PASCAL Language

User Guide

PREFACE

This manual is produced for programmers
using the M20 to create PASCAL language
programs. The PASCAL = language avail-

able on the M20 is the MS-PASCAL

developed by "Microsoft Corporation"”,
and which is described in the '"M20 PAS-
CAL Language Reference Manual". The
reference manual gives the complete
‘instruction set and explains other fun-
damental principles of PASCAL program-
ming. It is assumed that the reader of
this User Guide has a working knowledge
of both The PASCAL language and PCOS.
. This User Guide explains how to use the
PASCAL compiler and the linker to pro-
duce executable program files for PCOS
release 3.0, and supplies further
information concerning this particular
PASCAL implementation.

This User Guide 1is divided 1in two
parts:

Part 1 - describes how to create an
executable program file
starting from a PASCAL
language source file.

Part 11 - details the functions and
procedures (contained 1in
two library files) avail-
able on the M20.-

The following are trademarks of Ing. C. Olivetti & C., SpA:
OLICOM, GTL, OLITERM, OLIWORD, OLINUM, OLISTAT, OLITUTOR,
DLIENTRY, OLISORT, OLIMASTER.

MULTIPLAN is a registered trademark of MICROSOFT Inc.
MS-DOS is a trademark of MICROSOFT Inc.

CP/M and CP/M-86 are registered trademarks of Digital Research
Inc. :

CBASIC-86 is a trademark of Digital Research Inc.

Copyright © by Olivetti, 1983,
ali rights reserved.

'RELEASE: 3.0

REFERENCES:

- ‘_j’

PASCAL Language Reference Manual
(Code 3987710 Q (0)) :

PCOS (Professional Computer
Operating System) User Guide
(Code 3985280 D (0))

1/0 with External Peripherals
User Guide
(Code 3982300 N (2))

Assembler User Guide
(Code 3987670 L (1))

M20 Hardware Architecture and f‘ 3
Functions I
(Code 4100630 W (0))

DISTRIBUTION: General (G)

EDITION: July 1983

PUBLICATION ISSUED BY:

" Ing. C. Olivetti & C., S.p.A.

Direzione Documentazione .
77, Via Jervis - 10015 IVREA (Italy)

PREFACE

This manual is produced for programmers
using the M20 to create PASCAL language

programs. The PASCAL . lanquage avail-

able on the M20 1is the MS-PASCAL
developed by '"Microsoft Corporation",
and which is described in the "M20 PAS-
CAL Language Reference Manual'". The
reference manual gives the complete
instruction set and explains other fun-
damental principles of PASCAL program-
ming. 1t is assumed that the reader of
this User Guide has a working knowledge
of both The PASCAL language and PCOS.

. This User Guide explains how to use the

PASCAL compiler and the linker to pro-
duce executable program files for PCOS
release 3.0, and supplies further
information concerning this particular
PASCAL implementation.

This User Guide 1is divided 1in two
parts:

Part 1 - describes how to create an
executable program file
starting from a PASCAL
lanquage source file.

Part Il - details the functions and
procedures (contained 1in
two library files) avail-
able on the M20.-

The following are trademarks of Ing. C. Olivetti & C., S.p.A:

OLICOM, GTL, OLITERM, OLIWORD, OLINUM, DLISTAT, OLITUTOR,
OLIENTRY, OLISORT, OLIMASTER.

MULTIPLAN is a registered trademark of MICROSOFT Inc.
MS-00S is a trademark of MICROSOFT Inc.

CP/M and CP/M-86 ate registered trademarks of Digital Research
In¢.

CBASIC-86 is a trademark of Digital Research Inc.

Copyright © by Olivetti, 1983,
all rights reserved.

'RELEASE: 3.0

REFERENCES:

PASCAL Language Reference Manual
(Code 3987710 Q (0))

PCOS (Professional Computer
Operating System) User Guide
(Code 3985280 D (0))

1/0 with External Peripherals
User Guide
(Code 3982300 N (2))

Assembler User Guide
(Code 3987670 L (1))

M20 Hardware Architecture and
Functions
(Code 4100630 W (0))

DISTRIBUTION: General (G)

EDITION: July 1983

PUBLICATION ISSUED BY:

" Ing. C. Olivetti & C., S.p.A.

Direzione Documentazione .
77, Via Jervis - 10015 IVREA (Italy)

CONTENTS

PART 1

INTRODUCTION

PROGRAMMING 1IN PASCAL
ON_THE M20

THE M20 PASCAL PACKAGE

SYSTEM REQUIREMENTS

ABOUT THIS MANUAL

NOTATION CONVENTION

PROGRAM DEVELOPMENT

CREATING AN EXECUTABLE FILE

PROGRAM DEVELOPMENT

SAMPLE SESSION

CREATING AN M20 PASCAL
SOURCE PROGRAM ‘

COMPILING YOUR M20
PASCAL PROGRAM

LINKING YOUR M20
PASCAL PROGRAM

EXECUTING YOUR M20
PASCAL PROGRAM

SAMPLE SESSION LOG

THE PASCAL COMPILER
INTRODUCTION

COMPILER ACTION

PAS1

PARAMETER SPECIFICATION

PAS1 COMPILER SWITCHES

1-1

1-1

1-2

1-2

2-1

2-2

2-4

2-4

2-5

2-9

3-1

3-1

3-2

3-6

ERRORS AND WARNINGS
PAS2
PAS3

DISK SPACE

.~ THE LINK COMMAND

INTRODUCTION

THE LINK COMMAND

COMMENTS

MINIMUM COMMAND ELEMENTS
THE KEYWORDS
MULTI-FILE KEYWORDS
FILE KEYWORDS

VALUE KEYWORDS
STRING KEYWORDS
SIMPLE KEYWORDS
BLOCK KEYWORDS
KEYWORD ORDER
ERRORS

ALTERNATE STACK/HEAP: SEGMENTS

PLOADING PASCAL PROGRAMS

LIBRARIES

INTRODUCTION

ML1B

M20 LIBRARIES

iii

USING THE M20 PASCAL L1BRARY

USING GRAPHICS

PART 11

iv

INTRODUCTION TO THE M20 PASCAL
L1BRARY

INTRODUCTION
FUNCTION RESULTS

FUNCTIONAL GROUPS

BYTESTREAM'I/O FUNCTIONS
BLOCK TRANSFER FUNCTIONS
STORAGE ALLOCATION FUNCTIONS
TIME AND DATE FUNCTIONS
1EEE-488 FUNCTIONS
ERROR PROCEDURE
MISCELLANEQOUS FUNCTIONS
THE M20 PASCAL L1BRARY
bclear

bmove

bootsys

bset

bwset

checkvol

closedevice

closefile

crlf

dhexdbyte

5-4

6-1

6-1

6-2

6-3

7-2

7-3

7-4

7-5

dhexlong
dhexword
directory
diskfree
dlong
dnumw
dstring
error‘
getbyte
getdate
getlen
getposition
getstatus
gettime
getvol
ilninput
ipoll
iprint
iread
ireset
iset
isrq0
isrql
iwrite

lookbyte

7-23

7-24

7-25

7-26

7-27

7-28

7-29

7-30

7-31

7-32

7-33

7-34

7-35

maxsize
newabsanyseg
newabsolute
newlargestblock
newsameseqg
opendevice
openfile
parsename
pdispose
peof

pnew

pseek
putbyte
readbytes
readline
remove
rename
resetbyte
sdevtab
search
setcontrol
setdate
setsysseg
settime

setvol

7-36

7-37

7-38

7-39

7-40

7-41

7-42

7-44

7-45

7-46

7-48

7-49

7-50

7-51

7-53

7-54

7-55

7-56

7-57

7-58

7-59

7-60

7-61

7-62

7-63

stickynew
stringlen

writebytes

INTRODUCTION TO GRAPHICS

INTROBUCTION

SUMMARY OF FEATURES

CONCEPTS

FUNCTIONAL GROUPS

ERRORS

DEFAULT CONDITIONS

THE M20 PASCAL GRAPHICS

LIBRARY
ClearViewArea
CloseGraphics
CloseViewTrans
DivideViewAreas
Errorlnguiry
Escape

GDP
GraphCursorAbs
GraphCursorRel
GraphPosAbs
GraphPosRel
IngAttributes

IngCurTransNumber

7-64

7-65

7-66

8-1

8-1

8-2

8-4

8-6

8-6

9-1

9-3

9-4

9-6

9-7

InqGraphCursor
IngGraphPos
IngPixel
InqPixelArray
IngPixelCoords
InqTextCursor
InqViewArea
IngWorldCoordSpace
LineAbs

LineRel
MarkerAbs
MarkerRel
OpenGraphics
PixelArray
Polyline
Polymarker
SelectCursor
SelectGrColour
SelectTxColour
SelectViewTrans
SelectColourLogic
SetColourRep

SetGrCsrBlinkrate

. SetGrCsrShape

vi

SetLineClass

9-21

9-23

9-24

9-25

9-26

9-27

9-28

9-29

9-30

9-31

9-32

9-33

9-34

9-35

9-36

9-38

9-40

9-41

9-43

9-44

9-45

9-46

SetTextLine
SetTxCsrBlinkrate
SetTxCsrShape
SetWorldCoordSpace

TextCursor

IMPLEMENTATION CHARACTERISTICS
INTRODBUCTION
IMPLEMENTATION ADDITIONS
IMPLEMENTATION RESTRICTIONS
UNTMPLEMENTED FEATURES

THE M20 PASCAL LIBRARY -

FUNCTIONAL LIST

BYTESTREAM 1/0 FUNCTIONS
BLOCK TRANSFER FUNCTIONS
STORAGE ALLOCATION FUNCTIONS

TIME AND DATE FUNCTIONS

1IEEE-488 FUNCT1ONS

ERROR PROCEDURE

MISCELLANEOUS FUNCTIONS

M20 PASCAL GRAPHICS LIBRARY -

FUNCTIONAL LIST

TRANSFORMATION AND CONTROL

GRAPHICS OUTPUT

GRAPHICS ATTRIBUTES

INQUIRY

SYSTEM ERRORS

9-47

9-48

949

9-50

9-51

A-1

A-1
A-2

A-3

B-1

B-2

B-4

B-5

c-2
C-3

c-4

"

M20 - RS-232-C DEVICE
PARAMETER TABLE

DEVICE 1D (DID) ASSIGNMENTS
VOCABULARY

ASCI1 CODE

vii

\l!?

1. INTRODUCTION

ABOUT THIS CHAPTER

This chapter is a brief introduction to the M20 PASCAL package.
chapter also provides an overview of this user guide.

CONTENTS

PROGRAMMING 1IN PASCAL
ON THE M20

THE M20 PASCAL PACKAGE

SYSTEM REQUIREMENTS

ABOUT THIS MANUAL

NOTATION CONVENTION

1-1

1-1

1-2

1-2

This

INTRODUCTION

PROGRAMMING IN PASCAL ON THE M20

The M20 PASCAL language is a compiled language. This means that a PASCAL
language program must be written in an Editor environment; on the M20
this can be done in the Video File Editor environment which is described
in the '"M20 PCOS (Professional Computer Operating System) User Guide''.
This edited version of the program containing PASCAL statements is known
as the source file. The structure of the source file and the PASCAL
language as implemented on the M20 are detailed in the 'M20 PASCAL
LANGUAGE Reference Manual". This user guide details all the subsequent
steps required before the program can be successfully executed.

The next step is to compile the program using the PASCAL compiler. The
PASCAL compiler takes a source file in input and creates a new file
called the object file.

The final step in creating an executable load file 1is to 1link object
files wusing the LINK command. LINK takes one or more object files in
input and creates an executable binary load file. Note that object files
created using other computer languages can be LINKed to object files out-
put by the PASCAL compiler.

THE M20 PASCAL PACKAGE

The M20 PASCAL package contains the PASCAL compiler, the LINK command,
and the Video File Editor mentioned above. Also included in the package
is the MLIB command for creating library files of object modules. The
package - also 1includes other data files required by the compiler and
library files of object modules which implement real number arithmetic
and for interfacing some of the PCOS system calls and the routines of the
M20 graphics package.

SYSTEM REQUIREMENTS

The Olivetti PASCAL compiler will run on any M20 with a minimum of 384K
bytes of random access memory. For easier operation, an M20 with two
floppy disk drives or one floppy disk drive and a hard disk is recom-
mended.

ABOUT THIS MANUAL

Part one of this manual (chapters 1-5) describes the operation of the
M20 PASCAL Compiler and the M20 linker from the most rudimentary pro-
cedures to more advanced topics that may be of interest only to experi-
enced programmers. It is assumed however that the reader has a working
knowledge of both the PASCAL language and PCOS.

Chapter two '"Program Development" describes the process of program
development. This chapter includes a sample session which provides a
step~-by-step description of all the stages that follow the writing of a
program. This chapter 1is aimed primarily at users who are new to pro-
gramming in PASCAL.

Chapters 3 and 4 are complete descriptions of the compiler and the linker
respectively. These two chapters are self contained and experienced pro-
grammers may want read these chapters right from the start.

Chapter 5 discusses the use of library files and describes the MLIB com-
mand for creating library files.

Part two is dedicated to the functions and procedures contained in the
two library files available in the M20 PASCAL package; the M20 PASCAL
Library and the M20 PASCAL Graphics Library.

The M20 PASCAL Library contains the functions (and one procedure) which
interface some of the PCOS system calls. The M20 PASCAL Library is

introduced in chapter 6 and the functions (and one procedure) are

described in chapter 7.

The M20 PASCAL Graphics Library contains functions and procedures which
interface the routines of the M20 Graphics package. The M20 PASCAL Graph-
ics Library is introduced in chapter 8 and the functions and procedures
are detailed in chapter 9.

NOTATION CONVENTION
The notation used in this manual to describe command syntax 1is that

defined in the 'PCOS User Guide'. Refer to the '"PCOS User Guide" also
for rules governing file names and file identifiers in general.

1-2 ' PASCAL LANGUAGE USER GUIDE

2. PROGRAM DEVELOPMENT

ABOUT THIS CHAPTER

This chapter provides a short introduction to program development, a mul-
tistep process which includes first writing the program, and then compil-
ing, linking, and executing it. For a brief explanation of terms that
may be unfamiliar, see Appendix H ''Vocabulary."

CONTENTS

CREATING AN EXECUTABLE FILE 2-1

PROGRAM DEVELOPMENT 2-2
SAMPLE SESSION 2-4
CREATING AN M20 PASCAL 2-4

SOURCE PROGRAM

COMPILING YOUR M20 2-5
PASCAL PROGRAM

LINKING YOUR M20 2-9
PASCAL PROGRAM

EXECUTING YOUR M20 2-10
PASCAL PROGRAM

SAMPLE SESSION LOG 2-10

S’

PROGRAM DEVELOPMENT

CREATING AN EXECUTABLE FILE

A microprocessor can execute only its own machine instructions; it cannot
execute source program statements directly. Therefore, before a PASCAL
program can be executed, some type of translation, from the statements in
the source file to the machine 1language of the microprocessor, must
occur.

Compilers and interpreters are two types of programs that perform this
translation. Depending on the programming language in use, either or
both types of translation may be available. The M20 PASCAL is a compiled
language.

A compiler translates a source program and creates a new file called an
object file. The object file contains relocatable machine code that can
be placed and run at different absolute locations in memory.

Compilation also associates memory addresses with variables and with the
targets of GOTO statements, so that lists of variables or of labels do
not have to be searched during execution of your program.

Many compilers, including the M20 PASCAL Compiler, are what are called
"optimizing" compilers. During optimization, the compiler reorders
expressions and eliminates common subexpressions, either to increase
speed of execution or to decrease program size. These factors combine to
measurably increase the execution speed of your program.

The M20 PASCAL Compiler has a three-part structure. The first two parts,
pass one and pass two, together carry out the optimization and create the
object code. Pass three is an optional step that creates an object code
listing. Compiling is described in more detail in Chapter 3 ''The PASCAL
Compiler".

Before a successfully compiled program can be executed, it must be
linked. Linking is the process which computes absolute offset addresses
for routines and variables in relocatable object modules and resolves all
external references by searching through the runtime library (and any
other specified library files). On the M20 this operation is done by the
LINK command. LINK saves your program on disk as an executable file,
ready to run.

1t is possible, at link time, to link more than one object module, as
well as routines written in Assembly Language or other high-level
languages and routines in other libraries. The LINK command is described
in greater detail in Chapter 4 "The LINK Command'.

PROGRAM DEVELOPMENT

The entire process of program development is outlined below. The

is illustrated schematically in figure 2-1

Fig.

2-2

2-1

|

yes

VIDEQ
> FILE |e——m e —
EDITOR
PASCAL ASSEMBLER
SOURCE SOURCE
FILE (S) FILE (S)
M 20
PASCAL ASS:lzlg ER
COMPILER L
T
no +n0
PASCAL PASCAL ASSEMBLER
0BJECT RUNTIME OBJECT
FILE LIBRARY FILE
v
i
_____ .

— T~
\ AR J

LINK

PASCAL
EXECUTABLE

PROGRAM
FILE

RUN
PROGRAM

=
m
<

REQUIRED
PATH

OPTIONAL
PATH

y

errors?

no

REPEAT PROCESS
WITHOUT
ERROR-CHECKING
SWITCHES

Program Development

:

PASCAL LANGUAGE USER GUIDE

-]

—ves |

process

Create and edit the PASCAL (and M20 Assembler) source file(s).

Program development begins when you write a PASCAL program using the
Video File Editor. Use the text editor also to write any Assembly
Language routines you may plan to include.

Compile the program with the "/D'" ($DEBUG+) switch. Assemble the
Assembler source, if any, using the M20 Assembler (ASM) command.

Once you have written a program, compile it with the M20 PASCAL Com-
piler. The Compiler flags all syntax and logic errors as it reads
your source file. The "/D" Compiler switch <(or the corresponding
"SDEBUG+'" metacommand in the source file) turns on all the error-
checking switches. These switches are equivalent to their
corresponding metacommands and generate diagnostic calls for all run-
time errors(see chapter 3 for more detail on Compiler switches). If
compilation 1is successful, the compiler will create a relocatable
object file.

If you have written your own Assembly Language routines (for example,
to increase the speed of execution of a particular algorithm), assem-
ble those routines with the Assembler (ASM) command. The ASM command
is described in the '"M20 ASSEMBLER User Guide".

Link the compiled (and assembled) object files with the runtime

~ library.

An object file output by the PASCAL compiler must be linked with the
runtime library ''runtime.lib". LINK will create an executable pro-
gram file.

Execute the program.
Having compiled the program with $DEBUG+ will cause the executable
program to go through extensive (and time consuming) error checking

procedures.

Repeat this process until your program has successfully compiled,
linked, and run without errors.

Recompile, relink, and rerun with $DEBUG-.
Repeating the process without the runtime error-checking switches

will reduce the amount of time and space required to execute the pro-
gram.

2-3

ERRORS AND WARNINGS

PASCAL errors and warnings can be returned either by the compiler (at
compile time) or during program execution (run time). The codes of errors
and warnings that can be returned are detailed 1in Appendix H of the
Reference Manual.

DUMPING FACILITIES

Throughout the process of program development the programmer may need to
display source files, object files, etc.. This can be done using the PCOS
command FLIST, which allows a number of optional features for dumping
various types of files. The FLIST command is detailed in the ''M20 PCOS
User Guide".

SAMPLE SESSION

This sample session provides step-by-step instructions for compiling and
linking an M20 PASCAL program.

Creating an executable M20 PASCAL program involves the following steps:

1. Nrite and save a PASCAL source file.

2. Compile your program with the M20 PASCAL compiler.

a) Start pass one and enter your filenames 1in response to the
prompts.

) Run pass two of the compiler.
c) Run pass‘three of the compiler. ﬁThis step.is optional.)
3. Link your object file to the runtime library '"runtime.lib".
4. Execute (i.e., run) your program.

Compiler passes one and two are required. You need to run pass three
only if need or want an object listing, which we do for this session.

This sample session makes the following assumptions:

1. You have an M20 with a minimum of 384K bytes of random access memory
and two disk drives (0: and 1:).

2. The sample program is already debugged, so that it will compile,
link, and execute successfully.

2-4 o : - PASCAL LANGUAGE “USER GUIDE

3. An object listing is required, therefore all three passes of the com-
piler will be run.

4. No compiler switches will be used.

5. There are no problems with data, code, or memory limits.

CREATING AN M20 PASCAL SOURCE PROGRAM
Turn on your computer and load PCOS. You can create a PASCAL program
using the Vide File Editor. A PASCAL source file should, in most cases,

have the ".pas' extension. Fror this sample session, we shall use a pro-
gram called '"sort.pas'. sort.pas will reside on drive 1.

COMPILING YOUR M20 PASCAL PROGRAM
As mentioned previously, compiling a program is either a +two or three-

step process, depending on whether or not you choose to produce an object
code listing. For the sample session, we will run all three passes.

Pass One

Insert the disk containing the files "pasl.cmd'" and 'PASKEY" in drive 0.
In response to the PCQS prompt, enter

pas’

This command starts pass one of the M20 PASCAL compiler.

The compiler prints a header then prompts you with the following message:

- Ready diskette in default drive 0
or enter new default drive number:

To this message respond by entering the number 1 followed by a carriage
return,

The compiler then prompts you for four filenames:
1. The source filename

2. The object filename

3. The source listing filename

4. The object listing filename

Respond to the prompts as described in the following paragraphs. For

54

additional information about the files themselves, see Chapter 3, "The
PASCAL Compiler".

1.

Source File.

The first prompt is for the name of the file that contains your
source program:

Source filename [.pas]:

The prompt reminds you that ".pas' is the default extension for the
source filename. Unless the extension 1is something other than
".pas'', you may omit it when you specify the filename.

For now, enter "sort" followed by a carriage return (to indicate that
the source file is 1:sort.pas).

Object File.

The second prompt is for the name of the relocatable object file,
which will be created during pass two:

Object filename [sort.obj]:

The name in brackets is the name the compiler will give to the object
file 1if you simply press the carriage return key at this point. The
filename is taken from the source filename you gave 1in response to
the first prompt; the '".obj" extension is the standard extension for
object files. :

Respond to this prompt by presseing the carriage return key.

Source Listing File

The third prompt is for the name of the source listing file, created
during pass one:

Source listing [NUL.1st]:.

As before, the prompt shows the default. Because the source 1listing
is not required for linking and executing the program, it defaults to
a null file; that is, if you press the RETURN <ey, there will be no
source listing file.

However, if you enter any part of a file identifier (volume identif-
ier or file name), the default extension is .1lst, the default device
is the current default drive, and the filename defaults to the name
given to the source file.

PASCAL LANGUAGE USER GUIDE

For this session, assume that you want to send the source listing
file to the terminal screen. Therefore enter '"'stdout'" (for standard
output) followed by a carriage return in response to the source list-
ing prompt. "

4. Object Listing File.

The final prompt is for the object listing file, to be created during
pass three:

Object listing [NUL.cod] -

The null file is the default for the object listing, as it is for the
source listing. 1IF you press the carriage return key, no intermedi-
ate files will be saved and you won't be able to run pass three.
However, the same default naming rules apply here as elsewhere; if
you enter any part of a file identifier, the default extension is
".cod", the default device 1is the current default drive, and the
filename is the source filename.

