations" in this
chapter for a brief discussion of the most commonly
used forms of fnes and 1/0 statements, and for a
complete sample program that inustrates the most
commony used forms of 1/0.

1000201:11A 11-3

1/0 System

1/0 SYSTEM OVERVIEW

ln order to funy understsnd the 1/0 statements, it
is necessaLry to be familiar with a variety of terms
and concepts related to the structure of the
FORTRAN 1/0 System. Most 1/0 tasks can be
accomplished without a complete understanding of
this materid, thus, the reader is encouraged to skip
"Concepts and Limitations" on the first reading and
subsequently use the "1/0 System Overview"
primarily for reference.

Records

me building block of the FORTRAN f ne system
is the Record. A Record is a sequence of
characters or a sequence of vdues. There are
three kinds of records:

Formstted.
Unformatted.
Endfne.

A formatted record is a sequence of characters
terminated by the character value which
corresponds to the "return" key on a terminal
(character value 13). Formatted records are
processed on input consistent with the way thQt
the Operating System and Text Editor process
characters. Thus, reading characters from
formatted records in FORTRAN is identical to
reading characters in other System programs and
other langusges on the System. Formatted files
are normally transportable across p-System
implementations on different processors.

11-4 1000201:11A

1/0 System

An unformatted record is a sequence of vdues,
with no System alteration or processing; no
physical representation for the end of record
exists. Unformatted fnes generated on different
processors aLre not genera]ly interchangable, since
the internd representations of integers and reds
differ among processors.

The System makes it appear as though an endfne
record exists after the last record in a f ile,
8lthough no physicd endfne maLrk ever exists.

Files

A FORTRAN file is a sequence of records.
FORTRAN fnes are one of two kinds:

Externd.
htel.nd.

An external FORTRAN ffle is a fne on a device
or the device itself . An internal FORTRAN file
is a charscter vsriable which serves as the
source or destination of some VO action. Fi.om
this point on, both FORTRAN f iles and the
notion of a file as known to the Operating
System and the Editor wfll be referred to simply
as files, with the context determining which
meaning is intended. (The OPEN statement
provides the linkage between the two notions of
fnes; and in most cases the ambiguity disappears,
since after a f ile has been opened, the two
notions are one and the same.)

1000201:11A 11-5

1/0 System

File Properties

A fne which is being acted upon by a FORTRAN
program has a variety of properties. Tliese
properties ai'e described in the f ollowing
paragrsphs.

Pile Name

A fne may have a nsme. If pi.esent, a name is
a character string identicd to the name by
which it is known to the File System. There
may be more than one name for the same file,
such as SYS:A.TEXT and #4:A.TEXT.

File Position

A ffle has a position property whicli is usually
set by the previous 1/0 operation. There is a
notion of the initial point in the file, the
termind point in the file, the current record,
the preceding record, and the next record of
the file. It is possible to be between records
in a fne, in which case the next record is the
successor to the previous record and there is
no current record. TTie f ne position after
sequenti81 writes is at the end of file, but not
beyond the endfile record. Execution of the
ENDFILE statement positions the file beyond
the endfile record, as does a read statement
executed at the end of f ne (but not beyond
the endfne record). Reading an endfile record
may be trapped by the user using the END=
option in a READ statement.

11-6 1000201:11A

VO System

Form&tted and Unform&tted Pi]es

An externd fne is opened as either formatted
or unformstted. All internal files are
formatted. Files which are formatted consist
entirely of formatted records, and f fles which
are unformatted consist entirely of unformstted
records. Fnes which are formatted obey all
the structural rules of .TEXT fnes, so that
they are fully compatible with the System Text
Editor,

Sequentid/Direct Access

An externd fne is opened as either sequentid
or direct. Sequentid fnes contain records with
an order ppoperty determined by the order in
which the records were written (the normal
sequentid order). These fnes must not be read
or written using the REC= option which
specifies a position for direct access 1/0. The
System wnl attempt to extend sequentisl Qccess
ffles, if a record is written beyond the old
terminating boundary of the f ne; but the
success of this depends on the existence of
room on the physicd device at the appi`opriate
location.

Direct access f nes may be read or written in
any order (they are .random access files).
Records in a direet access ffle are numbered
sequentidly, with the first record numbered
one. An records in a direct access file have
the same length, which is specified at the time
the fne is opened. Each record in the fne is
uniquely identified by its record number, which

1000201:11A 11-7

1/0 System

was specified when the record wss written. It
is entirely possible to write the records out of
order, includirg, for example, writirE record 9,
5, and 11 in that order without the records in
between. It is not possible to delete a record
once written, but it is possible to overwrite a
record with a new value. It is an error to
read a r6cord from & direct access f ile which
has not been written; but the System will not
detect this error, unless the record which is
being read is beyond the last record written in
the f ile (a non-written record before the end-
of-file contains garbage). Direct access f nes
must reside on blockitructured peripherd
devices such as the diskette, so that it is
meaningful to specify a position in the ffle and
reference it. The System will attempt to
extend direct access files, if an attempt is
made to write to a position beyond the
previous terminating boundary of the file.
However, the success of this depends on the
existence of room on the physicsl device at
the appropriate location.

Internal Files

hternd files provide a mechanism fop using the
formatting capabilities of the 1/0 System to
convert values to and from their external
chaLracter representations, within the FORTRAN
internal storage structures. TTiat is, reading a
chQracter variable converts the character vdues
into numeric, logicsl, or character vdues; and
writing into a character variable allows vdues to
be converted into their (exterml) character
representation.

11-8 1000201:11A

1/0 System

Specid Properties of lnternd Files

An internal file is a character variab]e or
character array element. The fne has exactly
one record, which has the same. length as the
character variable or character ari'ay element.•Should less than the entire record be written
by a WRITE statement, the remaining portion
of the record is filled with blanks. The file
position is always st the beginning of the fne
prior to 1/0 statement. execution. Only
form&tted, sequential 1/0 is perrriitted with
internal fnes; and only the 1/0 ststements
READ and WRITE may specify an internd fne.

Units

A unit is a means of referring to a fne. A unit
specified in an 1/0 statement is one of:

Externd unit specifier.
hternsl fne specifier.

External unit specifiers sre either integer
expi.essions which evaluate to non-negative
vdues; or the character *, which stands for the
CONSOLE: device. In most cases, externd unit

;Eeecsifieersiä:nutesonar:h:::näetv?c::ysic,dn:emveic::s!%
the OPEN ststement). Once this binding of value
to System file name occurs, FORTRAN 1/0
statements refer to .the unit number as a means
of referring to the appropriate external entity.
Once opened, the external unit specifier vslue is
uniquely associated with a particular externd
entity until an explicit CLOSE occurs or until

1000201:11A 11-9

1/0 System

the pi.ogram terminates. The only exception to
the above binding rules is that the unit vdue 0
is initially associated with the CONSOLE: device
for reading and writing, and no explicit OPEN is
necessary. The character * is interpreted by the
System as specifyirg unit 0.

An internd f ne specifier is a character variable
or chara'cter array element which directly
specif ies an internd file.

CONCEPTS AND LIMITATIONS

The FORTRAN 1/0 Systen

FORTRAN provides a rich combination of possible
fne structures. Choosing from among these many
structures may at f irst seem somewhst confusing.
However, two kinds of fnes wfll suffice for most
applications.

* - CONSOLE:, a sequential, formatted file,
also known as unit 0 - 'mis paLrticular unit has
the special property that an entire line
terminated by the return key must be entered
when reading from it, and the various
backspace and line delete keys familiar to the
System user serve their normal functions.
Note that & READ fi`om any other unit will
not have these properties, even if that unit is
bound to CONSOLE: by an explicit OPEN
ststement.

11-10 1000201:11A

1/0 System

Explicitly opened external, sequential,
formatted files - 'mese files are bound to a
System file by name in an OPEN statement.'ITiey .can be read and written in the System
Text Editor compatible format.

CoDDon I/o opeTations

Here is a sample program which LBes the kinds of
f iles discussed in the previous pQragraph for
reading and for writing. The various 1/0
statements are explained in detail later in this
chapter in the "V0 Statements" Section.

C Copy a f ile with three colurnns of integers, each 7
C columns vide, f[om a file whose riame is input by the
C use[to another f ile named OUT.TEXT, [eversing the
C positions of the f irst and second co]umn.

PROGRAM COLSWP
CHARACTE:R*23 FNAME

C Prompt to the CONSOLE:: by w[itirig to +
WRITE (. , 900)

900 FORHAT('Input file name -'
C Read the f ile name from the CONSOLE: by readirig f[om '

READ(',910) FI`'AME
9lo FOF`mT (A)
C Use unit 3 for input, any unit number e*cept 0 will do

0PEN(3,FILE=FNAM,E)
C Üse unit 4 for outpiit, any uriit number except 0 and 3
C will do

OPEN (4 , F ll,E= ' OUT. TEXT ' , STATUS= ' NEW ')
C Read and w[ite until end of f ile
100 READ(3,920,END=200)I,J,K

WRITE (4, 920) J , I ,K
920 FORmT(BN, 3i7)

GOT0 100
200 WRn.E(.,910) 'Done'

END

1000201:11A 11-11

1/0 System

Less Common File Oper&tions

The less commonly used file structures are
appropi.iate for certain classes of applications. A
very generd indication of the intended usages for
them are as fouows: If the 1/0 is to be random
access, such as in maintainir€ a databsse, direct
access f nes are pi.obably necessary. If the data
is to be written by FORTRAN and reread by
FORTRAN (on the same brand of processor),
unformatted fnes are more efficient both in file
space and in 1/0 overhead. The combination of
direct and unformatted is ideal for a database to
be crested, maintained, and sccessed exclusively
by FORTRAN. If the data must be transferred
witliout any System interference, especially if sll
256 possible bytes will be transferred,
unformatted 1/0 will be necessary, since .TEXT
f iles sre consti.ained to contain only the printable
character set as data. An example of a usage of
unf ormatted 1/0 would be in the control of a
device which has a single byte, bimry interfsce.
Formatted 1/0 would, in this example, interpret
certain characters, such as the ASCIl
representation for carriage return, and fail to
pass them thi`ough to the program unaltered.
Internd files are not V0 in the conventional
seru5e but rather provide certain character string
operations and convei.sions within a standard
mechanism.

Use of fbrmatted direct files requires special
caution. FORTRAN formatted files attempt to
comply with the Operating System-rules for
.TEXT files (for a discussion of .TEXT files, see
the UCSD stem 0 eratin stem User Guide
manual). FORTRAN 1/0 is able to enfoi:ce these
rules for sequential files, but jt cannot always

11-12 1000201:11A

1/0 System

enforce them for direct files. Direct files are not
necessarily legal .TEXT files, since any unwritten
records contain undefined values which do not
follow .TEXT file constraints. Direct files do, of
course, obey FORTRAN 1/0 rules.

A f ne opened in FORTRAN is either "old" or
"new", but there is no concept of "opened for
reading" as distinguished from "opened for
writing". Therefore, you may open "old"
(existing) ffles and write to them, with the effect
of modifying existing files. Simflarly, you may
a]termtely write and read to the same f ile
(providing that one avoids reading beyond end of
file or reading unwritten records in a direct
files). A write to a sequentid ffle effectively
deletes any records which had existed beyond the
freshly written record. Normally, when a device
is opened as a file (such as CONSOLE: or
PRINTER:), it makes no difference whether the
fne is opened as "old" or nnew". With diskette
f iles, opening ''new" creates a new temporary
file. If that file is closed using the "keep"
option, or if tlie progi.am is terminated witliout
doing a CLOSE on that file, 8 permanent fne is
crested with the name given when the file was
opened. If a pi.evious file existed with the same
name, it is deleted. If c]osed using the "delete"
option, the newly created temporary f ile is
deleted, and any previous fne of tlie same name
is left intact. Opening a diskette fne as "old"
wnl generate a run time ei`ror if the file does
not exi§t and alter the existing file if written.

1000201:11A 11-13

1/0 System

Limitations of 1/0 Systen

Direct Files with Blocked Devices

Tlie Operating System uses two kinds of
devices: blockitructured and sequential.
Sequential files may be thought of as streams
of characters, with no explicit motion allowed
except reading and/or writing. CONSOLE: and
PRINTER: are examples of sequentid devices.
Blockitructued devices, such as diskette files,
allow the additional operation of seeking a
specific locstion. They can be accessed either
sequentislly or randomly and tlius can support
direct files. Since tliere is no notion of
seeking a position on a file which is not block-
structured, FORTRAN 1/0 does not sllow
direct fne access to sequentid devices.

BACKSPACE Use

Sequential devices can not be backspaced
meaningfully under the Operating System, so
FORTRAN 1/0 disallows backspacing a fne on
a sequential device (see the next p&ragraph).

BACKSPACE Restrictions

lt is not possible to implement BACKSPACE on
unformatted sequential f iles, since there is no
indication in the f ile itself of tlie record
boundsries. It would be possible to append end
of recoi.d marks to unformatted sequentid files,
but this would interfere with tlie notion of an

11-14 1000201:11A

1/0 System

unformatted file being a "pue" sequence of
values and would intei.fere with the most
common usage for such files, such as tlie. direct
control of an external deviee. Direet files
contQin i.eeords of fixed and specified length,
so it is possible to backspace direct
mfoi.matted files.

VO Statement Side Effects

During the course of executing any 1/0
statement, the evaluation of an expression mQy
cause. a function to be called. That function
call must not cause any 1/0 statement to be
executed.

1/0 STATEMENTS

This Section describes these 1/0 statements which
are available fi.om FORTRAN:

OPEN
CLOSE .
READ
WRITE
BACKSPACE
ENDFILE
REWIND

1000201:11A 11-15

1/0 System

In addition, there is an 1/0 intrirBic fun6tion Eoli.,
presented in Chapter 13, which 'returns a logical
value indicating whether the file associated with
the unit specifier passed to it is at endof-file. A
familiarity with the FORTRAN file system, units,
recoi`ds, and access methods as described in the
previous Sections is assumed.

Elements of 1/0 Statements

The various 1/0 statements take certain
parameters and arguments which specify sources
and destinations of data transfer, as well as
othei. facets of the I/0.operation. The
abbreviations used throughout this Section are
defined in the following three subsections.

The Unit Specifier ('u')

The unit specifier, 'u', can take one of these
forms in an 1/0 statement:

* - refers to the CONSOLE:.

integer expression - refers to external file
with unit number equal to the value of the
expression (* is unit number 0).

name of a character variable or char&cter
ai'ray element - refers to the intei`ml file
which is the chai.acter datum.

11-16 1000201:11A

VO System

The Format Specifier ('f')

The format specifier, 'f', can take one of these
forms in an VO ststement:

statement label - refers to the FORMAT
statement labeled by that lsbel.

integer variable name. - refers to the
FORMAT label which that integer variable
has been assigned to using the ASSIGN
statement.

character expression - the format which is
specified is the current value of the
character expression provided as the format
specifier.

The lnput/Output List ('iolist')

The input/output]ist, 'iolist', specifies the
entities whose values are trarisferred by READ
and WRITE statements. An iolist is a possibly
empty list, separated by commas, of items
which consist of:

nput or Output entities - see the following
two subsections.

1000201:11A 11-17

1/0 System

Implied DO lists - see "Implied DO Lists" in
this section.

mput Entities

An input entity may be specified in the iolist
of a READ statement and is of one of these
forms:

Variable name.

Array element name.

Ari.ay name - this is a means of specifying
all of the elements of the array in storage
sequence order.

Output Entities

An output entity may be specified in the
iolist of a WRITE statement and is of one of
these forms:

Variable name;

Array element name;

Array name - this is a means of specifying
all of the elements of the &ri.ay in storage
sequence order;

11-18 1000201:11A

1/0 System

Any other expression not beginning with
the character '(' - to distinguish implied
DO lists from expressions.

Implied DO lists

lmplied DO lists may be specified as items in
the 1/0 list of READ and WRITE statements
and are of the form:

(iolist, i = el, e2 [, e3])

where the iolist is as above (including nested
implied DO lists); and i, el, e2, and the
optional e3 are as defined for the DO
statement. That is, i is an integer variable;
and el, e2, and e3 are integer expressions.
In a READ statement, the DO variable i (or
an associated entity) must not appear as an
input list item in the embedded iolist, but
may hsve been read in the same READ
statement outside of the implied DO list.
The embedded iolist is effectively repeated
for each iteration of i with appropriate
substitution of values for the DO variable i.

1/0 Statemeiits

The following 1/0 statements are supported by
FORTRAN. The possible form for each
statement is specified first, with an explamtion
of the meanings for the forms fouowing. Certain
items are specified as required, if tliey must
appear in the statement; and are specified as
optional, if they need not appear. Typically,

1000201:11A 11-19

VO System

optional items have defaults. Examples are
provided.

OPEN St&tement

OPEN(

u,

Required; must appear as the first argument.
Must not be internal unit specifier.

FILE=fname,

'ITie fi]e name, 'fname', is a character
expression. This argument to OPEN is
required and must appear as the second
argument.

The following arguments are au optioml and
may appear in any order. The options are
character constants with optioml trailing
blanks (except RECL=). Defaults are
indicated.

STATUS='OLD'

De-fault, for reading or writing existing files.

11-20 1000201:11A

1/0 System

STATUS='NEW'

For writing new files.

ACCESS='SEQUENTIAL' (Default)

ACCESS='DIRECT'

FORM='FORMATTED' (Default)

FORM='UNFOR.MATTED'

RECL=rl)

The recoi'd length, 'rl', is an integer
expression. This argument
DIRECT access files only,
required.

o 0PEN is for
or which it is

The OPEN statement binds a unit number with
an external device or file on an external
device by specifying its file name. If the file
is to be direct, the RECL=rl option specifies
the length of tlie records in that file.

1000201:11A 11-21

VO System

Example program fragment 1:

C P[ompt use[fo[a f ile name
WRm'E(.,'(A.Specify output file name -'

C P[esume that FNAME is specif ied to be CllALRACTER+23
C Read the f ile riame froiTi the CONSOLE:

READ(*,' (A) ') FNAME

C 0pen the f ile as formatted sequential as unit 7, note
C that the ACCESS specif ied need not have appeared since
C it is the default.

OPEN (7 , FILE=FNAME , ACCESS= ' SEQUENTIAL ' , STATUS= ' NEW') ;

Example program fragment 2:

C Open an existing f ile c[eated by the editor called
C DATA3.TEXT as unit 3

0PEN (3 , F I LE= ' l)ATA3 . TEXT ')

CLOSE Statement

CLOSE(

u,

Required; must appear as the first argument.
Must not be internal unit specifier.

STATUS='KEEP'
STATUS='DELETE'

Optional argument which applies only to files
opened NEW; default is KEEP. The option
is character constant.

)

11-22 1000201:11A

1/0 System

CLOSE disconnects the unit specified and
prevents subsequent 1/0 from being directed to
thst unit (unless the ssme unit number is
reopened, possibly boLmd to a different file or
device). Files opened NEW are temporaries and
are discarded, if STATUS='DELETE' is
specified. Normal termination of s FORTRAN
program sutomatically c]oses an open files as
if CLOSE with STATUS='KEEP' liad been
specified.

Example program fragment:

C Close the f ile opened in OPEN example, discarding the f ile
CLOSE (7 , STATl;S= ' DEl,ETF ' }

READ Statement

READ(

u'

Required; mLöt be first argument.

f,

Required for formatted read as second
argument; must not -appear for unformatted
read.

1000201:11A 11-23

1/0 System

REC=rn

For direct access only; otherwise, error.
Positions to record number rn, where rn is a
positive integer expression. If omitted for
direct access fne, resding continues from
the current position in the file.

END*)

Optional, statement label. If hot present,
reading end of file results in a run time
error. If present, encountering an end of
file condition results in. the transfer to the
executable statement labeled s which must
be in the same program unit as the READ
statement.

iolist

The READ statement sets the items in iolist
(assuming thst no end of file or error condition
occus). If the read is internal, the character
variable or character array element specified is
the source of the input; otherwise, the external
unit is the source.

Example program fragment:

C Need a two dimensional a[ray fo[the example
DIMENSI0N IA(lo,20)

C Read in bounds for array off f i[st line, hopefully less
C than 10 and 20. Then read in the array in nested
C implied DO lists with input fo[mat of s columns of width
C 5 each.

READ (3 , 990) I ,J , ((IA (I ,J) ,J-1,J) ,1=1, I ,1)
990 E`OBMAT(215/, (815))

11-24 1000201:11A

1/0 System

WRITE Statement.

WRITE(

u'

Required; must tE first argument.

f,

Required for formatted write as second
argument; must not appear for unformatted
write®

REC=rn)

For direct access only; otherwise, error.
Positions to record number i.n, where rn is a
positive integer expression. If omitted for
direct access file, writing continues at the
current Emsition in the file.

iolist

The WRITE statement transfers tlie iolist items
to the unit specified. If the write is interml,
the character vsriable or character array
element specified is the destination of the
output; otherwise, tlie external unit is the
destination.

1000201:1lA 11-25

1/0 System

Example program fragment:

C Place message: .One = 1, Two = 2, Th[ee = 3. on the
C CONSOLE:, not doing things in the simplest way!

WRITE(*,980)'One =',],1+l,'ee = ',+(1+1+1)
980 FORMAT(A,12,'. Two =',1X,Il,', Thr',A,Il)

BACESPACE Statement

BACKSPACE u

Unit is not internal unit specifier. Can only
be issued on units which are bound to
blocked devices. Can only be issued on
units which are direct or sequential
formatted (i.e., not on sequential
mformatted).

BACKSPACE causes the fi]e connected to the
specified unit to be positioned before the
preceding record. If there is no preceding
record, the file position is not changed. Note
that if the preceding record is the endfile
record, the file becomes positioned before the
endfile record.

ENDPILE Statement

ENDFILE u

Unit is not an intern81 unit specifier.

11-26 1000201:11A

1/0 System

ENDFILE ''writes" an end of fi]e reeord as the
next record of the fne connected to the
specified unit. The file is then positioned
after the end of file record, so futher
sequential data transfer is prohibited until
either a BACKSPACE or REWIND is executed.
An ENDFILE on a direct access file makes all
records written beyond the position of tlie new
end of file disappear.

REWIND Statement

REWIND u

Unit is not an internsl unit specifier.

Execution of a REWIND ststement causes the
file associated with the specified unit to be
positioned at its initial point.

VO Side Effects Restriction

Any function referenced in
any 1/0 Statement mtBt
statement to be executed.

100020l:1lA

an expression within
not cause any VO

11-27

C H AP TE R 12

PORMATTED 1/0

A N D T H E

F O R M A T STA TE H E N T

Formatted 1/0 and the FORMAT Statement

'IT`is chapter describes formatted 1/0 and the
FORMAT statement.
FORTRAN fiie system, AunitasTjLi%rcj#dsYjtahcc:t:
methods, and VO stetements as described in the
previouts chapters is eLssumed.

FORMAT SPECIFICATIONS

lf Q READ or WRITE statement specifies G format,
it is considered a formatted, rather than an
unformatted V0 statement. Such a format may be
specified in one of three ways, as explained in the
previous chapter. Two ways refer to FORMAT
statements, and one is m immediate format in the
form of a character expression containing the
format itself . The following are all valid and
equivdent means of specifying a format:

WRITE (. , 990) I , J , K
990 F`ORMAT(215,13)

ASSIGN 990 TO IF`MT
99o FORmT(215,13)

WRITE (' , I FHT) I , J ,R

mlTE (* ,1 (215,13) .) I ,j ,K

CHARACTER.8 F[lTCH
rMTCH - ' (215,13) '
WRITE (. , FHTCH) I , J , R

'me format specificstion itself must begin with "(",

#:Fh£bLay fmoartoc¥££nn%]#;:±.aL bL€:är::taDe::tebr:;oanndd :#:
matching ")" are ignored.