For now, enter '"stdout' (for standard output) followed by a carriage
return to request that the object listing be displayed on your termi-
nal screen when you run pass three.

Compilation begins as soon as you have responded to all four prompts.
The source listing is displayed on your screen, as requested. When pass
one is complete, you should see the following message on your terminal
screen.

errors Warns In Pass One
0 0

1f the compiler had detected errors during compilation the value of
Errors and Warns would be greater than zero.

The error and warning messages would appear in the source listing as it
comes on your screen.

1. Errors are mistakes that prevent a program from running correctly.

2. Warnings indicate a variety of conditions, none of which will prevent
the program from running, but which reflect poor programming practice
or produce invalid results.

See Appendix H in the '"M20 PASCAL Reference Manual' for a complete list-
ing of messages and information about how to correct the errors in your
program.

Pass one creates two intermediate files, "PASIBF.SYM" and '"PASIBF.BIN".
The compiler saves these two files on the default drive for use during
pass itwo.

1f there are errors, the two 1intermediate files are deleted and the
remaining passes cannot be run. 1f pass one generates only warning mes-
sages, you can still run pass two and three, but you should go back and
correct the source file at some point.

Pass Two

Remove the disk containing '"pasl.cmd" from drive 0 and insert the disk
containing the files "pas2.cmd" and "xtdata'.

Start pass two by entering:
pas?

Respond 1 to the default drive question as you did for pass one. Pass
two performs the following actions:

1. 1t reads the intermediate files "PASIBF.SYM" and "'PASIBF.BIN' created
in pass one.

2. 1t writes the object file.
3. 1t deletes the intermediate files created in pass one.

4. It writes two new intermediate files, "PASIBF.TMP" and '"PASIBF.0ID",
for use in pass three. These files are written to the default drive.

When you are compiling your own programs, the last step described varies,
depending on your response to the object listing prompt. 1f, as for this
sample session, you plan to run pass three, pass two writes the two
intermediate files. 1f in pass one you do not request an object listing,
pass two writes and later deletes just one new intermediate file,
"PASIBF.TMP".

When pass two 1s complete, a message like the following prints on your
screen:

CODE AREA SIZE
CONS AREA SIZE = #00E6 (230)
DATA AREA SIZE = #0264 (612)
CASE TABLE AREA SIZE = #00C6 (198)

#05EC (1516)

Pass Two No Errors Detected.

The first four lines indicate the amount of space taken up by executable
code (CODE), Constants (CONS), Variables (DATA), and case statements
(CASE). The message concerning the number of errors refers to pass two
only, not to the entire compilation.

2-8 S v - PASCAL LANGUAGE USER GUIDE

PROGRAM DEVELOPMENT

Pass Three

Remove the disk containing 'pas2.cmd'" from drive 0 and 1insert the disk
containing "pas3.cmd".

Start pass three by entering:
pas3

Respond 1 to the default drive prompt as you did in pass one and pass
two. Pass three requires no other input. 1t reads "PASIBF.TMP" and
"PASIBF.OID'", the intermediate files created during pass two, and because
of your earlier response to the object listing prompt, writes the object
code listing to your screen.

When pass three is complete, the two intermediate files are deleted. 1f
after requesting an object listing, you choose not to run pass three, you
should delete these files yourself (to save space). The Table below is a
summary of the files read and written by each of these three passes of
the compiler during this sample session.

PASS FILES READ FILES WRITTEN FILES DELETED

1 sort.pas stdout
PASKEY PASIBF.SYM
PASIBF.BIN
2 PASIBF.SYM sort.obj PASTBF.SYM
PASIBF.BIN PASIBF.01ID PASIBF.BIN
xtdata PASIBF.TMP
3 PASIBF.0ID stdout PASIBF.01D
PASIBF.TMP PASIBF.TMP

See Chapter 3, "The PASCAL compiler' for details about compiler
and other ways of responding to the compiler prompts.

switches

2-9

LINKING YOUR M20 PASCAL PROGRAM

Now you are ready to link your program. Linking converts the relocatable
object code 1into an executable program by assigning absolute addresses
and setting up calls to the runtime library.

Remove the disk containing '"pas3.cmd" from drive 0, and insert the disk
containing "link.cmd", the link command. file "paslnk", and the runtime
library file "runtime.lib".

Start the linker by entering:
1i command 0:paslnk input 1:sort.obj- output 1:sort.cmd

The linker will create the executable program 'sort.cmd" on drive one.
For more detail see Chapter 4, 'The LINK Command'.

EXECUTING YOUR M20 PASCAL PROGRAM

When linking is complete, the operating system prompt returns. To run
the sample program, just enter the first two characters of the file name
(in this case "so'") followed by a carriage return.

The command directs PCOS to load the executable file 'sort.cmd", fix seg-
ment addresses to their absolute value (based on the address at which the
file is loaded), and start execution. This concludes the sample session.
Additional information on compiling and on linking is provided in Chapter
3, "The PASCAL Compiler" and Chapter 4, '"The LINK Command" respectively.

SAMPLE SESSION LOG

The following page shows a 1log of the entire sample session. Your
responses are shown in bold-face and a carriage return 1is indicated

by /CR/.

2-10 _ PASCAL LANGUAGE USER GUIDE

0> pasl /CR/

Ready diskette in default drive 0

or enter new default drive number: 1 /CR/
Source filename [.pas]: sort /CR/

Object filename [sort.obj]: /CR/

Source listing [NUL.1st]: stdout /CR/
Object listing [NUL.cod]: stdout /CR/

[Source listing display]

Errors Warns 1In Pass One
0 0

1> pas2 /CR/
Ready diskette in default drive 0
or enter new default drive number: 1 /CR/

CODE AREA SIZE = #05EC (1516)
CONS AREA SI1ZE = #00E6 (230)
DATA AREA SIZE = #0264 (612)
CASE TABLE AREA SIZE = #00C6 (198)

Pass Two No Errors Detected.
1> pas3 /CR/
Ready diskette in default drive 0

or enter new default drive number: 1 /CR/

[Object listing display]

0> link command 0:paslnk input 1:sort.obj output 1:sort.cmd /CR/
0> so /CR/)

3. THE PASCAL COMPILER

ABOUT THIS CHAPTER

In this chapter the three stages of the M20 PASCAL compiler are
described in detail.

CONTENTS

INTRODUCTION ‘3—1
COMPILER ACTION 3-1
PAST 3-2
PARAMETER SPECIFICATION 3-5
PAST COMPILER SWITCHES 3-6
ERRORS AND WARNINGS 3-8
PAS2 3-8
PAS3 3-9

DISK SPACE 3-10

STRING KEYWORDS

ENTRY

The ENTRY keyword may occur once. 1t provides a global symbol name which
is to be made the entry point of the executable program. The entry point
is determined as follows: -

- 1f an ENTRY keyword is given, then the entry point specified is used,
regardless of any definition within the input module itself.

- If no ENTRY keyword is given, then the entry point is set as defined
in the input module.

The entry point of a PASCAL main program 1is located at the symbol
ll—begxqqll. . .

MESSAGE

A MESSAGE keyword supplies the ASCII text (which must be one string) to
go 1in the message record of the load file. There may be any number of
MESSAGE keywords in one LINK command. The massage record is the last
record of the load file and does not form part of the executable program

itself. 1t can be used for comments, remarks, date and time of operation,
etc.

SIMPLE KEYWORDS

QUIET

The QUIZT keyword causes output normally sent to the standard output to
be suppressed, except for fatal error messages. 1f no QUIET keyword is
given, the following information will be displayed:

- The LINK header line and version number.

- All error messages.

- A list of unresolved references.

VERBOSE

This keyword causes extra information to be sent to standard output. The
command line being executed 1is displayed, entry to each new module is
noted, and a warning is issued each time the possibility of an error is
encountered.

4-9

- STATISTICS

The STATISTICS keyword, if specified, causes the program to output
statistics on how much of LINK's memory was used.

OPTIMIZE

Specifying the OPTIMIZE keyword in the command line causes the output
file to be optimized by not including uninitialized memory at the begin-
ning or the end of the program tex¥ section of the output load file. This
produces a smaller load file and saves time in loading the program into
memory. :

BLOCK KEYWORD

BLOCK

The parameters of a BLOCX keyword are names of program sections that are
to be loaded in one contiguous region of memory (i.e. a block). The BLOCK
xeyword may occur any number of times on a LINK command line. The program
sections can also be specified by patterns with the use of the following
lWild Card characters; '

- An asterisk (*) which matches any string.
- A question mark (?) which matches any single character.
- [ab...] which matches any single character in the square brackets.

- [a-b] which matches any single character in the interval a-b

A pattern stands for all the section names which match that pattern, and
which have not been used previously in the current or any other block.
The sections are taken in the same order that they occur in the 1input
object modules.

If a section does not fit in the first block that it matches, a warning
message 1is issued by LINK, and the section is left as a candidate for
other blocks that it also matches. Any sections which remain unplaced are
reported via a warning message and ignored thereafter.

In the absence of a BLOCK keyword, 'BLOCK *" is assumed by default as the
last keyword on the command line. This means that LINK will attempt to
place all sections in one block the size of which is defined.in the com-
mand line (see BLOCKSIZE). 1f a program does not fit in one block then
two or more BLOCK keywords need “o he specified for a successful LINK
operation.

Section names in a PASCAL program are created by the PASCAL compiler. A

program with program name ''nrogname' will contain:

- a (program) code section with section name 'progname p'"

and, as the case may be, any combination of the following:

- a CASE statement table section with section name ''progname c"
- a data section with section naine ''progname d"
- a constant definition section with section name 'progname k'

- 3 stack section with section name 'progname =

A necessary condition for PASCAL programs to execute is that ail <ciack
sections must be placed in the same block. You can ensure this by speci-
fying "BLOCK * s" in a LINK command line where two or more BLOCK keywords
are used. B

KEYWORD ORDER

The order in which keywords appear has no gross effect on the outcome of
the operation. The effects of ordering are due to the fact that files are
opened and flags are set when their respective keywords are encountered.
ror example, keywords which appear before the MAP or the VERBOSE keyword
do not get echoed into the MAP file, or on standard output. The relative
order of the BLOCKSIZE and BLOCKTYPE keywords is important because their
parameters are used as default values for subsequently defined blocks.

ERRORS

If any fatal error occurs during the parsing of keywords or the execution
of the locate operation, -the program is stopped immediately with an error
message on standard output and, if 1t was specified, the map file.

ALTERNATE STACK/HEAP SEGMENTS

Compiled code output by the M20 PASCAL compiler assumes that the stack
and heap occupy a contiguous block of memory in a single segment. In
addition, this stack/heap block must be statically allocated so that the
loader can resolve relocatable references to it at load time.

The runtime library contains a 4k byte declaration for the stack/heap
block. Alternative declarations for the block are provided in separate
object files included in the PASCAL package on the same diskette which

contains the runtime library. The files are the following:

FILE NAME STACK SIZE (in bytes)

hpstk2k.obj 2k
hpstk8k.obj 8k
hpstk16k.obj 16k
hpstk32k.obj 32k
hpstké64k.obj 64k

By specifying any one of these files as an input module to LINK, along
with the rest of the object files, the library declaration will be
ignored. The size of the resulting load file is not affected by these
alternative declarations. the memory requirements for the program, how-
ever, will vary accordingly. Using the 2k byte stack/heap will reduce
the memory required by a program but may limit its dynamic capabilities.
The larger stack/heap blocks, on the other hand, may give a program more
dynamic capability but will increase its memory requirements.

PLOADING. PASCAL PROGRAMS

PASCAL programs output by LINK may be PLOADed but may be executed only
once after PLOADing. This is because some data is initialized when the
program 1s loaded and then changed during execution. It is not possible
to execute a PLOADed program a seconc time because the initialized data
would not have the correct initial value.

The possibility to PLOAD PASCAL programs 1is still useful, however,
because it leaves both disk drives available to the program on an M20
with two disk drives. It is even more useful on an M20 with a single
disk drive. Attempting to execute a PLOADed PASCAL program a second time
will return an error.

Example

The following LINK command will create an executable file 'myprog.cmd"
from the object file created in the example shown 1in chapter 3,
"myprog.cmd" The command will also create a map file 'myprog.map". It 1is
assumed that the program uses the M20 PASCAL library ("interfs.1lib'"), the
PASCAL graphics library ('interfg.lib') and consequently the graphics
package library ‘graph.lib".

~ PASCAL LANGUAGE USER GUIDE

1i map 1:myprog.map,input 1:myprog.obj,library O:runtime.lib
O:interfs.lib O:interfg.lib 0:graph.lib,entry begxqq,block * s
block *,output 1:echo.cmd /CR/

The same result can also be obtained by specifying the command file shown
below in the following command:

11 command 1:comlist /CR/

On the following page is a listing of the file "comlist"

4-13

THE LINK COMMAND

Fig. 4-2 Listing

4-14

Copmand file for LiNKing myprog.cmd

HAF 1-myorog,map

' Create 3 map file "myprog.map® on the disk inserted in !

D drive 1. Note that as this is the first bkeyword in the
' file all that follows will appear in the map file.

INFUT 1:myprog.obj
If more than cne file need to be spesified these can

follow even on successive lines as long as thepe are o
intervening keywords,

LIZRARY O:runtime.lib
d:interfs.lib
{:interfa.iib
D:gragh, 1ib

that are referenced by the input progeam,

ENTRY _begxag

The syebol heauqq specifies the entry point of & PASCAL

LPROral -

! This keyword will group ail stack sections in one block

This keyword will group all the remsining sectlons i
anather block,

aUTRLT 1:myprog,cmd

i Only one output file can be specified

of the File "comlist"

LINK will pick from these four library files the sodules !
i

5. LIBRARIES

ABOUT THIS CHAPTER

This chapter describes the use of libraries and the MLIB

creating library files.

CONTENTS

INTRODUCTION

ML1B

M20 LIBRARIES

USING THE M20 PASCAL LIBRARY

USING GRAPHICS

5-1

5-1

5-3

5-4

command for

INTRODUCTION

It 1s common programming practice to use a library of subroutines to be
made available to a series of programs. Mathematical programs, for
instance might use a library of subroutines for calculating tri-
gonometric functlons, and text oriented programs might use a library of
string comparison functions.

PASCAL procedures and functions can be compiled as separate routines.
These routines can then be used by a separate program where they are
declared as external procedures and/or functions as the case may be.

There are two ways in which external functions and/or procedures can be
LINKed to the main program;

1. you can specify the external functions and/or procedures as input
object files along with the main program, or

2. group the external functions and/or procedures in a library file and

specify the library file using the LIBRARY keyword in a LINK opera-
tion. _

When LINK discovers an external variable which is not present 1in any
input file, then, if the LIBRARY keyword was specified, it will search
through the list of library file(s) (specified after the LIBRARY key-
word) for a "global' definition. Once the subroutine name is found, the
module containing the subroutine is incorporated into the output load
file. Only the modules referenced by input files are included in the
output load file along with the rest of the input modules. A library
module "Y' referenced by another library module "X" in the same library
file will only be included if 'X" is located before 'Y'" in the library.

When LINKing a program using either library files, or more than one
input file it 1is important to ensure that the program entry point is
well defined (see the ENTRY keyword in chapter 4 "The LINK Command").

Library files can be created using the MLIB command described below.

MLIB

Creates a library file of object modules from a group of object files.

v

v

library object
__,(:::>__,, file - (:Z)——+» fne »
identifier 1 identifier

Fig. 5-1 The MLIB Command

Where

SYNTAX ELEMENT . MEANING

library file identifier The name of the file that 1is to contain
all the object modules in the specified
object files. This must be complete with
any necessary volume identifier and/or
file password. The file will be created
if it does not exist or, if it already
exists, it will be overwritten with the
new output. A 1library file 1is usually
assigned the extension '".lib".

object file identifier The name of an object file complete with
any necessary volume identifier and/or
file password. You can use the two PCOS
wild card characters (*) and (?) to
specify more than one file; an asterisk
(*) matches any string and a question mark
(?) matches any one single character.

Characteristics

During execution the MLIB command needs to create a temporary work file
on the disk inserted in the last selected disk drive. This means that
MLIB will not execute if called from a write protected diskette. Rather
than remove write protection from the diskette it is recommended to
PLOAD the MLIB command or to copy the file 'mlib.cmd" from your copy
protected diskette onto the disk where you want to create your library
files, or some other disk.

5-2 ' PASCAL LANGUAGE USER GUIDE

Example

1F you enter | THEN

|
|
|
|
|
i

the file "pascal.lib' is created on
the diskette 1inserted in drive 1.
This file will contain all the object
modules contained in the object files
"progl.obj'" and 'prog2.obj" both of
which are resident on the same disk-
ette inserted in drive 1.

ml 1:pascal.lib,1:progl.obj,
1:prog2.obj /CR/

e 7’_‘"“"‘-]"

M20 L1BRARIES

The M20 PASCAL package includes three libraries, the M20 PASCAL library,
the PASCAL graphics 1library and the runtime library. These are con-
tained in the three files ‘“interfs.lib'", 'interfg.lib" and
"runtime.lib" respectively.

The M20 PASCAL library is a library of functions, and one procedure
which interface the M20 System Calls, while the PASCAL graghics library
contains procedures and functions which interface the M20 Graphics Pack-
age. The Graphics Package 1itself 1is a library of graphics routines
called "graph.lib'", these routines however cannot be accessed directly
by a PASCAL program.

The runtime library contains the modules which 1implement real number
arithmetic. This library must be specified with all PASCAL programs in
the LINK phase.)

The functions (and one procedure) of the M20 PASCAL library are intro-
duced 1in chapter 6 and all the descriptions are in chapter 7. As for
the Graphics library functions and procedures these are introduced 1in
chapter 8 and detailed in chapter 9.

USING THE M20 PASCAL LIBRARY

To use any of the functions (or one procedure) in this library, you have
to declare the function (or procedure) as EXTERNAL. Subsequently, when
LINKing you must specify the library file ‘“interfs.lib'" using the
LIBRARY keyword. You must also ensure that the entry point of the pro-
gram is well specified (see the ENTRY keyword in chapter 4 '"The LINK
Command").

USING GRAPHICS

The functions and procedures of the PASCAL graphics library must be
declared as EXTERNALs before they can be used in a PASCAL program (as
with the M20 PASCAL library). 1n the LINK stage however both the PASCAL
graphics library '"interfg.lib'" and the Graphics Package library
"graph.lib" must be specified with the LIBRARY keyword. Here again you
have to make sure that the entry point of the program is well specified
(see the ENTRY keyword in chapter 4 "The LINK Command').

5-4 PASCAL LANGUAGE USER GUIDE

6. INTRODUCTION TO THE M20 PASCAL LIBRARY

ABOUT THIS CHAPTER

This chapter is a general description of the functions and one procedure
of the M20 PASCAL library. The library is divided in functional groups
and the characteristics of each group are discussed.

CONTENTS

INTRODUCTION 6-1
FUNCTION RESULTS 6-1
FUNCTIONAL GROUPS 6-1
BYTESTREAM 1/0 FUNCTLONS 6-2
BLOCK TRANSFER FUNCTIONS 6-3

STORAGE ALLOCATION FUNCTIONS 6-3

TIME AND DATE FUNCTIONS 6-3
IEEE-488 FUNCTIONS 6-4
ERROR PROCEDURE 6-5

MISCELLANEOUS FUNCTIONS 6-5

INTRODUCTION

The next two chapters describe the PASCAL functions and one PASCAL pro-
cedure which 1interface some of the M20 System Calls. System Calls are
PCOS procedures used to interface with 1/0 or to manage memory.

When any one of the PASCAL functions (or procedure) in the M20 PASCAL
library 1is called, the specified parameters (if there are any) are
passed as register assignments and the system call it interfaces is exe-
cuted. For this reason all the parameter values are such that they can
be expressed in a maximum of eight or sixteen bits. In some cases,
where strings or large data structures are to be passed to the call,
these have to be stored in memory first and the memory addresses of
these structures are passed as parameters instead.

FUNCTION RESULTS

A1l the functions in the PASCAL library will return the value =zero if
and only if there are no errors. 1f there is an error the function will
return the decimal error code.

A convenient way to use these functions in a PASCAL program 1is in an

assign statement, for example:

err := functionidentifier (parameteri,parameter2,...,parameterN)

You can then check the variable "err' for any errors, and, if '"err" 1is
non-zero, you can pass it as a parameter to the 'error'" procedure
("error' is the one and only procedure in the M20 PASCAL library).

FUNCTIONAL GROUPS

The M20 PASCAL library can be divided into functional groups as follows:

Bytestream 1/0 functions
- Block transfer functions
- Storage Allocation functions

- Time and Date functions

- 1EEE 488 functions

- Error procedure

- Miscellaneous functions (and one procedure)

In this chapter we shall discuss these functional groups. In the next
chapter the functions are detailed in alphabetical order,

BYTESTREAM 1/0 FUNCTIONS

Bytestream functions are used for:

Transferring bytes of data to or from an 1/0 device

Sending control information to a device or to a device driver

Receiving status information from a device

The following is a list of bytestream 1/0 funtions used to interface
with the disk, the printer, the RS-232 communications port, and the con-
sole (keyboard and video).

closedevice peof
closefile pseek
directory putbyte
getbyte readbytes
getlen readline
getposition - remove
getstatus rename

. lookbyte resetbyte
opendevice setcontrol
openfile writebytes

DID (Device 1Dentifier) Numbers

In most of these functions the file or device is identified by a DID
(Device 1Dentifier) number. The operating system maintains a table
associating DIDs with file and device pointers. Opening a disk file or
a device creates a stream data sructure and places a pointer to it in
the device pointer table. Closing the disk file (or device) sets this
pointer to nil and releases any associated table space.

Some devices or files are always open. For example, the keyboard and
the screen (the default window) are always open. They can, however, be
closed and re-opened by using the PCOS Device Rerouting feature.

A table of DID assignments is included in the Appendix.

N

BLOCK TRANSFER FUNCTIONS

The block transfer functions allow the programmer to set memory to a
fixed value, or to transfer data from one segment to another, or to

clear memory.

"The block trénsfer functions are the following:

beclear bset
bmove bwset

STORAGE ALLOCATION FUNCTIONS
1t is possible for a user program to call allocate or release heap
space.

Functions which open or close a disk file use the system calls inter-
faced by these functions internally to allocate or release heap space.

The following are the Storage Allocation functions:

maxsize newsameseg
newabsanyseg ~ pdispose
newabsolute ’ _ pnew
newlargestblock stickynew

TIME -AND DATE FUNCTIONS.

The M20 system has a real-time clock which maintains both date and time.
This clock must be reset each time the system is powered up. '

Time or date settlng are done by.pa551ng the address of “an ASCI1 string
to the operating system. Likewise, the time or the date can be read by
transfering an ASCI1 string from the operating system.