FORMAT statements muBt be labened, 8nd like dl
nonexecutable statements, may not be the target of
a branching operation.

1000201:12A 12-3

Formatted 1/0 8nd the FORMAT Statement

Between the initid "(" and termimting ")" is a list
of items, separated by commas, each of which is
one of :

[i'] ed - repeatable edit descriptors

ned - norLrepeatable edit descripors

[r] fs - a nested format specification. At most
3 levels of nested parenthesis are permitted
within the outermost level.

where r is an optiomlly present, nonzero, unsigned,
integer constant called a repeat specification. The
comma separating two list items may be omitted, if
the resulting format specification is still
unambiguous, such as after a P edit descriptor or
before or after the / edit descriptor.

The repeatable edit descriptors, explained in detail
below, Qre:

Iw
Fw.d
Ew.d
Ew.dEe
Lw
A
Aw

where 1, F, E, L, and A indicate the manner of
editing; w and e are nonzero, unsigned, integer
constants; and d is an unsigned integer constent.

The nonrepeatable edit descriptors (Qlso explained
in detafl below) aDe:

12-4 1000201 :12A

Formatted 1/0 and the FORMAT Statement

'xxxx' - character constants of any length; see
specid rules below

nHxxxx - another means of specifying chai.acter
constants; see rules below

where apostrophe, H, X, slash, baekslash, P, BN,
and BZ indicate the manner of editing; x is any
ASCIl character; n is a nonzero, unsigned, integer
com5tant; and k is an optionally signed integer
CorBtant.

FORMAT AND 1/0 LIST

Before desci.ibing in greater detan the manner of
editing specified by each of the above edit
descriptors, it must be explained how the format
specification interacts with the input/output list
(iolist) in a given READ or WRITE statement.

If an iolist eontains at least one item, at least one
repeatable edit descriptor must exist in tlie format
specification. In particular, the empty edit
specification, (), may be used only if no items are
specified in the iolist (in which case the only

:::ioo,ndcsak¥p:inByatchteioln'oassst::;am,:ätisitihefoirmmp:itcsi,:
Each item in the iolist wm become associated with
a repeatable edit descriptor during the 1/0

1000201:12A 12-5

Formatted 1/0 and the FORMAT Statement

statement exeeution in turn. In contrast to this,
the other format control items interact directly
with the record and do not become associated with
items in the iolist.

The items in a format specification are interpreted
fi.om left to right. Repeatable edit descriptors act
as if they were pi.esent r times (omitted r is
treated ss a repeat factor of 1). Similarly, a
nested format specification is treated as if its
items appeared r times.

The formatted 1/0 process proceeds as follows: The
"format controner" scans the format items in the
order indicated above. When a repeatable edit
descriptor is encountered, either

a corresponding item appears in the iolist, in
which case the item and the edit descriptor
become associated, and 1/0 of that item proceeds
under format control of the edit descriptor; or

the ''format controner" terminates 1/0.

If the format contpouer encounters the matching
final) of the format specification; and there are
no further items in the iolist, the "format
controner" terminates 1/0. If, however, there are
futher items in the iolist, the file is positioned at
the beginning of the next record; and the "format
controller" continues by rescanning the format,
starting at the beginning of the format
specification terminated by the last preceding right
parenthesis. If there is no such preceding right
parenthesis, the "format conti'oller" wfll rescan the
format from the beginning. Within the portion of
the format rescmned, there must be at least one

12-6 1000201:12A

Formatted 1/0 and the FORMAT Ststement

repeatable edit descriptor. Should the rescan of
the format specificstion begin witli a repeated
nested format specification, the repeat factor is
used to indicate the number of times to repeat that
nested format specification. The rescan does not
change the previously set scale factor or BN or BZ
blank control in effect. When the ''format
conti.oller" terminstes, the remaining chai`8cters or
an input record is skipped or sn end of record is
written on output, except as noted under the edit
descriptor.

EDIT DESCRIPTORS

Here are the detaned explanations of the various
format specification descriptors, beginning with the
nonrepeatable edit descriptors:

Nonrepeat&ble Edit Descriptors

'xxxx' (Apostroplie Editing)

The spostrophe edit descriptor has the form of
a character constant. Embedded blanks are
significant, and double " are interpreted as a
single '. Apostrophe editing may not be used
in a READ ststement. It causes the character
corist&nt to be transmitted to the output unit.

100020l=12A 12-7

Formatted 1/0 and the FORMAT Statement

H (Houerith Editing)

The nH edit descriptor causes the following n
characters, with blanks counted as significant,
to be transmitted to the output. Hollerith
editing may not be -used in a READ.

Examples of Apostrophe and Honerith editing:

C Each write outputs cha[acters between the
C slashes: /ABC'DEF/

WRITE (. , 970)
970 PORMAT('ABC' 'DEF')

WRITE (* , . (' 'ABC. . ' 'DEF' ') ')
WRITE (' , ' (7HABC ' ' DEF) ')
WE ITE (' , 960)

96o FORmT(7HABC'DEF)

X (Positiond Editing)

On input (a READ), the nx edit descriptor
causes the`file position to advance over n
characters; thus, the next n characters are
skipped. On output (a WRITE), the nx edit
descriptor causes n blanks to be written,
providing that further writing to the record
occurs; otherwise, the nx descriptor results in
no operstion.

/ (Slash Editing}

The slash indicates the end of dat& transfer on
the current record. On input, the fne is
positioned to the beginnir€ of the next record.
On output, an end of record is written; and
the file is positioned to write on the beginning
of the next re¢ord.

12-8 1000201:12A

Formatted 1/0 and the FORMAT Statement

\ (Bsckslash Editing)

Normslly when the "format controller"
terminates, the end of dsta trarLsmission on the
current record occurs. If the last edit
descriptor encountered by the "format
controller" is the bsckslash, this automatic end
of recoi`d is inhibited. This allows subsequent
1/0 statements to continue reading (or writiiü)
out of (or into) the same recoi.d. The most
common use for this mechanism is to prompt to
the CONSOLE: and read a response off the
same line as in:

WRITE(*,'(AV') 'Input an integer -> '
READ(*,'(BN,16)') I

The backslash edit descriptor does not inhibit
the automatic end of record generated when
reading from the + unit. Input from the
CONSOLE: must dwsys be terminated by the
return key. This pei.mits the backspace
character and the line delete key to function
properly.

P (Scde Factor Editing)

The kp edit descriptor is used to set the scde
f actor for subsequent F and E edit descriptors,
untfl anotlier kp edit descriptor is encountered.
At the start of each 1/0 statement, the scde
factor equals 0. The scale factor affects
format editing in the following ways:

1000201:12A 12-9

Formatted 1/0 and the FORMAT Ststement

On input, with F and E editir€, providing that
no explicit exponent exists in the field, and F
output editing, the extermlly represented
number equals the internally represented
number multiplied by 10**k.

On input, with F and E editing, the scale
factor has no effect, if there is an explicit
exponent in the input field.

On output, with E editirg, the real part of the
quantity is output multiplied by 10.*k; and the
exponent is reduced by k (effectively altering
the column position of the decimd point, but
not the vdue that is output).

BN ®nd BZ (Blank hterpret&tion)

These edit descriptors specify the
interpretation of blanks in numeric input fields.
The default, BZ, is set at the start of each
VO ststement. This makes blanks, other than
leading blanks, identical to zeros. ff a BN
edit descriptor is processed by the "format
controller", blanks in subsequent input fields
will be ignored, unless, and until, a BZ edit
descriptor is processed. The effect of ignoring
blanks is to take all the nonblank characters in
the input field and treat them as if they were
right justified in the field with the number of
leading blaiks equal to the number of ignored

12-10 1000201:12A

Formatted 1/0 and the FORMAT Statement

blanks. For instance, the fonowing READ
ststement shown accepts the characters shown
between the slashes as the value 123 (where
<cr> indicates hittiig the return key):

READ(,,100) I
Ioo FORmT.(BN,16)

/123 <cl>/,
/123 456<cr>/,
/123<cr>/, or
/ 123<cr>/,

The BN edit descriptor, in conjunction with the
infinite blank paddirg at the end of formstted
records, makes interactive input very
convenient.

Repeat&ble Edit Descriptors

1, F, and E (Numeric Editing)

The 1, F, and E edit descriptors are used for
1/0 of integer and real data. The fonowing
generd rules apply to all three of them:

On input, lesding blsnks are not significant.
Other bl8nks are interpreted differently;
depending on the BN or BZ flag in effect;
but all blank fields dways become the value
0. Plus signs are optional.

On input, with F and E editing, 8n explicit
decimd point appearing in the input field
overrides the edit descriptor specification of
the decimd point position.

1000201:12A 12-11

Formatted VO and the FORMAT Statement

On output, the characters generated are
right justified in the field with padding
leading blanks, if necessary.

On output, if the number of characters
produced exceeds the field width; or the
exponent exceeds its specified width, the
entire field is filled with ssterisks.

I (Integer Editing)

The edit descriptor lw must be associated with
an iolist item which is of type integer. The
field width is w characters in lengtli. On
input, an optioml sign may sppear in the field.
The general rules in the preceding paragraphs
apply to the 1 edit descriptor.

F (Real Editing)

The edit descriptor Fw.d must be associated
with an iolist item which is of type real. The
width of the field is w positions, the fractional
part of which consists of d digits. The input
field begins with an optiond sign, followed by
a string of digits, optiomlly containing a
decimal point. If the decimal point is present,
it ovei.rides the d specified in the edit
descriptor; otherwise, the rightmost d digits of
the string are interpreted as following the
decimal point (with leading blanks converted to
zeros if necessary). Following this is an
optioml exponent which is one of:

12-12 1000201:12A

Formatted 1/0 and the FORMAT Statement

plus or minus, fonowed by an integer; or

E or D, followed by zero or more blanks,

t:tne:::d(Ebyan:nDopat;:nt:eäiEä,i:oe::itäy?.yan

The output field occupies w digits, d of which
falls beyond the decimd point, and the value
output is controned both by the iolist item and
the current scsle factor. The output v81ue is
rounded rather than truncated.

The preceding generd rules apply to the F edit
descriptor.

E (Red Editing)

An E edit descriptor either takes the form
Ew.d or Ew.dEe. In either csse, the f ield
width is w characters. The e has no effect on
input. The input field for an E edit descriptor
is identical to that described by an F edit
descriptor with the same w and d. The form
of the output field depends on the scale factor
(set by the P edit descriptor) which is in
effect. For a scale factor of 0, the output
f ield is & minus sign (if necessary), fonowed by
a dc€imal point, followed by a string of digits,

:o£l'o:fdontyofanth:xfgunoe#ngfi::fm::orexponent'

Ew.d -99 <= exp <= 99
E, fonowed by plus oi. minus, fonowed by
the two digit exponent.

100 02 01 :12A 12-13

Formatted 1/0 and the FORMAT Ststement

Ew.d -999<=exp <= 999
Plus or minus, fouowed by three digit
exponent.

Ew.dEe |10-*e) - 1) <= exp <= (10**e) -1
E, fouowed by plus or minus, fouowed by e
digits which are the exponent with possible
leadii€ zeros.

The form Ew.d must not be used, if the
absolute value of the exponent to be printed
exceeds 999.

The scale factor controls the decimal
normalization of the printed E field. ff the
scale f actor, k, is in the raiEe -d < k <= 0
then the output field contsins exactly k
leading zeros after the decimd point and d + k
significant digits after this. If 0 < k < d+2
then the output field contains exactly k
significant digits to the left of the decimsl
point and d - k - 1 places after the decimal
point. Other values of k are errors.

The preceding generd rules apply to the E edit
descriptor.

L ("icd Editing)

TTie edit descriptor is Lw, indicating that the
f ield width is w chsracters. The iolist element
which becomes associated with an L edit
descriptor must be of type logicd. On input,
the f ield corEists of optiond blanks, fouowed
by an optioml decimd point, followed by a T

12-14 1000201:12A

Formatted 1/0 and the FORMAT Statement

(for .TRUE.) or and F (for accepted on input,
so that .TRUE. eri .FAI,SE. are vdid inputs.
On output, w - 1 blanks are fonowed by either
T or F Gs apE)ropriate.