These operations are peFformed by the following functions:

“getdate setdate
gettime settime

IEEE-488 FUNCTIONS

Using the functions in this group you can perform the following opera-
tions on an IEEE-488 bus: , '

Control the IFC (interface c¢lear) and REN (remote enable) lines;

Receive a service request from another device on the bus, identifying
the requesting device through serial polling, and processing the ser-
vice request;

Write control bytes (e.g.: '"Device C(lear'", 'Device Trigger', etc.)
to other devices;

Address, write data to, and read data from, other devices; and
Allow the devices within an 1EEE-488 network to transfer data on the

bus (i.e.: assign 'Talker" status to one device, and '"Listener"
status to one or more devices).

The 1EEE-488 functions are the following:

ilninput iset
ipoll isrq0
iprint isrql
iread iwrite
ireset

The errors which can be returned by these functions are particular to
these functions only. These errors are explained in the table below.

ERROR CODE MEANING

3 Invalid termination of input bytestream. The two
valid cases are: .

1. the number of data bytes received equals the value
specified. The last data byte is accompanied by
the END condition (EOI true, ATN false).

2. the number of data bytes received equals the value

specified. The last data byte is followed by a CR,
LF pair with the END condition accompanying the LF.

PASCAL LANGUAGE USER GUIDE

e et b i . i T < A

9 !% Talker or Listener address greater than (hex) 1F.
|

|
e WS —
‘

10 :E 1EEE board not present.

11 ‘ 15 second polling loop (for "byte in", '"byte out", or
' . "input buffer empty" condition) timed out; handshake
could not be completed within 15 seconds.

For further details on the 1EEE-488 interface see the '"M20 1/0 with
External Peripherals User Guide'", however note that this manual
describes the BASIC interface to the system calls which are interfaced
by the 1EEE-488 functions in the M20 PASCAL library.

ERROR PROCEDURE

The “error" procedure is the only procedure in the M20 PASCAL library.

This procedure will display on the screen the error message associated
with a specified error code.

MISCELLANEOUS FUNCTIONS

The following miscellaneous functions complete the list of contents of
the M20 PASCAL library:

bootsys dstring
checkvol getvol
crlf parsename
dhexbyte sdevtab
dhexlong search
dhexword setsysseg
diskfree setvol
dlong stringlen

dnumw

1
|
4
j
)
5
1
{
g
4
1
i
i
I .
i

7. THE M20 PASCAL LIBRARY

ABOUT THIS CHAPTER

This chapter details all the functions and one procedure of the M20 PASCAL

library. The descriptions follow each other in

CONTENTS

bclear
bmove
bootsys
bset

bwset
checkvol
closedevice
closefile
crif

dhexbyte

7-1

7-2

7-3

7-4

7-5

7-6

7-9

7-10

dhexlong
dhexword
directory
diskfree
dlong
dnumw
dstring
error
getbyte

getdate

ssilcal order.

7-11

7-12

7-13

7-14

7-15

7-16

7-17

7-18

7-19

7-20

Tt

At o e et Ak o

getlen
getposition
getstatus
gettime
getvol
ilninput
ipoll
iprint
iread
iresef
iset

isrq0

iérqj
iwrite
lookbyte
maxsize
newabsanyseg

newabsolute

newlargestblock

newsameseg
opendevice

openfile

7-21

7-22

7-23

7-24

7-25

7-26

7-27

7-28

7-29

7-30

7-31

7-32

7-33

7-34

7-35

7-36

7-37

7-38

7-39

7-40

7-41

7-42

parsename
pdispose

peof

pnew

pseek
putbyte
readbytes
readline
remove
rename
resetbyte
sedevtab
search
setcontrol
setdate
setsysseg
settime
setvol
stickynew
stringlen

writebytes

7-44

7-45

7-46

7-48

7-49

7-50

7-51

7-53

7-54

7-55

7-56

7-61

7-62

7-63

7-64

7-65

7-66

Sets a specified block of memory to zero.

Function Declaration

FUNCTION bclear (start : ADSMEM ;

length : WORD) : INTEGER ; EXTERN ;

Characteristics
This function sets a block of bytes, of a specified size, and starting at
a specified address, to zero. The first input variable "start" is a seg-
mented pointer to the first byte of memory to be set,while the second
input variable, "length" is the number of bytes to be set to zero.

Function Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.

.7_1 .v>

o et s ke, S e A 7 PR e T A AT

Moves a block of bytes from one location to another.

Function Declaration

FUNCTION bmove (start : ADSMEM ;
destination : ADSMEM ;
length : WORD) : INTEGER ; EXTERN ;
Characteristics

This function moves a block of bytes, of specified length, and starting
at a specified address, to a specified destination block. The input
variable 'start" is a segmented pointer to the first byte of memory to be
moved, while the input variable '"length" is the number of bytes to be
moved. . The input variable '"destination” is a segmented pointer to the
first byte of the destination memory block.

Functipn Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.

C?2 . DPASCAL LANGUAGE USER GUIDE

S EeaTtt

Reboots (initializes) the system.

Function Declaration

FUNCTION bootsys : INTEGER ;

Characteristics

This function is used to reboot the system exactly as does pressing the
blue shift plus reset keys. 1In other words, the system reboots, but
bypasses the diagnostic checks.

Function Result

The function will return the value zero if and only if there are no
errors, 1f an error occurs then the function will return the error code.

!
|
f
?
!
|
5
|
|
Ei

Sets a block of bytes to a specified value.

Function Declaration

FUNCTION bset (value : BYTE
start : ADSMEM ;
bytelen : WORD) : INTEGER ; EXTERN ;

Characteristics
This function sets each byte of a block of memory to the value of the
input parameter ''value'. The input variable '"start" is a segmented

pointer to the first byte of memory to be set, while '"bytelen" 1is the
number of bytes to be set.

Function Result-

The function 'will return the value zero if and only if there are no
errors. 1If an error occurs then the function will return the error code.

e

Sets a block of words to a specified value.

Function Declaration

FUNCTION bwset (wvalue : WORD ;
start : ADSMEM ;
wordlen : WORD) : INTEGER ; EXTERN ;

Characteristics

This function sets each word of a block of memory to the value of the
input parameter "wvalue". The input variable "start" is a segmented
pointer to the first word of memory to be set, while 'wordlen" is the
number of words to be set.

Function Result

The function will return the value zero if and only if there are no
errors. If an error occurs then the function will return the error code.

:
|
?
?
|
£

7-6

Forces a check of disk volumes

Function Declaration

FUNCTION checkvol : INTEGER ;

Characteristics

There are no input parameters for this call. All volumes are forced to

read their verification codes on their access.

Function Result

The function will return the value zero if and only if there are no

errors. 1If an error occurs then the function

will return the error code.

Closes the specified device.

Function Declaration

FUNCTION closedevice (did : WORD) : INTEGER ; EXTERN ;

Characteristics
This function disables the hardware interrupts, closes the specified dev-

ice and then releases both buffer and table space. The input "DID" iden-
tifies the device.

Function Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.
Valid D10 Numbers

19, 25, 26 Com (RS-232-C), Com1, Com2

i
i
|
i
I

R

Closes the specified disk file.

Function Declaration

FUNCTION closefile (did : WORD) : INTEGER ; EXTERN ;

Characteristics

This. function closes the specified file and then releases both buffer and
table space. The input "DID" identifies the file.

Function Result

The function will return the value zero if and only 1if there are no
errors. If an error occurs then the function will return the error code.

Valid DID Numbers

1 -15 disk files (BASIC)
20 - 24 disk files (PCOS)

E USER GUIDE

Does a CR and a LF.

Function Declaration

FUNCTION crlf : INTEGER ;

Characteristics

This function will do a carriage return and a line feed. There are
parameters,

Function Result

The function will return the value zero if and only if there are

no

no

errors. 1f an error occurs then the function will return the error code.

7-9

Displays a byte in Hex.

Fuhction Declaration

FUNCTION dhexbyte (byteval : WORD) : INTEGER ; EXTERN ;

Characteristics

The byte supplied in the input parameter '"byteval' is displayed as two
hex digits.

Function Result

The function will return the wvalue zero if and only if there are no
errors. 1If an error occurs then the function will return the error code.

Displays a long word in hexadecimal.

Function Declaration

'FUNCTION dhexlong (longval :INTEGER4) : INTEGER ; EXTERN ;
Characteristics
The long word supplied in the input parameter ''longval" is displayed as

eight hex digits.

Function Result

The function will return the value zero if .and- only if there are no
errors. .1f an error occurs then the function will return the error code.

Displays a word in hex.

Function Declaration

FUNCTION dhexword (wordval : WORD 5 : INTEGER ; EXTERN ;

Chafacteristics

The word supplied to the input parameter '"wordval" is displayed as four
hex digits.

Function Result’

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.

72 © PASCAL LANGUAGE USER GUIDE ~

Displays a list of files from a specified disk.

Function Declaration

FUNCTION directory (fileadr : ADSMEM ;
filelen : WORD) : INTEGER ; EXTERN ;

Characteristics

This function is used only for files.- 1t lists the contents of .the
directory of the specified volume, on -the current window of the M20
screen, The input variable '"filelen'" is the number of bytes in the file
identifier. The 1input "fileadr" is the address of the file identifier.
The file identifier may contain a volume identifier and/or wild card
characters ("'*' and "?").

The display lists the names of the specified files on the specified (or
default) volume in compact form.
Function Result

The function will return the value zero if and only if there are no
errors. If an error occurs then the function will return the error code.

Returns the number of free sectors on the disk.

Function Declaration

FUNCTION diskfree (volnum : WORD : _

VAR secnum : INTEGER4) : INTEGER ; EXTERN ;

Characteristics
This function returns into "secnum' the number of sectors that are avail-
able for use on the specified disk. The input parameter "volnum" is the
number of the disk drive where the volume to be checked is inserted. (use
-1 for the current volume).

Function Result

The function will return the value zero if and only if there are no
errors. 1If an error occurs then the function will return the error code.

Displays a number as an unsigned decimal integer.

Function Declaration

FUNCTION dlong (longval :INTEGER4) : INTEGER ; EXTERN ;

Characteristics
The hexadecimal number supplied 1in the input parameter ‘'longval" is
displayed as an unsigned decimal integer, left-justified with leading
zeroes omitted.

Function Result

The function will return the value zero if and only if there are no
errors. If an error occurs then the function will return the error code,

7-15

Displays a number as an unsigned decimal integer.

Function Declaration

FUNCTION dnumw (wordval : INTEGER ;
width : WORD) : INTEGER : EXTERN ;

Characteristics

The hexadecimal number in the input parameter ''wordval' is displayed as
an unsigned decimal integer. The input parameter "width" specifies the
field width for display.

The display is right-justified in the field, with leading zeroes changed
to spaces.

Function Result

The function will return the value zero if and only if there are no
errors. If an error occurs then the function will return the error code.

e £ et s & # it s

Displays a string message.

Function Declaration

FUNCTION dstring (stringadr : ADSMEM) : INTEGER ; EXTERN ;

Characteristics

This function displays a string message stored in the address pointed to
by the input parameter "stringadr'. The string must be terminated with a
null (0) byte.

The message may include any number of carriage returns, but note that a
linefeed will be automatically displayed after each carriage return in
the string.

Function Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code,

77

|
|
!

Displays a standard error message.

Procedure Declaration

PROCEDURE error (parnum : BYTE ;
errcrcode : BYTE) ; EXTERN ;

Characteristics

This procedure is only called if there are errors. The procedure
displays the message "“Error nn'" in parameter "xx'" where '"nn' is one of
the standard error codes (in decimal) specified by the hexadecimal value
of the input parameter "errorcode'', and xx is the parameter number speci-
fied in the input parameter "parnum'. 1f “parnum" is zero then only the
message 'Error nn' is displavad.

Note:

I1f the EPRINT command is resident, then ar error message willt also be
displayed.

SRR PASCAL LANGUAGE USER GUIDE

e

.
S
|
S
Co
i

Returns the first byte from a designated device, removing the byte from
the device buffer.
Function Declaration

FUNCTION getbyte (did : WORD ;
VAR retbyte : BYTE) : INTEGER ; EXTERN ;

|
Characteristics

This function returns the first byte in the input buffer (from file or
designated device) and places that byte in the variable 'retbyte". The
DID is an integer which identifies the source of the input. Valid DID
numbers are listed below.

In the case where the DID is either 17 or 19, if the input device buffer
is empty, the system will wait until a byte is input and available in the
buffer before returning to the caller with the byte in the variable "ret-
byte". '

Function Result

The function will return the value zero if and only if <there are no
errors. 1f an error occurs then the function will return the error code.

Valid DID Numbers

1 -15 disk files (BASIC)

17 console

20 - 24 disk files (PCOS)

19,25,26 Com (RS-232-C), Com1, Com2

- 7-19

Returns the system date at a specified address.

Function Declaration
FUNCTION getdate (dataadr : ADSMEM ; »
length : WORD) : INTEGER ; EXTERN ;
Characteristics
This call returns the ASCI1 string giving the system date at a specified
data address. The input variable the ''dataadr'" is the address where the
ASC1T string will be stored, while "length" is the maximum length of the

string, which is stored in the BASIC data area.

The format of the returned date is:
dd:mm:vyyy

where "dd" is the day, "mm'" is the month, and 'yyyy" is the year.

There will be leading zeroes to make each field two characters in 1length
and the character separating the various fields for the date will be that
used in the last call to function setdate. The system initializes the
separator character to ":".

Function Result

The function will return the value zero if and only if there are no
errors. If an error occurs then the function will return the error code.

Returns either the length of a file or the number of bytes in the input
buffer.
Function Declaration

FUNCTION getlen (did + WORD H
VAR length : INTEGER4) : INTEGER ; EXTERN ;

Characteristics

DEVICES This function returns into the variable '"length'" either the
number of bytes bytes currently in the input buffer (for a device) or the
file length (in bytes). The input DID identifies the device or file.

Function Result

The function will return the value zero if and only if there are no
errors. If an error occurs then the function will return the error code.

Valid DID Numbers

1-15 disk files (BASIC)
20 - 24 disk files (PCOS)
19,25,26 Com, Com1, Com2

1
s
%
|

Gets the position of the next byte to be read or written.
Function Declaration

FUNCTION getposition (did : WORD ;
- VAR fposition : INTEGER4) : INTEGER ; EXTERN ;

Characteristics

- This call returns into the variable "fposition" the position, 1in bytes,

of the next byte to be read or written. The input “DID" identifies the
file. A list of valid DID numbers is given below.

Function Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.

Valid DID Numbers

1-15 disk files (BASIC)
20 - 24 disk files (PCOS)

7-22 PASCAL LANGUAGE USER GUIDE

Reads a single word from the Device Parameters Table.

Function Declaration

FUNCTION getstatus (did : WORD ;

: . wordngm : WORD ;
VAR parword : WORD) : INTEGER ; EXTERN ;

Characteristics
This function allows a single word to be read from the Device Parameter
Table (see appendix E). The input “wordnum' is the word number to be
read. The word read from the Device Parameter Table is returned in the
variable "parword".

Function Result

The function will return the value zero if and only if there are no
errors. 1If an error occurs then the function will return the error code.

Valid D1D Numbers

19, 25, 26 Com(RS-232-C), Coml, Com2

7223

Returns the system time at a specified address.

Function Declaration

FUNCTION gettime (dataadr : ADSMEM S .
‘length : .WORD) : INTEGER ; EXTERN ;

Characteristics

This function returns the ASCI1 string giving the system time at a speci-
fied data address. The input variable 'dataadr' is the address where the
ASC11 string will be stored, while "length'" is the maximum length of the
string, which is stored in the BASIC data area.

The format of the time returned is:

hh:mm:ss

where "hh'' is the hour (in 24-hour time), "mm" is minutes, and 'ss" is
seconds.

There will be leading zeroes to make each field 2 characters in 1length,
and the character separating the various fields for the time will be that
used in the last call to function settime. The system initializes the
separator character to '":".

Function Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.

7-24 | PASCAL LANGUAGE USER GUIDE

Returns the current default volume number.

Function Declaration

FUNCTION getvol (vbuffer : ADSMEM ;
bufsize : WORD
VAR vsize : WORD) : INTEGER ; EXTERN ;

- Characteristics

-This function returns the éurrent default volume identifier in the buffer

pointed to by the input variable "vbuffer". The size of this buffer is
specified in the variable "bufsize'. The actual size of the volume iden-
tifier string is returned in "vsize".

Function Result

The function will return the value zero if and only if there are no
errors. If an error occurs then the function will return the error code.

7-25

|

Places bytes received into a buffer as a single line of data.

Function Declaration

FUNCTION ilninput (buffer : ADSMEM ;
buflen : WORD :
talkeradr : WORD ;
listenadr : WORD
VAR bytes not read : WORD) : INTEGER ;
- EXTERN ;
Characteristics

This function will transfer bytes received sequentially from a driver
specified by 'talkeradr' to a buffer specified by the pointer ‘'buffer",
and, if a valid device address 1is specified in 'listenadr", to a
listener.

The input "buflen'" is the lenath of the buffer. The difference between
the buffer length specified and the number of bytes read will be returned
in the variable "bytes not read".

Function Result

The function will return the value zero if and only if there are nro
errors. If an error occurs then the function will return the error code.
The error codes which can be returned by this function (or other 1EEE-488
functions) are explained 1in chapter 6 in the section on 1EEE-488 func-
tions.

7-26 | PASCAL LANGUAGE USER GUIDE

Polls a specified device on an instrument bus.

Function Declaration
FUNCTION ipoll (talkadr : WORD ;
VAR statusptr : ADSMEM) : INTEGER ; EXTERN ;

Characteristics

This function polls the device specified, within a serial service request
poll. The input variable 'talkadr" identifies the device.

The function tests the device address, reads the device status byte, and
saves it in an address pointed to by the return variable "statusptr'.

Function Result

The function will return the value zero if and only if there are no
errors. 1If an error occurs then the function will return the error code.
The error codes which can be returned by this function (or other 1EEE-488

functions) are explained 1in chapter 6 in the section on 1EEE-488 func-
tions.

7-27

Transfers data from a buffer to a listener address.

Function Declaration

FUNCTION iprint (buffer : ADSMEM
listenadr : WORD
buflen : WORD
delimiter : WORD

~—lwr wr W

: INTEGER ; EXTERN ;

Characteristics

This function transfers data sequentially from a buffer, specified by the
memory address in the input variable "buffer', and by its length in input
variable "buflen'", to a listener address specified by the input variable
"listenadr".

The input parameter ''delimiter' determines the data-stream delimiter.
Zero specifies "END" as the data-stream delimiter, and one specifies "(R,
END'" as the data-stream delimiter sequence,

If there are any output bytes for transfer, they will be written to bus,
with ATN false.

Function Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.
The error codes which can be returned by this function (or other 1EEE-488
functions) are explained in chapter 6 in the section on IEEE-488 func-
tions.

7-28 | PASCAL LANGUAGE USER GUIDE

o e e g e ek et o e e et

~

Outputs commands (optional) and reads data bytes (optional).

Function Declaration

FUNCTION iread (comlist : ADSMEM
comlen : WORD
buffer : ADSMEM
huflen : WORD

S’ e e

: INTEGER ; EXTERN ;

Characteristics

1f there is a command list, this function will assert ATN and output com-
mands. 1t then reads a specified number of bytes, and places them
sequentially in a buffer.

The input parameter '"comlist" points to the address of the command 1list.
This list, if present, is stored as a sequence of bytes, 2 to the word.

The input "comlen" is the command list length in the 15 low order bits,
The high order bit is always zero (0). 1f there is no command list then
‘'comlen" is specified as zero.

The input 'buffer" points to the buffer which will receive the data
bytes, while input ''buflen' is the number of bytes to be read.

Function Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.
The error codes which can be returned by this function (or other 1EEE-488

functions) are explained in chapter 6 in the section on 1EEE-488 func-
tions.

Co7-29

| ireset

Causes the remote enable (REN) message to be sent false.

Function Declaration

FUNCTION ireset : INTEGER ;

Characteristics

This function causss the remote enable (REN) message to be sent false.

Function Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.
The error codes which can be returned by this function (or other 1EEE-488
functions) are explained 1in chapter 6 in the section on 1EEE-488 func-
tions.

7-30 PASCAL LANGUAGE USER GUIDE

PR ——

Causes a remote enable (REN) or an interface clear (1FC) to be sent.

Function Declaration

FUNCTION iset (operand : WORD) : INTEGER ; EXTERN ;

Characteristics

This function causes the remote enable (REN) message or the interface

clear (IFC) pulse to be transmitted, depending upon the value of the
input variable '‘operand". ’

If "operand" is zero, then the REN message is sent true; 1if one is speci-
fied, then the IFC pulse is sent.

Function Result

The function will return the value zero if and only if there are no
errors. If an erroar occurs then the function will return the error code.
The error codes which can be returned by this function (or other TEEE-488

functions) are explained 1in chapter 6 in the section on 1EEE-488 func-
tions. '

Disables the service request (SRQ) interrupt.

Function Declaration

FUNCTION isrq0 : INTEGER ;

Characteristics

When using the 1EEE-488 package this call disables the service request
(SRQ) interrupt. (For more information see function isrql.)

Function Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.
The error codes which can be returned by this function (or other 1EEE-488
functions) are explained in chapter 6 in the section on 1EEE-488 func-
tions.

7-32 e PASCAL LANGUAGE USER GUIDE

N

S S

Enables the service request (SRQ) interrupt.

Function Declaration

FUNCTION isrql : INTEGER ;

Characteristics

This function will set the global flag "srq 488" (byte) to one when an
SRQ interrupt occurs. (This flag is stored in the mailbox area, see
appendix G)

Function Result

The function will return the value zero if and only if there are no
errors. If an error occurs then the function will return the error code.
The error codes which can be returned by this function (or other IEEE-488
functions) are explained in chapter 6 in the section on 1EEE-488 func-
tions.

Outputs commands (optional) and writes data bytes (optional).

Function Declaration

FUNCTION iwrite (comlist : ADSMEM
comlen : WORD
numadr : ADSMEM
numlen : WORD

s Wy W

: INTEGER ; EXTERN ;

Characteristics

If there is a command list, this function will assert ATN and output com-

mands. 1f there are any data bytes to be output, writes them to bus with
ATN false. :

The input parameter “comlist' points to the address of the command list.
This list, if present, is stored as a sequence of bytes, two to the word.
The input "comlen" is the command list length in the 15 low-order bits of
the word; the high-order bit is set to one to specify "END' as the data-
stream delimiter, and zero to specify "CR, END" as the data-stream del-
imiter sequence. If there is no command list then "comlen'" is specified
as zero.

The input "numadr" points to the address of the list of numeric values.
1t, too, 1is stored as a sequence of bvtes, two to a word. The input
"numlen” is the length of the list of numeric values. If there are no
data bytes to write then '"numlen'" is specified as zero.

Function Result

The function will return the value zero if and only if there are no
errors. If an error occurs then the function will return the error code.
The error codes which can be returned by this function (or other 1EEE-488
functions) are explained in chapter 6 in the section on IEEE-488 func-
tions.

e e e et e i S At s = ke S

Returns the next byte from the designated device buffer without removing
the byte from the buffer.