A (ChoT®cter Edltlng)

'nie forms of the edit descriptor are A or Aw.
If w is not present, the number of characters
in the iolist item, with which it becomes
associated, determines the leigth (an implicit
w). The iolist item must be of chaDacter type
if it is to be associated with an A or Aw edit
descriptor. On input, if w exceeds or equals
the number of characters in the iolist element,
the rightmost characters of the input field are
used as the input characters; otherwise, the
input characters are left justified in the input
iolist item, and trailing blanks are provided.
On output, if w should exceed the characters
E)roduced by the iolist item, leading blanks are
provided; otherwise, the leftmost w chaDacters
of the iolist item aDe output.

1000201:12A 12-15

C H A P TE R 13

PROGRAMS

AND

SUBROUTINES

Programs and Subroutines

This chapter describes the format of program units.
A program unit is either a main program, a
subroutine, or a function program unit. The term
proeedure is used to refer to either a function or a
subroutine. This chapter dso describes the CALL
and RETURN statements as wen as function calls.

MAIN PROGRAH

A main program is any program unit that does not
hsve a FUNCTION or SUBROUTINE statement as
its first statement. It may have a PROGRAM
ststement `as its first statement. The execution of
a program always begins with the first executable
statement in the main program. CorBequently,
there must be precisely one main program in every
executable pi.ogram. The form of a PROGRAM
statement is:

PROGRAM pname

where: 'pname' is a user def ined name that is
the name of the main progrsm.

The name 'pmme' is a global name. Therefore, it
cannot be the same as another external prcN?edure's
name or a common block's name. It is also a local
name to the main program and must not conflict
with any local name in the main program. `me
PROGRAM statement may driy appear as the first
statement of a main program.

1000201:13A 13-3

Progrsms md Subroutines

SUBROUTINES

A subroutine is a program unit that can be called
from other program units by s CALL ststement.
When envoked, it performs the set of actions
def ined by its executable statements and then
returns control to the ststement immediately
following the statement that cslled it. A
subroutine does not directly return a value,
although values csn be passed back to the cauing
program unit via parameters or common .v8['isbles.

SUBROUTmE Statement

A subroutine begins with a SUBROUTINE
statement snd ends with the first fouowing END
statement. It may contain sny kind of statement
other than a PROGRAM ststement or a
FUNCTION statement. The form of a
SUBROUTINE ststement is:

SUBROUTINE sname [([farg [, farg]...])]

'sname' is the user defined name of the
subroutine.

'farg' is a user defined naine of a formal
argument.

TTie name 'sname' is a globd name, and it is
also lcx:al to the subroutine it names. Tt`e list
of argument names defines the number and
(with any subsequent IMPLICIT, type, or
DIMENSION statements) the type of arguments

13-4 1000201:13A

Programs and Subroutines

to that subroutine. Argument names csnnot
appear in COMMON, DATA, EQUIVALENCE, or
INTRINSIC statements.
example of a subroutine:

The fonowing is an

program TEST
irec.3000
b=l . O
h=2.O
a=3 . O
tE4 . O

call prndat (irec,b,h,a,t)
end

subroutir.e prndat (i,u,v,x,y)

open (6 , f i le= ' pr inter : ')
wr ite (6 , 200) i , u , v, x ,y

200 format(I.,4FIO.2)
return
end

3000 1.00 2.00 3.00 1.00

CALL Statement

A subroutine is executed as Q consequence of
executirE a CALL statement in another pi.ogram
unit that references that subroutine. The form
of a CALL statement is:

CALL sname [([arg [,arg]...])]

'sname' is the name of a subroutine.

'arg' is an actual argument.

100020l:13A 13-5

Programs and Subroutines

An actual argument may be either an expression
or the name of an array. The actud arguments
in the CALL statement must agree in type and
number with the corresponding formd arguments
specified in the SUBROUTINE statement of the
referenced subroutine. If there are no arguments
in the SUBROUTINE statement, then a CALL
ststement referenciig that subroutine must not
have any Qctual arguments, but may optiomny
have a matched p&ir of parentheses followir€ the
name of tlie subroutine. Note that a formal
argument may be used Qs an actud argument in
another subprogram call.

Execution of s CALL ststement proceeds as
fonows: All arguments that are expressions are
evduated. All actual arguments ai`e associated
with their corresponding formsl arguments, and
the body of the specified subroutine is executed.
Control is retuned to the statement following
the CALL statement upon exiting the subroutine,
by executing either a RETURN ststement or an
END statement in thst subroutine.

A subroutine specified in any program unit may
be called from any other program unit within the
same executable program. Recursive subroutine
calls, however, are not anowed in FORTRAN.
That is, & subroutine cannot call itself directly,
nor can it call another subroutine that wiu result
in the first subroutine being caued sgsin before
it returns control to its caller.

13-6 1000201:13A

Programs and Subroutines

FUNCTIONS

A function is referenced in an expression and
returns a vdue that is used in the computation of
that expression. There sre three .kinds of
functions: externd functions, intrinsic functions,
md statement functio"5. Tt]is section describes the
three kinds of functions.

A function reference may appear in an arithmetic
expression. Execution of a function reference
causes the function to be evaluated, and the
resulting value is used as an operand in the
containing expression. The form of a function
referenee is:

fname ([GLpg [,argL..])

'fname' is the name of sn externd, intrinsic, or
statement function.

'arg' is an actud Qrgument.

An actual argument may be an arithmetic
expression or an array. 'IT`e number of actual
arguments mList be the same as in the definition of
the function, and the corresponding types must
s8ree.

Externd Punctions

An external function is specified by a function
program unit. It begins with a FUNCTION
statement and ends with an END statement. It
may contain any kind of statement other than a
PROGRAM ststement or a SUBROUTINE

1000201:13A 13-7

Pf'ograms and Subroutines

statement. The form of a FUNCTION statement
is:

[type] FUNCTION fname ([farg [, farg]...])

'type' is one of INTEGER, REAL, or
LOGICAL.

'f name' is the user defined name of the
function.

'farg' is a formsl argument name.

The name 'fname' is a global name, and it is dso
local to the f unction it names. If no type is
present in the FUNCTION statement, the
function's type is determined by def ault and any
subsequent IMPLICIT or type statements that
would determine the type of an ordinary variable.
If a type is present, then the function nsme
cannot appear in any additiond type statements.
In any case, an externd function cannot be of
type character. The list of argument names
defines the number and, with any subsequent
IMPLICIT, type, or DIMENSION statements, the
type of arguments to that subroutine. Neither
argument names nor 'fname' can appesr in
COMMON, DATA, EQUIVALENCE, or "TRINSIC
statements.

The function name must appear as a variable in
the ppogram unit definirg the function. Every
execution of th&t function must assign a vdue to
that variable. TTie find vdue of this variable,
upon execution of a RETURN or of an END
statement, defines the vdue of the function.
After being defined, the vdue of this variable
can be referenced in Qn expression, exactly like

13-8 100020l:13A

Programs and Subroutines

any other variable. An external function may
return vdues in addition to the vdue of the
f unction by sssignment to one or more of its
foi.m81 arguments.

Intrinsic Functions

lntrinsic functions sre functions that sre
predefined by the FORTRAN compner and are
avanable for use in a FORTRAN prQgram. Table
13.1 gives the name, definition, number of
parsmeters, and type of the intrinsic functions
available in p-System FORTRAN 77. An
IMPLICIT statement does not alter the type of an
intrinsic function. For those intrinsic functions
that allow several types of srguments, all
srguments in a single reference must be of the
same type.

All intrinsic functions used in a program unit
must appear in an INTRnqsIC statement.

An intrinsic function name may appear in an
INTRINSIC statement, but only those intrinsic
functions listed in Table 13.1 msy do so. An
intrinsic function name also may appear in s type
statement, but only if the type is the same as
the standard type of that intrinsic function.

Arguments to certain intrinsic functioiu ai`e
limited by the definition of the function begin
computed. For example, the logarithm of a
negative number is undefined and, therefore, not
allowed.

1000201:13A 13-9

Progrsms and Subroutines

Statement Functions

A statement function is a function that is
defined by a single statement. It is similar in
form to an assignment statement. A ststement
function statement can only appear after the
specif ication ststements snd before any
executable statements in the progi.am unit in
which it appears. A statement function is not an
executable statement, since it is not executed in
order as the first statement in its particular
program unit. Rather, the body of a statement
function serves to define the meaning of the
statement function. It is executed, as any other
function, by the execution of a function
reference. The form of a statement function is:

fname ([arg [, arg|..]) = expr

'fname' is the name of the statement function.

'arg' is a formd argument mme.

'expr' is &n expression.

The type of the 'expr' must be assignment
compatible with the type of the statement
function name. The list of formal argument
names serves to define the number and type of
arguments to the statement function. The scope
of formal argument names is the statement
function. Therefore, form81 8rgument names may
be used as other user defined names in the rest
of the program unit enclosing the statement
function definition. The name of the statement
function, however, is local to the enclosing
progpam unit snd must not be otherwise used;
except as the name of a common block or as the

13-10 1000201:13A

Programs and Subroutines

name of a formd argument to another statement
function. The type of all such uses, however,
must be the same. If a formd argument name is
the same as anotlier local name, then a reference
to that name within the ststement function
definir€ it a]ways refers to tlie formal argument,
never to the other ussge.

Within the expression 'expr', references to
variables, formsl arguments, other functions,
array elements, and constants sre allowed.
Statement function references, however, must
refer to statement functions that have been
defined prior to the statement function in which
they appear. Statement functions cannot be
recursively called, either directly or indirectly.

A statement function can only be referenced in
the program unit in which it is defined. The
name of a ststement function cannot appear in
any specification.stQtement, except in a type
statement which may not def ine that name as an
arrsy, and in s COMMON statement as tlie name
of a common block. A ststement function cannot
be of type character.

RETURN STATEMENT

A RETURN statement causes retui.n of control to
the calling program unit. It msy ony appesr in a
function or subroutine. The form of a RETURN
statement is:

RETURN

1000201:13A 13-11

Programs and Subroutines

Execution of a RETURN stQtement terminates the
execution of the enclosing subroutine or function.
If the RETURN statement is in a function, then
the vdue of that function is equd to the current
vdue of the variable with the same name ss the
function. Execution -of an END ststement in s
function or subroutine is equivalent to execution of
a RETURN statement.

PARAMETERS

This section discusses the relationship between
formd and actual arguments in a function or
subroutine ca]l. A formd argument refers to the
name by which the aLrgument is known within the
function or subroutine; and an actud argument is
the specific variable, expression, array, etc., psssed
to the procedure in question at any specific calling
locstion.

Arguments are used to pass vQlues into and out of
procedures. VaLriables in common can be used to
perform this task as well. The number of actual
arguments must be the same as formd arguments,
and the corresponding types must agree.

On entry to a subroutine or function, the actusl
arguments become associated with the formal
arguments, much ss an EQUIVALENCE statement
associates two or more arrays or variables, and
COMMON statements in two or more program units
associate lists of variables. This association
remains in effect until execution of the subroutine
op function is terminated. Thus, assigning a value
to a formal argument during execution of a
subroutine or function may alter the vdue of the

13-12 1000201:13A

Programs and Subroutines

corresponding actual argument. If an actual
argument is a constant, function reference, or an
expression other than a simple variable, assigning a
vdue to the corresponding formd argument is not
anowed, Qnd may have some strange side effects.
In particular, assigning a value to a formal
argüment of type character, when the actud
argument is a literal, can be disaLstrous.

If an actusl argument is an expression, it is
evaluated immediately prior to the association of
formal and actual arguments. If an actual
argument is an array element, its subscript
expression is evaluated just prior to the association
and remains constant throughout the execution of
the procedure, even if it contairLs variables that
are redefined during tlie execution of the
procedure.