Function Declaration

FUNCTION lookbyte (did : WORD ;
VAR retbyte : BYTE
VAR bufstatus : BYTE) : INTEGER ; EXTERN ;

Characteristics

This function returns the first byte of a device input buffer (undefined
if none) in the variable "retbyte", without removing it from the buffer.
The DID is an integer, identifying the device. Valid DIDs are listed
below. Also returned is the status of the device buffer in the variable
"bufstatus", this will be FF if the buffer is not empty or 00 otherwise.

Note:

Ring buffers are maintained for the interrupt driven 1input devices,
Characters are placed into the buffers immediately as they are received
and are available to programs via the two functions "lookbyte" and 'get-
byte'.

Function Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.

Valid DID Numbers

17 console
19,25,26 Com (RS~232-C), Com1, Com2

Returns maximum free heap size

Function Declaration

FUNCTION maxsize (VAR size : WORD) : INTEGER ; EXTERN ;

Characteristics

This function returns in the variable 'size'" the largest free heap block
in the current segment. Size 1is returned in bytes. By default the
current segment is segment 2 unless the program has executed a ‘'newab-
sanyseg" function, in which case the segment number is that specified in
the most recent 'newabsanyseg'.

A simple way to change the current segment number for a program is to do
a '"newabsanyseq'" function with the input variable '"size" specified as
zero. :

Function Resdlt

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.

Allocates a block at a specified address.

Function Declaration

FUNCTION newabsanyseg (VAR tableadr : ADSMEM ;
size : WORD) : INTEGER ; EXTERN ;

Characteristics

This function is similar to function "pnew" except that the block allo-
cated will be at a specified address. The input address is specified in
the variable "tableadr'. The input parameter "size" 1is the number of
bytes requested (this must be an even number).

After execution "tableadr" will contain the address of the actual block
allocated. 1If the requested value is too close to the end of a previous
block, the actual value may be two bytes lower than the requested value,
but will still include the requested length. 1If the space requested is
not available, a nil-pointer (hex FFFFFFFF) will be returned in
"tableadr", but no error code will be returned by the function.

Function Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.

Allocates a block at a specified address.

Function Declaration

FUNCTION newabsolute (VAR tableadr : ADSMEM ;
size : WORD) : INTEGER ; EXTERN ;

Characteristics

This function is similar to function "newsameseg' except that the block
allocated will be at a specified address. The input address is specified
in the variable '"tableadr". The input parameter 'size" is the number of
bytes requested (this must be an even number).

After execution ''tableadr' will contain the address of the actual block
allocated. 1If the requested value is too close to the end of a previous
block, the actual value may be two hytes lower than the requested value,
but will still include the requested length. 1f the space requested is
not available, a nil-pointer (hex FFFFFFFF) will be returned in
"tableadr", but no error code will be returned by the function.

This function allocates blocks in the current segment. By default this
is segment 2 unless the program has executed a "newabsanyseg" function,
in which case the segment number is that specified in the most recent
"newabsanyseg". »

A simple way to change the current segment number for a program is to do
a ''mewabsanyseg' function with the input variable '"size' specified as
zero.

Note that this function is a subset of function "newabsanyseg'. 1t has
been maintained for compatibility with preceding releases.

Function Result

The function will return the value zero if and only if there are no
errors. If an error occurs then the function will return the error code.

K™

" PASCAL LANGUAGE USER GUIDE

e b

Allocates the largest block of bytes from heap.

Function Declaration

FUNCTTON newlargestblock (VAR tableadr : ADSMEM ;

VAR size : WORD) : INTEGER ; EXTERN ;

Characteristics

This function allocates a the largest free block in memory, returning in
“tableadr" a pointer to the location of the first byte of the block and
the length of that block in the variable 'size".

1f thé block cannot be allocated, "tableadr'will contain a nil (hex
FFFFFFFF) but no error code will be returned by the function.

Function Result

The function will return the value zero if and only 1if there are no
errors. If an error occurs then the function will return the error code.

7-39

Allocates a block of bytes from heap in the current segment.

Function Declaration

FUNCTION newsameseg (VAR tableadr : ADSMEM ;
size : WORD) : INTEGER ; EXTERN ;

Characteristics

This function allocates blocks in the current segment. By default this
is segment 2 unless the program has executed a '"newabsanyseg" function,
in which case the segment number is that specified in the most recent
"newabsanyseg".

A simple way to change the current segment number for a program is to do
a 'newabsanyseg" function with the input variable '"size" specified as
zero. ‘ '

The input variable "size" is the size of the number of bytes to be allo-
cated, and the returned variable '"tableadr' is a pointer to the first
byte of the allocated hlock.

Note that this function is a subset of function 'pnew'. 1t has been
maintained for compatibilitv with preceding releases.

Function Result

The function will return the value zero if and only 1if there are no
errorse Lf an error occurs then the function will return the error code.

Opens a specified device,

Function Declaration

FUNCTION openfile (did : WORD) : INTEGER ; EXTERN ;

Characteristics

This function opens the device specified by input variable ''did".

Function Result

The function will return the value zero if and only if there are no
errors. 1If an error occurs then the function will return the error code,

Valid DID Numbers

19,25,26 ' Com (RS-232-C), Com1, Com2

Opens a specified file for read, write, etc.

Function Declaration

FUNCTION openfile (did : WORD
mode : WORD ;
extentlen : WORD ;
filelen : WORD ;
buffer : ADSMEM)

: INTEGER ; EXTERN ;

Characteristics
This function will open the designated file in the mode specified by the
input parameter "mode' as shown below:

0: Read, always from current position.

"1: Write, always placing a new end of file.

2: Read/Mrite, allocating sectors beyond old EOF.

3: Append, seeks to end upon open, and then writes.
A file that does not exist cannot be opened in the read mode. A non-
existent file, if opened by write or read/write, will be created. If it
does exist, write mode will write over the old file.
If an existing file has been opened in the read/write mode, the user can
then position the file pointer to its end to extend it using the function
"pseek'. However, Append mode does this automatically and then operates
the same as the write mode.
The input '"extentlen" designates the number of sectors to be allocated if
the file 1is to be created. The request should always be one sector
larger then the data requirements. 1f zero is specified, the number of
sectors will be the default value (8). The input DID number identifies
the file (see list below).

The input "filelen" 1s the number of characters in the file identifier
(complete with an optional volume identifier and/or password).

The input "buffer” points to the file identifier string.

-2

Function Result

The function will return the value zero if and only if there are no
errors. 1f an error cccurs then the function will return the error code.

Valid DID Numbers

1 -15 disk files (BASIC)
20 - 24 disk files (PCOS)

._?;4$:?ﬁ::

Parses a file or a volume name.

Function Declaration

FUNCTION parsename (stradr : ADSMEM
strlen : WORD
nameptr : ADSMEM

VAR vol : WORD

Nt ay we wy

INTEGER ; EXTERN ;

Characteristics

This function takes a file identifier of the form

volname '/' volpswd ':' filename '/' filepswd "

and parses it ipto its various components, A drive urit is acceptable as
volname .

Each component is placed into the appnropriate compartment of the names
record as follows:

volname : 14 byte array
volpswd : 14 byte array
filename : 14 byte array
filepswd : 14 byte array

The input parameter "stradr' is an address whkich points to the file iden-
tifier string. The length of tha file identifier string is specified in
"strlen" (this also includes the volume identifier if specified).

The input parameter 'nameptr" is an address which noints to the names
record.

The returned parameter 'vol" will contain the drive number where the disk
which contains the file or volume name is inserted.

Function Result

The function will return the value zero if and only if there are no
errors. 1If an error occurs then the function will return the error code.

.......

Releases heap space.

Function Declaration

FUNCTION pdispose (VAR tabieadr : ADSMEM) : INTEGER ; EXTERN :

Characteristics

This function releases memoary space. The start address from where heap
space 1is to be released is specified in the variable 'tableadr'. After
execution "tableadr" will b2 a nil pointer.

Function Result

The function will return the value zero if and "only if there are no
errors. 1f an arror cccurs then the function will return the error code.

) pArS ey

Checks if an input character is available from a device.

Function Declaration
FUNCTION peof (did : WORD H
VAR retstatus : BOOLEAN) : INTEGER ; EXTERN ;
Characteristics
The function 'peof" (end of file) will return a 'false" value in

"retstatus" 1if input character 1is available from the selected device,
"retstatus'" will be set to "true" in each of the following cases:

1. The selected file is not open.
2. The file is open for output only.
3. The console has been selected but ne key has been struck.

4. The end of the disk file has been reached.

The input '"DID'" identifies the device; valid DINs are listed below.

RS-232-C

For use with the RS-232-C, this function returns a 'false" value in
"retstatus" if the input buffer is not empty. ‘''retstatus'" will be "true"
if the buffer is empty.

Function Result

The function will! return the value zero if and only if there are no
errors. 1If an error occurs then the function will return the error code.

P Valid DID Numbers

)
" 1 - 15 disk files (BASIC)
17 console
19,25,26 Com (RS-232-C), Coml, Com2

Allocates a block of bytes from heap.

Function Beclaration

FUNCTION pnew (VAR tableadr : ADSMEM ;
size : WORD) : INTEGER ; EXTERN ;

Characteristics

This function allocates a block of bytes from the heap, returning in
"tableadr'" a pointer to the location of the first byte of the block.

The input variable "size" is the number of bytes to be allocated.

Function Result

The function will return the value zero if and ~only 1if there are no
errors. 1f an error occurs then the function will return the error code.

Positions a file pointer as specified.

Function Declaration

FUNCTION pseek (did : WORD ;
fposition : INTEGER4) : INTEGER ; EXTERN ;

Characteristics

~ This function will position the file pointer for the specified stream

(opened file) to the position specified. The input "DID" identifies the
device. The input "fposition" is a 32-bit pointer. Position zero is
the first byte.

Seeking past the EOF while the file is open for read/write will automati-
cally allocate new sectors.

Function Result

The function will return the value zero if and only if there are no
errors. 1If an error occurs then the function will return the error code.

Valid DID Numbers

1-15 disk files (BASIC)
20 - 24 disk files (PCOS)

Transmits a byte to a specified device.

Function Declaration

FUNCTION putbyte (did : WORD ;

inbyte : BYTE) : INTEGER ; EXTERN ;

Characteristics
This function transmits the byte supplied in '"inbyte" to the device or
file specified by the DID. Valid DIDs are identified below. For files,
no information is returned about the validity or EOF state of the DID.
If the device is the RS-232-C port, and the port is not ready to send,
the driver will wait for a timeout period and then the function will
return the appropriate error code if nothing is sent,
Functibn Result
The function will return the value zero if and only if there are no

errors, If an error occurs then the function will return the error code.

Valid DID Numbers

1 -15 disk files (BASIC)
17 console
18 printer
20 - 24 disk files (PCOS)

19,25,26 Com (RS-232-C), Com1, Com2

e e ki P e e b et A o - e i . T

e e

Reads and counts bytes, from a device, into a buffer in me Sfy;

Function Declaration

FUNCTION readbytes (did : WORD

bytecount : WORD ;
buffer : ADSMEM ; _
VAR n_read : WORD) : INTEGER ; EXTERN ;

Characteristics

FILES

This function reads a specified ("bytecount') number of bytes from a file
into memory, and returns in "n_read'" the number of bytes actually read.

The count returned in ''n_read" is used to determine EOF status for the
file. The EOF status 1is determined when "n_read" is 1less than
"bytecount" (because there are no more bytes to be read).

The input "buffer' is a segmented pointer to the first byte of memory
where these bytes will be stored. The returned variable "n read” is the
actual number of bytes read.

RS-232-C

This function transfers a specified number ('bytecount") of bytes from
the device buffer specified by 'did" to the user specified "buffer".

If the number of characters in the input buffer is less than "bytecount",
the driver will wait for the needed characters to arrive.

Function Result

The function will return the value zero if and only if there are no
errors. If an error occurs then the function will return the error code.

Valid DID Numbers - -

1 -~-15 disk files (BASIC)
17 _ console
20 - 24 disk files (PCOS)

19,25,26 - Com (RS-232-C), Com1, Com2

)
J

Reads and counts bytes input from the keyboard, until the first /CR/,
into a memory buffer (at a specified address).

Function Declaration

FUNCTION readline (did : WORD
bytecount : WORD ;
buffer : ADSMEM ;
VAR n_read : WORD) : INTEGER ; EXTERN ;
Characteristics

This function reads a number of bytes specified in "bytecount" from the
standard input device into memory. 1Input will be terminated either when
an input byte is equal to a /CR/ or when the number of input bhytes
exceeds 'bytecount". The /CR/ is not put into the string.

The input DID (which must be 17) identifies standard input. It 1is the
only valid DID for this function. The input "bytecount" specifies the
maximum number of bytes to be read, and the input “buffer" is a pointer
to the first byte of memory where these bytes will he stored. The output
"n_read" is the actual size, in bytes, of the input string.

Characters are echoed to the standard output device and editing
features, (/CTRL//H/ 1i.e.:backspace and /CTRL//1/, 1i.e.: TAB) and hide
mode /CTRL//G/ are implemented. 1f a /CTRL//C/ 1is pressed, then the
variable "n read" will be equal to FFFF. :

Function Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.

Valid DID Numbers

17 Console (keyboard) only

Removes a specified file name from a disk directory.

Function Declaration
FUNCTION remove (fileadr : ADSMEM ;
filelen : WORD) : INTEGER ; EXTERN ;
Characteristics

This function is used only for disk files. It removes the specified disk
file (and related data) from the volume directory.

The input '"fileadr" points to the file identifier, and the input

"filelen" is the length of the file identifier (complete with an optional
volume identifier and/or password).

Function Result

The function will return the value zero if. and only if there are no
errors. If an error occurs then the function will return the error code.

7-54

Renames a specified file.

Function Declaration

FUNCTION rename (oldfileadr : ADSMEM
oldflen , : WORD
newfileadr : ADSMEM
newflen : WORD

St we a

: INTEGER ; EXTERN ;

Characteristics

This function is used only for disks. 1t will rename the file specified
by the old file identifier with the mew file name. '

The input "oldfileadr"_is the pointer to the old file identifier and
"oldflen'" is the length of the old file identifier (complete with with an
optional volume identifier and/or password).

The input 'newfileadr" is the pointer to the new file name and ‘'newflen"
is the length of this name. ”

Function Result

The function will return the value zero if and only 1if there are no
errors. 1If an error occurs then the function will return the error code,

Resets an input file or device.

Function Declaration

FUNCTION resetbyte (did : WORD) : INTEGER ; EXTERN ;

Characteristics

This function is used to reset an input device. In the case of the con-
sole, it will clear the keyboard ring buffer, and initialize the screen
driver. 1t can also be used with communications (RS-232-C), in which
case it re-initializes the hardware and clears the input buffer. The
input "DID" identifies the device.

i

Function Result

The function will return the value zero if and only if there are no
errors. If an error occurs then the function will return the error code.
Valid DID Numbers

17 console
19,25,26 Com (RS-232-C), Com1, Com2

R

Searches the system device table for a device name.

Function Declaration

FUNCTION sdevtab (devname : ADSMEM ;
devlen : WORD ;
VAR entrynum : BYTE ;
VAR devtvpe : BYTE ;
VAR tabptr : ADSMEM) : INTEGER ; EXTERN ;
This function searches the system device table for the device named. The
input parameter "devname' is the address where the first ASC11 character
of the name is stored, and the input parameter 'devlen'" is the number of
bytes in the name.

If the device name is found the function will return the entry number of
the device in the variable "entrynum" and the device type in 'devtype’ (1
= Read, 2 = Write, 2 = Read/Write). The third returned variable "tabptr"
is the address of the first entry in the particular device table.

Function Result
The function wil) return the value zero if and only if there are no
errors. If an error occurs then the function will_return the error code.

o

Searches on a specified disk for a specified file name.

Function Declaration

FUNCTION search (drive : INTEGER

3
mode : WORD ;
infileptr : ADSMEM ;
filelen : WORD ;
outfileptr : ADSMEM

VAR fileptr : ADSMEM
VAR flen " WORD ;
)

VAR blocknum : INTEGER4) : INTEGER ; EXTERN ;

Characteristics

This function searches on a disk for a file name supplied by the user.
The file name may contain wild card characters.

The input parameter 'drive" identifies the drive to be searched (input a
'-1' for the current drive). The input "mode' is either a '1' for a
search from the beginning, or a '0' for a search from the last file
found.

The input parameter "infileptr' is an address which points to the file
name to be searched for. This file name can contain wild card charac-
ters. 'filelen" is the length in bytes of the file name. To search for
any file input a zero "filelen".

1f the specified file name is found it will be written to the memory
location pointed to by the input parameter "outfileptr". The address of
the file is returred in the returned variahle "fileptr", the file length
in "flen", while "blocknum" will contain the logical block number of the
file descriptor block on the disk.

Function Result

The function will return the value zero if and only if there are no
errors. 1If an error occurs then the function will return the error code.

Writes a word into the Device Parameter Table.

Function Declaration

FUNCTION setcontrol (did + WORD :

wordnum : WORD ;
parword : WORD) : INTEGER ; EXTERN ;

Characteristics

This function allows a single word to be written into the Device Parame-
ter Table (see appendix E). The input "wordnum" is the word number to be

written to; the input "parword" is the word to be written to the Device
Parameter Table.

Function Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.

Valid DID Numbers

19, 25, 26 Com (RS-232-C), Com1, Com2,

Sets the system date-clock.

Function Declaration
FUNCTION setdate (dataadr : ADSMEM ;
length : WORD) : INTEGER ; EXTERN ;
Characteristics
The input variable ''dataadr' points to an address in the caller's data
area which contains ths date. The input variable "length' gives the

length of the ASCI1 strinc.

The format of the data in the string, except for the delimiter, must be:
dd:mm:yyyy
where "dd" is the day, "mm" is the month, and "yyyy" is the year; leading

zeroes need not be supplied.

Any non-numeric character may be used in place of the colon, as shown 1in
the examples for function settime.

The date is iritialized to January 1, 1982 at system startup. If only
two digits are input for the vear, the century is assumed to be 19,
Function Result

The function will return the value zero if and only if there are no
errors. 1f an error occurs then the function will return the error code.

7-60 o © PASCAL LANGUAGE USER GUIDE

S

Returns the caller to segmented system mode.

Function Declaration
FUNCTION setsysseg : INTEGER ;
Characteristics
This function will return the caller to segmented system mode, regardless

of which mode the system is in.

Function Result

The function will return the value zero if and only if there are no
errors. 1If an error occurs then the function will return the error code.

Sets the system clock.

Function Declaration
FUNCTION settime (dataadr : ADSMEM ;
. length : WORD) : INTEGER ; EXTERN ;
Characteristics
The‘input variable "dataadr' points to an address in the caller's data
area which contains the time of day. The input variable 'length'' gives
the length of the ASCIT string. The format of the data in the string
must be:
hh:mm:ss
where "hh" is the hour (in 24-hour time), "mm" is minutes, and 'ss" is
seconds. Leading zeros need not be supplied. Any non-numeric character

can be selected for delimiter as shown in examples below, using the PCOS
SSYS (set system) command.

ss 04/15/82,13:12:45

ss "04 15 82",08:10:00

Time is initialized to 00:00:00 at system startup. If blanks are
selected for delimiters, as in the second example, the expression must be
put in quotes.

Function Result

The function will return the value zero if and only 1if there are no
errors. If an error coccurs then the function will return the error code.

Sets a specified volume for the next access.

Function Declaration

FUNCTION setvol { volnum : WORD) : INTEGER ;

Characteristics

This function sets the volume for the next access. The inputparameter
"volnum" is the volume number to he used for the next access.

Function Result

The function will return the value zero if and only if there are no

errors.

If ar error occurs then the function will return the error code.

2ot

Allocates a block of bytes from heap that remains allocated after the
program executing this function terminates.
Function Declaration

FUNCTION stickynew (VAR tableadr : ADSMEM ;

size : WORD) : INTEGER ; EXTERN ;

Characteristics
This function allocates a block of bytes from the heap, returning in
"tableadr' a pointer to the location of the first byte of the block. The
block allocated by this function will remain allocated even after the
main program terminates.
The input variable 'size'" is the number of bytes to be allocated.
This function is just like “pnew",with the only difference that the allo-
cated block is not de-allocated when the "calling" program terminates.

Function Result

The function will return the value zero if and only if there are no
errors. If an error occurs then the function will return the error code.

e i o A

Returns the length of the input string.

Function Declaration
FUNCTION stringlen (stringptr : ADSMEM ; ,
VAR strlen : WORD) : INTEGER ; EXTERN ;
Characteristics

This function returns into the variable "strlen" the length of the input
string. The input variable "stringptr' points to the string.

Note that the value returned in "strlen' is either the length read until
a null 1is encountered, or 14, if no null is encountered in that length.

Function Result

The function will return the value zero if and only 1if there are no
errors. 1f an error occurs then the function will return the error code,

Writes a specified number of bytes from memory to a file or device.

Function Declaration

FUNCTION writebytes (did : WORD
bytecount : WORD ;
buffer : ADSMEM ;

VAR n_write : WORD) : INTEGER ; EXTERN ;

Characteristics

FILES

This function writes a specified number ("bytecount') of bytes from
memory into a file, and returns in "n write" the number of bytes actually
transferred. Valid DIDs are listed below.

The input "bytecount" is the number of bytes to be transferred. The
input ‘'buffer" 1is a segmented pointer to the first byte in memory from
where these bytes will be taken.

The returned '"n_write" is the actual number of bytes transfered.

RS-232-C

This function transfers data bytes from the memory buffer specified in
"buffer' to the R5-232-C port.

Parameters have the same meaning as for files. If the port is not ready

to send, the driver will wait a timeout period after which if nothing is
sent the function will return the appropriate error code.

Function Result

The function will return the value zero if and ‘only if there are no
errors. 1f an error occurs then the function will return the error code.

Valid DID Numbers

1-15
17

20 - 24
19,25,26

disk files (BASIC)

console

disk files (PCOS)

Com (RS-232-C), Com1, Com2

e

e e o e

8.

INTRODUCTION TO GRAPHICS

ABOUT THIS CHAPTER

This chapter is an introduction to the graphics facilities available in
the M20 Graphics Package. 1t includes a summary of features and an
explanation of graphic concepts; the graphic routines are listed in func-
tional groups. A list of the default conditions for the M20 is given and
error reporting is explained.

CONTENTS

INTRODUCTION 8-1
SUMMARY OF FEATURES 8-1
CONCEPTS 8-2-
FUNCTIONAL GROUPS 8-4
ERRORS : | 8-6

DEFAULT CONDITIONS 8-6

S

INTRODUCTION

The M20 Graphics Library is available in the file 'graph.lib", which is
an integrated package of over forty routines offering a set of func-
tionalities for two dimensional graphics applications. This library may
be called by the PASCAL and Assembly programming languages (for more
detail, see chapter 5). The routines in this library can be accessed by
the functions and procedures contained 1in the M20 PASCAL graphics
library, "interfg.lib'". Throughout this chapter we shall refer to the
combined action of these two libraries as the M20 Graphics Package.
Chapter 9 contains a detailed description of each routine, in alphabeti-
cal order.

SUMMARY OF FEATURES

The M20 Graphics Package presents a consistent and easily comprehensible

structure that reflects proposed international standards for such pack-
ages.

Besides the full complement of standard output primitives, including
lines, polylines, markers, etc., there are several added features:

- line drawings and move operations may be optionally specified as an
offset from the current position

- circle, ellipse and rectangle functions are available

- output primitives may be drawn in any of eight colours (on eight-
colour systems) or four colours (on four-colour systems) ‘

- polygons, circles and ellipses may be solid filled
- 1intercharacter spacing for text may be adjusted.

The screen may be subdivided into rectangular regions called view areas.
View areas are independent from one another and there may be a maximum of
16 on the screen. If the user tries to draw a picture which does not fit
within the view area then only the visible portion of the drawing is
displayed and the rest is discarded (clipped).

Pictures, or parts of pictures, may be stored and redrawn when necessary.
For every feature that may be set by the M20 Graphics Package, there is
an inquiry function which permits the user to request its current state.
The inquiry functions return:

- the colour, logic operator and line class for the current view area

- the number of the current view area

- the position and blink rate of the graphics cursor for the current
view area

- the location at which graphics output will begin
- the colour number of the pixel which is nearest to a specified point

- the device coordinates of a given point expressed in world coordi-
nates

~ the next text entry point and the text cursor blink rate for the
current view area

- the size and text parameters of the current view area
- the world coordinate space for the current view area.
The M20 Graphics Package defaults to an operating mode that automatically
makes all format decisions (see Default Conditions). The user may change

these default conditions to other values which will better suit the
specific problem.

CONCEPTS

Graphical output generated by the M20 Graphics Package comprises two gen-
eral classes of functions: output primitives and primitive attributes.

Output primitives are abstractions of basic actions that graphics devices
can perform, like drawing lines and locating cursors. Output primitives
are defined in a two-dimensional user coordinate space (known as world
coordinates, see below). The units and the coordinates of the user coor-
dinate space are established by the application program.

Primitive attributes determine the characteristics that an output primi-
tive will possess when displayed on an output device; e.g., line class,
colour, 1intercharacter spacing, etc. Primitive attributes are set
modally; 1i.e., they establish a current value that is assigned to subse-
quently generated output primitives.

st o ek e

Coordinate data is subjected to transformations that perform a mapping
between two coordinate systems, namely:

- world coordinates, defined by the user that establish the scaling
basis on which the graphical output is described. The world coordi-
nate space definition determines how the coordinates from the appli-
cation program shall be placed within a view area. When a new view
area is created, it will have the same world coordinate space defini-
tion as the parent view area, but since the proportions of the two
view areas have changed, the shape of subsequent output to those view
areas will change too. The world coordinate space defines a view area
within the Cartesian plane. DivideViewArea defines a rectangular
surface on which the scale of two axes (the x axis and the y axis) is
determined. The view area may or may not contain the plane's origin,
that 1is the point of crossing of the two axes at which the coordi-
nates are (0, 0);

- device coordinates range from 0 to 511 pixels on the x axis (pixel =
picture element, the smallest visible entity on the screen) and from
0 to 255 scanlines on the y axis (scanline = a row of pixels), where
each coordinate pair addresses only one specific pixel,

Output primitives and attributes are automatically mapped from the user's
world coordinate space to the device coordinates via a transformation
which need not concern the user. ’

The M20 Graphics Package maintains two current positions, one for text
and one for graphics, and two cursors, one for text and -one for graphics.
Only one of the two cursors (or neither, if so specified) is displayed at
any one time. The text current position and the text cursor are always at
the same logical location: the point at which the next text output will
appear. The graphics current position (the point from which the next
graphics output will begin) and the graphics cursor do not coincide. The
graphics cursor may be used as an echo symbol to indicate a position on
the screen that reflects the values entered by an input device. The
current graphics position 1s used in many but not all graphics output
routines, e.g., Polyline will establish its own starting point but moves
the current position along as it draws, leaving it at the final point.
The circle and ellipse routine (GDP) leaves the current position wunaf-
fected.

Some graphics routines use absolute coordinates, others use relative
coordinates. The distinction is that absolute coordinates are distances
along the x and y axes from the origin of the Cartesian plane, while

relative coordinates are distances along the x and y axes from the

current point.

Most of the output routines are affected by the current colour attributes
and the colour 1logic-operator attribute. There is a foreground colour
which determines the colour of text output, and a background colour.
There 1is a graphics colour which determines the colour of graphic output
(lines, circles, dots, etc.). These attributes are selected from the
range of colours available on the specific M20 configuration.

The colours available on the M20 eight-colour system are: black, red,
green, vyellow, blue, magenta, cyan and white. The colours available on
the M20 four-colour system are four colours chosen from the eight just
mentioned. The monochrome system provides two colours, black and white.

The eight colours are numbered from 0 to 7. On four-colour systems, the

colours- chosen in the range 4..7 map to a value in the range 0..3 via a-

logical operation. Bits 0 and 2 of the binary- representation are OR'd,
e.g. the values 4 (100 binary) and 5 (101 binary) give 1 OR 0 = 1 and 1
OR 1 = 1 respectively. This sets the least significant bit (bit 0) and
bit 1 remains unchanged. Thus, the values 4 and 5 will become 1 after the
logical operation (4 decimal = 100 binary which becomes 01 binary = 1
decimal and 5 decimal = 101 binary which becomes 01 binary = 1 decimal)
and the colour is green (if the default value has not been changed). The
values 6 and 7 will become 3 after the logical operation (6 decimal = 110
binary which becomes 11 binary = 3 decimal and 7 decimal = 111 binary
which becomes 11 binary = 3 decimal) and the colour is red.

The logic-operator attribute determines the resultant output colour, con-
sidering the type of graphics routine (text or graphics), the setting of
the foreground, background or graphics colour attribute and the colour of
the target pixels 1in the view area. There are six logic operators and
each one acts on all pixels in determining what the final colour shall
be. The action occurs one pixel at a time, using the colour of the tar-
get pixel and that of the new graphics output as operands.

FUNCTIONAL GROUPS

The functional capabilities of the M20 Graphics Package may be divided
into four general classes, as follows:

- Transformation and control.

ClearViewArea : clears the specified view area.
CloseGraphics : closes the graphics session.
CloseViewTrans : closes the specified view area.
DivideViewArea : creates a new view area.

Escape : colours an area.

OpenGraphics : opens the graphics session.

SelectViewTrans : activates the selected view area.
SetWorldCoordSp : defines the world coordinate space.

8-4 | " © PASCAL LANGUAGE USER GUIDE

" g

- Graphics Output.

GDP

GraphCursorAbs

GraphCursorRel :

GraphPosAbs
GraphPosRel
LineAbs

LineRel

MarkerAbs
MarkerRel
PixelArray
Polyline
PolyMarker
TextCursor

: Generalised Drawing Primitive, creates a circle

or an ellipse.

: moves the graphics cursor to a specified absolute

position.
moves the graphics cursor to a specified relative
position.

: redefines the current graphics position (absolute).
: redefines the current graphics position (relative).
: draws a line from the current graphics position to

a specified absolute position.

: draws a line from the current graphics position to

a specified relative position.

: displays a point at a specified absolute position.
: displays a point at a specified relative position.
: transfers an image onto the screen.

: draws a connected sequence of lines.

: displays the specified points.

: moves the text cursor.

- Graphics Attributes.

SelectCursor
SelectGrColour

SelectTxColour
SetColourLogic

SetColourRep

SetGrCsrBlnkrate
SetGrCsrShape
SetLineClass

SetTextline
SetTxCsrBlnkrate
SetTxCsrShape

- Inquiry

Errorlnquiry

IngAttributes

IngCurTransNmbr :

: chooses which cursor, if any, is to be display-
ed.

: selects the colour for subsequent graphics out-
put .

: selects the colours for subsequent text output.

: defines a logic operator that influences the
output colour.

: sets one of the four colour indices to one of
the eight M20 colours (four-colour systems
only).

: sets the blink rate for the graphics cursor.

: defines the graphics cursor shape.

: determines the graphics output for the LineAbs,
LineRel, and Polyline routines. ‘

: sets the character width and text line height.

: sets the blink rate for the text cursor.

: defines the text cursor shape.

: returns the error status for the most recently

called graphics routine other than the inquiry
routines.

: returns the colour, logic operator and line

attributes for the current view area.
returns the number of the current view area.

8-5

e i e e

IngGraphCursor : returns the position and blink rate of the
‘ graphics cursor for the current view area.

IngGraphPos : returns the location at which new graphics
output will begin.

IngPixel : returns the colour number of the pixel which is
nearest to the specified point.

IngPixelArray : retrieves a rectangular image from the current
view area and stores it.

IngPixelCoords : returns the device coordinates of a given (x,y)
pair of world coordinates.

InqTextCursor : returns the next text entry point and the text
cursor blink rate for the current view area.

InqViewArea : returns the size and text parameters of the

current view area.
IngWorldCoordSp : returns the world coordinate space parameters
. for the current view area.

ERRORS

Error reporting is handled in two ways. For all routines, an error status
is reported; the value zero means no error. If an error has occurred, a
value in the range 1 to 255 inclusive is returned. The code numbers used
are the standard PCOS error codes with the same meanings (see Appendix
D).

For most functions, this status value is transferred to an error status
variable maintained by the M20 Graphics Package. There is a function
(Errorlnquiry) which returns the current value of this variable (that is,
the error status of the most recent Graphics Package routine called other
than the inquiry routines).

The inquiry group of functions handles error reports differently. These
never touch the error status variable (except for Errorlnquiry which
retrieves its value). They report any error directly through an error
parameter, and they do not generate an error status.

8-6 ' v PASCAL LA_NGUAGE USER GUIDE

DEFAULT CONDITIONS

The following is a list of the default conditions that will be assumed
unless otherwise specified:

world coordinates range from 0.0 to 511.0 on the X axis and from 0.0
to 255.0 on the Y axis, coinciding with the device coordinates except
that the latter are integer values

view area number 1 is the full screen, with device coordinates rang-
ing from 0 to 511 on the X axis and from 0 to 255 on the Y axis

colour depends on the system configuration

a) the monochrome system sets the background colour to 0 = black and
the text and graphics colours to 1 = white

b) the four-colour system sets the background colour to 0
the text and graphics colours to 1 = green; 2 = blue; 3

black;
red

c) the eight-colour system sets 0 = black to the background colour,
1 = green to the text and graphics colour, 2 = blue, 3 = cyan, 4
='red, 5 = yellow, 6 = magenta, 7 = white

the logic operator is PSET, which displays graphics output in the
chosen colour

the line class is solid line
no cursor is displayed

there is one cursor blink per second (one blink includes two changes
of state, one from ON to OFF and one from OFF to ON)

the text cursor shape is 7 pixels wide x 11 scanlines high (within an
8 x 12 space) and is displayed as a rectangle having alternate pixels
set

the graphics cursor shape is 2 pixels wide x 2 scanlines high

the graphics position is (0.0, 0.0)

the graphics cursor is at the centre of the screen, 1i.e. the upper
left hand corner of the graphics cursor is at (255, 127)

there are 16 scanlines per text line and 8 pixels per character

there are 16 textlines (rows) and 64 characters (columns) per screen.

; i
SR

9. THE M20 PASCAL GRAPHICS LIBRARY

ABOUT TH1S CHAPTER

This chapter describes in alphabetical order all the routines provided by

the M20 Graphics Package.

CONTENTS

ClearViewArea 9-1

CloseGraphics 9-2

CloseViewTrans ?—3

DivideViewArea 9-4

Errorlnquiry . 9-6

Escape ' 9-7

GDP 9-9

GraphCursorAbs 9-11
GraphCursorRel 9-12

GraphPosAbs

GraphPosRel

IngAttributes

IngCurTransNumber

IngGraphCursor

InqGraphPos

IngPixel

IngPixelArray

InqPixelCoords

+ e Ak = e P o i i

IngTextCursor
IngViewArea
IngWorldCoordSpace
LineAbs

LineRel

MarkerAbs
MarkerRel
OpenGraphics
PixelArray
Polyline
Polymarker
Selectcﬁrsor
SelectGrColour
SelectTxColour
SelectViewTrans
SetColourlLogic
SetColourRep
SetGr{srBlinkrate

SetGrCsrShane

9-24

9-25

9-26

9-27

9-28

9-29

9-32

9-33

9-34

9-35

9-36

9-38

9-40

9-41

9-43

9-44

9-45

SetLineClass

SetTextline

SetTxCsrBlinkrate

SetTxCsrShane

SetWorldCoordSpace

TextCursor

9-46

9-47

9-48

9-49

9-50

9-51

o —,

THEMZO PAS AL ‘GRAF

Clears the specified view area.

Function Declaration

FUNCTION ClearViewArea (view_prea_num . INTEGER) : INTEGER ; EXTERN :

Valid lnput Values

view_area-num: specifies the number of the view area to be cleared. 1t
must be within the range 1..16 and must correspond to an
existing view area.

Characteristics

This function clears the specified view area, created via DivideViewArea.
The view area 1is not closed, this call merely removes all its current
contents. The backqround colour is unchanged and fills the whole view
area.

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

P NP

Closes the graphics session.

Procedure Declaration

PROCEDURE ClecseGraphics ; EXTERN ;

Characteristics
If this procedure is called it must be the last graphics package call.
Calls to graphics routines must be bracketed by the

OpenGraphics/CloseGraphics pair, otherwise results are far from
guaranteed.

View area definitions and araphics package tables are cleared. The 1ni-
tial default conditions are reset (for these conditions see {JpenGraph-
ics).

Errors

This procedure does not return error messages.

9-2 | . ‘PASCAL LANGUAGE USER GUIDE

Closes the specified view area.

Procedure Declaration

PROCEDURE CloseViewTrans (view area num : INTEGER) ; EXTERN ;

’

Valid Input Values

view area num: specifies the number of the view area to be closed. It
must be within the range 0..16 and must correspond to an
existing view area.

Characteristics

This procedure closes the specified view area created via DivideViewArea.
The view area 1is joined to the one(s) next to it and takes on the same
background colour(s) as the adjacent view area(s). The resulting view
areas must be rectangular. The enlarged view area(s)' coordinate defini-
tions are adjusted to map the view area's new dimensions,

If the current view area is closed then view area number 1 becomes the
current view area. If the parameter "view area num" is set to the value
zero then all the view areas are closed and view area number 1 becomes
the current one, filling the entire screen,

View area number 1 cannot be closed. If the input parameter specifies the
value 1, the value of a view area which has not been opened, or a value

not within the 0 to 16 range, no error message is generated and the
attempt to close the view area has no effect. :

Errors

This procedure does not return error messages.

Creates a new view area.

Function Declaration

FUNCT1ON DivideViewArea‘(diy_orientA : INTEGER ;
div_point’ . : INTEGER ;
VAR view area num : INTEGER) : INTEGER ;

Valid Input Values

div orient:

div_point:

9-4

0.

WwN=O

EXTERN

.3

: horizontal split; the upper view area is the new one
: horizontal split; the lower view area is the new one

vertical split; the left view area is the new one

: vertical splif; the right view area is the new one.

defines the division point

if "div orient" is 0 or 1 (horizontal split) then
this parameter 1is expressed in scanlines (min = 1,
max = current view area height - 1) starting from the
top scanline of the current view area "

if "div_orient" is 2 or 3 (vertical split) then this
parameter 1is expressed in number of characters (of 6
or 8 pixels) in the range 1..63 or 1..79, starting
from the left side of the current view area. This
parameter is always defined in multiples of 8 pixels.
1f the character width has been set (via SetTextLine)
to 6 pixels, the following formula mavy be wused to
calculate the actual width of the left view area:

width 1 v a=truncate[(num of chars*char_width+3)/8]*8

where "num of chars'" is equal to the number of char-
acters specified by "div point" and "char width" is
the current character width in pixels (6 or 8). The
remainder before truncation is the right side margin
(of the left view area) which is less than 6 pixels
wide and so a character can not appear in it. Conse-
quently, the 'div point" parameter may allow one
character less than the number it implies;

if "div_point" is set to the value -1, then the
current view area is divided as equally as possible.

PASCAL LANGUAGE USER GUIDE

Output Values

view area num: this parameter returns the new view area's number. The
value is within the range 2..16.

Characteristics

This function creates a new view area by splitting the current one as
specified by the first two parameters. The third parameter returns the
number of the new view area.

The new view area inherits the following attributes from its parent view
area: text spacing, colour, and world coordinate space definition.

The initial state is the full screen defined as view area number 1. This
can be split into other view areas; adjacent view areas may be clecsed and
joined with it, as long as the resultant view area is rectanqular. View
area number 1 always exists, it can not he closed. There may he a maximus
of 16 view areas at a time. A new view area is assiared the lowest avail-
able number in the range 2 to 16 (e.g., if & view areas are created and
view area number 3 is closed, 3 will be assigned to the view area next
created).

Errors

If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
'no errors, a zero is returned.

Returns the error status for the most recently called graphics routine.

Function Declaration

FUNCTION Errorlnquiry : INTEGER ; EXTERN ;

Output Valﬁes

The output value of this function may be:

0: no error for the most recently called graphics routine

1..255: an error has occured in the most recently called graphics rou-

tine. The code numbers used are the standard PCOS error codes,
with the same meanings.

Characteristics

This function returns the error status for the most recently called
graphics routine other than the Inquiry (Inq ...) routines. '

The Inquiry class of functions does not alter or test the error status
variable: each one has 1its own error parameter, through which it
transmits error messages.

Routines, other than the Inquiry routines, clear the error status vari-
able before execution, and upon completion this variable reflects the

error status of the routine. If the value is zero, then no error has
occurred.

Errors

This function does not generate errors.

9-6 PASCAL LANGUAGE WSER GUIDE

ety

Colours an area.

Function Declaration

FUNCTION Escape (function num : INTEGER ;
ptr_datastruc : ADSMEM) : INTEGER ; EXTERN ;

Valid Input Values

function num: 1

Characteristics

This function paints an area in accordance with the parameters in the
data structure rointed to by the input value 'ptr_datastruc".

The data structure fe.qg., array, record, etc.) must contain the following
information:

- an x coordinate (two 16-bit words, single-precision real number,
high-order word first)

- a y coordinate (two 16-bit wonds, single-precision real number,
high-order word first)

- two colour numbers, one for painting the area identified by the point
(x,y) and one for the border (each colour number is a 16-bit word,
integer, high-order first).

The area surrounding the point (x, y) is painted with the colour speci-
fied in the data structure, within a contiquous border. No colouring will
occur if the point happens to fall on the border. The border must be of
only one colour.

The colour numbers have different effects on the monochrome, four-colour
and eight-colour systems. However, integers in the range 0..7 will work
for both colour parameters without generating errors on all three types
of systems. On the monochrome system, O=black and a value in the range
1..7=white. On four-colour systems, the two colour numbers are indices
into -a table of four pre-selected colours (see SetColourRep). On eight-
colour systems, the values in the range 0..7 have the following meanings:
O=black, 1=green, 2=blue, 3=cyan, 4=red, 5=yellow, 6=magenta, 7=white.

S 9-7

Errors

If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

9-8 | | PASCAL LANGUAGE USER GUIDE

e

.Generalised Drawing Primitive, creates a circle or an ellipse.

Function Declaration

i FUNCTION GDP (func : INTEGER ; i
| ptr_Xarray : ADSMEM ; ;
; ptr_Yarray : ADSMEM ; {
; numb_of points : INTEGER ; |
i datarec : ADSMEM) : INTEGER ; EXTERN ; . i

I R Valid Input Values
func: specifies the geometric function

1: draws a circle
2: draws an ellipse

numb_of points: specifies the number of points needed for drawing the
i geometric function

2: for the circle
3: for the ellipse

The two arrays, pointed to by "ptr_Xarray" and 'ptr_Yarray" must contain
values within the user's world coordinate space definition.

"datarec" is a parameter reserved for future expansion.

Characteristics

The application program must declare and allocate the two coordinate
arrays. Each array contains single-precision numbers; the high order
word must precede the low order word. The size of each array must be at
least large enough to store as many double-word numbers "as there are
points (2 points for the circle and 3 for the ellipse).

Default values will be assumed for colour, world coordinate space defini-
tion, and logic operator.

This function does not affect the current graphics position.

Circle: This function draws a circle if the parameter "func' 1is set to
the value 1.

The world coordinates of the centre point must be stored in the first
element of the two arrays (Xarray[1], Yarray[1]). The second element of
the two arrays (Xarray[2], Yarray[2]) is the world coordinate of a point
on the circumference. The GDP circle function determines the radius by
calculating the distance from the centre of the circle to this absolute

location (Xarray[2], Yarray[2]).

The parameter "numh_pf_poinfs" is set to the value 2 and indicates that
the arrays specify two geometric points.

The output generated by this function is always a circle, regardless of
the coordinate space definition.

1f the coordinates generate a circle larger than the view area then the
portions that lie outside the view area are clipped.

Ellipse: This function draws an ellipse (parallel to the x or y axis) if

the parameter 'func' is set to the value 2.

The world coordinates of the centre point must be stored in the first
element of the two arrays (Xarray[1], Yarray[1]). The second and third
elements (Xarray[2], Yarray[2]) and (Xarray[3], Yarray[3]) contain the
world coordinates of one end of the minor axis (either one will do), and
of one end of the major axis. (It does not matter which axis point comes
first.)

The parameter '"numb_of points" is set to the value 3 and indicates that
the arrays specify three geometric points.

1f the coordinates generate an ellipse larger than the view area then the
portions that lie outside the view area are clipped.

The exact shape of the ellipse may vary depending on the coordinate spacé
definition.

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the

same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

9-10 . _’ PASCAL LANGUAGE USER GUIDE

Moves the graphics cursor to the specified absolute position.

Function Declaration

FUNCTION GraphCursorAbs (x : REAL4 ;
. y : REAL4) : INTEGER ; EXTERN ;

Valid Input Values

The two values '"x" and "y" (single-precision real numbers) must specify a
point within the user's world coordinate space definition.

Characteristics

This function moves the qraphics cursor to the ahsclute position speci-
fied in world coordinates. The graphics cursor is disolayed only if the
SelectCursor function has been previously invoked, setting the
“"cursor_num'' parameter to the value 1.

1f the coordinates specify a point which is outside the current view area
then the current position of the graphics cursor remains unchangad and an
error code is generated.

The current graphics position is not associated with the positicn ¢f the
graphics cursor. The position of the graphics cursor coincides with that
of the current graphics position only when both are assigned the same

coordinates. This separation allows the application program to use the.

graphics cursor as an echo symbol to indicate a position on the screen
that reflects the values entered by an input device.

Errors

If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

Moves the graphics cursor to a specified relative position.

Function Declaration

FUNCTION GraphCursorRel (dx : REAL4 ;

b4

dy : REAL4) : INTEGER ; EXTERN ;

Valid Input Values

The resulting position must fall within the user's world coordinate space
definition. “dx" and "dy'" must be single-precision real numbers.

Characteristics

This function moves the graphics cursor to a new position which is
obtained by adding the 1input values dx,dy (which specify the distance
between the old position and the new one in world coordinates) to the old
graphics cursor position.