A formal argument that is a variable may be
associated with an actual argument that is a
varisble, an srray element, or an expression.

A formal argument that is an array may be
associated with an actual argument that is an array
or an array element. The number and size of
dimensions in a formd argument may be different
than those of the actual argumen.t, but any
reference to the forma] array must be within the
limits of the storage sequence in the actual array.
While a reference to an element outside these
bounds is not detected as an error in a running
FORTRAN program, the results ai.e unpredictable.
Intrinsic
f u r` c t i o n

Type Conversion

1000201:13A 13-13

Programs and Subroutines

arctan(al/a2)

Hyperbolic sine sinh(a)

13-14

XINI Real lntegeT

I SQRT Rea l Rea l

1 EXP Real Real

1 AI,OG Rea l Rea l

1 Al,Ocl o Rea l Real

1 SIN Real Real

1 COS Real Real

1 TAN Feal Real

1 ASIN Real Real

1 ACOS Rea l Real

1 ATAll' Rea l Rea l

2 ATAN2 Rea l Rea l

1 SINH Real Real

1000201:13A

Programs and Subroutines

Table 13.1 lntrinsic Functions

T®ble 13.1 Notes

1) For a of type real, if a >= 0 then int(a) is the

!n¥iae)Stk!nttheege:o::tn::ea:::: ::::g:; £nfota i:s: :£::
a. IFIX(a) is the same ss INT(8).

2) For a of type integer, REAL(8) is to the
grestest possible precision. This vsries from
processof to processor. FLOAT(8) is the same
as REAL(a).

3) ICHAR converts a chai.acter value into an
integer vdue. The integer value of a character
is the ASCIl internal representation of that

::yar::t.er;h:rnadct:rsi,nct|h:näancg2:(Oc|to.L::7.c|,F?:
.TRUE. if and only if (ICHAR(cl) .LE.
ICHAR(c2)) is

4) LGE(al,a2) returns the vslue .TRUE.. if al =
a2 or if al follows a2 in the ASCIl collsting
sequence. Otherwise it returrB .FALSE..

1000201:13A 13-15

Programs and Subroutines

LGT(al,a2) returns .TRUE. if al follows a2 in
the ASCIl collating sequence, otherwise it
returns .FALSE..

LLE(81,a2) returns .TRUE. if al = a2 or if al
precedes a2 in the ASCIl collQting sequence,
otherwise it returns .FALSE..

LLT(al,a2) returm .TRUE. if al precedes a2 in
the ASCIl collating sequence, otherwise it
returns .FALSE..

Tlie operands or LGE, LGT, LLE, and LLT must
be of the same length.

5) EOF(a) returns the value .TRUE. if the unit
specif ied by its ügument is at or past the end
of file record, otherwise it returns .FALSE..
The value of a must correspond to an open file,
or to zero (which indicates CONSOLE:).

6) All angles are expressed in radians.

7) All arguments in an intrinsic function ref erence
must be of the same type.

13-16 1000201 :13A

C H A P TE R 14

C O M P II.A TI0 N U N ITS

Compnation Units

This chapter describes the relstiomhip between
FORTRAN and the Pascd sqgment mechanism. In
normd use, the user need not be aware of such
intricacies. However, if the user desires to
interface FORTRAN with Pascal, to create
overlays, or to take advant&ge of separate
compilation or librsries, the details contained here
are helpful. This chapter coiEists of the fonowing
sections:

Units, Segments, Partial Compnation,
and FORTRAN.

The SUSES Compfler Directive.
Linking Psscd and FORTRAN.
"e SEXT Compner Directive.

The first section discusses the general form of a
FORTRAN program in terms of the operating
system object code structure. The next section
describes the SUSES compner directive.. This
directive provides access libraries or alre&dy
compiled procedures, and provides overlays in
FORTRAN. The next section describes how one
links FORTRAN with Pascal. The final section
explsins the SEXT compiler directive.

PARTIAL COHPILATION

ff a FORTRAN compilation contains no main
procedure, then it is output as if it were a Pascd
unit compnation. The unit is given the name 'U'
f onowed by the name of its f irst procedure. For
example:

C --- No PROGRAM statement present
SUBROUTINE X

END

1000201:14A 14-3

Compilation Units

SUBROUTINE Y

END

SUBROÜTINE Z

END

would be compiled into a single unit named 'UX'.
(Assume for later examples that the object code is
output to file 'X.CODE'.) All procedures cdled
from within unit UX must be defined within unit
UX, unless a SUSES or a SEXT ststement has
shown them to reside in another unit. Simnarly,
procedures in unit UX cannot be c81led from other
units unless the other units contain a SUSES UX
statement. Thus, a typical main program that
would call X might be:

C
C -- Tr.is is the main p[og[am BIGGiE
C

SUSES UX IN X.CODE

PROGRAM BIGGIE

CALL X

END

SUBROUTINE W

CALL Y

END

lf tlie SUSES ststement were not present, the
FORTRAN compiler would expect subroutines X and
Y to appear in the same compilation, somewhere
after subroutine W. Assume that the object code
for tliis compilation is output to the file
'BIGGIE.CODE'.

Thus, the user can creste libraries of functions,
partia] compilations, etc., and save compilation time
and disk space, by a simple use of the SUSES

14-4 1000201:14A

Compilation Units

ststement. For more inforation on the SUSES
ststement, see the section on tlie SUSES statement.

THE SUSES COMPILER DIRECTIVE

The SUSES eompiler directive provides severd
distinct functiorB to the user. It allows procedures
and functions in separately compiled units, such as
the system library, to be csned from FORTRAN.
It provides the user a relatively secure form of
separste compilation for FORTRAN compnations.
It allows the user to call Pascd routine§ that have
been compned into Pascsl units.

The format of the SUSES control statement is:

SUSES unitname [" filename] [OVERLAY]

where: 'unitname' is tl`e name of a unit.

'fflename' is a valid ffle name.

As with all S contpol statements, the S must sppear
in column one. This oompiler directive directs the
compiler to open the .CODE file 'fflename', locate
the unit 'unitmme', and process the "TERFACE
information associated with that unit, generating a
reasonsble FORTRAN equivdent declaration foi. the
FORTRAN compnation in progress. All SUSES
commands must appear before any FORTRAN
statements, specification or executable, but they
are dlowed to follow comment lines and other S
control lines. If the optiond 'IN filename' is
present, the name 'fflename' is used as the fne to
process. If it is not,`the file '*SYSTEM.LIBRARY'
is used as. a default. The optiond field OVERLAY
hss no effect on program execution and is included

10 0 0 2 01 = 14A 14-5

Compilation Units

in version IV.O orny for compatibility with version
11.0.

|ARNING: If s FORTRAN main program SUSES a
Pascd unit, any globd yariables in the INTERFACE
part of that unit will not be accessible from
FORTRAN. See the next section, "Linking Pascsl
and FORTRAN," in this chapter, for further
information.

Separate Conpil&tion

Separate compilation is accomplished by compiling
a set of subroutines and functions without any
msin program. Each such compilation creates s
code file containing a single unit. Then, when
the main program is compiled, possibly along with
many subroutines or functions, it SUSES the
sepsrately compfled units. The routines compned
with the main progrsm obtain the correct
definition of each extermlly compned prcx3edure
through the SUSES directive.

In the simplest form, when no SUSES statements
appear in any of the sepsrate compilatio", the
user simply SUSES all separately compiled
FORTRAN units in the main progi.am. However,
this limits the procedure cans in each of the
separately compiled units to procedures defined in
the same unit. ff there sre calls to procedures
in unit A from unit 8, then unit 8 must contain
a SUSES A statement. The msin program must
then contain a SUSES A statement as its first
SUSES ststement, followed by a SUSES 8
statement. This is necessary for the compiler to
get the unit numbers a]located consistently.

14-6 1000201:14A

Compflation Units

In more complicsted cQses, the user must ensure
that all references to procedures in outside units
are preceded by the proper SUSES statement in
the same order and sre not missirg any units. If
unit 8 SUSES unit A, and unit C SUSES unit 8,
then unit C must first SUSES unit A. Likewise, if
units D and E both SUSES unit F, they both must
contain exactly the same SUSES statements prior
to the SUSES F statement.

LINKING PASCAL AND FORTRAN

ln order to cdl Pascd routines form FORTRAN,
the Pascal routines must first be compiled into a
Pascd unit. The FORTRAN pi.ogram can then
SUSES that unit. Unfortumtely, the exceedingly
rich type structure present in Pascsl is not present
in FORTRAN. Also, the 1/0 systems of FORTRAN
and Pascd are not compatible. 'merefore, it is not
possible to do everything one might desire. This
section does, however, help the user do what is
possible in interfacing the two languages.

There are sevei.d precautions that the user must
take for FORTRAN 1/0 to work from Pascal
programs. The FORTRAN 1/0 procedues use the
heap for the anocation of fne related storage, so
the user should not force the deallocat'ion of heap
memory via csns to MARK and/or RELEASE.
Other restrictions may spply in specid cases.

Since there si'e Pa§cal types that have no
FORTRAN equivslent, tlie way FORTRAN looks st
Pascal parameters is somewhat limited. FORTRAN
does recqgnize both reference and value parameters
when cdling Pascal subroutines. The following

1000201:14A 14-7

Compilation Units

table shows how FORTRAN views Pascal
declarations:

Examples of using Pascal
from FORTRAN:

AI.FA5=>CHALRACTER.5
ALFA12 o ->cHAmcTER .12 o

Likewise, when the INTERFACE information for a
FORTRAN program is output, it must be mapped
onto Pascd declaratiom5. The fonowing table gives
the corresponding declarations:

FORTRAN Declaration:

SUBROUTINE X(arg-1ist)
type FUNCTION X(a[g-list)

type :
INTEGER
REAL
I`OGICAL
CEARACTER.n

arg-list=
(1) (VAR 1: type)
type I

14-8

Pascal'§ Vieu:

PROCEDURE X (arg-list) ;
FUNCTI0N X(a[9-list): type;

INTEGBR
REAL
BO0I,EAN
CI]AR n = 1
PACKED ARRAY of CHAR
2 <= n <= 127

1000201:14A

Compnation Units

NOTE: When a Pascal compilation USES a
FORTRAN unit, it is the resporBibility of the
Pascd program to make sure thst any needed type
declarations for the ALFAn types are properly
defined. This cannot consistently be.done by
FORTRAN as it would lead to duplicate type
definitions should a user use two FORTRAN units
in which each declares the same type. There is
anotlier E)oint that must be made for Pascal
programs that ea]l FORTRAN subroutines. If the
subroutine has a REAL parameter that is in
actua]ity &n arrsy, the Pascd program mLLst pass a
scalar instead of an array. This should not be a
problem. Since the Pascal program can peLss the
first element of the array, and all FORTRAN
parameters are reference pai`ameters, the
FORTRAN subroutine has access to the whole
array. The user is cautioned to remember that
Pascd stores its arrays in row-major order, whne
FORTRAN stores them in column-major order.

When a FORTRAN program SUSES a Pascal unit,
the interfsce section variables in that Pascd unit
aLre not accessible from FORTRAN.

Here are two examples which illustrate how
interfacing is accompished between FORTRAN and
PoLscd. In the first example, a Pascd unit is used
by a FORTRAN host. The ALFAn construct is
employed. When the FORTRAN compiler psrses the
interfaee section of the Pascd unit, it ignores the
type de€larstion where ALFA25 is defined. When
procedure APROC is parsed, however, FORTRAN
recognizes that parameter A is a 25 element
packed array of characters. This corresponds to
the FORTRAN declaration CHARACTER*25 as
shown in the host FORTRAN program below.

100020l:14A 14-9

Compnation Units

PASCAl, UNIT

unit pascal;
interface

type alfa25=packed array[l..25] of cha[;
p[ocedu[e ap[oc(var a:alfa25)i

implementation
procedure aproc{var a:alfa2S};
begin
end'

end.