The graphics cursor is displayed only if the SelectCursor function has

been previously invoked, setting the 'cursor num" parameter to the value
1. ' -

1f the resulting position is outside the current view area then the
current position of the graphics cursor remains unchanged and an error
code is generated.

The current graphics position is not associated with the position of the
graphics cursor. The position of the graphics cursor coincides with that
of the current graphics position only when both are assigned the same
coordinates. This separation allows the application program to use the
graphics cursor as an echo symbol to indicate a position on the screen
that reflects the values entered by an input device.

Errors

1If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

'PASCALwLANGUAGE USER GUIDE

Redefines the current graphics position (absolute).

Function Declaration

FUNCTION GraphPosAbs (x : REAL4 ;
y : REAL4) : INTEGER ; EXTERN ;

Valid Input Values

The two values '"x'" and ''y" must be single-precision real numbers.

Characteristics

This function redefines the current graphics position for subsequent
graphics output. The input values specify an absolute location in world
coordinates. Any subseguent graphics output that uses the current graph-
ics position as a starting point will use this redefined position.

The current graphics position is not associated with the position of the
graphics cursor. The position of the graphics cursor coincides with that
of the current graphics position only when both are assigned the same
coordinates. This separation allows the application program tc use the
graphics cursor as an echo symbol to indicate a position on the screen
that reflects the values entered hy an input device.

The specified point becomes the current graphics position even if it is
not within the current view area. |

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned. '

Redefines the current graphics position (relative).

Function Declaration

FUNCTION GraphPosRel (dx : REAL4 ;
dy : REAL4) : INTEGER ; EXTERN ;

Valid Input Values

"dx" and "'dy" must he single-precision real numbers.

Characteristics

This function redefines the current graphics position for subsequent
graphics output. The new graphics position is obtained by adding the
input values dx, dy (which specify a distance in world coordinates) to
the previous graphics position. The next graphics output that uses the
current graphics position as a starting point will use this redefined
position.

The current graphics position is not associated with the position of the
graphics cursor. The position of the graphics cursor coincides with that
of the current graphics position only when both are assigned the same
coordinate point. This separation allows the application program to use
the graphics cursor as an echo symbol to 1indicate a position on the
screen that reflects the values entered by an input device.

The specified point hecomes the current graphics position even if it 1is
not within the current view area.

Errors

If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. If there are
no errors, a zero is returned.

 '?Tpgsgﬁt?ﬁﬁﬁéﬂﬂﬁéﬁq55§~$ﬁﬁﬁﬁ_;”"

Returns the colour, logic operator and line attributes for the current
view area.

Function Declaration

FUNCTION InqAttributes (VAR graphics col : INTEGER

VAR foregd col : INTEGER ;

VAR backgd col : INTEGER ;

VAR logic oper : INTEGER ;

VAR lineclass : INTEGER) : IMTEGER ;
EXTERN

Output Values

o
-~

graphics col:
foregd col : 0..7
backgd col : 0..7
logic_oper : 0..5

lineclass : 0..2

Characteristics

This function returns the following information for the current view
area:

"graphics_col": current graphics colour (see SelectGrColour)
- 'foregd col": text foreground colour (see SelectTxColour) "

- '"backgd col": background colour (see SelectTxColour and Clear-
ViewArea)

- "logic_oper": logic operator .for colour (see SetColourlLogic)

- "lineclass": line class (see Setl.ineClass).

If the view area is undefined (see DivideViewArea) an error code is
returned.

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the

same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

Returns the number of the current view area.

% Function Declaration

FUNCTION InqCurTransNumber (VAR view area num : INTEGER) : INTEGER
-7 EXTERN

Output Values

view area num: 1..16

Characteristics

This function returns the identification number of the current view area.
This number may be used for:

- selecting a different view area

- redefining the view area's world coordinate space
- clearing the view area's contents

- closing the view area

- retrieving information about the view area (e.g., colour, coordi-
nates).

Errors

The only value returned by this function is 0, no errors.

o9 e PASCAL LANGUAGE USER GUIDE

Returns the position and blink rate of the graphics cursor for the
current view area.

Function Declaration

FUNCTION IngGraphCursor (VAR x : REAL4
VAR y : REAL4
VAR blink rate : INTEGER) : INTEGER ;

EXTERN

Output Values
X @ x world coordinate of the graphics cursor

y : y world coordinate of the graphics cursor

blink_rate : 0..20

Characteristics

This function returns the location (x,y) in world coordinates of the
graphics cursor and its blink rate expressed in state changes per second
(from OFF to ON or from ON to OFF), rounded to the nearest 50 wmil-
liseconds. See SetGirCsrBlinkrate.

The graphics cursor is placed with its upper left hand correr of its 8x12
pixel shape at this (x,y) position.

The graphics cursor position and the araphics position are generally not
the same; the graphics cursor merelv marks a position within the view
area.

The graphics cursor«position and the text cursor position are entirely
independent of each other. Only one of these two cursors (or neither, if
so specified) appears at any one time.

Errors

The only value returned by this function is 0, no errors.

Returns the location at which new graphics output will begin,

Function Declaration
FUNCTION 1nqGraphPos (VAR x : REAL4 ;
VAR y : REAL4) : INTEGER ; EXTERN ;
Output Values
X : x world coordinate at which the next graphics output will begin

y ¢y world coordinate at which the next graphics outpdt will begin.

Characteristics

This function returns the location (x,y), in world coordinates, within
the current view area at which new graphics output will begin (e.g., a
LineRel call would generate a line with the first end at this point).

Errors

The only value returned by this function is 0, no errors.

9418 B R I © PASCAL LANGUAGE USER GUIDE

Rl

L e i et i e b St e S e e e A e T

Returns the colour number of the pixel which is nearest to the specified
point. :
Function Declaration
FUNCTION IngPixel (X world coord : REAL4 ;
Y world coord : REAL4
VAR colour num : INTEGER) : INTEGER ; EXTERN ;
Valid Input- Values

X _world coord: x coordinate within the wuser's world coordinate space
definition; single-precision real

Y_world coord: y coordinate within the wuser's world coordinate space
definition; single-precision real

Output Values

colour num: 0..7

On monochrome systems:

"colout_num" colour
0 black
1 white

On four-colour.systems, ''colour num' returns a value in the range 0..3
(see SetColourRep). The default values are:

"colour_num" colour
0 black
1 green
2 blue
3 red

b s e A et bt <

On eight-colour systems:

"colour_num" colour
black
green
hlue
cyan
red
yellow
magenta
white

N onbhwN=O

Characterisitcs

This function returns the colour number of the’ pixel which is nearest to
the specified (world coordinate) point in the current view area.

In the monochrome and eight-colour systems, the colour numbers are pre-
defined; in four-colour systems, the value is an index to a table (see
SetColourRep) of pre-selected colours (four colours selected from the
eight available).

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

AL LANGUAGE USER® GUIDE

o5
Retrieves a rectangular image from the current view area and stores 1it.

Function Declaration

FUNCTION IngPixelArray (X width : REAL4 ;
Y height : REAL4
ptr array : ADSMEM ;

VAR invgliq_code : INTEGER) : INTEGER ; EXTERN ;

Valid ILnput Values

X width: width of the rectangle to be retrieved, expressed in world
coordinates, single precision real

Y height: height of the rectangle to be retrieved, expressed in world
coordinates, single precision real.

Output Values

invalid code: this parameter reports discovery of invalid pixel colour
values if 1t 1is set to 1; if all pixel values are valid
this parameter is set to O.

>

Characteristics

This function retrieves a rectangular image from the current view area,
and stores it in the array pointed to by '"ptr_array" to be displayed
later. The inverse function is accomplished by PixelArray.

The upper left-hand corner of the rectangle to be retrieved from the
screen is placed at the current graphics position.

The two input parameters "X width" and 'Y height" specify the rectangle's
dimensions 1in world coordinates. These dimensions are transformed into
device coordinates (pixels). The size of ‘the storage array depends on the
total number of pixels in the rectangle. The user may calculate this
total number of pixels by:

1. retrieving the device coordinates for each corner of the rectangle
(via 1IngPixelCoords) only if the default world coordinates have been
changed

2. calculating the rectangle's width and height in pixels

3. applying the "array size" formula (see below).

The application program is responsible for knowing the required array
size and allocating space for it. -

927

The array, contains the bit images of the scanlines within the rectangle,
packed 16 bits per array entry. Each scanline image will begin with the
first bit of the scanline in bit 15 of the first array entry (left justi-

fied). The size of the array (in words) may be calculated according to
the following formula:

array_size=truncate[(pixel width+15)/161*pixel_height*colour planes+3

where "colour planes' is the number of colour planes in the system confi-
guration. Each colour plane provides one bit (i.e. two states) per
pixel. With two colour planes, each pixel is represented by two bits and
thus four states are possible. By extension, three coleur planes provide
eight states. Therefore, monochrome has 1 colour plane, four-colour has
2 colour planes and esight-colour has.3 colour planes.

The extra 3 words in the array (at the beginning) contain the rectangle's
width, height and special codes related to the conditions in which the
array was created (number of colour planes, etc.). The array is one
dimensional. The maximum size of the array is that needed for a full
screen rectangle, assuming that there is sufficient memory in the system
configuration for storing an array that large.

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same mearings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned. '

9-22 : PASCAL LANGUAGE USER GUIDE

Returns the device coordinates (expressed in pixels) of a given point
expressed in world coordinates.

Function Declaration

FUNCTION IngPixelCoords (X world coord : REAL4
Y world coord : REAL4

VAR X device coord : INTEGER

VAR Y device coord : INTEGER

A we ev

: INTEGER ;
EXTERN

Valid Input Values

X world coord: X-coordinate within the user's world coordinate space
definition; single-precision real number

Y world coord: Y-coordinate within the user's world coordinate space
definition; single-precision real numher

Output Values
X _device coord: 0..511

Y_device_poord: 0..255

Characterisitcs

This function returns the device coordinates, expressed in pixels, for
the input world coordinates. The device coordinates are calculated with
respect to the borders of the current view area.

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

9.23.

Returns the next text entry point and the text cursor blink rate for the
current view area.

Function Declaration
FUNCTION IngTextCursor (VAR column : INTEGER ;
VAR row : INTEGER ;
VAR blink rate : INTEGER) : INTEGER ; EXTERN ;
Output Values
column: 1..64 or 1..80
row: 1..16 or 1..25

blink_rate: 0..20

Characterisitcs

This function returns the next text entry point, which coincides with the
location of the text cursor, and the text cursor blink rate for the
current view area. See SetTxCsrBlinkrate.

The text cursor position is given in number of columns (e.g., number of
characters) from the view area's left edge and of rows (e.g., number of
text lines) from the view area's top edge.

The cursor blink rate is expressed in state changes per second (from OFF
to ON or from ON to OFF) rounded to the nearest 50 milliseconds.

If the information is not available it is because the view area 1is too

small to contain text. An error code is returned and the other output
parameters remain undefined.

Errors

If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. If there are
no errors, a zero is returned.

9-24 PASCAL LANGUAGE USER GUIDE

e i i ot A, P s A A S = i s i e e

Returns the size and

Function Declaration

FUNCTION InqViewArea (VAR view area width

Output Values
view_area width
view area_height
text char_width

text line height

Characteristics

X}
-3

X B : INTEGER
VAR view area height : INTEGER
VAR text char width : INTEGER

VAR text line height :

..64 bytes

: 1..256 scanlines
: 6 or 8 pixels

: 10..16 scanlines

INTEGER

e ey we

text parameters of the current view area.

EXTERN

: INTEGER ;

.
’

This functior returns the current view area's width (in bytes) and height
(in scanlines), and the current character's width (in pixels) and height

(in scanlines).

Errors

The only value returned by this function is 0, no errors.

9-25

Returns the world coordinate space parameters for the current view area.

Function Declaration

FUNCTION 1IngWorldCoordSpace (VAR x0 : REAL4

VAR y0 : REAL4 ;
VAR x1 : REAL4 ;
VAR y1 : REAL4) : INTEGER ; EXTERN ;
Output Values
x0: x coordinate, within the user's world coordinate space definition, {Y'uj

of the lower left-hand corner of the current view area

y0: y coordinate, within the user's world coordinate space definition,
of the lower left-hand corner of the current view area

x1: x coordinate, within *the user's world coordinate space definition,
of the upper right-hand corner of the current view area

y1l: vy coordinate, within the user's world coordinate space definition,
of the upper right-hand corner of the current view area.

Characteristics

This function returns the world coordinates of the lower left-hand corner

(x0, y0) and of the upper right-hand corner (x1, y1) respectively, of the
current view area.

These coordinates do not determine the proportions of the view area; they
determine how points in world coordinates will map to the current view

- area.

Errors

The only value returned by this function is 0, no errors.

9-26 PASCAL LANGUAGE USER GUIDE

Draws a line from the current graphics position to the specified absolute
position.
Function Declaration
FUNCTION LineAbs (x : REAL4 ;
y : REAL4) : INTEGER ; EXTERN ;

Valid Input Values

The two values "x" and "y'" must be single-precision real numbers.

Characteristic$

This function draws a line from the current graphics position to the
absolute (x,y) position which is specified in world coordinates.

Default values will be assumed for coordinate space, colecur, logic opera-
tor, and line class.

If the (x,y) coordinates specify a point which is outside the view area
but within the range of a single-precision floating-point number, then a
line is drawn in the direction of the specified point but is clipped on
the view area boundary.

The specified point becomes the current graphics position, even if it is
outside the view area.

Errors

If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

9-27

|
|

Draws a line from the current graphics position to a specified relative
position.
Function Declaration
FUNCTION LineRel (dx : REAL4 ;
dy : REAL4) : INTEGER ; EXTERN ;
Valid Input Values

"dx" and "dy" must be single-precision real numbers.

Characteristics

This function draws a line, the length and direction of which are speci-

fied in world coordinates by the dx and dy input parameters, starting
from the current graphics position.

Default values will be assumed for coordinate space, colour, logic opera-
tor, and line class.

1f the point, resulting from the input distances, 1is outside the view
area but within the range of a single-precision floating-point number,
then a line is drawn in the specified direction but 1is clipped on the
view area boundary.

The resulting point becomes the current graphic position, even if it is
outside the view arsa.

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. If there are
no errors, a zero is returned.

PASCAL LANGUAGE USER GUIDE

Displays a point at the specified absolute position.

Function Declaration
FUNCTION MarkerAbs (x : REAL4 ;

y : REAL4) : INTEGER ; EXTERN ;
Valid Input Values

The two values "x" and '"y'" must be single-precision real numbers.

Characteristics

This function displays a point at the absolute (x,y) position which is
specified in world coordinates.

Default values will be assumed for coordinate space, colour, and logic
operator.

If the (x,y) coordinates specify a point which is outside the view area
but within the range of a single-precision floating-point number, then no
point is displayed. The specified point becomes the current graphics
position, even if it is outside the view area.

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions, 1f there are
no errors, a zero is returned.

9-29

|
!
]
é.
!

Displays a point at a specified distance from the current graphics posi-
tion.
Function Declaration
FUNCTION MarkerRel (dx : REAL4 ;
dy : REAL4) : INTEGER ; EXTERN ;
Valid Input Values

"dx" and "dy" must be single-precision real numbers.

Characteristics

This function displays a point at a specified (dx,dy) distance from the
current graphics position. The distance is specified in world coordi-
nates.

Default values will be assumed for coordinate space, colour, and logic
operator.

1f the point, resulting from the input distances, is outside the view
area but within the range of a single-precision floating-point number,
then the point is not displayed. The resulting point becomes the current
graphics position.

Errors
1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the

same meanings. See APPENDIX D for the error descriptions. If there are
no errors, a zero is returned.

930 © PASCAL LANGUAGE USER GUIDE

- THE M20 PASCAL GRA

HICS LIBRARY

Sets up the M20 for creatiﬁg graphics.

Procedure Declaration

PROCEDURE OpenGraphics ; EXTERN ;

Characteristics

This procedure initialises the graphics environment and thus must be the

first graphics call within an application program. 1t sets default con-
ditions as follows:

a single view area, labelled 1

- world coordinates coincide with device coordinates (0.0-511.0 pixels
x 0.0-255.0 scanlines)

- black aé the background colour

- white as the foreground and text colours for the black and white sys-
tem and green for the colour system

- no cursor displayed

a blank screen.

1t may also be used to reinitialise the graphics environment, thus clear-
ing the effects of all the preceding graphics calls. The application pro-
gram handles subsequent graphics functions and procedures and their out-
put as if starting afresh.

Errors

This procedure does not return error messages.

9-31

Transfers an image onto the screen.

Function Declaration

FUNCTION PixelArray (x width : REAL4 ;
y_height : REAL4 ;
ptr_array : ADSMEM) : INTEGER ; EXTERN ;

Characteristics

This function retrieves a rectangular image stored into a one-dimensional
array (pointed to by "ptr_array") and displays it on the screen. The rec-
tangular image stored in memory is part of (or all) a picture previously
displayed on a view area.

The size of the rectangular image to be displayed is 'x width" wide and
"y _height" high. These two values are in world coordinates.

The image is displayed with the rectangle's upper left hand corner at the
current graphics position. The default value for logic operator is
assumed.

The two parameters "x width" and 'y height" need not correspond to the
full size of the 1image implied by the array. 1f the rectangular image
stored in the array is relatively large compared to this function's argu-
ments 'x width'" and 'y height", then only part of the stored image is
displayed. The right and bottom edge of the image are clipped.

1f the rectangular image stored in the array is smaller than that implied
by the arguments "x width™ and "y height" of this function, then the full
picture will appear. This will not extend to the right and bottom bord-
ers implied by the two arguments.

1f the current graphics position is too close to the right and/or bottom
edge of the screen for the entire image to be displayed, then only part
of the image is displayed and the rest of it is clipped at the screen
edge.

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. If there are
no errors, a zero is returned.

Ceem ST PASCAL LANGUAGE USER GUIDE

THE M20 PASCAL GRAPHICS LIBRARY

Draws a connected sequence of lines.

Function Declaration

FUNCTION Polyline (numb_of points : INTEGER ;
ptr_Xarray : ADSMEM ;
ptr-Yarray : ADSMEM) : INTEGER ; EXTERN ;

Valid Input Values
numb_of points: this value must be equal to or greater than 2.

The two arrays, pointed to by "ptr Xarray" and "ptr_Yarray", must contain
single-precision real numbers.

Characteristics

This function draws lines connecting the points specified by the two
arrays. The two arrays are the same size and contain single-precision
real numbers. A coordinate is made up of element Xarray[J] of the first
array and element VYarray[J] of the second array. The parameter
"numb_of points" contains an integer specifying the number of points to
be connected. The points are ahsolute locations in the world coordinates.

Default values will he assumed for coordinate space, colour, logic opera-
tor, and line class.

The application program must declare and allocate the two coordinate
arrays. Each array contains single-precision real numbers; the high
order word must precede the low-order word. The size of each array must
be at 1least large enough to store as many double-word numbers as there
are points.

The figure will not be a closed polygon unless the first and last points
specified by the arrays coincide.

If the coordinates specify points that are not within the view area, then
the figure will be clipped on the view area boundary. If the last point
is outside the view area, it nevertheless becomes the current graphics
position.

Errors
If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the

same meanings. See APPENDIX D for the error descriptions. If there are
no errors, a zero is returned.

9-33

Displays the specified points.

Function Declaration

FUNCTION PolyMarker (num points : INTEGER
ptr_Xarray : ADSMEM
ptr_Yarray : ADSMEM) : INTEGER ; EXTERN ;

Valid Input Values
num points: this value must be equal to or greater than 1.

The two arrays, pointed to by ptr Xarray and ptr_Yarray must contain
single-precision real numbers.

Characteristics

This function displays the number of points specified by 'num points';
each one is identified hy the coordinates specified by the two arrays. A
coordinate is made up of element Xarray[J] of the first array and element
Yarray[J] of the second array. The two arrays are the same size and con-
tain single-precision real numbers. The points are absolute locations in
world coordinates.

Default values will be assumed for coordinate space, colour, and logic
operator.

The two arrays, pointed to by "ptr Xarray" and '"ptr_ Yarray", must contain
values within the user's world coordinate space definition. The applica-
tion program must declare and allocate the two coordinate arrays. Each
array contains single-precision real numbers; the high order word must
precede the low corder word. The size of each array must be at least large
enough to store as many double-word numbers as there are points.

The coordinates which specify points that are outside the view area will
not be displayed and no error message is generated. However, the current
graphics position will track these non-visible points and if the last
point is outside the view area it nevertheless becomes the current graph-
ics position. :

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

© PASCAL LANGUAGE USER GUIDE

e i et A+ e Al e

THE M20 PASCAL GRAPHICS LIBRARY

- SelectCursor

Chooses which cursor is to be displayed.

Function Declaration

FUNCTION SelectCursor (cursor num : INTEGER) : INTEGER ; EXTERN ;

Valid Input Values

cursor num : 0..2 ; specifies the cursor to be displayed
0: neither cursor
1: the graphics cursor
2: the text cursor,

Characteristics

This function chooses which cursor (if any) is to be displayed.

If selected, the text cursor is displayed and text will be displayed
starting from that position.

If selected, the graphics cursor is displayed with its wupper left hand
corner at the current graphics position., However, subsequent graphics
output will not start from this point unless the current graphics posi-
tion has been updated to this same location.

The text and graphics cursor do not usually occupy the same position, The
two cursors cannot be displayed simultaneously.

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descr1pt1ons If there are
no errors, a zero is returned.

9-35

bR i e it

Selects the colour for subsequent graphics output.

Function Declaration

FUNCTION SelectGrColour (colour code : INTEGER) : INTEGER ; EXTERN ;

Valid Input Values

On monochrome systems, 'colour code' selects either black or white to be
the graphics colour attribute:

Ycolour_code " graphics colour attribute
0 black
1..7 white

On four-colour systems, '"colour code" selects the colour attribute
indirectly by acting as an index into a table of four colours preselected
from the eight possible colours (see SetColourRep):

"colour code" graphics colour attribute

0..3 the colour attribute associated with
each one of the four values 0, 1, 2
and 3, depends on the values set by
default or via SetColourRep.

4..7 The values in this range map to a value
in the range 0..3 via a logical opera-
tion (see the following note).

Note: Bits 0 and 2 of the binary representation are OR'd, e.g., the
values 4 (100 binary) and 5 (101) give 1 OR 0 =1 and 1 OR 1 = 1 respec-
tively. This sets the least significant bit (bit 0) and bit 1 remains
unchanged. Thus, the values 4 and 5 will become 1 after the logical
operation (4 decimal = 100 binary which becomes 01 binary = 1 decimal and
5 decimal = 101 binary which becomes 01 binary = 1 decimal) and the
colour is green (if the default value has not been changed). The values 6
and 7 will become 3 after the logical operation (6 decimal = 110 binary
which becomes 11 binary = 3 decimal and 7 decimal = 111 binary which
becomes 11 binary = 3 decimal) and the colour is red.

9-36 o © PASCAL LANGUAGE USER GUTDE

On eight-colour systems, 'colour-code" selects the colour attribute
directly, according to the following table:

""colour_code" graphics colour attribute

black
green
blue
cyan
red
yellow
magenta
white.

NoOOAEWN O

Characteristics

This function selects the specified colour for subsequent graphics out-

put. There are different effects on monochrome, four-colour and eight-
colour systems.

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the

same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned. ’

9-37

Selects the colours for subsequent text output.

Function Declaration
FUNCTION SelectTxColour (fg code : INTEGER ;
bg code : INTEGER) : INTEGER ; EXTERN ;
Valid Input Values
fg code: 0..7
bg code: 0..7
On monochrome systems, if the foreground colour 'fg code" is set to black
(0), the background colour "bg code" may be set to any value in the range
1..7 (white). The default value for the background colour is black.
On four colour systems, each parameter selects the colour attribute

indirectly by acting as an index into a table of four colours preselected
from the eight possible colours (see SetColourRep):

"bg_code' and - text colour attribute
""fg_code" '
0..3 the colour attribute, associated

with each one of the four values
0, 1, 2 and 3, depends on the
values set via SetColourRep.

4..7 the colours selected are not
easily predictable.

o ge38 R PASCAL LANGUAGE USER GUIDE

On eight colour systems, each parameters selects the colour attribute
directly, according to the following table:

"fg code" and text colour
"bg_code" attribute

0 black

1 green

2 blue

3 cyan

4 red

5 yellow

6 magenta

7 white
Characteristics

This function specifies the colours to be used as the foreground and
background of text output. Text is displayed in the foreground colour.

The background colour also affects the ClearViewArea function and the
"PRESET' logic-cperator (ses SetColourlogic).)

The values set by this function hold until it is called again.

There are different effects on monochrome, four-colour and eight-colour
systems.

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the

same meanings. See APPENDIX D for the error descriptions. 1If there are
no errors, a zero is returned.

Activates the selected view area.

Function Declaration

FUNCTION SelectViewTrans (view area num : INTEGER) : INTEGER ;
EXTERN ;

Valid Input Values

view area num : 1..16

Characteristics

This function activates the specified view area which has previously been
defined via DivideViewArea. All text and graphics output will be
displayed on this view area and is entered in accordance with its attri-
butes (colour, world coordinate space, text spacing, current text and

graphics positions, etc.).

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

C i eus0 » PASCAL LANGUAGE USER GUIDE

Defines a logic operator that influences the output colour.

Function Declaration

FUNCTION SetColourLogic (lbgog_code : INTEGER) : INTEGER ; EXTERN ;

Valid 1lnput Values

logop_code: 0..5

0

PSET:

XOR:

AND:

NOT:

OR:

PRESET:

graphics output is displayed in the default colour or in the
colour specified via the last SelectGrColour call.

the graphics colour and the colour of the target pixel are
logically XOR'd. Graphics output is drawn in the resulting
colour, e.g., if the current graphics colour 1is blue (010
binary) and the pixels on which the geometrical output will
be drawn are yellow (101 binary), then the resulting colour
is white (010 XOR 101 = 111).

the graphics colour and the colour of the target pixel are
logically AND'd. Graphics output is drawn in the resulting
colour, e.g., if the current graphics colour is blue (010
binary) and the pixels on which the geometrical output will
be drawn are yellow (101 binary), then the resulting colour
is black (010 AND 101 = 000).

this is a unary operator that complements the colour of the
target pixel (the current graphics colour is irrelevant),
e.g., if the target pixel is yellow (101 binary) then the
resulting colour is blue (010 binary).

the graphics colour and the colour of the target pixel are
logically OR'd. Graphics output is drawn in the resulting
colour, e.q., if the current graphics colour 1is blue (010
binary) and the pixels on which the geometrical output will
be drawn are yellow (101 binary) then the resulting colour
is white (010 OR 101 = 111).

the graphics colour is set to the background colour which is
black on the monochrome and eight colour systems if the
default values remain unchanged; it is also black on the
four colour system if the default values remain unchanged.

Characteristics

This function specifies a logic operator that will influence the output
colour (for all subsequent output except text) on a pixel-by-pixel basis.

 :f39;@¢@

When new output is displayed the logic operation is applied one pixel at
a time. The logic operations deal with the numbers in the 0..7 range, as
three-bit binary quantities.

The specific results vary depending on the system configuration. Moeno-
chrome systems transform the numbers in the range 2..7 to 1, thus the

only operands are 0 and 1, which are the colours black and white respec-
tively.

Eight colour systems make no transformation and deal with the numbers
directly as colours, with corresponding results.

Four colour systems treat the numbers not directly as colours but as
indices into the four-colour- table. Predicting the final result is possi-
ble but requires some calculation.

Errors

If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

'PASCAL LANGUAGE USER GUIDE

i

Sets one of the four colour indices to one of the eight M20 colours.

Function Declaration

FUNCTION SetColourRep (index : INTEGER ;
colour : INTEGER) : INTEGER ; EXTERN ;

Valid Input Values

index 0..3
colour: 0..7; the following table shows the corresponding colour attri-
butes:
"colour" graphics colour attribute
0 black
1 green
2 blue
3 cyan
4 red
5 yellow
6 magenta
7 white
Characteristics

This function is used on four-colour systems and has no effect on mono-
chrome and on eight-colour systems. 1t sets one of the four colour
indices to one of the eight M20 colours.

Errors

If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

9-43

Sets the blink rate for the graphics cursor.

Function Declaration

FUNCTION SetGrCsrBlinkrate (rate : INTEGER) : INTEGER ; EXTERN ;

Valid Input Values
rate: 0..20

0: the cursor is left ON continuously
1..20: the cursor blinks "rate'/2 times per second

Characteristics

This function sets the blink rate for the graphics cursor, from the
steady state to the specified state changes per second (from OFF to ON or
from ON to OFF). The specified value is truncated to the nearest 50 mil-
liseconds.

This function does not select which cursor is to be displayed, the
SelectCursor function does this.

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

Defines the graphics cursor shape,

Function Declaration

FUNCTION SetGrCsrShape (ptr_array : ADSMEM) : INTEGER ; EXTERN ;

Characteristics

This function defines the graphics cursor shape according to the contents
of the array pointed to by "ptr array". This array consists of 6 one-
word (2 bytes) elements, each containing a 16-bit unsigned integer. £ach
byte is a bit-map of a scanline of the cursor. The first element's high-
order byte is the top scanline of the new cursor; the sixth's element
low-order byte is the last scanline of the new cursor.

This function does not select which cursor 1is to be displayed, the
SelectCursor function does this.

Errors

If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1If there are
no errors, a zero is returned.

Determings the graphics output for the LineAbs and LineRel functions.

Function Declaration

FUNCTION SetLineClass (class num : INTEGER) : INTEGER ; EXTERN ;

Valid Input Values
class_pum: 0..2
0: line

1: hollow rectangle
2: solid rectangle.

Characteristics

‘This function determines whether the graphics output for the LineAbs and

LineRel functions will be a line, a hollow rectangle or a solid rectan-
gle. In the latter two cases, the world coordinates specified 1in the
LineAbs and LineRel functions constitute the end points of the diagonal
of the rectangle.

The graphics output will be displayed in the current graphics colour.

Errors

If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

Sets the character width and text line height.

Function Declaration

FUNCTION SetTextline (chr width : INTEGER

textline height : INTEGER) : INTEGER ; EXTERN ;

Valid Input Values
chr_width: 6 or 8

textline_height: 10..16

Characteristics

This function sets the width (in pixels) and the text 1line height (in
scanlines) of the character space. It is the space around each character
which grows or shrinks, the individual character size remaining
unchanged.

The values set by this function hold for the current view area and all
subdivisions of it, or until the function is called again.

This setting influences the width of subsequent view area definitions.
In fact, DivideViewArea's second parameter 'div point' establishes the
division point of the view area. For vertical divisions, ‘div point"
expresses the number of characters from the old view area's left edge. If
the character width is of 6 pixels rather than 8, then the left view area
will be smaller than it would have been with 8 pixel characters,

Errors

If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings, See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

gt

Sets the blink rate for the text cursor.

Function Declaration

FUNCTION SetTxCsrBlinkrate (rate : INTEGER) : INTEGER ; EXTERN ;

Valid lnput Values

rate: 0..20
0: the cursor is left ON continuoulsy e,
1..20: the cursor blinks '"rate'"/2 times per second i]
Characteristics

This function sets the blink rate for the text cursor, from the steady
state to the specified state changes per second (from OFF to ON or from
ON to OFF), e.qg., if "rate" is set to the value 8, then there are 8

states per

second, 4 '"on" states and 4 "off' states. The specified

value is truncated to the nearest 50 milliseconds.

This function does not select which cursor is to be displayed, the
SelectCursor function does this.

Errors

1f there are any errors, the status code is returned by this function.

The code

numbers correspond to the standard PCOS error codes, with the

same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

|
|
|

Defines the text cursor shape.

Function Declaration

FUNCTION SetTxCsrShape (ptr array : ADSMEM) : INTEGER ; EXTERN ;

Characteristics

This function defines the text cursor shape according to the contents of
the array pointed to by '"ptr array". This array consists of 6 one-word (2
bytes) elements, each containing a 16-bit unsigned integer. Each byte 1is
a bit-map of a scanline of the cursor. The first element's high-order
byte is the top scanline of the new cursor; the sixth element's low-order
byte is the last scanline of the new cursor,

1f the most significant bit of each byte is set then the leftmost column
of pixels will touch the character preceding it.

This function does not select which cursor is to be displayed, the
SelectCursor function does this.

Errors

If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

|
?
!
|
i
1
{
i
,11‘
i

efines the world coordinate space.

Function Declaration

FUNCTION SetWorldCoordSpace (view area num : INTEGER ;

x0, 0, xT, y1 : REAL4A) : INTEGER ;
EXTERN
Valid Input Values

view area num: 1,.16.

The coordinates x0, y0, x1, yl are single-precision real numbers. L

Characteristics

This function defines the user coordinate space, known as the world coor-
dinate space. The function may be called again to redefine the user's
world coordinate space when required.

The input coordinates determine the scaling interpretation within the
specified view area and not the view area's size which is determined via
the DivideViewArea function.

All subsequent graphics coordinates within the view area will be scaled
by a transformation routine using the input coordinates (x0, y0) and (x1,
y1), which define the endpoints of a diagonal of the entire view area.
(x0, y0) are the coordinates of the lower left-hand corner and (x1, y1)
are those of the upper right-hand corner of the view area.

Errors

1f there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions. 1f there are
no errors, a zero is returned.

Moves the text cursor.

Function Declaration

FUNCTION TextCursor (column : INTEGER ;

row : INTEGER) : INTEGER ; EXTERN ;

Valid Input Values
column: 1..64 or 1..80

row: 1..16 or 1..25

Characteristics

This function moves the text cursor and thereby determines the next
screen position at which text will be displayed in the current view area.
The text cursor is displayed only if the SelectCursor function has been
previously invoked, setting "cursor num" to the value 2.

The parameter "column' contains a number in the range 1..64 or 1..80,
depending on whether the character's width is 8 or 6 pixels respectively.
The parameter '"row" contains a number in the range 1..16 or 1..25,
depending on the character's height (see SetTextline).

A full-screen view area may be 64 columns wide and 16 rows high or 80
columns wide and 25 rows high. The dimension which is current determines
the position of anything specified in terms of character counts. 1If the
current view area 1is smaller than full-screen then the amount of text
that it may contain depends on the dimensions of the view area.

If the coordinates specify a point which is outside the current view area
then the current position of the text cursor is unchanged.

Errors

If there are any errors, the status code is returned by this function.
The code numbers correspond to the standard PCOS error codes, with the
same meanings. See APPENDIX D for the error descriptions.

1f there are no errors, a zero is returned.

A. IMPLEMENTATION CHARACTERISTICS

ABOUT THIS APPENDIX.

This appendix describes the Olivetti implementation of the MS-Pascal
lanquage for the M20 operating system (PCOS).

CONTENTS
INTRODUCTION A-1
IMPLEMENTATION ADDITIONS A-1

IMPLEMENTATION RESTRICTIONS A-2

UNIMPLEMENTED FEATURES A-3

INTRODUCTION

Microsoft Pascal has been implemented for a number of different micro-
computer operating systems. This appendix describes the Olivetti imple-
mentation of the MS-Pascal language. for the M20 operating system (PCOS).
1t discusses additions and restrictions to the language described in the

"PASCAL Language Reference Manual" and identifies features of MS-Pascal
that are not yet implemented.

IMPLEMENTATION ADDITIONS

The following additions have been made to the language described in the |

Reference Manual. :

1. Program parameters are available. When a program starts, there is a
prompt for every program parameter. You may also give program param-
eters on the command line with which you invoke the program. If a
program requires more parameters than appear on the command line, the
remaining parameters are prompted for.

For example, if you compile and LINK the following program:

PROGRAM DEMO (INFILE, OUTFILE, P1, P2, P3);
VAR INFILE, OUTFILE : TEXT;

P1, P2, P3 : INTEGER;
BEGIN

END.

into a load file "demo.cmd", then from the command 1line, vyou could
run this program as follows:

de 1:DATA1,1:DATA2,7,8,123 /CR/

1f you give only the first parameter on the command line, the program

will proceed to prompt you as shown below:

de 1:DATA1 /CR/

OUTFILE: 1:DATA2,7 /CR/
P2: 8 /CR/
P3: 123 /CR/

An LSTRING parameter value of NULL cannot be read from the command
line and is assumed to be missing. You can enter it by pressing the
RETURN key in response to the prompt.

2. Bankers' rounding is used when ROUNDing real numbers that end with ﬁ5

.5; that 1is, odd numbers are rounded up to an even integer, even
numbers are rounded down to an even integer. For example:

ROUND(4.5) = 4

ROUND (207.5) = 208

IMPLEMENTATION RESTRICTIONS

The following restrictions apply to this implementation of MS-Pascal:

1. ldentifiers can have up to 31 characters. Longer identifiers are
truncated.

2. Numeric constants can have up to 31 characters. Like identifiers,
numeric constants longer than 31 characters are truncated.

3. LINK for this version of Pascal truncates global 1identifiers to 15
characters.,

4., The PORT attribute for variables is identical to the ORIGIN attri-
bute. 1t does not use 1/0 port addresses.

5. The maximum level to which procedures can be statically nested is 15.
Dynamic nesting of procedures is limited by the size of the stack.

6. SSIMPLE currently turns off common subexpression optimization. $SIZE
and SSPEED turn it back on (and have no other effect).

UNIMPLEMENTED FEATURES

The following MS-Pascal features are not presently implemented, or are
implemented only as discussed below:

1.

2.

OTHERWISE is not accepted in RECORD declarations.

Code is generated for PURE functions, but no checking is done.

. The extend level operators SHL, SHR, and ISR are not available.

. The ENABIN, DISBIN, and VECTIN library routines are not available.

The INTERRUPT attribute is ignored.

. No checking is done for invalid GOTOs.
. READ, READLN, and DECODE cannot have M and N parameters.

. Enumerated 1/0, permitting the reading and writing of enumerated con-

stants as strings, is not available.

. The metacommands $TAGCK, SSTANDARD, SEXTEND, and SSYSTEM can be

given, but have no effect.

. The SINCONST metacommand does not accept string constants.

L o T e S o s e £ AUt T 5 P A it e

B. M20 PASCAL LIBRARY
- FUNCTIONAL LIST

|

s T, e b e Sl

ABOUT THIS APPENDIX

This appendix lists the contents of the M20 PASCAL library in functional

groups.

CONTENTS

BYTESTREAM 1/0 FUNCTIONS

BLOCK TRANSFER FUNCTI1ONS

STORAGE ALLOCATION FUNCTIONS

TIME AND DATE FUNCTIONS

1EEE-488 FUNCTIONS

ERROR PROCEDURE

MISCELLANEOUS FUNCT1ONS

B-1

B-2

B-3

B-4

B-5

©THE M20 PASCAL LIBRARY - FUNCTIONAL LIST

BYTESTREAM 1/0 FUNCTIONS

Name Parameter Type
closedevice did WORD
closefile did WORD
directory fileadr ADSMEM
filelen WORD
getbyte did WORD
VAR retbyte BYTE
getlen did WORD
VAR length INTEGER4
getposition did WORD
VAR fposition INTEGER4
getstatus did WORD
wordnum WORD
VAR parword WORD
lookbyte did WORD
VAR retbyte BYTE
VAR bufstatus BYTE
opendevice did WORD
openfile did WORD
mode WORD
extentlen WORD
filelen WORD
buffer ADSMEM
peof did WORD
VAR retstatus BOOL EAN
pseek did WORD
fposition INTEGER4
putbyte. did WORD
inbyte BYTE
readbytes did WORD
bytecount WORD
buffer ADSMEM
VAR n read WORD

Name Parameter Type (j
readline did WORD
bytecount WORD
buffer ADSMEM
VAR n_read WORD
remove fileadr ADSMEM
filelen WORD
rename oldfileadr ADSMEM
oldflen WORD
newfileadr ADSMEM
newflen WORD 0
J
resetbyte did WORD _
setcontrol did WORD
wordnum WORD
parword WORD
writebytes did WORD
bytecount WORD
buffer ADSMEM
VAR n write WORD
BLOCK TRANSFER FUNCTIONS
Name Parameter Type
bclear start ADSMEM Y
length WORD i
bmove start ADSMEM
destination ADSMEM
length WORD
bset value BYTE
start ADSMEM
bytelen WORD
bwset wvalue WORD
start ADSMEM
wordlen WORD

PASCAL LANGUAGE USER GUIDE

STORAGE ALLOCATION FUNCTIONS

Name Parameter Type
maxsize VAR size WORD
newabsanyseg VAR tableadr ADSMEM
size WORD
newabsolute VAR tableadr ADSMEM
size WORD
newlargestblock VAR tableadr ADSMEM
VAR size WORD
newsameseg VAR tableadr ADSMEM
size WORD
pdispose VAR tableadr ADSMEM
pnew VAR tableadr ADSMEM
size WORD
stickynew VAR tableadr ADSMEM
size WORD
TIME AND DATE FUNCTIONS
Name Parameter Type
getdate dataadr ADSMEM
length WORD
gettime dataadr ADSMEM
length WORD
setdate dataadr ADSMEM
length WORD
settime dataadr ADSMEM
length WORD

1EEE-488 FUNCTIONS

Name Parameter Type

ilninput buffer ADSMEM
buflen WORD
talkeradr WORD
listenadr WORD
VAR bytes not read WORD

ipoll talkadr WORD
VAR statusptr ADSMEM

iprint buffer ADSMEM Qﬁ -
listenadr WORD T
buflen WORD
delimiter WORD

iread comlist ADSMEM
comlen WORD
buffer ADSMEM
buflen WORD

ireset (no parameters)

iset operand WORD

isrq0 (no parameters)

isrql (no parameters)

iwrite comlist ADSMEM
comlen WORD
numadr ADSMEM
numlen WORD

ERROR PROCEDURE

Name Parameter Type

error parnum BYTc
errorcode BYTE

THE 120 PASCAL LIBRARY - FUNCTIONAL LIST

MISCELLANEOUS FUNCTIONS

Name Parameter Type
bootsys (no parameters)
checkvol (no parameters)
crlf (no parameters)
dhexbyte byteval WORD
dhexlong longval INTEGER4
dhexword wordval WORD
diskfree volnum WORD
VAR secnum INTEGER4
dlong longval INTEGER4
dnumw wordval INTEGER
width WORD
dstring stringadr ADSMEM
getvol vbuffer ADSMEM
bufsize WORD
VAR vsize WORD
parsename stradr ADSMEM
strlen WORD
nameptr ADSMEM
VAR vol WORD
sdevtab devname ADSMEM
devlen WORD
VAR entrynum BYTE
VAR devtype BYTE
VAR tabptr ADSMEM
search drive INTEGER
mode WORD
infileptr ADSMEM
filelen WORD
outfileptr ADSMEM
VAR fileptr ADSMEM
AAR flen WORD
VAR blocknum INTEGER4
setsysseg (no parameters)

Name Parameter Type

setvol volnum WORD

stringlen stringptr ADSMEM
VAR strlen WORD

——

e

C. M20 PASCAL GRAPHICS LIBRARY
- FUNCTIONAL LIST

ABOUT THIS APPENDIX

This appendix lists the contents of the M20 PASCAL graphics

functional groups.

CONTENTS

TRANSFORMATION AND CONTROL

GRAPHICS OUTPUT

GRAPHICS ATTRIBUTES

INQUIRY

C-2

C-3

C-4

library

in

M20 PASCAL GRAPHICS LIBRARY - FUNCTIONAL LIST

TRANSFORMATION AND CONTROL

Functions:
Name Parameter Type
ClearViewArea view area num INTEGER
DivideViewArea div _orient INTEGER
div_point INTEGER
VAR view area num INTEGER
Escape function num INTEGER
ptr _datastruc ADSMEM
SelectViewTrans view area num INTEGER
SetWorldCoordSp view area num INTEGER
x0 REAL4
y0 REAL4
x1 REAL4
y1 REAL4
Procedures:
Name Parameter Type
CloseGraphics (no parameters)
CloseViewTrans view area num INTEGER
OpenGraphics (no parameters)

C-1

GRAPHICS OUTPUT

Functions:
Name Parameter Type
GDP func INTEGER
ptr Xarray ADSMEM
ptr_Yarray ADSMEM
numb _of points INTEGER
datarec ADSMEM
GraphCursorAbs X REAL4
Y REAL4
GraphCursorRel dx REAL4
dy REAL4
GraphPosAbs X REAL4
y REAL4
GraphPosRel dx REAL4
dy REAL4
LineAbs X REAL4
y REAL4
LineRel dx REAL4
dy REAL4
MarkerAbs X REAL4
y REAL4
MarkerRel dx REAL4
dy REAL4
PixelArray x_width REAL4
y_height REAL4
ptr_array ADSMEM

Name Parameter Type
Polyline numb_of points INTEGER
ptr_Xarray ADSMEM
ptr_Yarray ADSMEM
Polymarker num points INTEGER
ptr Xarray ADSMEM
ptr_Yarray ADSMEM
TextCursor column INTEGER
row INTEGER
GRAPHICS ATTRIBUTES
Functions:
Name Parameter Type
SelectCursor cursor_num INTEGER
SelectGrColour colour code INTEGER
SelectTxColour fg_code INTEGER
bg code INTEGER
SetColourlLogic logop_code INTEGER
SetColourRep index INTEGER
colour INTEGER
SetGrCsrBlnkrate rate INTEGER
SetGrCsrShape ptr_array ADSMEM
SetLineClass class num INTEGER
SetTextline chr width INTEGER
textline height INTEGER
SetTxCsrBlnkrate rate INTEGER
SetTxCsrShape ptr_array ADSMEM

INQUIRY

Functions:

Name _ Parameter Type

Errorlnquiry (no parameters)

IngAttributes VAR graphics col INTEGER
VAR foregd col INTEGER
VAR backgd col INTEGER
VAR logic oper INTEGER
VAR lineclass INTEGER

IngCurTransNmbr VAR view area num INTEGER

InqGraphCursor VAR x REAL4
VAR vy REAL4
VAR blink rate INTEGER

IngGraphPos VAR x REAL4
VAR vy REAL 4

IngPixel X world coord REAL4
Y world coord REAL4
VAR colour num INTEGER

IngPixelArray X width REAL4
Y height REAL4
ptr_array ADSMEM
VAR invalid code INTEGER

IngPixelCoords X world coord REAL4
Y world coord REAL4
VAR X device coord INTEGER
VAR Y device coord INTEGER

IngTextCursor VAR column INTEGER
VAR row INTEGER
VAR blink rate INTEGER

IngViewArea VAR view area width INTEGER
VAR view area height INTEGER
VAR text char width INTEGER
VAR text line height INTEGER

-InqWor1dCoordSp VAR x0 REAL4

' VAR y0 REAL4
VAR x1 REAL4
VAR y1 REAL4

D. SYSTEM ERRORS

ERROR CODE ERROR ERROR CODE
(Decimal) Description (Hexadecimal)
0 no error 00
2 syntax error 02
3 invalid termination of 03
input bytestream
5 illegal function call 05
6 over flow 06
7 out of memory 07
9 EITHER invalid listener or talker 09
address - when returned
by an 1EEE-488 function
OR out of range - otherwise
10 EITHER no IEEE board - when returned 0A
by an 1EEE-488 function
OR duplicate definition - otherwise
11 time out error 0B
13 type mismatch 0D
15 string too long OF
18 undefined function 12
22 missing operand 16
23 buffer overflow 17
35 window not open 23

ERROR CODE ERROR ERROR CODE
(Decimal) Description (Hexadecimal)
36 unable to create windéw 24
38 parameter out of range 26
53 file not found 35
54 bad file mode 36
55 file already open 37
57 disk i/o error 39
58 file already exists 3A
59 disk type mismatch 3B
60 disk not initialized 3C
61 disk filled 3D
62 end of file 3E
63 invalid record number 3F
64 invalid file name 40
67 too many files 43
68 internal error 44
69 volume name not found 45
70 rename error 46
7 invalid volume number 47

'PASCAL LANGUAGE USER GUIDE

ERROR CODE ERROR ERROR CODE
(Decimal) Description (Hexadecimal)
72 volume not enabled 48
73 invalid password 49
74 illegal disk change 4A
75 write protected file 4B
76 error in parameter ac
77 invalid number of parameters 4D
78 file not open 4E
79 printer error aF
80 copy protected file 50
81 paper empty 51
82 printer fault 52
92 command not found 5C
99 bad load file 63
101 error in time or date 65
108 call user error 6C
110 time out 6E
m invalid device 6F

D3

E. M20 - RS - 232 - C DEVICE PARAMETER TABLE

This appendix details the structure of the Device Parameter Table used
by the two functions "getstatus' and 'setcontrol'. These functions are
used for reading and writing device parameters for devices connected to
the RS5-232-C interfaces.