FORTmN l]osT pROGRAM

Suses pascal in pascal.code
subroutine f[tran
characte[.25 array
call aproc (ar[ay)

In the next example, a Pascd program uses a
FORTRAN unit. A host Pascd program which
defines any ALFAn's must do so in a unit. h this
example, the unit is called ALFAS. Unit ALFAS is
required because the Pascd program must use the
FORTRAN unit (with a USES statement) before any
Psscd types can be declared. The unit can define
the necessary ALFAn types before the Pascd
compner parses the FORTRAN interfsce text.

One thing that you may notice is that there isn't
any ALFA25 type in the FORTRAN interface text.
(There is only the standard FORTRAN
CHARACTER+25 statement.) This may lead you to
wonder why such a type has to be declared in
order for the Pascal compiler to parse that
interfsce text. You should note that the Pascd
compiler doesn't actually parse the origiml
FORTRAN text. Im5tead, the FORTRAN compfler
creates a Pascd interface section whenever a
FORTRAN unit is compiled. This Pascartranslated
interface section is what the Pascd compiler sees
and it contains an ALFA25 type.

14-10 1000201:14A

Compilation Units

Another point about this example concerrB the fact

;:::e:*eeni*eR|P,¥cänptrh¥r:eTc.cn¥:.ttektF?i::,?A±
indexed array is passed. Since the Pascal-
translated FORTRAN interface section contairB
text which makes this parameter type ALFA25, you
must call FWRITE with A[1] rather than simply A.
Passing A[1] loads the starting address of the array
A onto the stack which enables FORTRAN to
access it properly.

FORTRAN UNIT

sub[outine funit
e t u (rl

end

subroutine fwrite (a)
cha[acter.25 a
dimension a(15)
do 10 i-l,15

vrite(.,'(^)') a(i)
1o Colltinue

feturn
elld

PAScAl, I]OST PROGmH

p[ogram pascal2;

ul,it alfa8'
inte[face

type alfa25 -packed ar[ayll..2S) of char;
implenentation
end'

u6e6 alfas,
{SU fort[an2.code) ufunit;

Var
i ' j = integer ;
a:arrayll..15l of alfa25;

begin
for j:-l to 15 do

fo[i:.l to 25 do
a lj , i] : -chr (i+ord (' 0 ')) ;

fwr i te (a L 1)) j
end.

100020l:14A 14-11

Compilation Units

THE SEXT COHPILER DIRECTIVE

The SEXT compiler directive is used when one
desires to call assembly langusge routines, or
routines in SSEPARATE FORTRAN or Pascal units,
from a FORTRAN 77 routine. The form of the
SEXT directive is:

(SUBRol)TINE }
SEXT {) p[ocname lparams

(1 type] FUNCTIoh- }

where: 'type' is either INTEGE,R, LOGICAL, or REAL,

'p[ocname' is the nanie of the sub[outine or function, and

'Iparams' is an intege[equal to the number of

paranieters that t}iis procedure requires.

This directive must appear before any FORTRAN
statements, either specification or executable, but
may fonow comment lines or other S compiler
directives. A11 parameters are passed by reference
(caued VAR parameters if Pascal) to procedures
defined by the SEXT directive. It is up to the
user to follow this convention, as the linker does
not enforce it. The linlter does, however, check
the number of parameters.

14-12 1000201:14A

APPENDICES

APPENDIX A
ANSI PORTRAN DIFFERENCES

This appendix is directed to the reader who is
familiar with the ANSI Standard .FORTRAN 77
Subset language as defined in ANSI X3.9-1978. It
conc.isely describes how SofTech Microsystems
FOR,TRAN 77 differs from the standard language.
The differences fall into three general categoi.ies:

Unsupported Features
Full-Language Features
Extensions to Standard

Unsupported Features

There are two significant places where SofTech
Microsystems FORTRAN 77 does not comply with
the standard. One is that procedures cannot be
passed as parameters and the other is that
INTEGER and REAL data types do not occupy the
same amount of storage. Both differences are due
to limitations of the p-machine architecture.

Parametric procedures are not supported simply
because there is no practical way to do so in the
p-machine. The instruction set does not allow the
loading of a procedure's address onto. the stsck,
and more significantly, does not provide for the
calling of a procedure whose address is on the
stack.

1000201:OAA A-3

Appendix A

REAL variables require 4 bytes of stoi.age while
INTEGER and LOGICAL variables only require 2
bytes. This is due to the fact that the p-machine
supported operations on those types are
implemented in those sizes.

Full-Language FeQtures

There are sevei`al featues from the full language
that have been included in this implementation for
a variety of reasons. Some were done at either
minimal or zero cost, such as allowing arbitrary
expressions in subscript calculations. Others wei.e
included because it was felt that they would
signif icantly incre&se the utility of the
implementation, especially in an engineering or
laboratory application. An example is the
generalized 1/0 that allows easier control of
peripherals. In all cases, a program which is
written to comply with the subset restrictions will
compile and execute properly, since the full
language properly includes the subset constructs. A
short description of full language featmes included
in the implementation follows.

Subscript Expressions - The subset does not allow
function calk or array element references in
subscript expi.essions, but the full language and this
implementation do.

A-4 1000201:OAA

Appendix A

Do Variable Expressions - The subset restricts
expressions that define the limits of a D0
ststement, but the full language does not. SofTech
Microsystems FORTRAN also sllows full integer
expressions in DO statement limit computations.
Similarly, arbitrary integer expressions are allowed
in implied DO loops associated with READ and
WRITE statements.

U`nit 1/0 Number - SofTech Microsystems FORTRAN
allows an 1/0 unit to be specified by an integer
expression, as does the full language.

Expressions in 1/0 list - The subset does not allow
expressions to appear in an VO list, whereas the
full language does auow expressions in the 1/0 list
of a WRITE statement. SofTech Microsystems
FORTRAN al]ows expressions in tlm 1/0 list of a
WRITE statement, providing that they do not begin
with an initial left parenthesis.

NOTE: The expression (A+B)*(C+D) can be
specified in an output list as +(A+B)*(C+D) which,
incidently, does not generate any extra code to
evaluate the lesding +.

Expi`ession in computed GOTO - Sof Tech
Microsystems FORTRAN allows an expression for
the vQlue of a computed GOTO. consistent witli the
full language i.ather than the subset language.

1000201:OAA A-5

Appendix A

Generalized 1/0 - SofTech Microsystems FORTRAi`
allows botli sequential and direct access files to be
eithei` formatted or unformatted. The subset
language restricts direct access files to be
unfoi.mstted and sequential files to be formatted.
SofTech Microsystems FOR.TRAN also contains sn
augmented OPEN ststement which takes additional
psrameters that ai`e not included in the subset.
There is also a form of the CLOSE statement,
which is not included at all in tlie subset. 1/0 is
descritkd in more detail in Chapters 11 and 12.

Extensions to Standard

The language implemented has several minor
extensions to tlie full language standard. These are
briefly described below:

Compiler Directives - Compiler directives have been
added to 81low the programmer to communicate
certain information to tlie Compiler. An additional
kind of line, called a Compiler directive line, has
been added. It is characterized by a dollar sign 'S'
appearing in column 1. A Compiler directive line
may sppear any place that a comment line can
appear, alth)ugh certain directives are restricted to
appear in certain places. A Compiler directive line
is used to convey certain compile-time information
to the System about the nature of the current
compilation. `ITie set of directives is briefly listed
below:

SINCLUDE filename

A-6 100020l:OAA

Appendix A

mclude textually the file 'filename' at this point in
the source. Nested includes are implemented to a
depth of nesting of five files. Thus, for example,
a program may include various f iles with
subprograms, each of which includes vai.ious files
which describe common areas (whicli would be a
depth of nesting of three files).

SUSES ident
[IN filename]
[OVERLAY]

'Ihis is similar to a USES command in the UCSD

Pascal Compiler. 'IT`e alresdy compiled FORTRAN
subroutines or Pascal procedures contained in the
.CODE file 'filename', or in the file
'*SYSTEM.LIBRARY' (if no file name is present),
become callable from the currently compiling code.
This directive mLBt sppear befoi'e the initial
noncomment input line. For more detsils, see
Chapter 14.

SXREF

Produce a .cross-reference listing at the end of
each procedure compiled.

SEXT SUBROUHNE name #parms
Or

SEXT [type] FUNCTION name #params

The subroutine or function named 'name' is eithei.
an assembly language routine or a routine in a
SSEPARATE unit (either FORTRAN or Pascal).
The routine has exactly '#pai.ams' reference
parameter§.

1000201:OAA A-7

Appendix A

Backslash Edit Control - The edit control character
'\' can be used in formats.to inhibit the normal
advancement to the next record which is associated
with the completion of a READ or a WRITE
statement. This is particularly useful when
prompting to an interactive device, such as
CONSOLE:, so that a response can be on the same
line as the pi.ompt.

End of File lntrinsic Function - An intrinsic
function, EOF, has been provided. The function
accepts a unit specifier as an argument. and returns
a logical value which indicates whether the
specified unit is at its end of file.

Lowercase lnput - Upper and lowercase source
input is allowed. In most contexts, lowercase
charactei`s are treated as indistinguishable from
their uppei.case counterpsi.ts. Lowercase is
significant in character constants and Hollerith
fields.

A-8 1000201:OAA

APPENDIX 8
SAMPLE PROGRAM

This progi.am demonstrates how some of the
FORTRAN subroutines and files are used.

There are three FORTRAN subroutines and one
Pascal procedure called from the FORTRAN host
pi`ogram. The Pascal procedure INIT displays the
description and instructions of the program. Given
the radius, the FORTRAN subroutines compute the
are&, surface area, 8nd volume of a circle.

This program opens a sequential, formatted file that
is saved after program termination. Input to the
program is via the console, which is opened by
default. Both exponential and floating point
outputs are repi`esented.

Suses PASCINIT in PASCINIT.code
program DEMO

50

integer COUNT

open (1, FILE= ' c i[c 1 e . data ' , STATUS= ' new ' , FORME ' £ormatted ')
open (6 , FILE= ' pr inter : ')

Pririt program inst.ructions via a Pascal unit
call INIT

PI = 3.14159
COUNT = 1

continue
write(+,'(A'Radius for circle'
wr ite (. , ' (13COUNT
writ-e(.,'(A,: '

Input radius ith blanks being ignored
read(*,'(BN,F4.0)') R
if (R .eq. 0.0) 9Oto 100

1000201:OAA A-9

Appendix 8

c Compute the Area, Surface Area, and Volurne
call ACOMP(PI,R,AREA)
call SCOMP(PI,R,SAREA)
call VCOMP(PI,R,VOLUME)

write(1,200) COUNT,R,AREA,SAREA,VOLUME
COUNT = COUNT + 1

goto 50

Set end of f ile marker and start at the f irst
record of the f ile.
endf ile 1
rewind 1

vrite(6, , (/) ')
wr ite (6 , 220)

Print the data using exponer`tial notation
do 1]0 I=l,COUNT

read(1,200,end=113) I,R,AREA,SAREÄ,VOLUME
write(6,200) I,R,AREA,SAREA,VOLUME

110 coritinue

c Go to the beginning of the f ile
113 rewind 1

c Print the data using f loating point notation

rite(6, ' (//) ')
wr ite (6 , 220)

do 115 I=1,COUNT
read(l,200,end=120) I,R,AREA,SAREA,VOLliME
write(6,230) I,R,AREA,SAREA.,Vol,UME

115 c:ontinue

120 close(l,STATUS='keep')

200 format(15,4E16.5)
220 fo[mat(' CIRCLE',6X,'RADIUS',10X,'AREA',8X,'SÜRfACE AREA',

1 7X, 'VOLUME'/)
230 format(15,4rl6.5)

end

subroutine ACOMP(PI,RAD,AREA)
AREA = PI+ RAD*+2
r e t u I- n
end

subroutine SCOMP (PI ,BAD,SARE:A)

SAREA = 4 ` PI . (RAD*.2)
return
end

subroiitine VCOMP(PI,RAD,V0l,UME;)

V0i,UME -(4 . PI . (RAD..3))/3
return
erld

A-10 1000201:OAA

Appendix 8

The following is the Pascal unit used by the
preceding program:

unit PASCINITi

interface

p[ocedure INITj

implementation

p[ocedure INIT;
var 1: intege[;

begin
gotoxy (15 , 07) ;
writeln('This progran computes the a[ea, surfac.e area, ');
90toxy (15,08) i
writeln('and volume of a circle given the radiu§. To')i
gotoxy (15 , 0 9) ,
writeln('end the input, enter 0 for the radius. Output');
9otoxy (15 , lo) j
wr iteln (I
gotoxy(15
riteln ('

gotoxy(15
writeln ('
gotoxy (0 ,

end;

end.

•ill be represented in two ways: ')j
12) '

a) Exponential')i
13) ;

b) F`1oating Point.');
15)j

This appears on tlie screen when the program is
run:

This program compi}tes the area, surface area,
and volume of a ci[cle given the [adius. To
end the input, enter 0 for the radius. Output
vill be rep[esented in tvo ways:

a) Expor`ential
b) floating Point

1000201:OAA A-11

Appendix 8

The FORTRAN program prints the following:

. 26 808£+03

.41888E+04

.33SIOE+05

. 3 3 5 1 0 E: + 0 2

. 90478E+03

.21447E+04

A-12 1000201sOAA

APPENDIX C
PORTRAN ERROR MESSAGES

Compile-Time Error Messages

11

12

13

14

Fatal erroi` reading soui.ce block

Nonnumei.ic chai`8cters in labe] field

Too many continuatio`n lines

Fatal end of file encountered

Labeled continuation line

Missing field on S compiler directive line

Unable to open listing file specified on S
compiler directive line

Unrecognizsble S compiler directive

lnput source file not valid textfile format

Maximum. depth of include file nesting
exceeded

lnteger constant overflow

Error in real constant

Too many digits in constant

ldentifier toö long

10002 01:OAA A-13

Appendix C

15

A-14

Chai'acter constant extends to end of
line

Character constant. zero lengtli

nlegal character in input

lnteger constant expected

Label expected

Eri`or in label

Type name expected (INTEGER, REAL,
LOGICAL, or CHARACTER[[*n])

Integer constant expected

Extra characters at end of statement

'(' expected

Letter IMPLICIT'ed more than once

')' expected

Letter expected

ldentifier expected

Dimension(s) required in DIMENSION
statement

Array dimensioned more than once

Maximum of 3 dimensions in am array

1000201:OAA

Appendix C

41

42

45

Incompatible arguments to EQUIVALENCE

Variable appears more tlian once in a
type specification statement

This identifier has 81ready been declared

This intrinsic function cannot be passed
as sn argument

ldentifier must be s vai'iable

ldentifier must be a vai.iable oi. the
current FUNCTION

'/' expected

Named COMMON block ali.eady saved

Variable already appears in a COMMON
block

Variables in two different COMMON
blocks cannot be equivalenced

Number of subscripts in EQUIVALENCE
statement does not agree with variab]e
declaration

EQUIVALENCE subscript out of i`ange

Two distinct cells EQUIVALENCE'C to
the same location in a COMMON block

EQUIVALENCE statement extends a
COMMON block in the negative direetion

1000201:OAA A-15

Appendix C

46

49

52

53

54

55

56

57

58

59

A-16

EQUIVALENCE statement forces a
variable to two distinct locations, not in
a COMMON block

Statement number expected

Mixed CHARACTER and numeric items
not allowed in same COMMON block

CHARACTER items cannot be
EQUIVALENCE'd witli non-character
items

nlega] symbol in expression

Can't use SUBROUTINE name in an
expression

Type of argument must be INTEGER or
REAL

Type of argument must be INTEGER,
REAL, or CHARACTER

Types of comparisons must be compatible

Type of expression must be LOGICAL

Tcx) many subscripts

TCM} few sub§cripts

Variable expected

'=' expected

1000201:OAA

Appendix C

64

65

66

67

68

72

Size of EQUIVALENCE'd CHARACTER
items must be the same

nlegal assignment - types do not match

Can only call SUBROUTINES

Dummy parameters cannot appear in
COMMON statements

Dummy parameters cannot appear in
EQUIVALENCE ststements

Assumed-size array declarations can only
be used for dummy arrays

Adjustableiize array declarations csn
only be used for dummy arrays

Assumed-size array dimension specifier
must be last dimension

Adjustable bound must be either
parameter or in COMMON prior to
appearance

Adjustable bound must be simple integer
variable

Cannot have more than 1 main program

The size of a named COMMON must be
the same in all pi.ocedui.es

Dummy arguments csnnot appesr in
DATA statements

1000201:OAA A-17

Appendix C

73

74

85

86

A-18

COMMON vsriables cannot appear in
DATA statements

SUBROUTINE names, FUNCTI0N names,
INTRINSIC names, etc.cannot appar in
DATA statements

Subscript out of range in DATA
statement

Repeat count must be >= 1

Constant expected

Type conflict in DATA statement

Number of variables does not match
number of values in DATA statement list

Statement cannot have label

No such INTRINSIC function

Type declarstion foi. INTRINSIC function
does not match actual type of INTRINSIC
function

Letter expected

Type of FUNCTION does not agree with
a previous call

This procedure has alreQdy appeared in
this compilation

This procedure has already been defined
to exist in another unit via a SUSES
command

1000201:OAA

Appendix C

93

94

95

96

97

98

Error in type of argument to an
INTRINSIC FUNCTION

SUBROUTINE/FUNCTION was previously
used as a FUNCTION/SUBROUTINE

Unrecognizable statement

Functions cannot be of type
CHARACTER

Missing END statement

A program unit cannot appear in a
SSEPARATE compilation

Fewer actual arguments than foi.mal
arguments in FUNCTI0N/SUBROUTINE
call

More actual arguments than formal
arguments in FUNCTION/SUBROUTINE
call

Type of actual argument does not agree
with type of format argument

The following procedures were called but
not defined:

This procedure was already defined by a
SEXT directive

Maximum size of type CHARACTER is
255, minimum is 1

10002 01 : OAA A-19

Appendix C

100

101

102

103

104

105

106

107

108

'109

110

111

112

113

114

115

116

117

A-20

Statement out of order

Unrecognizable st8.tement

nlegal jump into block

Label already used for FORMAT

Label already defined

Jump to foi.mat label

D0 statement forbidden in this context

D0 label must follow DO statement

ENDIF forbidden in this context

No matching IF for this ENDIF

lmproperly nested DO block in IF block

ELSEIF forbidden in this context

No matching IF for ELSEIF

lmproperly nested DO or ELSE block

'(' expected

')' expected

THEN expected

Logical expression expected

100020l:OAA

Appendix C

123

124

125

126

127

128

129

131

132

133

134

ELSE statement forbidden in this context

No matching IF for ELSE

Unconditional GOTO forbidden in thi`s
context

Assigned GOT0 forbidden in this context

Block IF statement forbidden in this
context

Logical IF ststement forbidden in this
context

Aritlimetic IF statement forbidden in this
context

',' expected

Expression of wrong type

RETUFN forbidden in this context

STOP forbidden in this context

END forbidden in this context

Label i.eferenced but not defined

DO or IF block not terminated

FORMAT statement not permitted in this
context

FORMAT label already referenced

1000201:OAA A-21

Appendix C

135

136

137

138

139

140

141

144

145

146

147

148

A-22

FORMAT must be labeled

ldentifier expected

lnteger variable expected

'TO' expected

lnteger expression expected

Assig`ned GOT0 but no ASSIGN
statements

Unrecognizable character constant as
Option

Character constant expected as option

lnteger expression expected for unit
desigmtion

STATUS option expected after ',' in
CLOSE statement

Character expression as filename in
OPEN

FILE= option must be present in OPEN
statement

RECL= option specified twice in OPEN
statement

lnteger expression expected for P.ECL=
option in OPEN ststement

1000201:OAA

Appendix C

151

152

158

159

160

161

162

Unrecognizable option in OPEN statement

Dii`ect access files must specify RECL=
in OPEN statement

Adjustable arrays not sllowed as 1/0 list
elements

End of statement encountered in implied
DO, expressions beginning with '(' not
allowed as VO list elements

Vai.isble required as control for implied
DO

Expressions not allowed as reading 1/0
list elements

REC= option aE)pesrs twice in statement

REC= expects integer expi.ession

END= option only allowed in READ
statement

END= option appears twice in statement

Unrecognizable 1/0 unit

Unrecognizable format in 1/0 statement

Options expected after ',' in 1/0
ststement

Unrec.ognizable 1/0 list element

10002 01:OAA A-23

Appendix C

163

207

A-24

Label used as format but not defined in
format statement

lnteger variable used as assigned format
but no ASSIGN statements

Label of an executable statement used as
a format

lnteger variable expected foi. assigned
format

Label defined more than once as foi.mat

g:rnaciEe°tner wEht ?°) ¥vr:nme;ehresn nteheedrse naur]e]
no arguments

Error in reading SUSES file

Syntax eri`or in SUSES file

SUBROUTINE/FUNCTION name in SUSES
file has already been declared

FUNCTIONS cannot retum values of type
CHARACTER

Unable to open SUSES file

Too niany SUSES ststements

No .TF,XT info for this unit in SUSES
file

megal segment kind in SUSES file

1000201:OAA

Appendix C

403

404

405

There is no such unit in this SUSES file

Missing UNIT name in SUSES statement

Extra chai.acters at end of SUSES
directive

lntrinsic units csnnot be ovei.layed

Syntax error in SEXT directive

A SUBB0UTINE cannot have a type

SUBROUTINE/FUNCTION name in SEXT
directive has already been defined

Code file write error

Too m&ny entries in JTAB

Too man.y SUBROUTINES/FUNCTIONS in
segment

Procedure too large (code buffer too
small)

Insufficient room for scratch file on
system disk

Resd error on scratch file

1000201:OAA A-25

Appendix C

Run-Time Error Hessages

609

610

611

612

613

614

A-26

Foi.mat missing final ')'

Sign not expected in input

Sign not followed by digit in input

Digit expected in input

Missing N or Z after 8 in format

Unexpected character in format

Zero repetition factor in format not
allowed

lnteger expected for w field in format

Positive integer required for w field in
format

'.' expected in format

lnteger expected for d field in format

lnteger expected for e field in format

Positive integer required for e field in
format

Positive integer required for w field in A
format

Holleritli field in format must not appear
for reading

1000201:OAA

Appendix C

615

616

617

618

619

Hollerith field in format requires
repetition factor

X field in formst requires repetition
factor

P field in format requires repetition
factor

lnteger appears before '+' or '-' in
format

lnteger expected after '+' or '-' in
format

P formst expected after signed repetition
factor in format

Maximum nesting level for formats
exceeded

')' has rep€tition fQctor in format

lnteger followed by ',' illegal in format

'.'- is illegal format control chai.actei`

Chai.acter constant must not appear in
format for reading

Chai.acter constant in format must not be
repeated

'/' in format must not. be repeated

'\' in format. must not be repeated

1000201:OAA A-27

Appendix C

629

630

631

632

633

634

635

636

637

639

640

641

642

643

644

A-28

BN or BZ format control must not be
repeated

Attempt to perform 1/0 on unknown unit
number

Formatted 1/-0 attempted on file opened
as unformatted

Format fails to begin with '('