A knowledge of the hardware 1in question 1is wuseful for a deeper
comprehension of this appendix (see M20 hardware literature).

‘

WORD NUMBER DESCRIPTION

0-1 Ring buffer address | (long word)
2 || Ring buffer input address | (word)
3 : Ring buffer output address ij (word)
4 ' Ring buffer count L (word)
5 Ring buffer size I (word)
6 75% of ring buffer size L (word)
7 50% of ring buffer size '; (word)

|

8 8251A USART control port address H (word)
9 8251A USART state and error flags | (word)
10 i1 8251A USART time out for data output !! (word)
11 (high) .| 8251A USART mode (byte)
11 (low) i 8253 timer command | (byte)
12 8253 timer control port address (word)
13 8253 timer baudrate data port address (word)
14 8253 timer baud rate count (word)
15 | 8259A PIC port A address (word)
16 8259A PIC SEOI command word (word)
17 8259A PIC - master interrupt mask bit (word)
18 8259A U - slave interrupt mask bit “ (word)

Word numbers 0 to 7 contain the state of the ring buffer. Words 8 to 11
(high) contain information relative to the 8251A (Programmable Communi-
cation Interface).

Word 8 contains the control port address. This can assume the following
values: :

%00C3 : USART motherbuward control port.

%0803 : USART expansion board 1 control port.

%0823 : USART expansion board 2 control port.

S O

Word 9 represents the status and the error flags for the 8251 and is

organised in the following way:

STATUS

Duplex mode ;j 15
(reserved) _' 14
Framing - 13
Error , .
Overrun | 12
Error

Parity : 11
Error :

Timeout Z: 10
Error -
Memory , 9
Error o
Buffer ' 8
Error :

. BIT POSITION

.+ LEGAL VALUES

| MEANTNG

%% full echoing of all
1 input
' No ech01ng of 1nput

(not used)

a va11d stop b1t has

. not been detected at
|| the end of each

character. (Reported

 from 8251A)

No Fram1ng Error

a character has not
been read before the
next one becomes

‘i available. (Reported
- from 8251A)

No 0verrun Error

?Ea change in par1ty
-+ value has been
'i detected. (Reported

from 8251A)
No Par1ty Error

1 a timeout has occured
- while waiting for the

Transmit Ready line
on the 8251A
No Timeout Error

dr1ver fa11ed to open
to open buffer - no
Open Port call or

 insufficient memory.
. No Memory Error

. interrupt routine

tried to overwrite

-1 the buffer.
.- No Buffer Error

STATUS

BIT POSITION

(reserved)

7

LEGAL

VALUES

MEANING

(not used)

Free-running

protocol

XOFF /XON

Flag (M20
previously

acted as
trans-
mitter)

6 N

free-running protocol,
Handshake protocol
using XON/XOFF

Hardware
State

XOFF character, sent
in previous trans-
mission.

Buffer is 75% full.
XOFF is sent from

M20 i.e. other sender
should stop.

XON character, sent
in previous trans-
mission.

Input buffer is ready
to receive characters
(default state.) XON
is sent from M20 i.e.
other sender should
start again.

-—

hardware present and
8259A passed interrupt
mask test.

No hardware or failed
test

XOFF /XON

(reserved)
(reserved)

(reserved)

ot e e e

XOFF charactef, de-
tected in current
reception.

XOFF character is
received from outside.
No characters will be
transmitted.

XON character, de-
tected in current
reception.

XON received from
outside. Characters
will be transmitted
(default state).

(not used)

(not uséd)

(not used)

Word 10 contains the time-out value for the transmission of data.

The high byte in word 11 is the 8251A Mode byte and is described below:

7 6 5 4 3 2 1 g
52 S1 EP PEN L2 L1 B2 B1
Number of Stop Bits: S2 51
- 0 1 "1 stop bit

1 0 1.5 stop bits
1 1 . 2-.stop bits (default)
0 0 . ILLEGAL

Even Parity/ EP PEN

Parity Enable: '
0 0 " Disable Parity/0dd Parity (default)
0 1 . Enable Parity/0dd Parity
1 1 . Enable Parity/Even Parity
1 0 Disable Parity/Even Parity

Character Length: L2 L ‘
0 0 . 5 Data bits
0 1 - 6 Data bits
1 0 7 Data bits (default)
1 1 8 Data bits

Baud Rate Factor: B2 81
1 0 - Asynchronous Mode 16 x (default)
0 0 Synchronous Mode
0 1 - Asynchronous Mode 1 x
1 1 .. Asynchronous Mode 64 x !

The low byte in word 11, and words 12 to 14 concern the 8253 timer (Pfo-

grammable interval timer).

byte described below:

The low byte in word 11 is the 8253 command

SC1 SCo

RL1

RL@

M2 M1 Mg BCD

'PASCAL LANGUAGE USER GUIDE

Eg—

Counter Select:

Read/Load
Instruction:

Mode:

— =X X OO =

4 BCD's/
Binary
Word

SC1 SCo .

0 0 Select Counter 0

0 1 Select Counter 1

1 0 " Select Counter 2

1 1 ILLEGAL

RL1T RLO .

0 0 Counter Latching Operation

0 1 Read/Load most sig. byte only (msb)
1 0 Read/Load least sig. byte only (1sb)
1 1 . Read/Load lsb first, then msb

M1 MO :

0 0 Mode 0: Interrupt on Terminal Count
0 1 Mode 1: Programmable One-Shot

1 0 Mode 2: Rate Generator

1 1 Mode 3: Square Wave Rate Generator
0 0 Mode 4: Software Triggered Strobe
0 1 Mode 5: Hardware Triggered Strobe
BCD

0 Binary Counter (16 bits)

1 BCD Counter (4 decades * 4 bits/

decade)

Word 12 contains the 8253 control port address; this can be either

%0127 motherboard timer control port

%0867 expansion board timer control port

Word 13 contains a channel address of an 8253 timer. The address can be

one of the following:

%0121 channel
%0123 channel
%0125 channel
%0861 channel
%0863 channel

%0865 channel

0 motherboard timer
1 motherboard timer
2 motherboard timer
0 expansion board timer
1 expansion boarc timer

2 expansion board timer

E-5.

Word 14 sets the transmission baud rate as follows:

1538 baud count for baud rate of 50
699 baud count for baud rate of 110
256 baud count for baud rate of 300
128 baud count for baud rate of 600

64 baud count for baud rate of 1200
32 baud count for baud rate of 2400
16 baud count for baud rate of 4800
8 baud count for baud rate of 9600
4 baud count for baud rate of 19200

Word 15 contains the 8259 control port address (Prgrammable Interrupt
Controller (PIC)). These can be:

%0140 mother board PIC control port address
%0840 expansion board PIC control port A address

Note that even addresses for programmable interrupt controller B data
port addresses are assumed to be 2 more than A control port addresses.

Word 16 contains the SEOI (Specific End Of Interrupt) command to be
issued before exiting the interrupt routine. The SEOI is calculated
using the formula:

SEOI = %CO0 + (2* IR No.)

where IR No.is an interrupt routine number from 0 - 7.

The RS-232-C SEOI's are the following:

%00C6 master 8259A pic SEOI for 1IR3 (tty mother)
%00CE master 8259A pic SEOI for IR7 (expansion)
%00C0 slave 8259A pic SEQI for IRO (port 1)

%00C4 slave 8259A pic SEOI for IR2 (port 2)

E-6. _ _ PASCAL LANGUAGE USER GUIDE

The following table gives all the M20 interrupt assignments.

Master 8259A PIC Mother Board Interrupt Assignments:

1RO:
1IR1:
1R2:
1IR3:
IR4:
IRS:
1R6:
IR7:

Floppy Disk Controller
External Daisy Chain Request
External Daisy Chain Request
RxD: DTE TTY/Remote 8251A
RxD: keyboard B251A
TxD: DTE/TTY/Remote 8251A
Parallel 8255A PCO or PC3
External Daisy Chain Request

(potentially a slave 8259A)
(potentially a slave 8259A)

(not used)

(used w/ RS-232-C Expansion Board)

Slave 8259A P1C Expansion Board Interrupt Assignments:

IRO:
IR1:
1R2:
IR3:
1R4:
IR5:
IR6:

RxD: DTE/TTY port 1/Remote
TxD: DTE/TTY port 1/Remote
RxD DTE/TTY port 2/Remote
TxD: DTE/TTY port 2/Remote
grounded (not used)
grounded (not used)
grounded (not used)

8251A
8251A (not used)
8251A
8251A (not used)

Words 17 and 18 contain the masks relative to the interrupt levels. The
mask values are the following:

8259A PIC Interrrupt Assignments (by bit with data bus shift):

%0100 IR7 interrupt mask
%0080 IR6 interrupt mask
%0040 IRS interrupt mask
%0020 1IR4 interrupt mask
%0010 1IR3 interrupt mask
%0008 IR2 interrupt mask
%0004 IR1 interrupt mask

%0002 IR0 interrupt mask

F. DEVICE ID (DID) ASSIGNMENTS

The following table lists all the DID assignments. Some of these DID's

-represent devices

which

are always open, others are assigned by func-

tions of the M20 PASCAL library..

15
17
18
19
20

24
25
26

BASIC files

Console

Printer '

Communications RS$S-232-C

System Disk Files (not accessible to BASIC)

Coml (R$-232-C)
Com2 (RS-232-C)

e - G. VOCABULARY

. This appendix reviews some of the vocabulary that 1is commonly used 1in
discussing the steps in program development. The definitions given are
intended primarily for use with this user guide. Thus, neither the indi-
vidual definition nor the list of terms is comprehensive.

Some other terms you should know are related to stages in the development
and execution of a compiled program. These stages are:

1. Compile time

The time during which the compiler is executing and during which it
compiles a source file and creates a relocatable object file.

2. Link time

The time during which the linker is executing and during which it
links together relocatable object files and library files.

3. Runtime

The time during which a compiled and linked program is executing. By
convention, runtime refers to the execution time of your program and
not to the execution time of the compiler or the linker.

The following terms pertain to the 1linking process and the runtime
library:

1. Module

A general term for a discrete unit of code. There are several types
of modules, including relocatable and executable modules. (Further-
more, in the 0livetti PASCAL language, 'module' has a specific mean-
ing as one type of Olivetti PASCAL compiland. See the "PASCAL Refer-
ence Manual" for details. 1In this User Guide, we use the term
"module' in its general sense, unless otherwise specified.)

The object files created by the compiler are said to be ‘“relocat-
able," that is, they do not contain absolute addresses. Linking pro-
duces an "executable' module, that is, one that contains the neces-
sary addresses to proceed with loading and running the program.

2. Routine

Code, residing in a module, that represents a particular procedure or
function. More than one routine may reside in a module.

3. External reference

A variable or routine in one module that is referred to by a routine
in another module.

The variable or routine is often said to be '"defined" or '"public" in
the module in which it resides,

The linker tries to resolve external references by searching for the

61

et e e e i e A bR, £ e i

declaration of each such reference in other modules. 1f such a
declaration is found, the module in which it resides is selected ‘to
be part of the executable module (if it is not already selected) and
becomes part of your executable file. These other modules are usu-
ally library modules in the runtime library. :

1f the variable or routine is found, the address associated with it
is substituted for the reference in the first module, which is then
said to be "bound." When a variable is not found, it is said to be
"undefined" or "unresolved."

Relocatable module

The module's code can be loaded and run at different 1locations in
memory. Relocatable modules contain routines and variables
represented as offsets relative to the start of the module.. These
routines and variables are said to be at '"relative' offset addresses.
When the module is processed by the linker, an address is associated
with the start of the module.

The linker then computes an absolute offset address that is equal to
the associated address plus the relative offset for each routine or
variable. These new computed values become the ahsolute offset
addresses that are used 1in the executable file. Compiled object
files and library files are all relocatable modules.

These offset addresses are still relative to a ‘segment," which
corresponds to an 78000 seament register. Segment addresses are not
defined by the linker; rather, they are computed when vyour program
is actually loaded prior to execution.

Runtime library
Contains the runtime routines needed to implement the M20 Pascal

langquage. A library module usually corresponds to a feature or sub-
feature of the M20 Pascal langquage.

PACAL LANGUAGE USER GUIDE

i
i
¢

-H. ASCII CODE

This table shows decimal, hexadecimal, and binary representation of the
ASCI1 code. (Boxed characters are different on national keyboards.)

aib c d ia|b c d {albp [c a I bl ¢
0 [0000000000 NUL| 64| 40 | 01000000 E 128 | 80 | 10000000 § 192| Co | 11000000
1 | 01| 00000001 | SOH] 651 41 | 01000001 | A §129| &1 | 10000001 { 193| C1 | 11000001
2 | 0200000012 STX] 66| 42 [01000010 | B [130 82 | 10000010 | 154| C2 | 11000010
3 | 03 | cooooott | ETX ui 43101000010 | C {131 83 | 10000011 | 155! C3 | 11000011
4 | 04| 00000i00 | EQT{ 68 ' 44 | 01000100 | D ! 132| 84 | 10000100 { 196] C4 | 11000100
3 { 05 | 00000101 | ENQY 69 | 45 | 0100010t | E) 133] 85 | 10000101 197] C3 | 11000101
6 | 06| 00000110 | ACK| 70 46 | 01000130 F {134/ 86 | 10000110 § 198| C6 | 11000110
7 1 07| o0ocoott | BEL | s1i 47 Loreoornn | G 13387 |se000nt1} 199; 7| 11000112
8 | 0800001000 BS § 72| 48 | 01061000 | R | 136] 88 | 10001000 § 200| C8 | 11001000
9 1 0900001001 | HT § 73| 49 | 0100100t | I £137)89 | 10001001 § 201! C9 | 11001001
10 | 0A| 00001010 | LF § 747 4A | 01001010 | {108} 8A | 10001010 § 202{ CA | 11001010
11 [0B | 00001011 | VT | 5| 4B 0100101t K {139] 8B | 10001013 | 203 CB| 1100 t01
12 | OC| 00001100 | FF | 76| 4C (01001100 | L § 140! 8C | 100011004 204| cC! 13001100
13 [OD| 00001101 CR § 77| 4D | 01001101 | M 141 8D | 10001101} 203 CO| 1100 1101
14 | oE| 00001110| SO ! 78| 4Ejot0021t0] N 1142 8E | 10001120] 206 CE| 11001110
L*U‘ OF | 00001111 | SI § 79| 4F [01001111 | O f143| oF | 10001111} 207| CF uoonu!
t6 | 10 1 00010000! DLE| 80| 50 | 010100001 P | 144 50 | 10010000 | 208] Do | 11010000
17 | 11| 00010001 | DC/ | 81| 51 | 01010001 | Q §145) 91 ! 10010001 | 209| D1 1101000t
18 | 12 | 00010010 | DCi | 82| 52 ;01010010 R {14s| 92 | 10010010] 210/ D2! 11010010
19 1 13| 00010011 | DG, | 83 %3 | 01010011 | S {i47| 93 | 20000011 21| D3| 110310011
20 | 14| 00010100! DG} 84: 34 01010300 T 14gf 94 | 10010100] 212; Da| 11010100
21 | 15 | 000101014 NAK | 83| 55 | o10rat0r | U 491 95 | 100101011 213 D3| 11010101
22 | 16 | o00to110| SYN| 86| s6 | oworono] v 150! 96 10010010 214 D! 11010110
23 [17 | ovotot11 | ETB | 87} 57 [ototo1t| w 3 1s1] 97 | 10000111 215| D7/ 1010111
2 {18 1 00011000| CAN | 88| 38 | 01016000 | X §152| 98 | 10011000 216 D8] 11011000
25 | 19 | 00011001 | EM | 89 59 [01011001 | Y [153i 99 | 10011001 { 217! D9} 1108 1001 |
2 | 14| 00011010 | SUB } s0| 5A 101011010 | Z {134} 9A | 10011010 | 218; DA| 11011010
27 £ 1B | vootio11! ESC§ 91| 5B osoraon | [T]f1ss| 9B | 100110013 2190 DB viorton
28 | 1C | ooor 1100} Fs | 92| sC | o101 1100 156 | 5C | 1001 1100 | 220/ DC nomoo'
291 1D | 00011101} GS ! 93] 5D | ow0nt01 | [T[] 157) oD [roos 1101 § 221} DD| 11011101 |
3 | 1E}coo11110] RS | 94l SE ;01001110 t | 1587 9E | 1001 120 222| DE| 11011110
31§ aF [ooorrtnn| LS § o9 sF|otornin | — §1%9) 9F | 1001111 § 223 DFI not it
32 1 20 | 00100000 | SPACE 9 ¢ 40 | 01100000 | [~] 1 1601 Ao | 10100000 § 224] Eo| 11100000
33| 21 | 00100001] ! } 97| 61 [0110000t | a i l6ll A1l 10100001 f 2251 E1| 11100001
L34 | 22| 00100010] » ¢ osi62 0100010 b 162 Az | 10100010 226| E2| 11100010
35 | 23 | 00100011 99| 63 {o110001t | ¢ 11e3] A3 | i0100011 § 227| E3 11100001
36 | 24 | 00100100 El 100 | 64 | 01100100 | d § 164! A4 | 10160100 | 228| E4 | 11100100
37 125 | ootootor| % 101l 6s [0110010 i ¢ §1es| As | 10100101 § 229] Es| 11100101
8 | 26 | 00100110 & [102) 66 Joroor0 | ¢ 1ies| Ae | 10100810 230! E6 | 11200110
39 127 | oer001ini * Jros| 67 {otootn] g i167) A7 10100011 f 23t| E7! 1m100s1t
40 128 | 00101000 ([104] 68 01101000 | & |168| A8 | 10101000 [232| E8| 11101000
4129 1001010001) J105] 69 | 011010011 i §169] A9 | 10101001 { 2331 E9 | 1110100}
42 [2A | o01010t0! # 106 6A|01101010¢ § [170] AA| 10101010 | 234] EA| 11101010
43 | 2B lool0to1r: + 1107 6B |01101011; k {1715 AB | 10101013 { 23] EB| 11101011
44 | 2C [00001100 , {108 6C [01101100 | | }172| AC | 10101100 | 236| EC| 11105100
45 | 2D | 0o10m101] - fio9| eD 01101101 | m £i73] AD| 1010 101 § 237] ED| t110 1101
26 2E | 00101110 . 1101 6E | 01103110 n 174 | AE | 10101110 § 238] EE| t1t0l110
47 P 2F [ooronnl / TainieF ;010111 | o §175] AF | 1010100k § 239| EF | 11101111
48 |30 | 00110000 O 3112] 70 | 01110000, p | 176|BO | 10110000 | 240 FO | 11110000
49 | 31 | ootrooor | 13| 71 {oirreoor | ¢ {177 By | 10110001 | 241| F1 ! 11110001
50 {32 | 00110010 | 2 fui4i 7201110010 r {178] B2 10110010 | 242] F2 | 11110010
st joeortoont ! s Lusigy fonneont ! s Puzsiosy 10110011 243 F3 5 1110018 |
52134 {00110100] 4 lit6| 74 [ornnowo | « 180! Bs | 10110100 § 204) F4 | 12010000 |
53 {33 | o011 1ol ; 5 4u7! 73 [0110100 | o [181] Bs | 10i10101 § 245| F3 I 11410101 |
54 136 [oonono] & fusie otoio] v is2]Be [ortono 246! F6 1 11110110 ;
35 ‘I Wojootenst 7 dnel 77 fontoi | w G1e3i 87 1001011 f207) £7 1 tiorn
' %6 , 38 \oonluoo_i- 8 120378 gomlooo x 184 | B8 | 10111000 : 248} F8 IllllpOO;
15109 I‘ 00111001 {9 1120179 [01111001 | y 85| B9 1011001 § 249] Fy | 1ilD1001
38 1AL 00N1012] {1221 7A LONIII0I0 | & {1867 BA {101110)0 | 2501 FA | 11111010 |
[| m:‘oamon; R AAR fonnon§ 187) BB L1001 1041 | 251! F8 [1010 1001,
|60 | 3 |ooriitve| < xz4§7c!omnooi_ 188 BC | 1011 1100 | 252] FC | 11111100 |
jet psojoonne! = m}m?omnm P[0 Fies | BD 10016 § 250 #D | 1ot
fez | 3E joorranio: > lize| 7€ §on|mo! [~] 1190 BE 10111110 § 254] FE | 11113110 |
!s) W oo bne] 2 far | 9F jorminun [DEL {ast) BF Liovinin §oass| B NUIRITE