I forrriat expected for integer read

F or E format expected for real read

Two '.' characters in formatted real
read

Digit expected in foi.matted real read

L format expected for logical read

T or F expected in logical read

A format expected for character read

1 format expected for integer write

w field in F format not greater than d
field + r

Scale factor out of range of d field in E
formst

E or F format expected for real write

1000201:OAA

Appendix C

653

6-54

655

656

657

658

L format expected for logical write

A format expected for character write

Attempt to do unformatted 1/0 to a unit
opened as formatted

Unable to write blocked output, possibly
no room on device for file

Unable to read blocked input

Ei'i`or in formatted textfile, no <cr> in
last 512 bytes

lnteger overflow on input

Too many bytes read out of direct access
unit record

lncorrect number of bytes read from a
direct access unit record

Attempt to open direct access unit on
unblocked device

Attempt to do external 1/0 on a unit
beyond end of file record

Attempt to position a unit for direct
access on a nonpositive record number

Attempt to do dii.ect access to a unit
opened as sequential

Attempt to position direct access unit on
unblocked device

1000201=OAA A-29

Appendix C

659

660

661

662

698

699

1000+

A-30

Attempt to position dii`ect access unit
beyond end of file for reading

Attempt to backspace unit connected to
unblocked device

Attempt to backspace sequential,
unformatted unit

Argument to ASIN or ACOS out of
bounds (ABS(X) .GT. 1.0)

Ai.gument to SIN or COS too large
(ABS(X) .GT. 10E6)

Attempt to do unformatted 1/0 to
intern&1 unit

Attempt to put more than one record
into internal unit

Attempt to write more characters to
internal unit than its length

EOF called on unknown unit

lntegei. vai.iable not currently assigned a
format label

End of file encountered on read with no
END= option

lnteger variable not ASSIGNed a label
used in assigned goto

Compiler debug error messages - should
never appear in correct programs

1000201:OAA

INDEX

-A-
A (character editing)
ALFAn types,
Apostrophe editing
Arithmetic expressions
Arithmetic IF statement
Arithmetic operators
Array......................
Array element name
Assigned GOTO statement
Assignment ststements

computatioml...............
computational, automatic coversion. .
8eneral .
label, ,

-8-
Backslash edit control. . .
BACKSPACE.........
BACKSPACE, not used
BACKSPACE statement. . .
Blanks, source program. .
Block IF control statement

1000201sOIA

12-15
14-8
12-7
.8-3
10-5

.8-3
.6-5
.6-6
10-5

A-7
11-14
11-14
11-26
.3-5
10-7

1-1

hdex

-C-
Calling Pascal i.outines
CALL statement
Character expressions
CHARACTER type ststement
CLOSE statement
Codefile........
Comment lines
COMMON statement.

.... 14-7
13-3, 13-5

..... 8-6
.... 6-8

. . . 11-22
.............. 2-9
............... 3-7

COMMON statements. . .
Compilation units
Compiler directives

SEXT..........
extensions to
SINCLUDE.......
lines .,,, ® . ® o ® ,

SUSES........
SXREF........

Compiler listing
errors.........
global symbol table
local symbol table.

............. 6-9
............ 13-12

. . . 14-3

........ 3-7, 14-12
............. A-6
' . . ' ' . . . ' 2-6, 3-6
............. 3-6
............. 3-6
' ' ' . . . 2-8' 3-7

............ 2-1
............. 2-8
............. 2-8

sample.......................2-6
Compiling.......................2-3
Computatioml assignment statements 9-3
Computed GO'I0 statement 10-4
CONTINUE control statement 10-14
Control statements

arithmetic IF 10-5
assigned GOTO 10-4
block IF 10-6
block IF syntax 10-9
computed GOTO 10-4
CONTINUE...................10-14
DO ' . . .10-11
ELSEIF......................10-9
END......

1-2

10-15

1000201:OIA

Index

ENDIF. . .
genel.al. . .
logical IF.
PAUSE. . .
STOP.........
unconditional GOTO

S conti.ol statements. .

-D-
DATA statements
Data types

basic,,..........
character.........
integer...........
logical...........
real,,,,,,......,

Dimension declarators
DIMENSION statement
Direct files
DO control statement
DO loop
DO variable
D0 variable, example
DO variable expressions. .

-E-
Edit descriptors,
ELSEIF control statement.
END control statement. . .
ENDFILE statement
ENDIF control statement. .
END statement
EOF intrinsic function. . .
EQUIVALENCE statement. .

10 0 0 2 01 = OIA

...... 10-11
...... 10-3

....... 10-6
..... 10-14
..... 10-14
...... 10-3
....... 14-5

'3-10' 7-3

.... 4-3

.... 4-5
..... 4-3
.... 4-5

..... 4-3
.... 6-5

..... 6-5
. . . 11-14
.... 10-12
. . . 10-12
. . .10-12
... 10-14

.... A-5

....... 12-7
...... 10-10
....... 10-15
...... 11-26

....... 10-11
3-9, 3-10, 3-12
....... A-8

. . . 6-12, 13-12

1-3

Index

E (real editing)
Error messages

compile time,
general..............
run-time o . . . ® . ,

Executing a program
Expression, computed GOTO ...,
Expressions

arithmetic............
arithmetic, different operands
arithmetic, integer division. .
arithmetic operstors
character............,
evaluation of
logical..............
logical operators
1ogical operators, precedences
operator precedence
relational............
relational operstors

Expressions in 1/0 list
SEXT compiler directive
Extensions to standard

backslash edit control
EOF intrinsic function,
8eneral........
lowercase input. . .

EXTERNAL statement. .
SEXT statement

-P-
Features, unsupported
Format, program units. . .
Format specifications

edit descriptors
general..........

1-4

12-13

. . 8-3
. . 8-5
.8-5
. . 8-3

. . 8-6
. 8-10
. . 8-8
. . 8-9
. . 8-9
. 8-10
. . 8-6
. . 8-7
. . A-5

14-12

.A-3
13-3

12-7
12-3

1000201:OIA

mdex

input/output list
interactions...................

Format specifier ('f ')
FORMAT statements
Formatted L/O
Formatted/unformatted files. .
FORTRAN

chapacter set,
compilation..........
77 Compiler
error messages
1/0 System
name or identifier
Program............
sample program
scope of names
undeclared names

FORTRAN 77
F (real editing)
Full-language features

computed GOTO expression
expressions in 1/0 list. . .
general.....:......
generalized 1/0
subscript expressions
unit 1/0 number,

Functions
external............
general............
intrinsic..........,,
parameters......
RETURN statement
statement funetions

FUNCTION statement.

1000201:OIA

12-5
12-5

11-17
12-3
12-3
11-7

..... 3-3
.... 14-3
..... 2-3

.... A-13
11-3, 11-10
..... 5-3

..... 3-3
.... A-9

..... 5-3
.... 5-5
.... 1-3
. . . 12-12

.... A-5
..... A-5
.... A-4
.... A-5
.... A-4
..... A-5

.... 13-7
.... 13-6
.... 13-9
.... 13-12
.... 13-11
.... 13-10
..... 3-10

1-5

Index

-H-
Hollerith editing 12-8

Identifier, FORTRAN.
I (integer editing). .
IMPLICIT ststement. .
Implied DO lists. . .
Initial lines® ® , , , o
mput entities
Input/output list
Input progi.am form. ,
Internal f iles
INTRINSIC ststement.
VO statements

BACKSPACE....

11
............... 5-3
.............. 12-12
... ' ' . ' ' ' ' 3-11' 6-3
.............. 11-19
............... 3-9
.............. 11-18
......... 11-17, 12-5
............... 2-5
.............. 11-8
............,. 6-11

CLOSE.........
elements........
ENDFILE........
format specifier ('f').
8eneral.........
implied DO lists. . .
input entities. . ,
input/output list.
OPEN.......
output entities. .

.......... 11-20

.......... 11-26
.......... 11-22

...... 11-16
...... 11-26
...... 11-17
...... 11-15
...... 11-19
....... 11-18
....... 11-17
...... 11-20

............. 11-18
READ...........
restriction.........
REWIND..........
unit specifier ('u'). . .
W RITE

1/0 System
BACKSPACE.......

1-6

common file operations. . .
concepts/limitations......

....... 11-23
....... 11-27
...... 11-27

....... 11-16
....... 11-25

....... 11-14
....... 11-11

....... 11-10

1000201:OIA

mdex

direct files.
file nsme. .
file position.

............. 11-14
............. 11-6
............. 11-6

file properties 11-5
f iles 11-5
formatted/unformatted files 11-6
function side effects 11-15
general 11-3
internal files 11-8
intei.nal files, properties 11-8
1/0 statements 11-15, 11-20
limitations....................11-14
other file operations 11-12
ove rvie w 11-3
records......................11-4
sequential/direct access 11-7
units 11-9

-L-
Label assignment statement. .
Labels...............
Lines, continustion
Linking Pascal/FORTRAN. . .
L (logical editing)
Logical expressions
Logical IF ststement
I,ogical operators
Lowercase input

Main progrsm
MARK.....

1000201:OIA

...... 9-4

..... 3-8
...... 3-9
..... 14-7
..... 12-14
...... 8-8
..... 10-6
...... 8-9
..... A-8

-M-

............... 13-3
.............. 14-7

1-7

mdex

-N-
Nonrepeatable edit descriptors

apostrophe editing
H (Hollerith editing). . .
/ (slash editing)
X (positional editing). . .

Notational conventions
Numeric editing

......... 12-7
......... 12-8

......... 12-8

......... 12-8
.......... 1-4
........ 12-11

-0-
OPEN statement 11-20
0utput entities 11-18
0verview, Manud 1-3

-P-
Parameters.....................13-12
Partial compilation 14-3
PAUSE control statement 10-15
Program columns 3-4
Program, sample A-9
PROGRAM statement 13-3
Program statement 3-10
Program units 3-10

-R-
READ statement 11-23, 12-3
Records........................11-4
Relational expressions 8-6
Relational operators
RELEASE..........,
Repeatable edit descriptors

1-8

......... 8-7
........ 14-7

1000201:OIA

Index

A (character editing) 12-15
E (real editing) 12-13
F (real editing) 12-12
I (integer editing) 12-12
L (logicd editing) 12-14
numeric editing 12-11

RETURN statement 13-3
REWIND statement 11-27
RTUNIT.CODE....................2-4
Runtime support 2-4

-S-
Sample program A-9
SAVE statement 6-12
Screen Oriented Editor 2-5
Segments.......................14-3
Separate compilation 14-6
Sequential/direct access 11-7
Slash editing,
Source lines
Source lines, allowed
Specification statements

CHARACTER............
COMMON..............
DIMENSION............
EQUIVALENCE...........
EQUIVALENCE, restrictions. . .
EXTERNAL.............
IMPLICIT..............
INTRINSIC....
SAVE.......

Statement ordering
within program

Statements......
DATA.......
END.....,.®

1000201:OIA

..... 12-8
..... 3-4
..... 4-6

..... 6-8
..... 6-9
...... 6-5
..... 6-12
..... 6-13
..... 6-10

• '3-11, 6-3
..... 6-11
..... 6-12

unit..............3-10
................. 3-8
....... ' . ' . . 3-10, 7-3
........ 3-9, 3-10, 3-12

1-9

mdex

SEXT.......
FUNCTION....
general......
INTRINSIC....
ordering, general
program units. .
SUBROUTINE . . ,
SUSES.......
SUSES A,
SUSES 8
SUSES F

............. 14-4
............. 3-10

SUSES UX statement
Statements, specification
STOP control statement
Subroutines

CALL ststement

........ 3-9
........ 13-9
........ 3-10
........ 3-10
....... 3-10
.... 14-4, 14-6
....... 14-6
....... 14-6
....... 14-6
....... 14-4
........ 6-3
....... 10-14

. . . 13-5
general......................13-4
parameters....................13-12
SUBROUTINE statement 13-4

SUBROUTINE statement 3-10, 13-4
Subscript expressiorB A-4

-T-
`I\7pe statements 6-7

-U-
Unconditional GOTO statement 10-3
Unit 1/0 number A-5
Units 11-9, 14-3
Unit specifier ('u') 11-16
SUSES A statement-... 14-6
SUSES 8 statement 14-6
SUSES compiler directive 14-5
SUSES F statement 14-6

1-10 1000201:OIA

hdex

SUSES statement
SUSES UX statement

. 14-4, 14-6

...... 14-4

-W-

WRITE statement 11-25, 12-3

-X-

X (positioml editing) 12-8

1000201sOIA 1-11

Code 3986660 P (0)
Printed in ltaly

olivetti

Code 3986660 P (0)
Printed in ltaly

I,lEvellE

